|  | /* | 
|  | * zs.c: Serial port driver for IOASIC DECstations. | 
|  | * | 
|  | * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. | 
|  | * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. | 
|  | * | 
|  | * DECstation changes | 
|  | * Copyright (C) 1998-2000 Harald Koerfgen | 
|  | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki | 
|  | * | 
|  | * For the rest of the code the original Copyright applies: | 
|  | * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) | 
|  | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) | 
|  | * | 
|  | * | 
|  | * Note: for IOASIC systems the wiring is as follows: | 
|  | * | 
|  | * mouse/keyboard: | 
|  | * DIN-7 MJ-4  signal        SCC | 
|  | * 2     1     TxD       <-  A.TxD | 
|  | * 3     4     RxD       ->  A.RxD | 
|  | * | 
|  | * EIA-232/EIA-423: | 
|  | * DB-25 MMJ-6 signal        SCC | 
|  | * 2     2     TxD       <-  B.TxD | 
|  | * 3     5     RxD       ->  B.RxD | 
|  | * 4           RTS       <- ~A.RTS | 
|  | * 5           CTS       -> ~B.CTS | 
|  | * 6     6     DSR       -> ~A.SYNC | 
|  | * 8           CD        -> ~B.DCD | 
|  | * 12          DSRS(DCE) -> ~A.CTS  (*) | 
|  | * 15          TxC       ->  B.TxC | 
|  | * 17          RxC       ->  B.RxC | 
|  | * 20    1     DTR       <- ~A.DTR | 
|  | * 22          RI        -> ~A.DCD | 
|  | * 23          DSRS(DTE) <- ~B.RTS | 
|  | * | 
|  | * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) | 
|  | *     is shared with DSRS(DTE) at pin 23. | 
|  | * | 
|  | * As you can immediately notice the wiring of the RTS, DTR and DSR signals | 
|  | * is a bit odd.  This makes the handling of port B unnecessarily | 
|  | * complicated and prevents the use of some automatic modes of operation. | 
|  | */ | 
|  |  | 
|  | #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) | 
|  | #define SUPPORT_SYSRQ | 
|  | #endif | 
|  |  | 
|  | #include <linux/bug.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/irqflags.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/major.h> | 
|  | #include <linux/serial.h> | 
|  | #include <linux/serial_core.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/sysrq.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/system.h> | 
|  |  | 
|  | #include <asm/dec/interrupts.h> | 
|  | #include <asm/dec/ioasic_addrs.h> | 
|  | #include <asm/dec/system.h> | 
|  |  | 
|  | #include "zs.h" | 
|  |  | 
|  |  | 
|  | MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>"); | 
|  | MODULE_DESCRIPTION("DECstation Z85C30 serial driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  |  | 
|  | static char zs_name[] __initdata = "DECstation Z85C30 serial driver version "; | 
|  | static char zs_version[] __initdata = "0.10"; | 
|  |  | 
|  | /* | 
|  | * It would be nice to dynamically allocate everything that | 
|  | * depends on ZS_NUM_SCCS, so we could support any number of | 
|  | * Z85C30s, but for now... | 
|  | */ | 
|  | #define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */ | 
|  | #define ZS_NUM_CHAN	2		/* 2 channels per chip.  */ | 
|  | #define ZS_CHAN_A	0		/* Index of the channel A.  */ | 
|  | #define ZS_CHAN_B	1		/* Index of the channel B.  */ | 
|  | #define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */ | 
|  | #define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */ | 
|  | #define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte | 
|  | of the 16-bit IOBUS.  */ | 
|  | #define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */ | 
|  |  | 
|  | #define to_zport(uport) container_of(uport, struct zs_port, port) | 
|  |  | 
|  | struct zs_parms { | 
|  | resource_size_t scc[ZS_NUM_SCCS]; | 
|  | int irq[ZS_NUM_SCCS]; | 
|  | }; | 
|  |  | 
|  | static struct zs_scc zs_sccs[ZS_NUM_SCCS]; | 
|  |  | 
|  | static u8 zs_init_regs[ZS_NUM_REGS] __initdata = { | 
|  | 0,				/* write 0 */ | 
|  | PAR_SPEC,			/* write 1 */ | 
|  | 0,				/* write 2 */ | 
|  | 0,				/* write 3 */ | 
|  | X16CLK | SB1,			/* write 4 */ | 
|  | 0,				/* write 5 */ | 
|  | 0, 0, 0,			/* write 6, 7, 8 */ | 
|  | MIE | DLC | NV,			/* write 9 */ | 
|  | NRZ,				/* write 10 */ | 
|  | TCBR | RCBR,			/* write 11 */ | 
|  | 0, 0,				/* BRG time constant, write 12 + 13 */ | 
|  | BRSRC | BRENABL,		/* write 14 */ | 
|  | 0,				/* write 15 */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Debugging. | 
|  | */ | 
|  | #undef ZS_DEBUG_REGS | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Reading and writing Z85C30 registers. | 
|  | */ | 
|  | static void recovery_delay(void) | 
|  | { | 
|  | udelay(2); | 
|  | } | 
|  |  | 
|  | static u8 read_zsreg(struct zs_port *zport, int reg) | 
|  | { | 
|  | void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; | 
|  | u8 retval; | 
|  |  | 
