|  | /* MN10300 Page table manipulators and constants | 
|  | * | 
|  | * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. | 
|  | * Written by David Howells (dhowells@redhat.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public Licence | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the Licence, or (at your option) any later version. | 
|  | * | 
|  | * | 
|  | * The Linux memory management assumes a three-level page table setup. On | 
|  | * the i386, we use that, but "fold" the mid level into the top-level page | 
|  | * table, so that we physically have the same two-level page table as the | 
|  | * i386 mmu expects. | 
|  | * | 
|  | * This file contains the functions and defines necessary to modify and use | 
|  | * the i386 page table tree for the purposes of the MN10300 TLB handler | 
|  | * functions. | 
|  | */ | 
|  | #ifndef _ASM_PGTABLE_H | 
|  | #define _ASM_PGTABLE_H | 
|  |  | 
|  | #include <asm/cpu-regs.h> | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | #include <asm/processor.h> | 
|  | #include <asm/cache.h> | 
|  | #include <linux/threads.h> | 
|  |  | 
|  | #include <asm/bitops.h> | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | /* | 
|  | * ZERO_PAGE is a global shared page that is always zero: used | 
|  | * for zero-mapped memory areas etc.. | 
|  | */ | 
|  | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | 
|  | extern unsigned long empty_zero_page[1024]; | 
|  | extern spinlock_t pgd_lock; | 
|  | extern struct page *pgd_list; | 
|  |  | 
|  | extern void pmd_ctor(void *, struct kmem_cache *, unsigned long); | 
|  | extern void pgtable_cache_init(void); | 
|  | extern void paging_init(void); | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | /* | 
|  | * The Linux mn10300 paging architecture only implements both the traditional | 
|  | * 2-level page tables | 
|  | */ | 
|  | #define PGDIR_SHIFT	22 | 
|  | #define PTRS_PER_PGD	1024 | 
|  | #define PTRS_PER_PUD	1	/* we don't really have any PUD physically */ | 
|  | #define PTRS_PER_PMD	1	/* we don't really have any PMD physically */ | 
|  | #define PTRS_PER_PTE	1024 | 
|  |  | 
|  | #define PGD_SIZE	PAGE_SIZE | 
|  | #define PMD_SIZE	(1UL << PMD_SHIFT) | 
|  | #define PGDIR_SIZE	(1UL << PGDIR_SHIFT) | 
|  | #define PGDIR_MASK	(~(PGDIR_SIZE - 1)) | 
|  |  | 
|  | #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE) | 
|  | #define FIRST_USER_ADDRESS	0 | 
|  |  | 
|  | #define USER_PGD_PTRS		(PAGE_OFFSET >> PGDIR_SHIFT) | 
|  | #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - USER_PGD_PTRS) | 
|  |  | 
|  | #define TWOLEVEL_PGDIR_SHIFT	22 | 
|  | #define BOOT_USER_PGD_PTRS	(__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) | 
|  | #define BOOT_KERNEL_PGD_PTRS	(1024 - BOOT_USER_PGD_PTRS) | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Unfortunately, due to the way the MMU works on the MN10300, the vmalloc VM | 
|  | * area has to be in the lower half of the virtual address range (the upper | 
|  | * half is not translated through the TLB). | 
|  | * | 
|  | * So in this case, the vmalloc area goes at the bottom of the address map | 
|  | * (leaving a hole at the very bottom to catch addressing errors), and | 
|  | * userspace starts immediately above. | 
|  | * | 
|  | * The vmalloc() routines also leaves a hole of 4kB between each vmalloced | 
|  | * area to catch addressing errors. | 
|  | */ | 
|  | #define VMALLOC_OFFSET	(8 * 1024 * 1024) | 
|  | #define VMALLOC_START	(0x70000000) | 
|  | #define VMALLOC_END	(0x7C000000) | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | extern pte_t kernel_vmalloc_ptes[(VMALLOC_END - VMALLOC_START) / PAGE_SIZE]; | 
|  | #endif | 
|  |  | 
|  | /* IPTEL/DPTEL bit assignments */ | 
|  | #define _PAGE_BIT_VALID		xPTEL_V_BIT | 
