| /*---------------------------------------------------------------------------+ | 
 |  |  poly_2xm1.c                                                              | | 
 |  |                                                                           | | 
 |  | Function to compute 2^x-1 by a polynomial approximation.                  | | 
 |  |                                                                           | | 
 |  | Copyright (C) 1992,1993,1994,1997                                         | | 
 |  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | 
 |  |                  E-mail   billm@suburbia.net                              | | 
 |  |                                                                           | | 
 |  |                                                                           | | 
 |  +---------------------------------------------------------------------------*/ | 
 |  | 
 | #include "exception.h" | 
 | #include "reg_constant.h" | 
 | #include "fpu_emu.h" | 
 | #include "fpu_system.h" | 
 | #include "control_w.h" | 
 | #include "poly.h" | 
 |  | 
 |  | 
 | #define	HIPOWER	11 | 
 | static const unsigned long long lterms[HIPOWER] = | 
 | { | 
 |   0x0000000000000000LL,  /* This term done separately as 12 bytes */ | 
 |   0xf5fdeffc162c7543LL, | 
 |   0x1c6b08d704a0bfa6LL, | 
 |   0x0276556df749cc21LL, | 
 |   0x002bb0ffcf14f6b8LL, | 
 |   0x0002861225ef751cLL, | 
 |   0x00001ffcbfcd5422LL, | 
 |   0x00000162c005d5f1LL, | 
 |   0x0000000da96ccb1bLL, | 
 |   0x0000000078d1b897LL, | 
 |   0x000000000422b029LL | 
 | }; | 
 |  | 
 | static const Xsig hiterm = MK_XSIG(0xb17217f7, 0xd1cf79ab, 0xc8a39194); | 
 |  | 
 | /* Four slices: 0.0 : 0.25 : 0.50 : 0.75 : 1.0, | 
 |    These numbers are 2^(1/4), 2^(1/2), and 2^(3/4) | 
 |  */ | 
 | static const Xsig shiftterm0 = MK_XSIG(0, 0, 0); | 
 | static const Xsig shiftterm1 = MK_XSIG(0x9837f051, 0x8db8a96f, 0x46ad2318); | 
 | static const Xsig shiftterm2 = MK_XSIG(0xb504f333, 0xf9de6484, 0x597d89b3); | 
 | static const Xsig shiftterm3 = MK_XSIG(0xd744fcca, 0xd69d6af4, 0x39a68bb9); | 
 |  | 
 | static const Xsig *shiftterm[] = { &shiftterm0, &shiftterm1, | 
 | 				     &shiftterm2, &shiftterm3 }; | 
 |  | 
 |  | 
 | /*--- poly_2xm1() -----------------------------------------------------------+ | 
 |  | Requires st(0) which is TAG_Valid and < 1.                                | | 
 |  +---------------------------------------------------------------------------*/ | 
 | int	poly_2xm1(u_char sign, FPU_REG *arg, FPU_REG *result) | 
 | { | 
 |   long int              exponent, shift; | 
 |   unsigned long long    Xll; | 
 |   Xsig                  accumulator, Denom, argSignif; | 
 |   u_char                tag; | 
 |  | 
 |   exponent = exponent16(arg); | 
 |  | 
 | #ifdef PARANOID | 
 |   if ( exponent >= 0 )    	/* Don't want a |number| >= 1.0 */ | 
 |     { | 
 |       /* Number negative, too large, or not Valid. */ | 
 |       EXCEPTION(EX_INTERNAL|0x127); | 
 |       return 1; | 
 |     } | 
 | #endif /* PARANOID */ | 
 |  | 
 |   argSignif.lsw = 0; | 
 |   XSIG_LL(argSignif) = Xll = significand(arg); | 
 |  | 
 |   if ( exponent == -1 ) | 
 |     { | 
 |       shift = (argSignif.msw & 0x40000000) ? 3 : 2; | 
 |       /* subtract 0.5 or 0.75 */ | 
 |       exponent -= 2; | 
 |       XSIG_LL(argSignif) <<= 2; | 
 |       Xll <<= 2; | 
 |     } | 
 |   else if ( exponent == -2 ) | 
 |     { | 
 |       shift = 1; | 
 |       /* subtract 0.25 */ | 
 |       exponent--; | 
 |       XSIG_LL(argSignif) <<= 1; | 
 |       Xll <<= 1; | 
 |     } | 
 |   else | 
 |     shift = 0; | 
 |  | 
 |   if ( exponent < -2 ) | 
 |     { | 
 |       /* Shift the argument right by the required places. */ | 
 |       if ( FPU_shrx(&Xll, -2-exponent) >= 0x80000000U ) | 
 | 	Xll++;	/* round up */ | 
 |     } | 
 |  | 
 |   accumulator.lsw = accumulator.midw = accumulator.msw = 0; | 
 |   polynomial_Xsig(&accumulator, &Xll, lterms, HIPOWER-1); | 
 |   mul_Xsig_Xsig(&accumulator, &argSignif); | 
 |   shr_Xsig(&accumulator, 3); | 
 |  | 
 |   mul_Xsig_Xsig(&argSignif, &hiterm);   /* The leading term */ | 
 |   add_two_Xsig(&accumulator, &argSignif, &exponent); | 
 |  | 
 |   if ( shift ) | 
 |     { | 
 |       /* The argument is large, use the identity: | 
 | 	 f(x+a) = f(a) * (f(x) + 1) - 1; | 
 | 	 */ | 
 |       shr_Xsig(&accumulator, - exponent); | 
 |       accumulator.msw |= 0x80000000;      /* add 1.0 */ | 
 |       mul_Xsig_Xsig(&accumulator, shiftterm[shift]); | 
 |       accumulator.msw &= 0x3fffffff;      /* subtract 1.0 */ | 
 |       exponent = 1; | 
 |     } | 
 |  | 
 |   if ( sign != SIGN_POS ) | 
 |     { | 
 |       /* The argument is negative, use the identity: | 
 | 	     f(-x) = -f(x) / (1 + f(x)) | 
 | 	 */ | 
 |       Denom.lsw = accumulator.lsw; | 
 |       XSIG_LL(Denom) = XSIG_LL(accumulator); | 
 |       if ( exponent < 0 ) | 
 | 	shr_Xsig(&Denom, - exponent); | 
 |       else if ( exponent > 0 ) | 
 | 	{ | 
 | 	  /* exponent must be 1 here */ | 
 | 	  XSIG_LL(Denom) <<= 1; | 
 | 	  if ( Denom.lsw & 0x80000000 ) | 
 | 	    XSIG_LL(Denom) |= 1; | 
 | 	  (Denom.lsw) <<= 1; | 
 | 	} | 
 |       Denom.msw |= 0x80000000;      /* add 1.0 */ | 
 |       div_Xsig(&accumulator, &Denom, &accumulator); | 
 |     } | 
 |  | 
 |   /* Convert to 64 bit signed-compatible */ | 
 |   exponent += round_Xsig(&accumulator); | 
 |  | 
 |   result = &st(0); | 
 |   significand(result) = XSIG_LL(accumulator); | 
 |   setexponent16(result, exponent); | 
 |  | 
 |   tag = FPU_round(result, 1, 0, FULL_PRECISION, sign); | 
 |  | 
 |   setsign(result, sign); | 
 |   FPU_settag0(tag); | 
 |  | 
 |   return 0; | 
 |  | 
 | } |