|  | /* arch/sparc64/kernel/kprobes.c | 
|  | * | 
|  | * Copyright (C) 2004 David S. Miller <davem@davemloft.net> | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <asm/signal.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | /* We do not have hardware single-stepping on sparc64. | 
|  | * So we implement software single-stepping with breakpoint | 
|  | * traps.  The top-level scheme is similar to that used | 
|  | * in the x86 kprobes implementation. | 
|  | * | 
|  | * In the kprobe->ainsn.insn[] array we store the original | 
|  | * instruction at index zero and a break instruction at | 
|  | * index one. | 
|  | * | 
|  | * When we hit a kprobe we: | 
|  | * - Run the pre-handler | 
|  | * - Remember "regs->tnpc" and interrupt level stored in | 
|  | *   "regs->tstate" so we can restore them later | 
|  | * - Disable PIL interrupts | 
|  | * - Set regs->tpc to point to kprobe->ainsn.insn[0] | 
|  | * - Set regs->tnpc to point to kprobe->ainsn.insn[1] | 
|  | * - Mark that we are actively in a kprobe | 
|  | * | 
|  | * At this point we wait for the second breakpoint at | 
|  | * kprobe->ainsn.insn[1] to hit.  When it does we: | 
|  | * - Run the post-handler | 
|  | * - Set regs->tpc to "remembered" regs->tnpc stored above, | 
|  | *   restore the PIL interrupt level in "regs->tstate" as well | 
|  | * - Make any adjustments necessary to regs->tnpc in order | 
|  | *   to handle relative branches correctly.  See below. | 
|  | * - Mark that we are no longer actively in a kprobe. | 
|  | */ | 
|  |  | 
|  | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
|  | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
|  |  | 
|  | struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; | 
|  |  | 
|  | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
|  | { | 
|  | p->ainsn.insn[0] = *p->addr; | 
|  | flushi(&p->ainsn.insn[0]); | 
|  |  | 
|  | p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2; | 
|  | flushi(&p->ainsn.insn[1]); | 
|  |  | 
|  | p->opcode = *p->addr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
|  | { | 
|  | *p->addr = BREAKPOINT_INSTRUCTION; | 
|  | flushi(p->addr); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
|  | { | 
|  | *p->addr = p->opcode; | 
|  | flushi(p->addr); | 
|  | } | 
|  |  | 
|  | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | kcb->prev_kprobe.kp = kprobe_running(); | 
|  | kcb->prev_kprobe.status = kcb->kprobe_status; | 
|  | kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc; | 
|  | kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil; | 
|  | } | 
|  |  | 
|  | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | 
|  | kcb->kprobe_status = kcb->prev_kprobe.status; | 
|  | kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc; | 
|  | kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil; | 
|  | } | 
|  |  | 
|  | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __get_cpu_var(current_kprobe) = p; | 
|  | kcb->kprobe_orig_tnpc = regs->tnpc; | 
|  | kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL); | 
|  | } | 
|  |  | 
|  | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | regs->tstate |= TSTATE_PIL; | 
|  |  | 
|  | /*single step inline, if it a breakpoint instruction*/ | 
|  | if (p->opcode == BREAKPOINT_INSTRUCTION) { | 
|  | regs->tpc = (unsigned long) p->addr; | 
|  | regs->tnpc = kcb->kprobe_orig_tnpc; | 
|  | } else { | 
|  | regs->tpc = (unsigned long) &p->ainsn.insn[0]; | 
|  | regs->tnpc = (unsigned long) &p->ainsn.insn[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *p; | 
|  | void *addr = (void *) regs->tpc; | 
|  | int ret = 0; | 
|  | struct kprobe_ctlblk *kcb; | 
|  |  | 
|  | /* | 
|  | * We don't want to be preempted for the entire | 
|  | * duration of kprobe processing | 
|  | */ | 
|  | preempt_disable(); | 
|  | kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | if (kprobe_running()) { | 
|  | p = get_kprobe(addr); | 
|  | if (p) { | 
|  | if (kcb->kprobe_status == KPROBE_HIT_SS) { | 
|  | regs->tstate = ((regs->tstate & ~TSTATE_PIL) | | 
|  | kcb->kprobe_orig_tstate_pil); | 
|  | goto no_kprobe; | 
|  | } | 
|  | /* We have reentered the kprobe_handler(), since | 
|  | * another probe was hit while within the handler. | 
|  | * We here save the original kprobes variables and | 
|  | * just single step on the instruction of the new probe | 
|  | * without calling any user handlers. | 
|  | */ | 
|  | save_previous_kprobe(kcb); | 
|  | set_current_kprobe(p, regs, kcb); | 
|  | kprobes_inc_nmissed_count(p); | 
|  | kcb->kprobe_status = KPROBE_REENTER; | 
|  | prepare_singlestep(p, regs, kcb); | 
|  | return 1; | 
|  | } else { | 
|  | if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { | 
|  | /* The breakpoint instruction was removed by | 
