| /* | 
 |  *  linux/arch/i386/traps.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  * | 
 |  *  Pentium III FXSR, SSE support | 
 |  *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
 |  */ | 
 |  | 
 | /* | 
 |  * 'Traps.c' handles hardware traps and faults after we have saved some | 
 |  * state in 'asm.s'. | 
 |  */ | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/unwind.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/bug.h> | 
 |  | 
 | #ifdef CONFIG_EISA | 
 | #include <linux/ioport.h> | 
 | #include <linux/eisa.h> | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MCA | 
 | #include <linux/mca.h> | 
 | #endif | 
 |  | 
 | #include <asm/processor.h> | 
 | #include <asm/system.h> | 
 | #include <asm/io.h> | 
 | #include <asm/atomic.h> | 
 | #include <asm/debugreg.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/i387.h> | 
 | #include <asm/nmi.h> | 
 | #include <asm/unwind.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/arch_hooks.h> | 
 | #include <linux/kdebug.h> | 
 | #include <asm/stacktrace.h> | 
 |  | 
 | #include <linux/module.h> | 
 |  | 
 | #include "mach_traps.h" | 
 |  | 
 | int panic_on_unrecovered_nmi; | 
 |  | 
 | asmlinkage int system_call(void); | 
 |  | 
 | /* Do we ignore FPU interrupts ? */ | 
 | char ignore_fpu_irq = 0; | 
 |  | 
 | /* | 
 |  * The IDT has to be page-aligned to simplify the Pentium | 
 |  * F0 0F bug workaround.. We have a special link segment | 
 |  * for this. | 
 |  */ | 
 | struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, }; | 
 |  | 
 | asmlinkage void divide_error(void); | 
 | asmlinkage void debug(void); | 
 | asmlinkage void nmi(void); | 
 | asmlinkage void int3(void); | 
 | asmlinkage void overflow(void); | 
 | asmlinkage void bounds(void); | 
 | asmlinkage void invalid_op(void); | 
 | asmlinkage void device_not_available(void); | 
 | asmlinkage void coprocessor_segment_overrun(void); | 
 | asmlinkage void invalid_TSS(void); | 
 | asmlinkage void segment_not_present(void); | 
 | asmlinkage void stack_segment(void); | 
 | asmlinkage void general_protection(void); | 
 | asmlinkage void page_fault(void); | 
 | asmlinkage void coprocessor_error(void); | 
 | asmlinkage void simd_coprocessor_error(void); | 
 | asmlinkage void alignment_check(void); | 
 | asmlinkage void spurious_interrupt_bug(void); | 
 | asmlinkage void machine_check(void); | 
 |  | 
 | int kstack_depth_to_print = 24; | 
 | static unsigned int code_bytes = 64; | 
 |  | 
 | static inline int valid_stack_ptr(struct thread_info *tinfo, void *p) | 
 | { | 
 | 	return	p > (void *)tinfo && | 
 | 		p < (void *)tinfo + THREAD_SIZE - 3; | 
 | } | 
 |  | 
 | static inline unsigned long print_context_stack(struct thread_info *tinfo, | 
 | 				unsigned long *stack, unsigned long ebp, | 
 | 				struct stacktrace_ops *ops, void *data) | 
 | { | 
 | 	unsigned long addr; | 
 |  | 
 | #ifdef	CONFIG_FRAME_POINTER | 
 | 	while (valid_stack_ptr(tinfo, (void *)ebp)) { | 
 | 		unsigned long new_ebp; | 
 | 		addr = *(unsigned long *)(ebp + 4); | 
 | 		ops->address(data, addr); | 
 | 		/* | 
 | 		 * break out of recursive entries (such as | 
 | 		 * end_of_stack_stop_unwind_function). Also, | 
 | 		 * we can never allow a frame pointer to | 
 | 		 * move downwards! | 
 | 	 	 */ | 
 | 	 	new_ebp = *(unsigned long *)ebp; | 
 | 		if (new_ebp <= ebp) | 
 | 			break; | 
 | 		ebp = new_ebp; | 
 | 	} | 
 | #else | 
 | 	while (valid_stack_ptr(tinfo, stack)) { | 
 | 		addr = *stack++; | 
 | 		if (__kernel_text_address(addr)) | 
 | 			ops->address(data, addr); | 
 | 	} | 
 | #endif | 
 | 	return ebp; | 
 | } | 
 |  | 
 | #define MSG(msg) ops->warning(data, msg) | 
 |  | 
 | void dump_trace(struct task_struct *task, struct pt_regs *regs, | 
 | 	        unsigned long *stack, | 
 | 		struct stacktrace_ops *ops, void *data) | 
 | { | 
 | 	unsigned long ebp = 0; | 
 |  | 
 | 	if (!task) | 
 | 		task = current; | 
 |  | 
 | 	if (!stack) { | 
 | 		unsigned long dummy; | 
 | 		stack = &dummy; | 
 | 		if (task && task != current) | 
 | 			stack = (unsigned long *)task->thread.esp; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_FRAME_POINTER | 
 | 	if (!ebp) { | 
 | 		if (task == current) { | 
 | 			/* Grab ebp right from our regs */ | 
 | 			asm ("movl %%ebp, %0" : "=r" (ebp) : ); | 
 | 		} else { | 
 | 			/* ebp is the last reg pushed by switch_to */ | 
 | 			ebp = *(unsigned long *) task->thread.esp; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	while (1) { | 
 | 		struct thread_info *context; | 
 | 		context = (struct thread_info *) | 
 | 			((unsigned long)stack & (~(THREAD_SIZE - 1))); | 
 | 		ebp = print_context_stack(context, stack, ebp, ops, data); | 
 | 		/* Should be after the line below, but somewhere | 