|  | if (reg != 0) { | 
|  | writeb(reg & 0xf, control); | 
|  | fast_iob(); | 
|  | recovery_delay(); | 
|  | } | 
|  | retval = readb(control); | 
|  | recovery_delay(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void write_zsreg(struct zs_port *zport, int reg, u8 value) | 
|  | { | 
|  | void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; | 
|  |  | 
|  | if (reg != 0) { | 
|  | writeb(reg & 0xf, control); | 
|  | fast_iob(); recovery_delay(); | 
|  | } | 
|  | writeb(value, control); | 
|  | fast_iob(); | 
|  | recovery_delay(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static u8 read_zsdata(struct zs_port *zport) | 
|  | { | 
|  | void __iomem *data = zport->port.membase + | 
|  | ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; | 
|  | u8 retval; | 
|  |  | 
|  | retval = readb(data); | 
|  | recovery_delay(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void write_zsdata(struct zs_port *zport, u8 value) | 
|  | { | 
|  | void __iomem *data = zport->port.membase + | 
|  | ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; | 
|  |  | 
|  | writeb(value, data); | 
|  | fast_iob(); | 
|  | recovery_delay(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef ZS_DEBUG_REGS | 
|  | void zs_dump(void) | 
|  | { | 
|  | struct zs_port *zport; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { | 
|  | zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN]; | 
|  |  | 
|  | if (!zport->scc) | 
|  | continue; | 
|  |  | 
|  | for (j = 0; j < 16; j++) | 
|  | printk("W%-2d = 0x%02x\t", j, zport->regs[j]); | 
|  | printk("\n"); | 
|  | for (j = 0; j < 16; j++) | 
|  | printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j)); | 
|  | printk("\n\n"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq) | 
|  | { | 
|  | if (irq) | 
|  | spin_lock_irq(lock); | 
|  | else | 
|  | spin_lock(lock); | 
|  | } | 
|  |  | 
|  | static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq) | 
|  | { | 
|  | if (irq) | 
|  | spin_unlock_irq(lock); | 
|  | else | 
|  | spin_unlock(lock); | 
|  | } | 
|  |  | 
|  | static int zs_receive_drain(struct zs_port *zport) | 
|  | { | 
|  | int loops = 10000; | 
|  |  | 
|  | while ((read_zsreg(zport, R0) & Rx_CH_AV) && loops--) | 
|  | read_zsdata(zport); | 
|  | return loops; | 
|  | } | 
|  |  | 
|  | static int zs_transmit_drain(struct zs_port *zport, int irq) | 
|  | { | 
|  | struct zs_scc *scc = zport->scc; | 
|  | int loops = 10000; | 
|  |  | 
|  | while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && loops--) { | 
|  | zs_spin_unlock_cond_irq(&scc->zlock, irq); | 
|  | udelay(2); | 
|  | zs_spin_lock_cond_irq(&scc->zlock, irq); | 
|  | } | 
|  | return loops; | 
|  | } | 
|  |  | 
|  | static int zs_line_drain(struct zs_port *zport, int irq) | 
|  | { | 
|  | struct zs_scc *scc = zport->scc; | 
|  | int loops = 10000; | 
|  |  | 
|  | while (!(read_zsreg(zport, R1) & ALL_SNT) && loops--) { | 
|  | zs_spin_unlock_cond_irq(&scc->zlock, irq); | 
|  | udelay(2); | 
|  | zs_spin_lock_cond_irq(&scc->zlock, irq); | 
|  | } | 
|  | return loops; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void load_zsregs(struct zs_port *zport, u8 *regs, int irq) | 
|  | { | 
|  | /* Let the current transmission finish.  */ | 
|  | zs_line_drain(zport, irq); | 
|  | /* Load 'em up.  */ | 
|  | write_zsreg(zport, R3, regs[3] & ~RxENABLE); | 
|  | write_zsreg(zport, R5, regs[5] & ~TxENAB); | 
|  | write_zsreg(zport, R4, regs[4]); | 
|  | write_zsreg(zport, R9, regs[9]); | 
|  | write_zsreg(zport, R1, regs[1]); | 
|  | write_zsreg(zport, R2, regs[2]); | 
|  | write_zsreg(zport, R10, regs[10]); | 
|  | write_zsreg(zport, R14, regs[14] & ~BRENABL); | 
|  | write_zsreg(zport, R11, regs[11]); | 
|  | write_zsreg(zport, R12, regs[12]); | 
|  | write_zsreg(zport, R13, regs[13]); | 
|  | write_zsreg(zport, R14, regs[14]); | 
|  | write_zsreg(zport, R15, regs[15]); | 
|  | if (regs[3] & RxENABLE) | 
|  | write_zsreg(zport, R3, regs[3]); | 
|  | if (regs[5] & TxENAB) | 
|  | write_zsreg(zport, R5, regs[5]); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Status handling routines. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * zs_tx_empty() -- get the transmitter empty status | 
|  | * | 
|  | * Purpose: Let user call ioctl() to get info when the UART physically | 
|  | * 	    is emptied.  On bus types like RS485, the transmitter must | 
|  | * 	    release the bus after transmitting.  This must be done when | 
|  | * 	    the transmit shift register is empty, not be done when the | 
|  | * 	    transmit holding register is empty.  This functionality | 
|  | * 	    allows an RS485 driver to be written in user space. | 
|  | */ | 
|  | static unsigned int zs_tx_empty(struct uart_port *uport) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | unsigned long flags; | 
