|  | /* | 
|  | * Implementation of the kernel access vector cache (AVC). | 
|  | * | 
|  | * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil> | 
|  | *           James Morris <jmorris@redhat.com> | 
|  | * | 
|  | * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com> | 
|  | *     Replaced the avc_lock spinlock by RCU. | 
|  | * | 
|  | * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or modify | 
|  | *	it under the terms of the GNU General Public License version 2, | 
|  | *      as published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/dcache.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <net/sock.h> | 
|  | #include <linux/un.h> | 
|  | #include <net/af_unix.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <net/ipv6.h> | 
|  | #include "avc.h" | 
|  | #include "avc_ss.h" | 
|  |  | 
|  | static const struct av_perm_to_string | 
|  | { | 
|  | u16 tclass; | 
|  | u32 value; | 
|  | const char *name; | 
|  | } av_perm_to_string[] = { | 
|  | #define S_(c, v, s) { c, v, s }, | 
|  | #include "av_perm_to_string.h" | 
|  | #undef S_ | 
|  | }; | 
|  |  | 
|  | static const char *class_to_string[] = { | 
|  | #define S_(s) s, | 
|  | #include "class_to_string.h" | 
|  | #undef S_ | 
|  | }; | 
|  |  | 
|  | #define TB_(s) static const char * s [] = { | 
|  | #define TE_(s) }; | 
|  | #define S_(s) s, | 
|  | #include "common_perm_to_string.h" | 
|  | #undef TB_ | 
|  | #undef TE_ | 
|  | #undef S_ | 
|  |  | 
|  | static const struct av_inherit | 
|  | { | 
|  | u16 tclass; | 
|  | const char **common_pts; | 
|  | u32 common_base; | 
|  | } av_inherit[] = { | 
|  | #define S_(c, i, b) { c, common_##i##_perm_to_string, b }, | 
|  | #include "av_inherit.h" | 
|  | #undef S_ | 
|  | }; | 
|  |  | 
|  | #define AVC_CACHE_SLOTS			512 | 
|  | #define AVC_DEF_CACHE_THRESHOLD		512 | 
|  | #define AVC_CACHE_RECLAIM		16 | 
|  |  | 
|  | #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS | 
|  | #define avc_cache_stats_incr(field) 				\ | 
|  | do {								\ | 
|  | per_cpu(avc_cache_stats, get_cpu()).field++;		\ | 
|  | put_cpu();						\ | 
|  | } while (0) | 
|  | #else | 
|  | #define avc_cache_stats_incr(field)	do {} while (0) | 
|  | #endif | 
|  |  | 
|  | struct avc_entry { | 
|  | u32			ssid; | 
|  | u32			tsid; | 
|  | u16			tclass; | 
|  | struct av_decision	avd; | 
|  | atomic_t		used;	/* used recently */ | 
|  | }; | 
|  |  | 
|  | struct avc_node { | 
|  | struct avc_entry	ae; | 
|  | struct list_head	list; | 
|  | struct rcu_head         rhead; | 
|  | }; | 
|  |  | 
|  | struct avc_cache { | 
|  | struct list_head	slots[AVC_CACHE_SLOTS]; | 
|  | spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ | 
|  | atomic_t		lru_hint;	/* LRU hint for reclaim scan */ | 
|  | atomic_t		active_nodes; | 
|  | u32			latest_notif;	/* latest revocation notification */ | 
|  | }; | 
|  |  | 
|  | struct avc_callback_node { | 
|  | int (*callback) (u32 event, u32 ssid, u32 tsid, | 
|  | u16 tclass, u32 perms, | 
|  | u32 *out_retained); | 
|  | u32 events; | 
|  | u32 ssid; | 
|  | u32 tsid; | 
|  | u16 tclass; | 
|  | u32 perms; | 
|  | struct avc_callback_node *next; | 
|  | }; | 
|  |  | 
|  | /* Exported via selinufs */ | 
|  | unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; | 
|  |  | 
|  | #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS | 
|  | DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; | 
|  | #endif | 
|  |  | 
|  | static struct avc_cache avc_cache; | 