 | 		   in early boot context comes out corrupted and we | 
 | 		   can't reference it -AK */ | 
 | 		if (ops->stack(data, "IRQ") < 0) | 
 | 			break; | 
 | 		stack = (unsigned long*)context->previous_esp; | 
 | 		if (!stack) | 
 | 			break; | 
 | 		touch_nmi_watchdog(); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(dump_trace); | 
 |  | 
 | static void | 
 | print_trace_warning_symbol(void *data, char *msg, unsigned long symbol) | 
 | { | 
 | 	printk(data); | 
 | 	print_symbol(msg, symbol); | 
 | 	printk("\n"); | 
 | } | 
 |  | 
 | static void print_trace_warning(void *data, char *msg) | 
 | { | 
 | 	printk("%s%s\n", (char *)data, msg); | 
 | } | 
 |  | 
 | static int print_trace_stack(void *data, char *name) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Print one address/symbol entries per line. | 
 |  */ | 
 | static void print_trace_address(void *data, unsigned long addr) | 
 | { | 
 | 	printk("%s [<%08lx>] ", (char *)data, addr); | 
 | 	print_symbol("%s\n", addr); | 
 | } | 
 |  | 
 | static struct stacktrace_ops print_trace_ops = { | 
 | 	.warning = print_trace_warning, | 
 | 	.warning_symbol = print_trace_warning_symbol, | 
 | 	.stack = print_trace_stack, | 
 | 	.address = print_trace_address, | 
 | }; | 
 |  | 
 | static void | 
 | show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, | 
 | 		   unsigned long * stack, char *log_lvl) | 
 | { | 
 | 	dump_trace(task, regs, stack, &print_trace_ops, log_lvl); | 
 | 	printk("%s =======================\n", log_lvl); | 
 | } | 
 |  | 
 | void show_trace(struct task_struct *task, struct pt_regs *regs, | 
 | 		unsigned long * stack) | 
 | { | 
 | 	show_trace_log_lvl(task, regs, stack, ""); | 
 | } | 
 |  | 
 | static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs, | 
 | 			       unsigned long *esp, char *log_lvl) | 
 | { | 
 | 	unsigned long *stack; | 
 | 	int i; | 
 |  | 
 | 	if (esp == NULL) { | 
 | 		if (task) | 
 | 			esp = (unsigned long*)task->thread.esp; | 
 | 		else | 
 | 			esp = (unsigned long *)&esp; | 
 | 	} | 
 |  | 
 | 	stack = esp; | 
 | 	for(i = 0; i < kstack_depth_to_print; i++) { | 
 | 		if (kstack_end(stack)) | 
 | 			break; | 
 | 		if (i && ((i % 8) == 0)) | 
 | 			printk("\n%s       ", log_lvl); | 
 | 		printk("%08lx ", *stack++); | 
 | 	} | 
 | 	printk("\n%sCall Trace:\n", log_lvl); | 
 | 	show_trace_log_lvl(task, regs, esp, log_lvl); | 
 | } | 
 |  | 
 | void show_stack(struct task_struct *task, unsigned long *esp) | 
 | { | 
 | 	printk("       "); | 
 | 	show_stack_log_lvl(task, NULL, esp, ""); | 
 | } | 
 |  | 
 | /* | 
 |  * The architecture-independent dump_stack generator | 
 |  */ | 
 | void dump_stack(void) | 
 | { | 
 | 	unsigned long stack; | 
 |  | 
 | 	show_trace(current, NULL, &stack); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dump_stack); | 
 |  | 
 | void show_registers(struct pt_regs *regs) | 
 | { | 
 | 	int i; | 
 | 	int in_kernel = 1; | 
 | 	unsigned long esp; | 
 | 	unsigned short ss, gs; | 
 |  | 
 | 	esp = (unsigned long) (®s->esp); | 
 | 	savesegment(ss, ss); | 
 | 	savesegment(gs, gs); | 
 | 	if (user_mode_vm(regs)) { | 
 | 		in_kernel = 0; | 
 | 		esp = regs->esp; | 
 | 		ss = regs->xss & 0xffff; | 
 | 	} | 
 | 	print_modules(); | 
 | 	printk(KERN_EMERG "CPU:    %d\n" | 
 | 		KERN_EMERG "EIP:    %04x:[<%08lx>]    %s VLI\n" | 
 | 		KERN_EMERG "EFLAGS: %08lx   (%s %.*s)\n", | 
 | 		smp_processor_id(), 0xffff & regs->xcs, regs->eip, | 
 | 		print_tainted(), regs->eflags, init_utsname()->release, | 
 | 		(int)strcspn(init_utsname()->version, " "), | 
 | 		init_utsname()->version); | 
 | 	print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip); | 
 | 	printk(KERN_EMERG "eax: %08lx   ebx: %08lx   ecx: %08lx   edx: %08lx\n", | 
 | 		regs->eax, regs->ebx, regs->ecx, regs->edx); | 
 | 	printk(KERN_EMERG "esi: %08lx   edi: %08lx   ebp: %08lx   esp: %08lx\n", | 
 | 		regs->esi, regs->edi, regs->ebp, esp); | 
 | 	printk(KERN_EMERG "ds: %04x   es: %04x   fs: %04x  gs: %04x  ss: %04x\n", | 
 | 	       regs->xds & 0xffff, regs->xes & 0xffff, regs->xfs & 0xffff, gs, ss); | 
 | 	printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)", | 
 | 		TASK_COMM_LEN, current->comm, current->pid, | 
 | 		current_thread_info(), current, task_thread_info(current)); | 
 | 	/* | 
 | 	 * When in-kernel, we also print out the stack and code at the | 
 | 	 * time of the fault.. | 
 | 	 */ | 
 | 	if (in_kernel) { | 
 | 		u8 *eip; | 
 | 		unsigned int code_prologue = code_bytes * 43 / 64; | 
 | 		unsigned int code_len = code_bytes; | 
 | 		unsigned char c; | 
 |  | 
 | 		printk("\n" KERN_EMERG "Stack: "); | 
 | 		show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG); | 
 |  | 
 | 		printk(KERN_EMERG "Code: "); | 