|  | u8 status; | 
|  |  | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  | status = read_zsreg(zport, R1); | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  |  | 
|  | return status & ALL_SNT ? TIOCSER_TEMT : 0; | 
|  | } | 
|  |  | 
|  | static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a, | 
|  | struct zs_port *zport_b) | 
|  | { | 
|  | u8 status_a, status_b; | 
|  | unsigned int mctrl; | 
|  |  | 
|  | status_a = read_zsreg(zport_a, R0); | 
|  | status_b = read_zsreg(zport_b, R0); | 
|  |  | 
|  | mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) | | 
|  | ((status_b & DCD) ? TIOCM_CAR : 0) | | 
|  | ((status_a & DCD) ? TIOCM_RNG : 0) | | 
|  | ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0); | 
|  |  | 
|  | return mctrl; | 
|  | } | 
|  |  | 
|  | static unsigned int zs_raw_get_mctrl(struct zs_port *zport) | 
|  | { | 
|  | struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; | 
|  |  | 
|  | return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0; | 
|  | } | 
|  |  | 
|  | static unsigned int zs_raw_xor_mctrl(struct zs_port *zport) | 
|  | { | 
|  | struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; | 
|  | unsigned int mmask, mctrl, delta; | 
|  | u8 mask_a, mask_b; | 
|  |  | 
|  | if (zport == zport_a) | 
|  | return 0; | 
|  |  | 
|  | mask_a = zport_a->regs[15]; | 
|  | mask_b = zport->regs[15]; | 
|  |  | 
|  | mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) | | 
|  | ((mask_b & DCDIE) ? TIOCM_CAR : 0) | | 
|  | ((mask_a & DCDIE) ? TIOCM_RNG : 0) | | 
|  | ((mask_a & SYNCIE) ? TIOCM_DSR : 0); | 
|  |  | 
|  | mctrl = zport->mctrl; | 
|  | if (mmask) { | 
|  | mctrl &= ~mmask; | 
|  | mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask; | 
|  | } | 
|  |  | 
|  | delta = mctrl ^ zport->mctrl; | 
|  | if (delta) | 
|  | zport->mctrl = mctrl; | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | static unsigned int zs_get_mctrl(struct uart_port *uport) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | unsigned int mctrl; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  | mctrl = zs_raw_get_mctrl(zport); | 
|  | spin_unlock(&scc->zlock); | 
|  |  | 
|  | return mctrl; | 
|  | } | 
|  |  | 
|  | static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | 
|  | u8 oldloop, newloop; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  | if (zport != zport_a) { | 
|  | if (mctrl & TIOCM_DTR) | 
|  | zport_a->regs[5] |= DTR; | 
|  | else | 
|  | zport_a->regs[5] &= ~DTR; | 
|  | if (mctrl & TIOCM_RTS) | 
|  | zport_a->regs[5] |= RTS; | 
|  | else | 
|  | zport_a->regs[5] &= ~RTS; | 
|  | write_zsreg(zport_a, R5, zport_a->regs[5]); | 
|  | } | 
|  |  | 
|  | /* Rarely modified, so don't poke at hardware unless necessary. */ | 
|  | oldloop = zport->regs[14]; | 
|  | newloop = oldloop; | 
|  | if (mctrl & TIOCM_LOOP) | 
|  | newloop |= LOOPBAK; | 
|  | else | 
|  | newloop &= ~LOOPBAK; | 
|  | if (newloop != oldloop) { | 
|  | zport->regs[14] = newloop; | 
|  | write_zsreg(zport, R14, zport->regs[14]); | 
|  | } | 
|  | spin_unlock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | static void zs_raw_stop_tx(struct zs_port *zport) | 
|  | { | 
|  | write_zsreg(zport, R0, RES_Tx_P); | 
|  | zport->tx_stopped = 1; | 
|  | } | 
|  |  | 
|  | static void zs_stop_tx(struct uart_port *uport) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  | zs_raw_stop_tx(zport); | 
|  | spin_unlock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | static void zs_raw_transmit_chars(struct zs_port *); | 
|  |  | 
|  | static void zs_start_tx(struct uart_port *uport) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  | if (zport->tx_stopped) { | 
|  | zs_transmit_drain(zport, 0); | 
|  | zport->tx_stopped = 0; | 
|  | zs_raw_transmit_chars(zport); | 
|  | } | 
|  | spin_unlock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | static void zs_stop_rx(struct uart_port *uport) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  | zport->regs[15] &= ~BRKIE; | 
|  | zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB); | 
|  | zport->regs[1] |= RxINT_DISAB; | 
|  |  | 
|  | if (zport != zport_a) { | 
|  | /* A-side DCD tracks RI and SYNC tracks DSR.  */ | 
|  | zport_a->regs[15] &= ~(DCDIE | SYNCIE); | 
|  | write_zsreg(zport_a, R15, zport_a->regs[15]); | 
|  | if (!(zport_a->regs[15] & BRKIE)) { | 
|  | zport_a->regs[1] &= ~EXT_INT_ENAB; | 
|  | write_zsreg(zport_a, R1, zport_a->regs[1]); | 
|  | } | 
|  |  | 
|  | /* This-side DCD tracks DCD and CTS tracks CTS.  */ | 
|  | zport->regs[15] &= ~(DCDIE | CTSIE); | 
|  | zport->regs[1] &= ~EXT_INT_ENAB; | 
|  | } else { | 
|  | /* DCD tracks RI and SYNC tracks DSR for the B side.  */ | 