|  | static struct avc_callback_node *avc_callbacks; | 
|  | static kmem_cache_t *avc_node_cachep; | 
|  |  | 
|  | static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) | 
|  | { | 
|  | return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_dump_av - Display an access vector in human-readable form. | 
|  | * @tclass: target security class | 
|  | * @av: access vector | 
|  | */ | 
|  | static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) | 
|  | { | 
|  | const char **common_pts = NULL; | 
|  | u32 common_base = 0; | 
|  | int i, i2, perm; | 
|  |  | 
|  | if (av == 0) { | 
|  | audit_log_format(ab, " null"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(av_inherit); i++) { | 
|  | if (av_inherit[i].tclass == tclass) { | 
|  | common_pts = av_inherit[i].common_pts; | 
|  | common_base = av_inherit[i].common_base; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | audit_log_format(ab, " {"); | 
|  | i = 0; | 
|  | perm = 1; | 
|  | while (perm < common_base) { | 
|  | if (perm & av) { | 
|  | audit_log_format(ab, " %s", common_pts[i]); | 
|  | av &= ~perm; | 
|  | } | 
|  | i++; | 
|  | perm <<= 1; | 
|  | } | 
|  |  | 
|  | while (i < sizeof(av) * 8) { | 
|  | if (perm & av) { | 
|  | for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) { | 
|  | if ((av_perm_to_string[i2].tclass == tclass) && | 
|  | (av_perm_to_string[i2].value == perm)) | 
|  | break; | 
|  | } | 
|  | if (i2 < ARRAY_SIZE(av_perm_to_string)) { | 
|  | audit_log_format(ab, " %s", | 
|  | av_perm_to_string[i2].name); | 
|  | av &= ~perm; | 
|  | } | 
|  | } | 
|  | i++; | 
|  | perm <<= 1; | 
|  | } | 
|  |  | 
|  | if (av) | 
|  | audit_log_format(ab, " 0x%x", av); | 
|  |  | 
|  | audit_log_format(ab, " }"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_dump_query - Display a SID pair and a class in human-readable form. | 
|  | * @ssid: source security identifier | 
|  | * @tsid: target security identifier | 
|  | * @tclass: target security class | 
|  | */ | 
|  | static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) | 
|  | { | 
|  | int rc; | 
|  | char *scontext; | 
|  | u32 scontext_len; | 
|  |  | 
|  | rc = security_sid_to_context(ssid, &scontext, &scontext_len); | 
|  | if (rc) | 
|  | audit_log_format(ab, "ssid=%d", ssid); | 
|  | else { | 
|  | audit_log_format(ab, "scontext=%s", scontext); | 
|  | kfree(scontext); | 
|  | } | 
|  |  | 
|  | rc = security_sid_to_context(tsid, &scontext, &scontext_len); | 
|  | if (rc) | 
|  | audit_log_format(ab, " tsid=%d", tsid); | 
|  | else { | 
|  | audit_log_format(ab, " tcontext=%s", scontext); | 
|  | kfree(scontext); | 
|  | } | 
|  | audit_log_format(ab, " tclass=%s", class_to_string[tclass]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_init - Initialize the AVC. | 
|  | * | 
|  | * Initialize the access vector cache. | 
|  | */ | 
|  | void __init avc_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < AVC_CACHE_SLOTS; i++) { | 
|  | INIT_LIST_HEAD(&avc_cache.slots[i]); | 
|  | spin_lock_init(&avc_cache.slots_lock[i]); | 
|  | } | 
|  | atomic_set(&avc_cache.active_nodes, 0); | 
|  | atomic_set(&avc_cache.lru_hint, 0); | 
|  |  | 
|  | avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), | 
|  | 0, SLAB_PANIC, NULL, NULL); | 
|  |  | 
|  | audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); | 
|  | } | 
|  |  | 
|  | int avc_get_hash_stats(char *page) | 
|  | { | 
|  | int i, chain_len, max_chain_len, slots_used; | 
|  | struct avc_node *node; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | slots_used = 0; | 