 |  | 
 | 		eip = (u8 *)regs->eip - code_prologue; | 
 | 		if (eip < (u8 *)PAGE_OFFSET || | 
 | 			probe_kernel_address(eip, c)) { | 
 | 			/* try starting at EIP */ | 
 | 			eip = (u8 *)regs->eip; | 
 | 			code_len = code_len - code_prologue + 1; | 
 | 		} | 
 | 		for (i = 0; i < code_len; i++, eip++) { | 
 | 			if (eip < (u8 *)PAGE_OFFSET || | 
 | 				probe_kernel_address(eip, c)) { | 
 | 				printk(" Bad EIP value."); | 
 | 				break; | 
 | 			} | 
 | 			if (eip == (u8 *)regs->eip) | 
 | 				printk("<%02x> ", c); | 
 | 			else | 
 | 				printk("%02x ", c); | 
 | 		} | 
 | 	} | 
 | 	printk("\n"); | 
 | }	 | 
 |  | 
 | int is_valid_bugaddr(unsigned long eip) | 
 | { | 
 | 	unsigned short ud2; | 
 |  | 
 | 	if (eip < PAGE_OFFSET) | 
 | 		return 0; | 
 | 	if (probe_kernel_address((unsigned short *)eip, ud2)) | 
 | 		return 0; | 
 |  | 
 | 	return ud2 == 0x0b0f; | 
 | } | 
 |  | 
 | /* | 
 |  * This is gone through when something in the kernel has done something bad and | 
 |  * is about to be terminated. | 
 |  */ | 
 | void die(const char * str, struct pt_regs * regs, long err) | 
 | { | 
 | 	static struct { | 
 | 		spinlock_t lock; | 
 | 		u32 lock_owner; | 
 | 		int lock_owner_depth; | 
 | 	} die = { | 
 | 		.lock =			__SPIN_LOCK_UNLOCKED(die.lock), | 
 | 		.lock_owner =		-1, | 
 | 		.lock_owner_depth =	0 | 
 | 	}; | 
 | 	static int die_counter; | 
 | 	unsigned long flags; | 
 |  | 
 | 	oops_enter(); | 
 |  | 
 | 	if (die.lock_owner != raw_smp_processor_id()) { | 
 | 		console_verbose(); | 
 | 		spin_lock_irqsave(&die.lock, flags); | 
 | 		die.lock_owner = smp_processor_id(); | 
 | 		die.lock_owner_depth = 0; | 
 | 		bust_spinlocks(1); | 
 | 	} | 
 | 	else | 
 | 		local_save_flags(flags); | 
 |  | 
 | 	if (++die.lock_owner_depth < 3) { | 
 | 		int nl = 0; | 
 | 		unsigned long esp; | 
 | 		unsigned short ss; | 
 |  | 
 | 		report_bug(regs->eip); | 
 |  | 
 | 		printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter); | 
 | #ifdef CONFIG_PREEMPT | 
 | 		printk(KERN_EMERG "PREEMPT "); | 
 | 		nl = 1; | 
 | #endif | 
 | #ifdef CONFIG_SMP | 
 | 		if (!nl) | 
 | 			printk(KERN_EMERG); | 
 | 		printk("SMP "); | 
 | 		nl = 1; | 
 | #endif | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 		if (!nl) | 
 | 			printk(KERN_EMERG); | 
 | 		printk("DEBUG_PAGEALLOC"); | 
 | 		nl = 1; | 
 | #endif | 
 | 		if (nl) | 
 | 			printk("\n"); | 
 | 		if (notify_die(DIE_OOPS, str, regs, err, | 
 | 					current->thread.trap_no, SIGSEGV) != | 
 | 				NOTIFY_STOP) { | 
 | 			show_registers(regs); | 
 | 			/* Executive summary in case the oops scrolled away */ | 
 | 			esp = (unsigned long) (®s->esp); | 
 | 			savesegment(ss, ss); | 
 | 			if (user_mode(regs)) { | 
 | 				esp = regs->esp; | 
 | 				ss = regs->xss & 0xffff; | 
 | 			} | 
 | 			printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip); | 
 | 			print_symbol("%s", regs->eip); | 
 | 			printk(" SS:ESP %04x:%08lx\n", ss, esp); | 
 | 		} | 
 | 		else | 
 | 			regs = NULL; | 
 |   	} else | 
 | 		printk(KERN_EMERG "Recursive die() failure, output suppressed\n"); | 
 |  | 
 | 	bust_spinlocks(0); | 
 | 	die.lock_owner = -1; | 
 | 	spin_unlock_irqrestore(&die.lock, flags); | 
 |  | 
 | 	if (!regs) | 
 | 		return; | 
 |  | 
 | 	if (kexec_should_crash(current)) | 
 | 		crash_kexec(regs); | 
 |  | 
 | 	if (in_interrupt()) | 
 | 		panic("Fatal exception in interrupt"); | 
 |  | 
 | 	if (panic_on_oops) | 
 | 		panic("Fatal exception"); | 
 |  | 
 | 	oops_exit(); | 
 | 	do_exit(SIGSEGV); | 
 | } | 
 |  | 
 | static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err) | 
 | { | 
 | 	if (!user_mode_vm(regs)) | 
 | 		die(str, regs, err); | 
 | } | 
 |  | 
 | static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86, | 
 | 			      struct pt_regs * regs, long error_code, | 
 | 			      siginfo_t *info) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	if (regs->eflags & VM_MASK) { | 
 | 		if (vm86) | 
 | 			goto vm86_trap; | 
 | 		goto trap_signal; | 
 | 	} | 
 |  | 
 | 	if (!user_mode(regs)) | 
 | 		goto kernel_trap; | 
 |  | 
 | 	trap_signal: { | 
 | 		/* | 
 | 		 * We want error_code and trap_no set for userspace faults and | 
 | 		 * kernelspace faults which result in die(), but not | 
 | 		 * kernelspace faults which are fixed up.  die() gives the | 
 | 		 * process no chance to handle the signal and notice the | 
 | 		 * kernel fault information, so that won't result in polluting | 
 | 		 * the information about previously queued, but not yet | 
 | 		 * delivered, faults.  See also do_general_protection below. | 
 | 		 */ | 
 | 		tsk->thread.error_code = error_code; | 
 | 		tsk->thread.trap_no = trapnr; | 
 |  | 
 | 		if (info) | 
 | 			force_sig_info(signr, info, tsk); | 