|  | if (!(zport->regs[15] & (DCDIE | SYNCIE))) | 
|  | zport->regs[1] &= ~EXT_INT_ENAB; | 
|  | } | 
|  |  | 
|  | write_zsreg(zport, R15, zport->regs[15]); | 
|  | write_zsreg(zport, R1, zport->regs[1]); | 
|  | spin_unlock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | static void zs_enable_ms(struct uart_port *uport) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | 
|  |  | 
|  | if (zport == zport_a) | 
|  | return; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  |  | 
|  | /* Clear Ext interrupts if not being handled already.  */ | 
|  | if (!(zport_a->regs[1] & EXT_INT_ENAB)) | 
|  | write_zsreg(zport_a, R0, RES_EXT_INT); | 
|  |  | 
|  | /* A-side DCD tracks RI and SYNC tracks DSR.  */ | 
|  | zport_a->regs[1] |= EXT_INT_ENAB; | 
|  | zport_a->regs[15] |= DCDIE | SYNCIE; | 
|  |  | 
|  | /* This-side DCD tracks DCD and CTS tracks CTS.  */ | 
|  | zport->regs[15] |= DCDIE | CTSIE; | 
|  |  | 
|  | zs_raw_xor_mctrl(zport); | 
|  |  | 
|  | write_zsreg(zport_a, R1, zport_a->regs[1]); | 
|  | write_zsreg(zport_a, R15, zport_a->regs[15]); | 
|  | write_zsreg(zport, R15, zport->regs[15]); | 
|  | spin_unlock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | static void zs_break_ctl(struct uart_port *uport, int break_state) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  | if (break_state == -1) | 
|  | zport->regs[5] |= SND_BRK; | 
|  | else | 
|  | zport->regs[5] &= ~SND_BRK; | 
|  | write_zsreg(zport, R5, zport->regs[5]); | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Interrupt handling routines. | 
|  | */ | 
|  | #define Rx_BRK 0x0100			/* BREAK event software flag.  */ | 
|  | #define Rx_SYS 0x0200			/* SysRq event software flag.  */ | 
|  |  | 
|  | static void zs_receive_chars(struct zs_port *zport) | 
|  | { | 
|  | struct uart_port *uport = &zport->port; | 
|  | struct zs_scc *scc = zport->scc; | 
|  | struct uart_icount *icount; | 
|  | unsigned int avail, status, ch, flag; | 
|  | int count; | 
|  |  | 
|  | for (count = 16; count; count--) { | 
|  | spin_lock(&scc->zlock); | 
|  | avail = read_zsreg(zport, R0) & Rx_CH_AV; | 
|  | spin_unlock(&scc->zlock); | 
|  | if (!avail) | 
|  | break; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  | status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR); | 
|  | ch = read_zsdata(zport); | 
|  | spin_unlock(&scc->zlock); | 
|  |  | 
|  | flag = TTY_NORMAL; | 
|  |  | 
|  | icount = &uport->icount; | 
|  | icount->rx++; | 
|  |  | 
|  | /* Handle the null char got when BREAK is removed.  */ | 
|  | if (!ch) | 
|  | status |= zport->tty_break; | 
|  | if (unlikely(status & | 
|  | (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) { | 
|  | zport->tty_break = 0; | 
|  |  | 
|  | /* Reset the error indication.  */ | 
|  | if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) { | 
|  | spin_lock(&scc->zlock); | 
|  | write_zsreg(zport, R0, ERR_RES); | 
|  | spin_unlock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | if (status & (Rx_SYS | Rx_BRK)) { | 
|  | icount->brk++; | 
|  | /* SysRq discards the null char.  */ | 
|  | if (status & Rx_SYS) | 
|  | continue; | 
|  | } else if (status & FRM_ERR) | 
|  | icount->frame++; | 
|  | else if (status & PAR_ERR) | 
|  | icount->parity++; | 
|  | if (status & Rx_OVR) | 
|  | icount->overrun++; | 
|  |  | 
|  | status &= uport->read_status_mask; | 
|  | if (status & Rx_BRK) | 
|  | flag = TTY_BREAK; | 
|  | else if (status & FRM_ERR) | 
|  | flag = TTY_FRAME; | 
|  | else if (status & PAR_ERR) | 
|  | flag = TTY_PARITY; | 
|  | } | 
|  |  | 
|  | if (uart_handle_sysrq_char(uport, ch)) | 
|  | continue; | 
|  |  | 
|  | uart_insert_char(uport, status, Rx_OVR, ch, flag); | 
|  | } | 
|  |  | 
|  | tty_flip_buffer_push(uport->info->port.tty); | 
|  | } | 
|  |  | 
|  | static void zs_raw_transmit_chars(struct zs_port *zport) | 
|  | { | 
|  | struct circ_buf *xmit = &zport->port.info->xmit; | 
|  |  | 
|  | /* XON/XOFF chars.  */ | 
|  | if (zport->port.x_char) { | 
|  | write_zsdata(zport, zport->port.x_char); | 
|  | zport->port.icount.tx++; | 
|  | zport->port.x_char = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* If nothing to do or stopped or hardware stopped.  */ | 
|  | if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) { | 
|  | zs_raw_stop_tx(zport); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Send char.  */ | 
|  | write_zsdata(zport, xmit->buf[xmit->tail]); | 
|  | xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); | 
|  | zport->port.icount.tx++; | 
|  |  | 
|  | if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) | 
|  | uart_write_wakeup(&zport->port); | 
|  |  | 
|  | /* Are we are done?  */ | 
|  | if (uart_circ_empty(xmit)) | 
|  | zs_raw_stop_tx(zport); | 
|  | } | 
|  |  | 