|  | max_chain_len = 0; | 
|  | for (i = 0; i < AVC_CACHE_SLOTS; i++) { | 
|  | if (!list_empty(&avc_cache.slots[i])) { | 
|  | slots_used++; | 
|  | chain_len = 0; | 
|  | list_for_each_entry_rcu(node, &avc_cache.slots[i], list) | 
|  | chain_len++; | 
|  | if (chain_len > max_chain_len) | 
|  | max_chain_len = chain_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" | 
|  | "longest chain: %d\n", | 
|  | atomic_read(&avc_cache.active_nodes), | 
|  | slots_used, AVC_CACHE_SLOTS, max_chain_len); | 
|  | } | 
|  |  | 
|  | static void avc_node_free(struct rcu_head *rhead) | 
|  | { | 
|  | struct avc_node *node = container_of(rhead, struct avc_node, rhead); | 
|  | kmem_cache_free(avc_node_cachep, node); | 
|  | avc_cache_stats_incr(frees); | 
|  | } | 
|  |  | 
|  | static void avc_node_delete(struct avc_node *node) | 
|  | { | 
|  | list_del_rcu(&node->list); | 
|  | call_rcu(&node->rhead, avc_node_free); | 
|  | atomic_dec(&avc_cache.active_nodes); | 
|  | } | 
|  |  | 
|  | static void avc_node_kill(struct avc_node *node) | 
|  | { | 
|  | kmem_cache_free(avc_node_cachep, node); | 
|  | avc_cache_stats_incr(frees); | 
|  | atomic_dec(&avc_cache.active_nodes); | 
|  | } | 
|  |  | 
|  | static void avc_node_replace(struct avc_node *new, struct avc_node *old) | 
|  | { | 
|  | list_replace_rcu(&old->list, &new->list); | 
|  | call_rcu(&old->rhead, avc_node_free); | 
|  | atomic_dec(&avc_cache.active_nodes); | 
|  | } | 
|  |  | 
|  | static inline int avc_reclaim_node(void) | 
|  | { | 
|  | struct avc_node *node; | 
|  | int hvalue, try, ecx; | 
|  | unsigned long flags; | 
|  |  | 
|  | for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) { | 
|  | hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); | 
|  |  | 
|  | if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags)) | 
|  | continue; | 
|  |  | 
|  | list_for_each_entry(node, &avc_cache.slots[hvalue], list) { | 
|  | if (atomic_dec_and_test(&node->ae.used)) { | 
|  | /* Recently Unused */ | 
|  | avc_node_delete(node); | 
|  | avc_cache_stats_incr(reclaims); | 
|  | ecx++; | 
|  | if (ecx >= AVC_CACHE_RECLAIM) { | 
|  | spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); | 
|  | } | 
|  | out: | 
|  | return ecx; | 
|  | } | 
|  |  | 
|  | static struct avc_node *avc_alloc_node(void) | 
|  | { | 
|  | struct avc_node *node; | 
|  |  | 
|  | node = kmem_cache_alloc(avc_node_cachep, SLAB_ATOMIC); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | memset(node, 0, sizeof(*node)); | 
|  | INIT_RCU_HEAD(&node->rhead); | 
|  | INIT_LIST_HEAD(&node->list); | 
|  | atomic_set(&node->ae.used, 1); | 
|  | avc_cache_stats_incr(allocations); | 
|  |  | 
|  | if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) | 
|  | avc_reclaim_node(); | 
|  |  | 
|  | out: | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) | 
|  | { | 
|  | node->ae.ssid = ssid; | 
|  | node->ae.tsid = tsid; | 
|  | node->ae.tclass = tclass; | 
|  | memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd)); | 
|  | } | 
|  |  | 
|  | static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) | 
|  | { | 
|  | struct avc_node *node, *ret = NULL; | 
|  | int hvalue; | 
|  |  | 
|  | hvalue = avc_hash(ssid, tsid, tclass); | 
|  | list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) { | 
|  | if (ssid == node->ae.ssid && | 
|  | tclass == node->ae.tclass && | 
|  | tsid == node->ae.tsid) { | 
|  | ret = node; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == NULL) { | 