 | 		else | 
 | 			force_sig(signr, tsk); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	kernel_trap: { | 
 | 		if (!fixup_exception(regs)) { | 
 | 			tsk->thread.error_code = error_code; | 
 | 			tsk->thread.trap_no = trapnr; | 
 | 			die(str, regs, error_code); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	vm86_trap: { | 
 | 		int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr); | 
 | 		if (ret) goto trap_signal; | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | #define DO_ERROR(trapnr, signr, str, name) \ | 
 | fastcall void do_##name(struct pt_regs * regs, long error_code) \ | 
 | { \ | 
 | 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ | 
 | 						== NOTIFY_STOP) \ | 
 | 		return; \ | 
 | 	do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \ | 
 | } | 
 |  | 
 | #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ | 
 | fastcall void do_##name(struct pt_regs * regs, long error_code) \ | 
 | { \ | 
 | 	siginfo_t info; \ | 
 | 	info.si_signo = signr; \ | 
 | 	info.si_errno = 0; \ | 
 | 	info.si_code = sicode; \ | 
 | 	info.si_addr = (void __user *)siaddr; \ | 
 | 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ | 
 | 						== NOTIFY_STOP) \ | 
 | 		return; \ | 
 | 	do_trap(trapnr, signr, str, 0, regs, error_code, &info); \ | 
 | } | 
 |  | 
 | #define DO_VM86_ERROR(trapnr, signr, str, name) \ | 
 | fastcall void do_##name(struct pt_regs * regs, long error_code) \ | 
 | { \ | 
 | 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ | 
 | 						== NOTIFY_STOP) \ | 
 | 		return; \ | 
 | 	do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \ | 
 | } | 
 |  | 
 | #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ | 
 | fastcall void do_##name(struct pt_regs * regs, long error_code) \ | 
 | { \ | 
 | 	siginfo_t info; \ | 
 | 	info.si_signo = signr; \ | 
 | 	info.si_errno = 0; \ | 
 | 	info.si_code = sicode; \ | 
 | 	info.si_addr = (void __user *)siaddr; \ | 
 | 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ | 
 | 						== NOTIFY_STOP) \ | 
 | 		return; \ | 
 | 	do_trap(trapnr, signr, str, 1, regs, error_code, &info); \ | 
 | } | 
 |  | 
 | DO_VM86_ERROR_INFO( 0, SIGFPE,  "divide error", divide_error, FPE_INTDIV, regs->eip) | 
 | #ifndef CONFIG_KPROBES | 
 | DO_VM86_ERROR( 3, SIGTRAP, "int3", int3) | 
 | #endif | 
 | DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow) | 
 | DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds) | 
 | DO_ERROR_INFO( 6, SIGILL,  "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip) | 
 | DO_ERROR( 9, SIGFPE,  "coprocessor segment overrun", coprocessor_segment_overrun) | 
 | DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) | 
 | DO_ERROR(11, SIGBUS,  "segment not present", segment_not_present) | 
 | DO_ERROR(12, SIGBUS,  "stack segment", stack_segment) | 
 | DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) | 
 | DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0) | 
 |  | 
 | fastcall void __kprobes do_general_protection(struct pt_regs * regs, | 
 | 					      long error_code) | 
 | { | 
 | 	int cpu = get_cpu(); | 
 | 	struct tss_struct *tss = &per_cpu(init_tss, cpu); | 
 | 	struct thread_struct *thread = ¤t->thread; | 
 |  | 
 | 	/* | 
 | 	 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an | 
 | 	 * invalid offset set (the LAZY one) and the faulting thread has | 
 | 	 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS | 
 | 	 * and we set the offset field correctly. Then we let the CPU to | 
 | 	 * restart the faulting instruction. | 
 | 	 */ | 
 | 	if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY && | 
 | 	    thread->io_bitmap_ptr) { | 
 | 		memcpy(tss->io_bitmap, thread->io_bitmap_ptr, | 
 | 		       thread->io_bitmap_max); | 
 | 		/* | 
 | 		 * If the previously set map was extending to higher ports | 
 | 		 * than the current one, pad extra space with 0xff (no access). | 
 | 		 */ | 
 | 		if (thread->io_bitmap_max < tss->io_bitmap_max) | 
 | 			memset((char *) tss->io_bitmap + | 
 | 				thread->io_bitmap_max, 0xff, | 
 | 				tss->io_bitmap_max - thread->io_bitmap_max); | 
 | 		tss->io_bitmap_max = thread->io_bitmap_max; | 
 | 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; | 
 | 		tss->io_bitmap_owner = thread; | 
 | 		put_cpu(); | 
 | 		return; | 
 | 	} | 
 | 	put_cpu(); | 
 |  | 
 | 	if (regs->eflags & VM_MASK) | 
 | 		goto gp_in_vm86; | 
 |  | 
 | 	if (!user_mode(regs)) | 
 | 		goto gp_in_kernel; | 
 |  | 
 | 	current->thread.error_code = error_code; | 
 | 	current->thread.trap_no = 13; | 
 | 	force_sig(SIGSEGV, current); | 
 | 	return; | 
 |  | 
 | gp_in_vm86: | 
 | 	local_irq_enable(); | 
 | 	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); | 