|  | static void zs_transmit_chars(struct zs_port *zport) | 
|  | { | 
|  | struct zs_scc *scc = zport->scc; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  | zs_raw_transmit_chars(zport); | 
|  | spin_unlock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a) | 
|  | { | 
|  | struct uart_port *uport = &zport->port; | 
|  | struct zs_scc *scc = zport->scc; | 
|  | unsigned int delta; | 
|  | u8 status, brk; | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  |  | 
|  | /* Get status from Read Register 0.  */ | 
|  | status = read_zsreg(zport, R0); | 
|  |  | 
|  | if (zport->regs[15] & BRKIE) { | 
|  | brk = status & BRK_ABRT; | 
|  | if (brk && !zport->brk) { | 
|  | spin_unlock(&scc->zlock); | 
|  | if (uart_handle_break(uport)) | 
|  | zport->tty_break = Rx_SYS; | 
|  | else | 
|  | zport->tty_break = Rx_BRK; | 
|  | spin_lock(&scc->zlock); | 
|  | } | 
|  | zport->brk = brk; | 
|  | } | 
|  |  | 
|  | if (zport != zport_a) { | 
|  | delta = zs_raw_xor_mctrl(zport); | 
|  | spin_unlock(&scc->zlock); | 
|  |  | 
|  | if (delta & TIOCM_CTS) | 
|  | uart_handle_cts_change(uport, | 
|  | zport->mctrl & TIOCM_CTS); | 
|  | if (delta & TIOCM_CAR) | 
|  | uart_handle_dcd_change(uport, | 
|  | zport->mctrl & TIOCM_CAR); | 
|  | if (delta & TIOCM_RNG) | 
|  | uport->icount.dsr++; | 
|  | if (delta & TIOCM_DSR) | 
|  | uport->icount.rng++; | 
|  |  | 
|  | if (delta) | 
|  | wake_up_interruptible(&uport->info->delta_msr_wait); | 
|  |  | 
|  | spin_lock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | /* Clear the status condition...  */ | 
|  | write_zsreg(zport, R0, RES_EXT_INT); | 
|  |  | 
|  | spin_unlock(&scc->zlock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the Z85C30 driver's generic interrupt routine. | 
|  | */ | 
|  | static irqreturn_t zs_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct zs_scc *scc = dev_id; | 
|  | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | 
|  | struct zs_port *zport_b = &scc->zport[ZS_CHAN_B]; | 
|  | irqreturn_t status = IRQ_NONE; | 
|  | u8 zs_intreg; | 
|  | int count; | 
|  |  | 
|  | /* | 
|  | * NOTE: The read register 3, which holds the irq status, | 
|  | *       does so for both channels on each chip.  Although | 
|  | *       the status value itself must be read from the A | 
|  | *       channel and is only valid when read from channel A. | 
|  | *       Yes... broken hardware... | 
|  | */ | 
|  | for (count = 16; count; count--) { | 
|  | spin_lock(&scc->zlock); | 
|  | zs_intreg = read_zsreg(zport_a, R3); | 
|  | spin_unlock(&scc->zlock); | 
|  | if (!zs_intreg) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We do not like losing characters, so we prioritise | 
|  | * interrupt sources a little bit differently than | 
|  | * the SCC would, was it allowed to. | 
|  | */ | 
|  | if (zs_intreg & CHBRxIP) | 
|  | zs_receive_chars(zport_b); | 
|  | if (zs_intreg & CHARxIP) | 
|  | zs_receive_chars(zport_a); | 
|  | if (zs_intreg & CHBEXT) | 
|  | zs_status_handle(zport_b, zport_a); | 
|  | if (zs_intreg & CHAEXT) | 
|  | zs_status_handle(zport_a, zport_a); | 
|  | if (zs_intreg & CHBTxIP) | 
|  | zs_transmit_chars(zport_b); | 
|  | if (zs_intreg & CHATxIP) | 
|  | zs_transmit_chars(zport_a); | 
|  |  | 
|  | status = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Finally, routines used to initialize the serial port. | 
|  | */ | 
|  | static int zs_startup(struct uart_port *uport) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | unsigned long flags; | 
|  | int irq_guard; | 
|  | int ret; | 
|  |  | 
|  | irq_guard = atomic_add_return(1, &scc->irq_guard); | 
|  | if (irq_guard == 1) { | 
|  | ret = request_irq(zport->port.irq, zs_interrupt, | 
|  | IRQF_SHARED, "scc", scc); | 
|  | if (ret) { | 
|  | atomic_add(-1, &scc->irq_guard); | 
|  | printk(KERN_ERR "zs: can't get irq %d\n", | 
|  | zport->port.irq); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  |  | 
|  | /* Clear the receive FIFO.  */ | 
|  | zs_receive_drain(zport); | 
|  |  | 
|  | /* Clear the interrupt registers.  */ | 
|  | write_zsreg(zport, R0, ERR_RES); | 
|  | write_zsreg(zport, R0, RES_Tx_P); | 
|  | /* But Ext only if not being handled already.  */ | 
|  | if (!(zport->regs[1] & EXT_INT_ENAB)) | 
|  | write_zsreg(zport, R0, RES_EXT_INT); | 
|  |  | 
|  | /* Finally, enable sequencing and interrupts.  */ | 
|  | zport->regs[1] &= ~RxINT_MASK; | 
|  | zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB; | 
|  | zport->regs[3] |= RxENABLE; | 
|  | zport->regs[15] |= BRKIE; | 
|  | write_zsreg(zport, R1, zport->regs[1]); | 
|  | write_zsreg(zport, R3, zport->regs[3]); | 
|  | write_zsreg(zport, R5, zport->regs[5]); | 
|  | write_zsreg(zport, R15, zport->regs[15]); | 
|  |  | 
|  | /* Record the current state of RR0.  */ | 