|  | /* cache miss */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* cache hit */ | 
|  | if (atomic_read(&ret->ae.used) != 1) | 
|  | atomic_set(&ret->ae.used, 1); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_lookup - Look up an AVC entry. | 
|  | * @ssid: source security identifier | 
|  | * @tsid: target security identifier | 
|  | * @tclass: target security class | 
|  | * @requested: requested permissions, interpreted based on @tclass | 
|  | * | 
|  | * Look up an AVC entry that is valid for the | 
|  | * @requested permissions between the SID pair | 
|  | * (@ssid, @tsid), interpreting the permissions | 
|  | * based on @tclass.  If a valid AVC entry exists, | 
|  | * then this function return the avc_node. | 
|  | * Otherwise, this function returns NULL. | 
|  | */ | 
|  | static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested) | 
|  | { | 
|  | struct avc_node *node; | 
|  |  | 
|  | avc_cache_stats_incr(lookups); | 
|  | node = avc_search_node(ssid, tsid, tclass); | 
|  |  | 
|  | if (node && ((node->ae.avd.decided & requested) == requested)) { | 
|  | avc_cache_stats_incr(hits); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | node = NULL; | 
|  | avc_cache_stats_incr(misses); | 
|  | out: | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static int avc_latest_notif_update(int seqno, int is_insert) | 
|  | { | 
|  | int ret = 0; | 
|  | static DEFINE_SPINLOCK(notif_lock); | 
|  | unsigned long flag; | 
|  |  | 
|  | spin_lock_irqsave(¬if_lock, flag); | 
|  | if (is_insert) { | 
|  | if (seqno < avc_cache.latest_notif) { | 
|  | printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n", | 
|  | seqno, avc_cache.latest_notif); | 
|  | ret = -EAGAIN; | 
|  | } | 
|  | } else { | 
|  | if (seqno > avc_cache.latest_notif) | 
|  | avc_cache.latest_notif = seqno; | 
|  | } | 
|  | spin_unlock_irqrestore(¬if_lock, flag); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_insert - Insert an AVC entry. | 
|  | * @ssid: source security identifier | 
|  | * @tsid: target security identifier | 
|  | * @tclass: target security class | 
|  | * @ae: AVC entry | 
|  | * | 
|  | * Insert an AVC entry for the SID pair | 
|  | * (@ssid, @tsid) and class @tclass. | 
|  | * The access vectors and the sequence number are | 
|  | * normally provided by the security server in | 
|  | * response to a security_compute_av() call.  If the | 
|  | * sequence number @ae->avd.seqno is not less than the latest | 
|  | * revocation notification, then the function copies | 
|  | * the access vectors into a cache entry, returns | 
|  | * avc_node inserted. Otherwise, this function returns NULL. | 
|  | */ | 
|  | static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) | 
|  | { | 
|  | struct avc_node *pos, *node = NULL; | 
|  | int hvalue; | 
|  | unsigned long flag; | 
|  |  | 
|  | if (avc_latest_notif_update(ae->avd.seqno, 1)) | 
|  | goto out; | 
|  |  | 
|  | node = avc_alloc_node(); | 
|  | if (node) { | 
|  | hvalue = avc_hash(ssid, tsid, tclass); | 
|  | avc_node_populate(node, ssid, tsid, tclass, ae); | 
|  |  | 
|  | spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); | 
|  | list_for_each_entry(pos, &avc_cache.slots[hvalue], list) { | 
|  | if (pos->ae.ssid == ssid && | 
|  | pos->ae.tsid == tsid && | 
|  | pos->ae.tclass == tclass) { | 
|  | avc_node_replace(node, pos); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | list_add_rcu(&node->list, &avc_cache.slots[hvalue]); | 