 | 	return; | 
 |  | 
 | gp_in_kernel: | 
 | 	if (!fixup_exception(regs)) { | 
 | 		current->thread.error_code = error_code; | 
 | 		current->thread.trap_no = 13; | 
 | 		if (notify_die(DIE_GPF, "general protection fault", regs, | 
 | 				error_code, 13, SIGSEGV) == NOTIFY_STOP) | 
 | 			return; | 
 | 		die("general protection fault", regs, error_code); | 
 | 	} | 
 | } | 
 |  | 
 | static __kprobes void | 
 | mem_parity_error(unsigned char reason, struct pt_regs * regs) | 
 | { | 
 | 	printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on " | 
 | 		"CPU %d.\n", reason, smp_processor_id()); | 
 | 	printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n"); | 
 | 	if (panic_on_unrecovered_nmi) | 
 |                 panic("NMI: Not continuing"); | 
 |  | 
 | 	printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); | 
 |  | 
 | 	/* Clear and disable the memory parity error line. */ | 
 | 	clear_mem_error(reason); | 
 | } | 
 |  | 
 | static __kprobes void | 
 | io_check_error(unsigned char reason, struct pt_regs * regs) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n"); | 
 | 	show_registers(regs); | 
 |  | 
 | 	/* Re-enable the IOCK line, wait for a few seconds */ | 
 | 	reason = (reason & 0xf) | 8; | 
 | 	outb(reason, 0x61); | 
 | 	i = 2000; | 
 | 	while (--i) udelay(1000); | 
 | 	reason &= ~8; | 
 | 	outb(reason, 0x61); | 
 | } | 
 |  | 
 | static __kprobes void | 
 | unknown_nmi_error(unsigned char reason, struct pt_regs * regs) | 
 | { | 
 | #ifdef CONFIG_MCA | 
 | 	/* Might actually be able to figure out what the guilty party | 
 | 	* is. */ | 
 | 	if( MCA_bus ) { | 
 | 		mca_handle_nmi(); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on " | 
 | 		"CPU %d.\n", reason, smp_processor_id()); | 
 | 	printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n"); | 
 | 	if (panic_on_unrecovered_nmi) | 
 |                 panic("NMI: Not continuing"); | 
 |  | 
 | 	printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); | 
 | } | 
 |  | 
 | static DEFINE_SPINLOCK(nmi_print_lock); | 
 |  | 
 | void __kprobes die_nmi(struct pt_regs *regs, const char *msg) | 
 | { | 
 | 	if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) == | 
 | 	    NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&nmi_print_lock); | 
 | 	/* | 
 | 	* We are in trouble anyway, lets at least try | 
 | 	* to get a message out. | 
 | 	*/ | 
 | 	bust_spinlocks(1); | 
 | 	printk(KERN_EMERG "%s", msg); | 
 | 	printk(" on CPU%d, eip %08lx, registers:\n", | 
 | 		smp_processor_id(), regs->eip); | 
 | 	show_registers(regs); | 
 | 	console_silent(); | 
 | 	spin_unlock(&nmi_print_lock); | 
 | 	bust_spinlocks(0); | 
 |  | 
 | 	/* If we are in kernel we are probably nested up pretty bad | 
 | 	 * and might aswell get out now while we still can. | 
 | 	*/ | 
 | 	if (!user_mode_vm(regs)) { | 
 | 		current->thread.trap_no = 2; | 
 | 		crash_kexec(regs); | 
 | 	} | 
 |  | 
 | 	do_exit(SIGSEGV); | 
 | } | 
 |  | 
 | static __kprobes void default_do_nmi(struct pt_regs * regs) | 
 | { | 
 | 	unsigned char reason = 0; | 
 |  | 
 | 	/* Only the BSP gets external NMIs from the system.  */ | 
 | 	if (!smp_processor_id()) | 
 | 		reason = get_nmi_reason(); | 
 |   | 
 | 	if (!(reason & 0xc0)) { | 
 | 		if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT) | 
 | 							== NOTIFY_STOP) | 
 | 			return; | 
 | #ifdef CONFIG_X86_LOCAL_APIC | 
 | 		/* | 
 | 		 * Ok, so this is none of the documented NMI sources, | 
 | 		 * so it must be the NMI watchdog. | 
 | 		 */ | 
 | 		if (nmi_watchdog_tick(regs, reason)) | 
 | 			return; | 
 | 		if (!do_nmi_callback(regs, smp_processor_id())) | 
 | #endif | 
 | 			unknown_nmi_error(reason, regs); | 
 |  | 
 | 		return; | 
 | 	} | 
 | 	if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) | 
 | 		return; | 
 | 	if (reason & 0x80) | 
 | 		mem_parity_error(reason, regs); | 
 | 	if (reason & 0x40) | 
 | 		io_check_error(reason, regs); | 
 | 	/* | 
 | 	 * Reassert NMI in case it became active meanwhile | 
 | 	 * as it's edge-triggered. | 
 | 	 */ | 
 | 	reassert_nmi(); | 
 | } | 
 |  | 
 | fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	nmi_enter(); | 
 |  | 
 | 	cpu = smp_processor_id(); | 
 |  | 
 | 	++nmi_count(cpu); | 
 |  | 
 | 	default_do_nmi(regs); | 
 |  | 
 | 	nmi_exit(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KPROBES | 
 | fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) | 
 | 			== NOTIFY_STOP) | 
 | 		return; | 
 | 	/* This is an interrupt gate, because kprobes wants interrupts | 
 | 	disabled.  Normal trap handlers don't. */ | 
 | 	restore_interrupts(regs); | 
 | 	do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Our handling of the processor debug registers is non-trivial. | 