|  | zport->mctrl = zs_raw_get_mctrl(zport); | 
|  | zport->brk = read_zsreg(zport, R0) & BRK_ABRT; | 
|  |  | 
|  | zport->tx_stopped = 1; | 
|  |  | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void zs_shutdown(struct uart_port *uport) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | unsigned long flags; | 
|  | int irq_guard; | 
|  |  | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  |  | 
|  | zport->regs[3] &= ~RxENABLE; | 
|  | write_zsreg(zport, R5, zport->regs[5]); | 
|  | write_zsreg(zport, R3, zport->regs[3]); | 
|  |  | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  |  | 
|  | irq_guard = atomic_add_return(-1, &scc->irq_guard); | 
|  | if (!irq_guard) | 
|  | free_irq(zport->port.irq, scc); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void zs_reset(struct zs_port *zport) | 
|  | { | 
|  | struct zs_scc *scc = zport->scc; | 
|  | int irq; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  | irq = !irqs_disabled_flags(flags); | 
|  | if (!scc->initialised) { | 
|  | /* Reset the pointer first, just in case...  */ | 
|  | read_zsreg(zport, R0); | 
|  | /* And let the current transmission finish.  */ | 
|  | zs_line_drain(zport, irq); | 
|  | write_zsreg(zport, R9, FHWRES); | 
|  | udelay(10); | 
|  | write_zsreg(zport, R9, 0); | 
|  | scc->initialised = 1; | 
|  | } | 
|  | load_zsregs(zport, zport->regs, irq); | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  | } | 
|  |  | 
|  | static void zs_set_termios(struct uart_port *uport, struct ktermios *termios, | 
|  | struct ktermios *old_termios) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | 
|  | int irq; | 
|  | unsigned int baud, brg; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  | irq = !irqs_disabled_flags(flags); | 
|  |  | 
|  | /* Byte size.  */ | 
|  | zport->regs[3] &= ~RxNBITS_MASK; | 
|  | zport->regs[5] &= ~TxNBITS_MASK; | 
|  | switch (termios->c_cflag & CSIZE) { | 
|  | case CS5: | 
|  | zport->regs[3] |= Rx5; | 
|  | zport->regs[5] |= Tx5; | 
|  | break; | 
|  | case CS6: | 
|  | zport->regs[3] |= Rx6; | 
|  | zport->regs[5] |= Tx6; | 
|  | break; | 
|  | case CS7: | 
|  | zport->regs[3] |= Rx7; | 
|  | zport->regs[5] |= Tx7; | 
|  | break; | 
|  | case CS8: | 
|  | default: | 
|  | zport->regs[3] |= Rx8; | 
|  | zport->regs[5] |= Tx8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Parity and stop bits.  */ | 
|  | zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN); | 
|  | if (termios->c_cflag & CSTOPB) | 
|  | zport->regs[4] |= SB2; | 
|  | else | 
|  | zport->regs[4] |= SB1; | 
|  | if (termios->c_cflag & PARENB) | 
|  | zport->regs[4] |= PAR_ENA; | 
|  | if (!(termios->c_cflag & PARODD)) | 
|  | zport->regs[4] |= PAR_EVEN; | 
|  | switch (zport->clk_mode) { | 
|  | case 64: | 
|  | zport->regs[4] |= X64CLK; | 
|  | break; | 
|  | case 32: | 
|  | zport->regs[4] |= X32CLK; | 
|  | break; | 
|  | case 16: | 
|  | zport->regs[4] |= X16CLK; | 
|  | break; | 
|  | case 1: | 
|  | zport->regs[4] |= X1CLK; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | baud = uart_get_baud_rate(uport, termios, old_termios, 0, | 
|  | uport->uartclk / zport->clk_mode / 4); | 
|  |  | 
|  | brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode); | 
|  | zport->regs[12] = brg & 0xff; | 
|  | zport->regs[13] = (brg >> 8) & 0xff; | 
|  |  | 
|  | uart_update_timeout(uport, termios->c_cflag, baud); | 
|  |  | 
|  | uport->read_status_mask = Rx_OVR; | 
|  | if (termios->c_iflag & INPCK) | 
|  | uport->read_status_mask |= FRM_ERR | PAR_ERR; | 
|  | if (termios->c_iflag & (BRKINT | PARMRK)) | 
|  | uport->read_status_mask |= Rx_BRK; | 
|  |  | 
|  | uport->ignore_status_mask = 0; | 
|  | if (termios->c_iflag & IGNPAR) | 
|  | uport->ignore_status_mask |= FRM_ERR | PAR_ERR; | 
|  | if (termios->c_iflag & IGNBRK) { | 
|  | uport->ignore_status_mask |= Rx_BRK; | 
|  | if (termios->c_iflag & IGNPAR) | 
|  | uport->ignore_status_mask |= Rx_OVR; | 
|  | } | 
|  |  | 
|  | if (termios->c_cflag & CREAD) | 
|  | zport->regs[3] |= RxENABLE; | 
|  | else | 
|  | zport->regs[3] &= ~RxENABLE; | 
|  |  | 
|  | if (zport != zport_a) { | 
|  | if (!(termios->c_cflag & CLOCAL)) { | 
|  | zport->regs[15] |= DCDIE; | 
|  | } else | 
|  | zport->regs[15] &= ~DCDIE; | 
|  | if (termios->c_cflag & CRTSCTS) { | 
|  | zport->regs[15] |= CTSIE; | 
|  | } else | 
|  | zport->regs[15] &= ~CTSIE; | 
|  | zs_raw_xor_mctrl(zport); | 
|  | } | 
|  |  | 
|  | /* Load up the new values.  */ | 
|  | load_zsregs(zport, zport->regs, irq); | 
|  |  | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hack alert! | 
|  | * Required solely so that the initial PROM-based console | 
|  | * works undisturbed in parallel with this one. | 
|  | */ | 