|  | found: | 
|  | spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); | 
|  | } | 
|  | out: | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static inline void avc_print_ipv6_addr(struct audit_buffer *ab, | 
|  | struct in6_addr *addr, __be16 port, | 
|  | char *name1, char *name2) | 
|  | { | 
|  | if (!ipv6_addr_any(addr)) | 
|  | audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr)); | 
|  | if (port) | 
|  | audit_log_format(ab, " %s=%d", name2, ntohs(port)); | 
|  | } | 
|  |  | 
|  | static inline void avc_print_ipv4_addr(struct audit_buffer *ab, u32 addr, | 
|  | __be16 port, char *name1, char *name2) | 
|  | { | 
|  | if (addr) | 
|  | audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr)); | 
|  | if (port) | 
|  | audit_log_format(ab, " %s=%d", name2, ntohs(port)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_audit - Audit the granting or denial of permissions. | 
|  | * @ssid: source security identifier | 
|  | * @tsid: target security identifier | 
|  | * @tclass: target security class | 
|  | * @requested: requested permissions | 
|  | * @avd: access vector decisions | 
|  | * @result: result from avc_has_perm_noaudit | 
|  | * @a:  auxiliary audit data | 
|  | * | 
|  | * Audit the granting or denial of permissions in accordance | 
|  | * with the policy.  This function is typically called by | 
|  | * avc_has_perm() after a permission check, but can also be | 
|  | * called directly by callers who use avc_has_perm_noaudit() | 
|  | * in order to separate the permission check from the auditing. | 
|  | * For example, this separation is useful when the permission check must | 
|  | * be performed under a lock, to allow the lock to be released | 
|  | * before calling the auditing code. | 
|  | */ | 
|  | void avc_audit(u32 ssid, u32 tsid, | 
|  | u16 tclass, u32 requested, | 
|  | struct av_decision *avd, int result, struct avc_audit_data *a) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct inode *inode = NULL; | 
|  | u32 denied, audited; | 
|  | struct audit_buffer *ab; | 
|  |  | 
|  | denied = requested & ~avd->allowed; | 
|  | if (denied) { | 
|  | audited = denied; | 
|  | if (!(audited & avd->auditdeny)) | 
|  | return; | 
|  | } else if (result) { | 
|  | audited = denied = requested; | 
|  | } else { | 
|  | audited = requested; | 
|  | if (!(audited & avd->auditallow)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC); | 
|  | if (!ab) | 
|  | return;		/* audit_panic has been called */ | 
|  | audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted"); | 
|  | avc_dump_av(ab, tclass,audited); | 
|  | audit_log_format(ab, " for "); | 
|  | if (a && a->tsk) | 
|  | tsk = a->tsk; | 
|  | if (tsk && tsk->pid) { | 
|  | audit_log_format(ab, " pid=%d comm=", tsk->pid); | 
|  | audit_log_untrustedstring(ab, tsk->comm); | 
|  | } | 
|  | if (a) { | 
|  | switch (a->type) { | 
|  | case AVC_AUDIT_DATA_IPC: | 
|  | audit_log_format(ab, " key=%d", a->u.ipc_id); | 
|  | break; | 
|  | case AVC_AUDIT_DATA_CAP: | 
|  | audit_log_format(ab, " capability=%d", a->u.cap); | 
|  | break; | 
|  | case AVC_AUDIT_DATA_FS: | 
|  | if (a->u.fs.dentry) { | 
|  | struct dentry *dentry = a->u.fs.dentry; | 
|  | if (a->u.fs.mnt) | 
|  | audit_avc_path(dentry, a->u.fs.mnt); | 
|  | audit_log_format(ab, " name="); | 
|  | audit_log_untrustedstring(ab, dentry->d_name.name); | 
|  | inode = dentry->d_inode; | 
|  | } else if (a->u.fs.inode) { | 
|  | struct dentry *dentry; | 
|  | inode = a->u.fs.inode; | 