|  | #define _PAGE_BIT_ACCESSED	xPTEL_UNUSED1_BIT	/* mustn't be loaded into IPTEL/DPTEL */ | 
|  | #define _PAGE_BIT_NX		xPTEL_UNUSED2_BIT	/* mustn't be loaded into IPTEL/DPTEL */ | 
|  | #define _PAGE_BIT_CACHE		xPTEL_C_BIT | 
|  | #define _PAGE_BIT_PRESENT	xPTEL_PV_BIT | 
|  | #define _PAGE_BIT_DIRTY		xPTEL_D_BIT | 
|  | #define _PAGE_BIT_GLOBAL	xPTEL_G_BIT | 
|  |  | 
|  | #define _PAGE_VALID		xPTEL_V | 
|  | #define _PAGE_ACCESSED		xPTEL_UNUSED1 | 
|  | #define _PAGE_NX		xPTEL_UNUSED2		/* no-execute bit */ | 
|  | #define _PAGE_CACHE		xPTEL_C | 
|  | #define _PAGE_PRESENT		xPTEL_PV | 
|  | #define _PAGE_DIRTY		xPTEL_D | 
|  | #define _PAGE_PROT		xPTEL_PR | 
|  | #define _PAGE_PROT_RKNU		xPTEL_PR_ROK | 
|  | #define _PAGE_PROT_WKNU		xPTEL_PR_RWK | 
|  | #define _PAGE_PROT_RKRU		xPTEL_PR_ROK_ROU | 
|  | #define _PAGE_PROT_WKRU		xPTEL_PR_RWK_ROU | 
|  | #define _PAGE_PROT_WKWU		xPTEL_PR_RWK_RWU | 
|  | #define _PAGE_GLOBAL		xPTEL_G | 
|  | #define _PAGE_PSE		xPTEL_PS_4Mb		/* 4MB page */ | 
|  |  | 
|  | #define _PAGE_FILE		xPTEL_UNUSED1_BIT	/* set:pagecache unset:swap */ | 
|  |  | 
|  | #define __PAGE_PROT_UWAUX	0x040 | 
|  | #define __PAGE_PROT_USER	0x080 | 
|  | #define __PAGE_PROT_WRITE	0x100 | 
|  |  | 
|  | #define _PAGE_PRESENTV		(_PAGE_PRESENT|_PAGE_VALID) | 
|  | #define _PAGE_PROTNONE		0x000	/* If not present */ | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  |  | 
|  | #define VMALLOC_VMADDR(x) ((unsigned long)(x)) | 
|  |  | 
|  | #define _PAGE_TABLE	(_PAGE_PRESENTV | _PAGE_PROT_WKNU | _PAGE_ACCESSED | _PAGE_DIRTY) | 
|  | #define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) | 
|  |  | 
|  | #define __PAGE_NONE	(_PAGE_PRESENTV | _PAGE_PROT_RKNU | _PAGE_ACCESSED | _PAGE_CACHE) | 
|  | #define __PAGE_SHARED	(_PAGE_PRESENTV | _PAGE_PROT_WKWU | _PAGE_ACCESSED | _PAGE_CACHE) | 
|  | #define __PAGE_COPY	(_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE) | 
|  | #define __PAGE_READONLY	(_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE) | 
|  |  | 
|  | #define PAGE_NONE		__pgprot(__PAGE_NONE     | _PAGE_NX) | 
|  | #define PAGE_SHARED_NOEXEC	__pgprot(__PAGE_SHARED   | _PAGE_NX) | 
|  | #define PAGE_COPY_NOEXEC	__pgprot(__PAGE_COPY     | _PAGE_NX) | 
|  | #define PAGE_READONLY_NOEXEC	__pgprot(__PAGE_READONLY | _PAGE_NX) | 
|  | #define PAGE_SHARED_EXEC	__pgprot(__PAGE_SHARED) | 
|  | #define PAGE_COPY_EXEC		__pgprot(__PAGE_COPY) | 
|  | #define PAGE_READONLY_EXEC	__pgprot(__PAGE_READONLY) | 
|  | #define PAGE_COPY		PAGE_COPY_NOEXEC | 
|  | #define PAGE_READONLY		PAGE_READONLY_NOEXEC | 
|  | #define PAGE_SHARED		PAGE_SHARED_EXEC | 
|  |  | 
|  | #define __PAGE_KERNEL_BASE (_PAGE_PRESENTV | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL) | 
|  |  | 
|  | #define __PAGE_KERNEL		(__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_CACHE | _PAGE_NX) | 
|  | #define __PAGE_KERNEL_NOCACHE	(__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_NX) | 
|  | #define __PAGE_KERNEL_EXEC	(__PAGE_KERNEL & ~_PAGE_NX) | 
|  | #define __PAGE_KERNEL_RO	(__PAGE_KERNEL_BASE | _PAGE_PROT_RKNU | _PAGE_CACHE | _PAGE_NX) | 
|  | #define __PAGE_KERNEL_LARGE	(__PAGE_KERNEL | _PAGE_PSE) | 
|  | #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) | 
|  |  | 
|  | #define PAGE_KERNEL		__pgprot(__PAGE_KERNEL) | 
|  | #define PAGE_KERNEL_RO		__pgprot(__PAGE_KERNEL_RO) | 
|  | #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC) | 
|  | #define PAGE_KERNEL_NOCACHE	__pgprot(__PAGE_KERNEL_NOCACHE) | 
|  | #define PAGE_KERNEL_LARGE	__pgprot(__PAGE_KERNEL_LARGE) | 
|  | #define PAGE_KERNEL_LARGE_EXEC	__pgprot(__PAGE_KERNEL_LARGE_EXEC) | 
|  |  | 
|  | /* | 
|  | * Whilst the MN10300 can do page protection for execute (given separate data | 
|  | * and insn TLBs), we are not supporting it at the moment. Write permission, | 