|  | static void zs_pm(struct uart_port *uport, unsigned int state, | 
|  | unsigned int oldstate) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  |  | 
|  | if (state < 3) | 
|  | zport->regs[5] |= TxENAB; | 
|  | else | 
|  | zport->regs[5] &= ~TxENAB; | 
|  | write_zsreg(zport, R5, zport->regs[5]); | 
|  | } | 
|  |  | 
|  |  | 
|  | static const char *zs_type(struct uart_port *uport) | 
|  | { | 
|  | return "Z85C30 SCC"; | 
|  | } | 
|  |  | 
|  | static void zs_release_port(struct uart_port *uport) | 
|  | { | 
|  | iounmap(uport->membase); | 
|  | uport->membase = 0; | 
|  | release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); | 
|  | } | 
|  |  | 
|  | static int zs_map_port(struct uart_port *uport) | 
|  | { | 
|  | if (!uport->membase) | 
|  | uport->membase = ioremap_nocache(uport->mapbase, | 
|  | ZS_CHAN_IO_SIZE); | 
|  | if (!uport->membase) { | 
|  | printk(KERN_ERR "zs: Cannot map MMIO\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int zs_request_port(struct uart_port *uport) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) { | 
|  | printk(KERN_ERR "zs: Unable to reserve MMIO resource\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | ret = zs_map_port(uport); | 
|  | if (ret) { | 
|  | release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void zs_config_port(struct uart_port *uport, int flags) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  |  | 
|  | if (flags & UART_CONFIG_TYPE) { | 
|  | if (zs_request_port(uport)) | 
|  | return; | 
|  |  | 
|  | uport->type = PORT_ZS; | 
|  |  | 
|  | zs_reset(zport); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | int ret = 0; | 
|  |  | 
|  | if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS) | 
|  | ret = -EINVAL; | 
|  | if (ser->irq != uport->irq) | 
|  | ret = -EINVAL; | 
|  | if (ser->baud_base != uport->uartclk / zport->clk_mode / 4) | 
|  | ret = -EINVAL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct uart_ops zs_ops = { | 
|  | .tx_empty	= zs_tx_empty, | 
|  | .set_mctrl	= zs_set_mctrl, | 
|  | .get_mctrl	= zs_get_mctrl, | 
|  | .stop_tx	= zs_stop_tx, | 
|  | .start_tx	= zs_start_tx, | 
|  | .stop_rx	= zs_stop_rx, | 
|  | .enable_ms	= zs_enable_ms, | 
|  | .break_ctl	= zs_break_ctl, | 
|  | .startup	= zs_startup, | 
|  | .shutdown	= zs_shutdown, | 
|  | .set_termios	= zs_set_termios, | 
|  | .pm		= zs_pm, | 
|  | .type		= zs_type, | 
|  | .release_port	= zs_release_port, | 
|  | .request_port	= zs_request_port, | 
|  | .config_port	= zs_config_port, | 
|  | .verify_port	= zs_verify_port, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Initialize Z85C30 port structures. | 
|  | */ | 
|  | static int __init zs_probe_sccs(void) | 
|  | { | 
|  | static int probed; | 
|  | struct zs_parms zs_parms; | 
|  | int chip, side, irq; | 
|  | int n_chips = 0; | 
|  | int i; | 
|  |  | 
|  | if (probed) | 
|  | return 0; | 
|  |  | 
|  | irq = dec_interrupt[DEC_IRQ_SCC0]; | 
|  | if (irq >= 0) { | 
|  | zs_parms.scc[n_chips] = IOASIC_SCC0; | 
|  | zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0]; | 
|  | n_chips++; | 
|  | } | 
|  | irq = dec_interrupt[DEC_IRQ_SCC1]; | 
|  | if (irq >= 0) { | 
|  | zs_parms.scc[n_chips] = IOASIC_SCC1; | 
|  | zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1]; | 
|  | n_chips++; | 
|  | } | 
|  | if (!n_chips) | 
|  | return -ENXIO; | 
|  |  | 
|  | probed = 1; | 
|  |  | 
|  | for (chip = 0; chip < n_chips; chip++) { | 
|  | spin_lock_init(&zs_sccs[chip].zlock); | 
|  | for (side = 0; side < ZS_NUM_CHAN; side++) { | 
|  | struct zs_port *zport = &zs_sccs[chip].zport[side]; | 
|  | struct uart_port *uport = &zport->port; | 
|  |  | 
|  | zport->scc	= &zs_sccs[chip]; | 
|  | zport->clk_mode	= 16; | 
|  |  | 
|  | uport->irq	= zs_parms.irq[chip]; | 
|  | uport->uartclk	= ZS_CLOCK; | 
|  | uport->fifosize	= 1; | 
|  | uport->iotype	= UPIO_MEM; | 
|  | uport->flags	= UPF_BOOT_AUTOCONF; | 
|  | uport->ops	= &zs_ops; | 
|  | uport->line	= chip * ZS_NUM_CHAN + side; | 
|  | uport->mapbase	= dec_kn_slot_base + | 
|  | zs_parms.scc[chip] + | 
|  | (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE; | 
|  |  | 
|  | for (i = 0; i < ZS_NUM_REGS; i++) | 
|  | zport->regs[i] = zs_init_regs[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SERIAL_ZS_CONSOLE | 
|  | static void zs_console_putchar(struct uart_port *uport, int ch) | 
|  | { | 
|  | struct zs_port *zport = to_zport(uport); | 
|  | struct zs_scc *scc = zport->scc; | 
|  | int irq; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  | irq = !irqs_disabled_flags(flags); | 
|  | if (zs_transmit_drain(zport, irq)) | 
|  | write_zsdata(zport, ch); | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print a string to the serial port trying not to disturb | 
|  | * any possible real use of the port... | 