|  | dentry = d_find_alias(inode); | 
|  | if (dentry) { | 
|  | audit_log_format(ab, " name="); | 
|  | audit_log_untrustedstring(ab, dentry->d_name.name); | 
|  | dput(dentry); | 
|  | } | 
|  | } | 
|  | if (inode) | 
|  | audit_log_format(ab, " dev=%s ino=%ld", | 
|  | inode->i_sb->s_id, | 
|  | inode->i_ino); | 
|  | break; | 
|  | case AVC_AUDIT_DATA_NET: | 
|  | if (a->u.net.sk) { | 
|  | struct sock *sk = a->u.net.sk; | 
|  | struct unix_sock *u; | 
|  | int len = 0; | 
|  | char *p = NULL; | 
|  |  | 
|  | switch (sk->sk_family) { | 
|  | case AF_INET: { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  |  | 
|  | avc_print_ipv4_addr(ab, inet->rcv_saddr, | 
|  | inet->sport, | 
|  | "laddr", "lport"); | 
|  | avc_print_ipv4_addr(ab, inet->daddr, | 
|  | inet->dport, | 
|  | "faddr", "fport"); | 
|  | break; | 
|  | } | 
|  | case AF_INET6: { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | struct ipv6_pinfo *inet6 = inet6_sk(sk); | 
|  |  | 
|  | avc_print_ipv6_addr(ab, &inet6->rcv_saddr, | 
|  | inet->sport, | 
|  | "laddr", "lport"); | 
|  | avc_print_ipv6_addr(ab, &inet6->daddr, | 
|  | inet->dport, | 
|  | "faddr", "fport"); | 
|  | break; | 
|  | } | 
|  | case AF_UNIX: | 
|  | u = unix_sk(sk); | 
|  | if (u->dentry) { | 
|  | audit_avc_path(u->dentry, u->mnt); | 
|  | audit_log_format(ab, " name="); | 
|  | audit_log_untrustedstring(ab, u->dentry->d_name.name); | 
|  | break; | 
|  | } | 
|  | if (!u->addr) | 
|  | break; | 
|  | len = u->addr->len-sizeof(short); | 
|  | p = &u->addr->name->sun_path[0]; | 
|  | audit_log_format(ab, " path="); | 
|  | if (*p) | 
|  | audit_log_untrustedstring(ab, p); | 
|  | else | 
|  | audit_log_hex(ab, p, len); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (a->u.net.family) { | 
|  | case AF_INET: | 
|  | avc_print_ipv4_addr(ab, a->u.net.v4info.saddr, | 
|  | a->u.net.sport, | 
|  | "saddr", "src"); | 
|  | avc_print_ipv4_addr(ab, a->u.net.v4info.daddr, | 
|  | a->u.net.dport, | 
|  | "daddr", "dest"); | 
|  | break; | 
|  | case AF_INET6: | 
|  | avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr, | 
|  | a->u.net.sport, | 
|  | "saddr", "src"); | 
|  | avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr, | 
|  | a->u.net.dport, | 
|  | "daddr", "dest"); | 
|  | break; | 
|  | } | 
|  | if (a->u.net.netif) | 
|  | audit_log_format(ab, " netif=%s", | 
|  | a->u.net.netif); | 
|  | break; | 
|  | } | 
|  | } | 
|  | audit_log_format(ab, " "); | 
|  | avc_dump_query(ab, ssid, tsid, tclass); | 
|  | audit_log_end(ab); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_add_callback - Register a callback for security events. | 
|  | * @callback: callback function | 
|  | * @events: security events | 
|  | * @ssid: source security identifier or %SECSID_WILD | 
|  | * @tsid: target security identifier or %SECSID_WILD | 
|  | * @tclass: target security class | 
|  | * @perms: permissions | 
|  | * | 
|  | * Register a callback function for events in the set @events | 
|  | * related to the SID pair (@ssid, @tsid) and | 
|  | * and the permissions @perms, interpreting | 
|  | * @perms based on @tclass.  Returns %0 on success or | 
|  | * -%ENOMEM if insufficient memory exists to add the callback. | 
|  | */ | 
|  | int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid, | 
|  | u16 tclass, u32 perms, | 
|  | u32 *out_retained), | 
|  | u32 events, u32 ssid, u32 tsid, | 
|  | u16 tclass, u32 perms) | 
|  | { | 
|  | struct avc_callback_node *c; | 
|  | int rc = 0; | 
|  |  | 