 |  * We do not clear them on entry and exit from the kernel. Therefore | 
 |  * it is possible to get a watchpoint trap here from inside the kernel. | 
 |  * However, the code in ./ptrace.c has ensured that the user can | 
 |  * only set watchpoints on userspace addresses. Therefore the in-kernel | 
 |  * watchpoint trap can only occur in code which is reading/writing | 
 |  * from user space. Such code must not hold kernel locks (since it | 
 |  * can equally take a page fault), therefore it is safe to call | 
 |  * force_sig_info even though that claims and releases locks. | 
 |  *  | 
 |  * Code in ./signal.c ensures that the debug control register | 
 |  * is restored before we deliver any signal, and therefore that | 
 |  * user code runs with the correct debug control register even though | 
 |  * we clear it here. | 
 |  * | 
 |  * Being careful here means that we don't have to be as careful in a | 
 |  * lot of more complicated places (task switching can be a bit lazy | 
 |  * about restoring all the debug state, and ptrace doesn't have to | 
 |  * find every occurrence of the TF bit that could be saved away even | 
 |  * by user code) | 
 |  */ | 
 | fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code) | 
 | { | 
 | 	unsigned int condition; | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	get_debugreg(condition, 6); | 
 |  | 
 | 	if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code, | 
 | 					SIGTRAP) == NOTIFY_STOP) | 
 | 		return; | 
 | 	/* It's safe to allow irq's after DR6 has been saved */ | 
 | 	if (regs->eflags & X86_EFLAGS_IF) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	/* Mask out spurious debug traps due to lazy DR7 setting */ | 
 | 	if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) { | 
 | 		if (!tsk->thread.debugreg[7]) | 
 | 			goto clear_dr7; | 
 | 	} | 
 |  | 
 | 	if (regs->eflags & VM_MASK) | 
 | 		goto debug_vm86; | 
 |  | 
 | 	/* Save debug status register where ptrace can see it */ | 
 | 	tsk->thread.debugreg[6] = condition; | 
 |  | 
 | 	/* | 
 | 	 * Single-stepping through TF: make sure we ignore any events in | 
 | 	 * kernel space (but re-enable TF when returning to user mode). | 
 | 	 */ | 
 | 	if (condition & DR_STEP) { | 
 | 		/* | 
 | 		 * We already checked v86 mode above, so we can | 
 | 		 * check for kernel mode by just checking the CPL | 
 | 		 * of CS. | 
 | 		 */ | 
 | 		if (!user_mode(regs)) | 
 | 			goto clear_TF_reenable; | 
 | 	} | 
 |  | 
 | 	/* Ok, finally something we can handle */ | 
 | 	send_sigtrap(tsk, regs, error_code); | 
 |  | 
 | 	/* Disable additional traps. They'll be re-enabled when | 
 | 	 * the signal is delivered. | 
 | 	 */ | 
 | clear_dr7: | 
 | 	set_debugreg(0, 7); | 
 | 	return; | 
 |  | 
 | debug_vm86: | 
 | 	handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1); | 
 | 	return; | 
 |  | 
 | clear_TF_reenable: | 
 | 	set_tsk_thread_flag(tsk, TIF_SINGLESTEP); | 
 | 	regs->eflags &= ~TF_MASK; | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Note that we play around with the 'TS' bit in an attempt to get | 
 |  * the correct behaviour even in the presence of the asynchronous | 
 |  * IRQ13 behaviour | 
 |  */ | 
 | void math_error(void __user *eip) | 
 | { | 
 | 	struct task_struct * task; | 
 | 	siginfo_t info; | 
 | 	unsigned short cwd, swd; | 
 |  | 
 | 	/* | 
 | 	 * Save the info for the exception handler and clear the error. | 
 | 	 */ | 
 | 	task = current; | 
 | 	save_init_fpu(task); | 
 | 	task->thread.trap_no = 16; | 
 | 	task->thread.error_code = 0; | 
 | 	info.si_signo = SIGFPE; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = __SI_FAULT; | 
 | 	info.si_addr = eip; | 
 | 	/* | 
 | 	 * (~cwd & swd) will mask out exceptions that are not set to unmasked | 
 | 	 * status.  0x3f is the exception bits in these regs, 0x200 is the | 
 | 	 * C1 reg you need in case of a stack fault, 0x040 is the stack | 
 | 	 * fault bit.  We should only be taking one exception at a time, | 
 | 	 * so if this combination doesn't produce any single exception, | 
 | 	 * then we have a bad program that isn't syncronizing its FPU usage | 
 | 	 * and it will suffer the consequences since we won't be able to | 
 | 	 * fully reproduce the context of the exception | 
 | 	 */ | 
 | 	cwd = get_fpu_cwd(task); | 
 | 	swd = get_fpu_swd(task); | 
 | 	switch (swd & ~cwd & 0x3f) { | 
 | 		case 0x000: /* No unmasked exception */ | 
 | 			return; | 
 | 		default:    /* Multiple exceptions */ | 
 | 			break; | 
 | 		case 0x001: /* Invalid Op */ | 
 | 			/* | 
 | 			 * swd & 0x240 == 0x040: Stack Underflow | 
 | 			 * swd & 0x240 == 0x240: Stack Overflow | 
 | 			 * User must clear the SF bit (0x40) if set | 
 | 			 */ | 
 | 			info.si_code = FPE_FLTINV; | 