|  | * however, always implies read permission (but not execute permission). | 
|  | */ | 
|  | #define __P000	PAGE_NONE | 
|  | #define __P001	PAGE_READONLY_NOEXEC | 
|  | #define __P010	PAGE_COPY_NOEXEC | 
|  | #define __P011	PAGE_COPY_NOEXEC | 
|  | #define __P100	PAGE_READONLY_EXEC | 
|  | #define __P101	PAGE_READONLY_EXEC | 
|  | #define __P110	PAGE_COPY_EXEC | 
|  | #define __P111	PAGE_COPY_EXEC | 
|  |  | 
|  | #define __S000	PAGE_NONE | 
|  | #define __S001	PAGE_READONLY_NOEXEC | 
|  | #define __S010	PAGE_SHARED_NOEXEC | 
|  | #define __S011	PAGE_SHARED_NOEXEC | 
|  | #define __S100	PAGE_READONLY_EXEC | 
|  | #define __S101	PAGE_READONLY_EXEC | 
|  | #define __S110	PAGE_SHARED_EXEC | 
|  | #define __S111	PAGE_SHARED_EXEC | 
|  |  | 
|  | /* | 
|  | * Define this to warn about kernel memory accesses that are | 
|  | * done without a 'verify_area(VERIFY_WRITE,..)' | 
|  | */ | 
|  | #undef TEST_VERIFY_AREA | 
|  |  | 
|  | #define pte_present(x)	(pte_val(x) & _PAGE_VALID) | 
|  | #define pte_clear(mm, addr, xp)				\ | 
|  | do {							\ | 
|  | set_pte_at((mm), (addr), (xp), __pte(0));	\ | 
|  | } while (0) | 
|  |  | 
|  | #define pmd_none(x)	(!pmd_val(x)) | 
|  | #define pmd_present(x)	(!pmd_none(x)) | 
|  | #define pmd_clear(xp)	do { set_pmd(xp, __pmd(0)); } while (0) | 
|  | #define	pmd_bad(x)	0 | 
|  |  | 
|  |  | 
|  | #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  |  | 
|  | /* | 
|  | * The following only work if pte_present() is true. | 
|  | * Undefined behaviour if not.. | 
|  | */ | 
|  | static inline int pte_user(pte_t pte)	{ return pte_val(pte) & __PAGE_PROT_USER; } | 
|  | static inline int pte_read(pte_t pte)	{ return pte_val(pte) & __PAGE_PROT_USER; } | 
|  | static inline int pte_dirty(pte_t pte)	{ return pte_val(pte) & _PAGE_DIRTY; } | 
|  | static inline int pte_young(pte_t pte)	{ return pte_val(pte) & _PAGE_ACCESSED; } | 
|  | static inline int pte_write(pte_t pte)	{ return pte_val(pte) & __PAGE_PROT_WRITE; } | 
|  | static inline int pte_special(pte_t pte){ return 0; } | 
|  |  | 
|  | /* | 
|  | * The following only works if pte_present() is not true. | 
|  | */ | 
|  | static inline int pte_file(pte_t pte)	{ return pte_val(pte) & _PAGE_FILE; } | 
|  |  | 
|  | static inline pte_t pte_rdprotect(pte_t pte) | 
|  | { | 
|  | pte_val(pte) &= ~(__PAGE_PROT_USER|__PAGE_PROT_UWAUX); return pte; | 
|  | } | 
|  | static inline pte_t pte_exprotect(pte_t pte) | 
|  | { | 
|  | pte_val(pte) |= _PAGE_NX; return pte; | 
|  | } | 
|  |  | 
|  | static inline pte_t pte_wrprotect(pte_t pte) | 
|  | { | 
|  | pte_val(pte) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); return pte; | 
|  | } | 
|  |  | 
|  | static inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; } | 
|  | static inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | 
|  | static inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; } | 
|  | static inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; } | 
|  | static inline pte_t pte_mkexec(pte_t pte)	{ pte_val(pte) &= ~_PAGE_NX; return pte; } | 
|  |  | 
|  | static inline pte_t pte_mkread(pte_t pte) | 
|  | { | 
|  | pte_val(pte) |= __PAGE_PROT_USER; | 
|  | if (pte_write(pte)) | 
|  | pte_val(pte) |= __PAGE_PROT_UWAUX; | 
|  | return pte; | 
|  | } | 
|  | static inline pte_t pte_mkwrite(pte_t pte) | 
|  | { | 
|  | pte_val(pte) |= __PAGE_PROT_WRITE; | 
|  | if (pte_val(pte) & __PAGE_PROT_USER) | 
|  | pte_val(pte) |= __PAGE_PROT_UWAUX; | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; } | 
|  |  | 
|  | #define pte_ERROR(e) \ | 
|  | printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \ | 
|  | __FILE__, __LINE__, pte_val(e)) | 
|  | #define pgd_ERROR(e) \ | 
|  | printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ | 
|  | __FILE__, __LINE__, pgd_val(e)) | 