|  | c = kmalloc(sizeof(*c), GFP_ATOMIC); | 
|  | if (!c) { | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | c->callback = callback; | 
|  | c->events = events; | 
|  | c->ssid = ssid; | 
|  | c->tsid = tsid; | 
|  | c->perms = perms; | 
|  | c->next = avc_callbacks; | 
|  | avc_callbacks = c; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static inline int avc_sidcmp(u32 x, u32 y) | 
|  | { | 
|  | return (x == y || x == SECSID_WILD || y == SECSID_WILD); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_update_node Update an AVC entry | 
|  | * @event : Updating event | 
|  | * @perms : Permission mask bits | 
|  | * @ssid,@tsid,@tclass : identifier of an AVC entry | 
|  | * | 
|  | * if a valid AVC entry doesn't exist,this function returns -ENOENT. | 
|  | * if kmalloc() called internal returns NULL, this function returns -ENOMEM. | 
|  | * otherwise, this function update the AVC entry. The original AVC-entry object | 
|  | * will release later by RCU. | 
|  | */ | 
|  | static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass) | 
|  | { | 
|  | int hvalue, rc = 0; | 
|  | unsigned long flag; | 
|  | struct avc_node *pos, *node, *orig = NULL; | 
|  |  | 
|  | node = avc_alloc_node(); | 
|  | if (!node) { | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Lock the target slot */ | 
|  | hvalue = avc_hash(ssid, tsid, tclass); | 
|  | spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); | 
|  |  | 
|  | list_for_each_entry(pos, &avc_cache.slots[hvalue], list){ | 
|  | if ( ssid==pos->ae.ssid && | 
|  | tsid==pos->ae.tsid && | 
|  | tclass==pos->ae.tclass ){ | 
|  | orig = pos; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!orig) { | 
|  | rc = -ENOENT; | 
|  | avc_node_kill(node); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy and replace original node. | 
|  | */ | 
|  |  | 
|  | avc_node_populate(node, ssid, tsid, tclass, &orig->ae); | 
|  |  | 
|  | switch (event) { | 
|  | case AVC_CALLBACK_GRANT: | 
|  | node->ae.avd.allowed |= perms; | 
|  | break; | 
|  | case AVC_CALLBACK_TRY_REVOKE: | 
|  | case AVC_CALLBACK_REVOKE: | 
|  | node->ae.avd.allowed &= ~perms; | 
|  | break; | 
|  | case AVC_CALLBACK_AUDITALLOW_ENABLE: | 
|  | node->ae.avd.auditallow |= perms; | 
|  | break; | 
|  | case AVC_CALLBACK_AUDITALLOW_DISABLE: | 
|  | node->ae.avd.auditallow &= ~perms; | 
|  | break; | 
|  | case AVC_CALLBACK_AUDITDENY_ENABLE: | 
|  | node->ae.avd.auditdeny |= perms; | 
|  | break; | 
|  | case AVC_CALLBACK_AUDITDENY_DISABLE: | 
|  | node->ae.avd.auditdeny &= ~perms; | 
|  | break; | 
|  | } | 
|  | avc_node_replace(node, orig); | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_ss_reset - Flush the cache and revalidate migrated permissions. | 
|  | * @seqno: policy sequence number | 
|  | */ | 
|  | int avc_ss_reset(u32 seqno) | 
|  | { | 
|  | struct avc_callback_node *c; | 
|  | int i, rc = 0, tmprc; | 
|  | unsigned long flag; | 
|  | struct avc_node *node; | 
|  |  | 
|  | for (i = 0; i < AVC_CACHE_SLOTS; i++) { | 
|  | spin_lock_irqsave(&avc_cache.slots_lock[i], flag); | 
|  | list_for_each_entry(node, &avc_cache.slots[i], list) | 
|  | avc_node_delete(node); | 
|  | spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag); | 
|  | } | 
|  |  | 
|  | for (c = avc_callbacks; c; c = c->next) { | 
|  | if (c->events & AVC_CALLBACK_RESET) { | 
|  | tmprc = c->callback(AVC_CALLBACK_RESET, | 
|  | 0, 0, 0, 0, NULL); | 
|  | /* save the first error encountered for the return | 
|  | value and continue processing the callbacks */ | 