|  | */ | 
|  | static void zs_console_write(struct console *co, const char *s, | 
|  | unsigned int count) | 
|  | { | 
|  | int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; | 
|  | struct zs_port *zport = &zs_sccs[chip].zport[side]; | 
|  | struct zs_scc *scc = zport->scc; | 
|  | unsigned long flags; | 
|  | u8 txint, txenb; | 
|  | int irq; | 
|  |  | 
|  | /* Disable transmit interrupts and enable the transmitter. */ | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  | txint = zport->regs[1]; | 
|  | txenb = zport->regs[5]; | 
|  | if (txint & TxINT_ENAB) { | 
|  | zport->regs[1] = txint & ~TxINT_ENAB; | 
|  | write_zsreg(zport, R1, zport->regs[1]); | 
|  | } | 
|  | if (!(txenb & TxENAB)) { | 
|  | zport->regs[5] = txenb | TxENAB; | 
|  | write_zsreg(zport, R5, zport->regs[5]); | 
|  | } | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  |  | 
|  | uart_console_write(&zport->port, s, count, zs_console_putchar); | 
|  |  | 
|  | /* Restore transmit interrupts and the transmitter enable. */ | 
|  | spin_lock_irqsave(&scc->zlock, flags); | 
|  | irq = !irqs_disabled_flags(flags); | 
|  | zs_line_drain(zport, irq); | 
|  | if (!(txenb & TxENAB)) { | 
|  | zport->regs[5] &= ~TxENAB; | 
|  | write_zsreg(zport, R5, zport->regs[5]); | 
|  | } | 
|  | if (txint & TxINT_ENAB) { | 
|  | zport->regs[1] |= TxINT_ENAB; | 
|  | write_zsreg(zport, R1, zport->regs[1]); | 
|  | } | 
|  | spin_unlock_irqrestore(&scc->zlock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup serial console baud/bits/parity.  We do two things here: | 
|  | * - construct a cflag setting for the first uart_open() | 
|  | * - initialise the serial port | 
|  | * Return non-zero if we didn't find a serial port. | 
|  | */ | 
|  | static int __init zs_console_setup(struct console *co, char *options) | 
|  | { | 
|  | int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; | 
|  | struct zs_port *zport = &zs_sccs[chip].zport[side]; | 
|  | struct uart_port *uport = &zport->port; | 
|  | int baud = 9600; | 
|  | int bits = 8; | 
|  | int parity = 'n'; | 
|  | int flow = 'n'; | 
|  | int ret; | 
|  |  | 
|  | ret = zs_map_port(uport); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | zs_reset(zport); | 
|  | zs_pm(uport, 0, -1); | 
|  |  | 
|  | if (options) | 
|  | uart_parse_options(options, &baud, &parity, &bits, &flow); | 
|  | return uart_set_options(uport, co, baud, parity, bits, flow); | 
|  | } | 
|  |  | 
|  | static struct uart_driver zs_reg; | 
|  | static struct console zs_console = { | 
|  | .name	= "ttyS", | 
|  | .write	= zs_console_write, | 
|  | .device	= uart_console_device, | 
|  | .setup	= zs_console_setup, | 
|  | .flags	= CON_PRINTBUFFER, | 
|  | .index	= -1, | 
|  | .data	= &zs_reg, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *	Register console. | 
|  | */ | 
|  | static int __init zs_serial_console_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = zs_probe_sccs(); | 
|  | if (ret) | 
|  | return ret; | 
|  | register_console(&zs_console); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | console_initcall(zs_serial_console_init); | 
|  |  | 
|  | #define SERIAL_ZS_CONSOLE	&zs_console | 
|  | #else | 
|  | #define SERIAL_ZS_CONSOLE	NULL | 
|  | #endif /* CONFIG_SERIAL_ZS_CONSOLE */ | 
|  |  | 
|  | static struct uart_driver zs_reg = { | 
|  | .owner			= THIS_MODULE, | 
|  | .driver_name		= "serial", | 
|  | .dev_name		= "ttyS", | 
|  | .major			= TTY_MAJOR, | 
|  | .minor			= 64, | 
|  | .nr			= ZS_NUM_SCCS * ZS_NUM_CHAN, | 
|  | .cons			= SERIAL_ZS_CONSOLE, | 
|  | }; | 
|  |  | 
|  | /* zs_init inits the driver. */ | 
|  | static int __init zs_init(void) | 
|  | { | 
|  | int i, ret; | 
|  |  | 
|  | pr_info("%s%s\n", zs_name, zs_version); | 
|  |  | 
|  | /* Find out how many Z85C30 SCCs we have.  */ | 
|  | ret = zs_probe_sccs(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = uart_register_driver(&zs_reg); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { | 
|  | struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; | 
|  | struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; | 
|  | struct uart_port *uport = &zport->port; | 
|  |  | 
|  | if (zport->scc) | 
|  | uart_add_one_port(&zs_reg, uport); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit zs_exit(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) { | 
|  | struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; | 
|  | struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; | 
|  | struct uart_port *uport = &zport->port; | 
|  |  | 
|  | if (zport->scc) | 
|  | uart_remove_one_port(&zs_reg, uport); | 
|  | } | 
|  |  | 
|  | uart_unregister_driver(&zs_reg); | 
|  | } | 
|  |  | 
|  | module_init(zs_init); | 
|  | module_exit(zs_exit); |