|  |  | 
|  | /* | 
|  | * The "pgd_xxx()" functions here are trivial for a folded two-level | 
|  | * setup: the pgd is never bad, and a pmd always exists (as it's folded | 
|  | * into the pgd entry) | 
|  | */ | 
|  | #define pgd_clear(xp)				do { } while (0) | 
|  |  | 
|  | /* | 
|  | * Certain architectures need to do special things when PTEs | 
|  | * within a page table are directly modified.  Thus, the following | 
|  | * hook is made available. | 
|  | */ | 
|  | #define set_pte(pteptr, pteval)			(*(pteptr) = pteval) | 
|  | #define set_pte_at(mm, addr, ptep, pteval)	set_pte((ptep), (pteval)) | 
|  | #define set_pte_atomic(pteptr, pteval)		set_pte((pteptr), (pteval)) | 
|  |  | 
|  | /* | 
|  | * (pmds are folded into pgds so this doesn't get actually called, | 
|  | * but the define is needed for a generic inline function.) | 
|  | */ | 
|  | #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) | 
|  |  | 
|  | #define ptep_get_and_clear(mm, addr, ptep) \ | 
|  | __pte(xchg(&(ptep)->pte, 0)) | 
|  | #define pte_same(a, b)		(pte_val(a) == pte_val(b)) | 
|  | #define pte_page(x)		pfn_to_page(pte_pfn(x)) | 
|  | #define pte_none(x)		(!pte_val(x)) | 
|  | #define pte_pfn(x)		((unsigned long) (pte_val(x) >> PAGE_SHIFT)) | 
|  | #define __pfn_addr(pfn)		((pfn) << PAGE_SHIFT) | 
|  | #define pfn_pte(pfn, prot)	__pte(__pfn_addr(pfn) | pgprot_val(prot)) | 
|  | #define pfn_pmd(pfn, prot)	__pmd(__pfn_addr(pfn) | pgprot_val(prot)) | 
|  |  | 
|  | /* | 
|  | * All present user pages are user-executable: | 
|  | */ | 
|  | static inline int pte_exec(pte_t pte) | 
|  | { | 
|  | return pte_user(pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All present pages are kernel-executable: | 
|  | */ | 
|  | static inline int pte_exec_kernel(pte_t pte) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bits 0 and 1 are taken, split up the 29 bits of offset | 
|  | * into this range: | 
|  | */ | 
|  | #define PTE_FILE_MAX_BITS	29 | 
|  |  | 
|  | #define pte_to_pgoff(pte)	(pte_val(pte) >> 2) | 
|  | #define pgoff_to_pte(off)	__pte((off) << 2 | _PAGE_FILE) | 
|  |  | 
|  | /* Encode and de-code a swap entry */ | 
|  | #define __swp_type(x)			(((x).val >> 2) & 0x3f) | 
|  | #define __swp_offset(x)			((x).val >> 8) | 
|  | #define __swp_entry(type, offset) \ | 
|  | ((swp_entry_t) { ((type) << 2) | ((offset) << 8) }) | 
|  | #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) }) | 
|  | #define __swp_entry_to_pte(x)		__pte((x).val) | 
|  |  | 
|  | static inline | 
|  | int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | if (!pte_dirty(*ptep)) | 
|  | return 0; | 
|  | return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | if (!pte_young(*ptep)) | 
|  | return 0; | 
|  | return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | pte_val(*ptep) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); | 
|  | } | 
|  |  | 
|  | static inline void ptep_mkdirty(pte_t *ptep) | 
|  | { | 
|  | set_bit(_PAGE_BIT_DIRTY, &ptep->pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Macro to mark a page protection value as "uncacheable".  On processors which | 
|  | * do not support it, this is a no-op. | 
|  | */ | 
|  | #define pgprot_noncached(prot)	__pgprot(pgprot_val(prot) | _PAGE_CACHE) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Conversion functions: convert a page and protection to a page entry, | 
|  | * and a page entry and page directory to the page they refer to. | 
|  | */ | 
|  |  | 
|  | #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot)) | 
|  | #define mk_pte_huge(entry) \ | 
|  | ((entry).pte |= _PAGE_PRESENT | _PAGE_PSE | _PAGE_VALID) | 
|  |  | 
|  | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
|  | { | 
|  | pte_val(pte) &= _PAGE_CHG_MASK; | 