|  | if (!rc) | 
|  | rc = tmprc; | 
|  | } | 
|  | } | 
|  |  | 
|  | avc_latest_notif_update(seqno, 0); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_has_perm_noaudit - Check permissions but perform no auditing. | 
|  | * @ssid: source security identifier | 
|  | * @tsid: target security identifier | 
|  | * @tclass: target security class | 
|  | * @requested: requested permissions, interpreted based on @tclass | 
|  | * @avd: access vector decisions | 
|  | * | 
|  | * Check the AVC to determine whether the @requested permissions are granted | 
|  | * for the SID pair (@ssid, @tsid), interpreting the permissions | 
|  | * based on @tclass, and call the security server on a cache miss to obtain | 
|  | * a new decision and add it to the cache.  Return a copy of the decisions | 
|  | * in @avd.  Return %0 if all @requested permissions are granted, | 
|  | * -%EACCES if any permissions are denied, or another -errno upon | 
|  | * other errors.  This function is typically called by avc_has_perm(), | 
|  | * but may also be called directly to separate permission checking from | 
|  | * auditing, e.g. in cases where a lock must be held for the check but | 
|  | * should be released for the auditing. | 
|  | */ | 
|  | int avc_has_perm_noaudit(u32 ssid, u32 tsid, | 
|  | u16 tclass, u32 requested, | 
|  | struct av_decision *avd) | 
|  | { | 
|  | struct avc_node *node; | 
|  | struct avc_entry entry, *p_ae; | 
|  | int rc = 0; | 
|  | u32 denied; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | node = avc_lookup(ssid, tsid, tclass, requested); | 
|  | if (!node) { | 
|  | rcu_read_unlock(); | 
|  | rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd); | 
|  | if (rc) | 
|  | goto out; | 
|  | rcu_read_lock(); | 
|  | node = avc_insert(ssid,tsid,tclass,&entry); | 
|  | } | 
|  |  | 
|  | p_ae = node ? &node->ae : &entry; | 
|  |  | 
|  | if (avd) | 
|  | memcpy(avd, &p_ae->avd, sizeof(*avd)); | 
|  |  | 
|  | denied = requested & ~(p_ae->avd.allowed); | 
|  |  | 
|  | if (!requested || denied) { | 
|  | if (selinux_enforcing) | 
|  | rc = -EACCES; | 
|  | else | 
|  | if (node) | 
|  | avc_update_node(AVC_CALLBACK_GRANT,requested, | 
|  | ssid,tsid,tclass); | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * avc_has_perm - Check permissions and perform any appropriate auditing. | 
|  | * @ssid: source security identifier | 
|  | * @tsid: target security identifier | 
|  | * @tclass: target security class | 
|  | * @requested: requested permissions, interpreted based on @tclass | 
|  | * @auditdata: auxiliary audit data | 
|  | * | 
|  | * Check the AVC to determine whether the @requested permissions are granted | 
|  | * for the SID pair (@ssid, @tsid), interpreting the permissions | 
|  | * based on @tclass, and call the security server on a cache miss to obtain | 
|  | * a new decision and add it to the cache.  Audit the granting or denial of | 
|  | * permissions in accordance with the policy.  Return %0 if all @requested | 
|  | * permissions are granted, -%EACCES if any permissions are denied, or | 
|  | * another -errno upon other errors. | 
|  | */ | 
|  | int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, | 
|  | u32 requested, struct avc_audit_data *auditdata) | 
|  | { | 
|  | struct av_decision avd; | 
|  | int rc; | 
|  |  | 
|  | rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd); | 
|  | avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata); | 
|  | return rc; | 
|  | } |