 | 			break; | 
 | 		case 0x002: /* Denormalize */ | 
 | 		case 0x010: /* Underflow */ | 
 | 			info.si_code = FPE_FLTUND; | 
 | 			break; | 
 | 		case 0x004: /* Zero Divide */ | 
 | 			info.si_code = FPE_FLTDIV; | 
 | 			break; | 
 | 		case 0x008: /* Overflow */ | 
 | 			info.si_code = FPE_FLTOVF; | 
 | 			break; | 
 | 		case 0x020: /* Precision */ | 
 | 			info.si_code = FPE_FLTRES; | 
 | 			break; | 
 | 	} | 
 | 	force_sig_info(SIGFPE, &info, task); | 
 | } | 
 |  | 
 | fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code) | 
 | { | 
 | 	ignore_fpu_irq = 1; | 
 | 	math_error((void __user *)regs->eip); | 
 | } | 
 |  | 
 | static void simd_math_error(void __user *eip) | 
 | { | 
 | 	struct task_struct * task; | 
 | 	siginfo_t info; | 
 | 	unsigned short mxcsr; | 
 |  | 
 | 	/* | 
 | 	 * Save the info for the exception handler and clear the error. | 
 | 	 */ | 
 | 	task = current; | 
 | 	save_init_fpu(task); | 
 | 	task->thread.trap_no = 19; | 
 | 	task->thread.error_code = 0; | 
 | 	info.si_signo = SIGFPE; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = __SI_FAULT; | 
 | 	info.si_addr = eip; | 
 | 	/* | 
 | 	 * The SIMD FPU exceptions are handled a little differently, as there | 
 | 	 * is only a single status/control register.  Thus, to determine which | 
 | 	 * unmasked exception was caught we must mask the exception mask bits | 
 | 	 * at 0x1f80, and then use these to mask the exception bits at 0x3f. | 
 | 	 */ | 
 | 	mxcsr = get_fpu_mxcsr(task); | 
 | 	switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { | 
 | 		case 0x000: | 
 | 		default: | 
 | 			break; | 
 | 		case 0x001: /* Invalid Op */ | 
 | 			info.si_code = FPE_FLTINV; | 
 | 			break; | 
 | 		case 0x002: /* Denormalize */ | 
 | 		case 0x010: /* Underflow */ | 
 | 			info.si_code = FPE_FLTUND; | 
 | 			break; | 
 | 		case 0x004: /* Zero Divide */ | 
 | 			info.si_code = FPE_FLTDIV; | 
 | 			break; | 
 | 		case 0x008: /* Overflow */ | 
 | 			info.si_code = FPE_FLTOVF; | 
 | 			break; | 
 | 		case 0x020: /* Precision */ | 
 | 			info.si_code = FPE_FLTRES; | 
 | 			break; | 
 | 	} | 
 | 	force_sig_info(SIGFPE, &info, task); | 
 | } | 
 |  | 
 | fastcall void do_simd_coprocessor_error(struct pt_regs * regs, | 
 | 					  long error_code) | 
 | { | 
 | 	if (cpu_has_xmm) { | 
 | 		/* Handle SIMD FPU exceptions on PIII+ processors. */ | 
 | 		ignore_fpu_irq = 1; | 
 | 		simd_math_error((void __user *)regs->eip); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Handle strange cache flush from user space exception | 
 | 		 * in all other cases.  This is undocumented behaviour. | 
 | 		 */ | 
 | 		if (regs->eflags & VM_MASK) { | 
 | 			handle_vm86_fault((struct kernel_vm86_regs *)regs, | 
 | 					  error_code); | 
 | 			return; | 
 | 		} | 
 | 		current->thread.trap_no = 19; | 
 | 		current->thread.error_code = error_code; | 
 | 		die_if_kernel("cache flush denied", regs, error_code); | 
 | 		force_sig(SIGSEGV, current); | 
 | 	} | 
 | } | 
 |  | 
 | fastcall void do_spurious_interrupt_bug(struct pt_regs * regs, | 
 | 					  long error_code) | 
 | { | 
 | #if 0 | 
 | 	/* No need to warn about this any longer. */ | 
 | 	printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); | 
 | #endif | 
 | } | 
 |  | 
 | fastcall unsigned long patch_espfix_desc(unsigned long uesp, | 
 | 					  unsigned long kesp) | 
 | { | 
 | 	struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt; | 
 | 	unsigned long base = (kesp - uesp) & -THREAD_SIZE; | 
 | 	unsigned long new_kesp = kesp - base; | 
 | 	unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT; | 
 | 	__u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS]; | 
 | 	/* Set up base for espfix segment */ | 
 |  	desc &= 0x00f0ff0000000000ULL; | 
 |  	desc |=	((((__u64)base) << 16) & 0x000000ffffff0000ULL) | | 
 | 		((((__u64)base) << 32) & 0xff00000000000000ULL) | | 
 | 		((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) | | 
 | 		(lim_pages & 0xffff); | 
 | 	*(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc; | 
 | 	return new_kesp; | 
 | } | 
 |  | 
 | /* | 
 |  *  'math_state_restore()' saves the current math information in the | 
 |  * old math state array, and gets the new ones from the current task | 
 |  * | 
 |  * Careful.. There are problems with IBM-designed IRQ13 behaviour. | 
 |  * Don't touch unless you *really* know how it works. | 
 |  * | 
 |  * Must be called with kernel preemption disabled (in this case, | 
 |  * local interrupts are disabled at the call-site in entry.S). | 
 |  */ | 
 | asmlinkage void math_state_restore(void) | 
 | { | 
 | 	struct thread_info *thread = current_thread_info(); | 
 | 	struct task_struct *tsk = thread->task; | 
 |  | 