|  | pte_val(pte) |= pgprot_val(newprot); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | #define page_pte(page)	page_pte_prot((page), __pgprot(0)) | 
|  |  | 
|  | #define pmd_page_kernel(pmd) \ | 
|  | ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) | 
|  |  | 
|  | #define pmd_page(pmd)	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) | 
|  |  | 
|  | #define pmd_large(pmd) \ | 
|  | ((pmd_val(pmd) & (_PAGE_PSE | _PAGE_PRESENT)) == \ | 
|  | (_PAGE_PSE | _PAGE_PRESENT)) | 
|  |  | 
|  | /* | 
|  | * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] | 
|  | * | 
|  | * this macro returns the index of the entry in the pgd page which would | 
|  | * control the given virtual address | 
|  | */ | 
|  | #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) | 
|  |  | 
|  | /* | 
|  | * pgd_offset() returns a (pgd_t *) | 
|  | * pgd_index() is used get the offset into the pgd page's array of pgd_t's; | 
|  | */ | 
|  | #define pgd_offset(mm, address)	((mm)->pgd + pgd_index(address)) | 
|  |  | 
|  | /* | 
|  | * a shortcut which implies the use of the kernel's pgd, instead | 
|  | * of a process's | 
|  | */ | 
|  | #define pgd_offset_k(address)	pgd_offset(&init_mm, address) | 
|  |  | 
|  | /* | 
|  | * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] | 
|  | * | 
|  | * this macro returns the index of the entry in the pmd page which would | 
|  | * control the given virtual address | 
|  | */ | 
|  | #define pmd_index(address) \ | 
|  | (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) | 
|  |  | 
|  | /* | 
|  | * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] | 
|  | * | 
|  | * this macro returns the index of the entry in the pte page which would | 
|  | * control the given virtual address | 
|  | */ | 
|  | #define pte_index(address) \ | 
|  | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | 
|  |  | 
|  | #define pte_offset_kernel(dir, address) \ | 
|  | ((pte_t *) pmd_page_kernel(*(dir)) +  pte_index(address)) | 
|  |  | 
|  | /* | 
|  | * Make a given kernel text page executable/non-executable. | 
|  | * Returns the previous executability setting of that page (which | 
|  | * is used to restore the previous state). Used by the SMP bootup code. | 
|  | * NOTE: this is an __init function for security reasons. | 
|  | */ | 
|  | static inline int set_kernel_exec(unsigned long vaddr, int enable) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define pte_offset_map(dir, address) \ | 
|  | ((pte_t *) page_address(pmd_page(*(dir))) + pte_index(address)) | 
|  | #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) | 
|  | #define pte_unmap(pte)		do {} while (0) | 
|  | #define pte_unmap_nested(pte)	do {} while (0) | 
|  |  | 
|  | /* | 
|  | * The MN10300 has external MMU info in the form of a TLB: this is adapted from | 
|  | * the kernel page tables containing the necessary information by tlb-mn10300.S | 
|  | */ | 
|  | extern void update_mmu_cache(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t pte); | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | #define kern_addr_valid(addr)	(1) | 
|  |  | 
|  | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ | 
|  | remap_pfn_range((vma), (vaddr), (pfn), (size), (prot)) | 
|  |  | 
|  | #define MK_IOSPACE_PFN(space, pfn)	(pfn) | 
|  | #define GET_IOSPACE(pfn)		0 | 
|  | #define GET_PFN(pfn)			(pfn) | 
|  |  | 
|  | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
|  | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | 
|  | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
|  | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | 
|  | #define __HAVE_ARCH_PTEP_MKDIRTY | 
|  | #define __HAVE_ARCH_PTE_SAME | 
|  | #include <asm-generic/pgtable.h> | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | #endif /* _ASM_PGTABLE_H */ |