 | 	clts();		/* Allow maths ops (or we recurse) */ | 
 | 	if (!tsk_used_math(tsk)) | 
 | 		init_fpu(tsk); | 
 | 	restore_fpu(tsk); | 
 | 	thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */ | 
 | 	tsk->fpu_counter++; | 
 | } | 
 |  | 
 | #ifndef CONFIG_MATH_EMULATION | 
 |  | 
 | asmlinkage void math_emulate(long arg) | 
 | { | 
 | 	printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n"); | 
 | 	printk(KERN_EMERG "killing %s.\n",current->comm); | 
 | 	force_sig(SIGFPE,current); | 
 | 	schedule(); | 
 | } | 
 |  | 
 | #endif /* CONFIG_MATH_EMULATION */ | 
 |  | 
 | #ifdef CONFIG_X86_F00F_BUG | 
 | void __init trap_init_f00f_bug(void) | 
 | { | 
 | 	__set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO); | 
 |  | 
 | 	/* | 
 | 	 * Update the IDT descriptor and reload the IDT so that | 
 | 	 * it uses the read-only mapped virtual address. | 
 | 	 */ | 
 | 	idt_descr.address = fix_to_virt(FIX_F00F_IDT); | 
 | 	load_idt(&idt_descr); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This needs to use 'idt_table' rather than 'idt', and | 
 |  * thus use the _nonmapped_ version of the IDT, as the | 
 |  * Pentium F0 0F bugfix can have resulted in the mapped | 
 |  * IDT being write-protected. | 
 |  */ | 
 | void set_intr_gate(unsigned int n, void *addr) | 
 | { | 
 | 	_set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine sets up an interrupt gate at directory privilege level 3. | 
 |  */ | 
 | static inline void set_system_intr_gate(unsigned int n, void *addr) | 
 | { | 
 | 	_set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS); | 
 | } | 
 |  | 
 | static void __init set_trap_gate(unsigned int n, void *addr) | 
 | { | 
 | 	_set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS); | 
 | } | 
 |  | 
 | static void __init set_system_gate(unsigned int n, void *addr) | 
 | { | 
 | 	_set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS); | 
 | } | 
 |  | 
 | static void __init set_task_gate(unsigned int n, unsigned int gdt_entry) | 
 | { | 
 | 	_set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3)); | 
 | } | 
 |  | 
 |  | 
 | void __init trap_init(void) | 
 | { | 
 | #ifdef CONFIG_EISA | 
 | 	void __iomem *p = ioremap(0x0FFFD9, 4); | 
 | 	if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) { | 
 | 		EISA_bus = 1; | 
 | 	} | 
 | 	iounmap(p); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_LOCAL_APIC | 
 | 	init_apic_mappings(); | 
 | #endif | 
 |  | 
 | 	set_trap_gate(0,÷_error); | 
 | 	set_intr_gate(1,&debug); | 
 | 	set_intr_gate(2,&nmi); | 
 | 	set_system_intr_gate(3, &int3); /* int3/4 can be called from all */ | 
 | 	set_system_gate(4,&overflow); | 
 | 	set_trap_gate(5,&bounds); | 
 | 	set_trap_gate(6,&invalid_op); | 
 | 	set_trap_gate(7,&device_not_available); | 
 | 	set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS); | 
 | 	set_trap_gate(9,&coprocessor_segment_overrun); | 
 | 	set_trap_gate(10,&invalid_TSS); | 
 | 	set_trap_gate(11,&segment_not_present); | 
 | 	set_trap_gate(12,&stack_segment); | 
 | 	set_trap_gate(13,&general_protection); | 
 | 	set_intr_gate(14,&page_fault); | 
 | 	set_trap_gate(15,&spurious_interrupt_bug); | 
 | 	set_trap_gate(16,&coprocessor_error); | 
 | 	set_trap_gate(17,&alignment_check); | 
 | #ifdef CONFIG_X86_MCE | 
 | 	set_trap_gate(18,&machine_check); | 
 | #endif | 
 | 	set_trap_gate(19,&simd_coprocessor_error); | 
 |  | 
 | 	if (cpu_has_fxsr) { | 
 | 		/* | 
 | 		 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned. | 
 | 		 * Generates a compile-time "error: zero width for bit-field" if | 
 | 		 * the alignment is wrong. | 
 | 		 */ | 
 | 		struct fxsrAlignAssert { | 
 | 			int _:!(offsetof(struct task_struct, | 
 | 					thread.i387.fxsave) & 15); | 
 | 		}; | 
 |  | 
 | 		printk(KERN_INFO "Enabling fast FPU save and restore... "); | 
 | 		set_in_cr4(X86_CR4_OSFXSR); | 
 | 		printk("done.\n"); | 
 | 	} | 
 | 	if (cpu_has_xmm) { | 
 | 		printk(KERN_INFO "Enabling unmasked SIMD FPU exception " | 
 | 				"support... "); | 
 | 		set_in_cr4(X86_CR4_OSXMMEXCPT); | 
 | 		printk("done.\n"); | 
 | 	} | 
 |  | 
 | 	set_system_gate(SYSCALL_VECTOR,&system_call); | 
 |  | 
 | 	/* | 
 | 	 * Should be a barrier for any external CPU state. | 
 | 	 */ | 
 | 	cpu_init(); | 
 |  | 
 | 	trap_init_hook(); | 
 | } | 
 |  | 
 | static int __init kstack_setup(char *s) | 
 | { | 
 | 	kstack_depth_to_print = simple_strtoul(s, NULL, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("kstack=", kstack_setup); | 
 |  | 
 | static int __init code_bytes_setup(char *s) | 
 | { | 
 | 	code_bytes = simple_strtoul(s, NULL, 0); | 
 | 	if (code_bytes > 8192) | 
 | 		code_bytes = 8192; | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("code_bytes=", code_bytes_setup); |