|  | * another cpu right after we hit, no further | 
|  | * handling of this interrupt is appropriate | 
|  | */ | 
|  | ret = 1; | 
|  | goto no_kprobe; | 
|  | } | 
|  | p = __get_cpu_var(current_kprobe); | 
|  | if (p->break_handler && p->break_handler(p, regs)) | 
|  | goto ss_probe; | 
|  | } | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | p = get_kprobe(addr); | 
|  | if (!p) { | 
|  | if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { | 
|  | /* | 
|  | * The breakpoint instruction was removed right | 
|  | * after we hit it.  Another cpu has removed | 
|  | * either a probepoint or a debugger breakpoint | 
|  | * at this address.  In either case, no further | 
|  | * handling of this interrupt is appropriate. | 
|  | */ | 
|  | ret = 1; | 
|  | } | 
|  | /* Not one of ours: let kernel handle it */ | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | set_current_kprobe(p, regs, kcb); | 
|  | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  | if (p->pre_handler && p->pre_handler(p, regs)) | 
|  | return 1; | 
|  |  | 
|  | ss_probe: | 
|  | prepare_singlestep(p, regs, kcb); | 
|  | kcb->kprobe_status = KPROBE_HIT_SS; | 
|  | return 1; | 
|  |  | 
|  | no_kprobe: | 
|  | preempt_enable_no_resched(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* If INSN is a relative control transfer instruction, | 
|  | * return the corrected branch destination value. | 
|  | * | 
|  | * regs->tpc and regs->tnpc still hold the values of the | 
|  | * program counters at the time of trap due to the execution | 
|  | * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1] | 
|  | * | 
|  | */ | 
|  | static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | unsigned long real_pc = (unsigned long) p->addr; | 
|  |  | 
|  | /* Branch not taken, no mods necessary.  */ | 
|  | if (regs->tnpc == regs->tpc + 0x4UL) | 
|  | return real_pc + 0x8UL; | 
|  |  | 
|  | /* The three cases are call, branch w/prediction, | 
|  | * and traditional branch. | 
|  | */ | 
|  | if ((insn & 0xc0000000) == 0x40000000 || | 
|  | (insn & 0xc1c00000) == 0x00400000 || | 
|  | (insn & 0xc1c00000) == 0x00800000) { | 
|  | unsigned long ainsn_addr; | 
|  |  | 
|  | ainsn_addr = (unsigned long) &p->ainsn.insn[0]; | 
|  |  | 
|  | /* The instruction did all the work for us | 
|  | * already, just apply the offset to the correct | 
|  | * instruction location. | 
|  | */ | 
|  | return (real_pc + (regs->tnpc - ainsn_addr)); | 
|  | } | 
|  |  | 
|  | /* It is jmpl or some other absolute PC modification instruction, | 
|  | * leave NPC as-is. | 
|  | */ | 
|  | return regs->tnpc; | 
|  | } | 
|  |  | 
|  | /* If INSN is an instruction which writes it's PC location | 
|  | * into a destination register, fix that up. | 
|  | */ | 
|  | static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn, | 
|  | unsigned long real_pc) | 
|  | { | 
|  | unsigned long *slot = NULL; | 
|  |  | 
|  | /* Simplest case is 'call', which always uses %o7 */ | 
|  | if ((insn & 0xc0000000) == 0x40000000) { | 
|  | slot = ®s->u_regs[UREG_I7]; | 
|  | } | 
|  |  | 
|  | /* 'jmpl' encodes the register inside of the opcode */ | 
|  | if ((insn & 0xc1f80000) == 0x81c00000) { | 
|  | unsigned long rd = ((insn >> 25) & 0x1f); | 
|  |  | 
|  | if (rd <= 15) { | 
|  | slot = ®s->u_regs[rd]; | 
|  | } else { | 
|  | /* Hard case, it goes onto the stack. */ | 
|  | flushw_all(); | 
|  |  | 
|  | rd -= 16; | 
|  | slot = (unsigned long *) | 
|  | (regs->u_regs[UREG_FP] + STACK_BIAS); | 
|  | slot += rd; | 
|  | } | 
|  | } | 
|  | if (slot != NULL) | 
|  | *slot = real_pc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called after single-stepping.  p->addr is the address of the | 
|  | * instruction which has been replaced by the breakpoint | 
|  | * instruction.  To avoid the SMP problems that can occur when we | 
|  | * temporarily put back the original opcode to single-step, we | 
|  | * single-stepped a copy of the instruction.  The address of this | 
|  | * copy is &p->ainsn.insn[0]. | 
|  | * | 
|  | * This function prepares to return from the post-single-step | 
|  | * breakpoint trap. | 
|  | */ | 
|  | static void __kprobes resume_execution(struct kprobe *p, | 
|  | struct pt_regs *regs, struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | u32 insn = p->ainsn.insn[0]; | 
|  |  | 
|  | regs->tnpc = relbranch_fixup(insn, p, regs); | 
|  |  | 
|  | /* This assignment must occur after relbranch_fixup() */ | 
|  | regs->tpc = kcb->kprobe_orig_tnpc; | 
|  |  | 
|  | retpc_fixup(regs, insn, (unsigned long) p->addr); | 
|  |  | 
|  | regs->tstate = ((regs->tstate & ~TSTATE_PIL) | | 
|  | kcb->kprobe_orig_tstate_pil); | 
|  | } | 
|  |  | 
|  | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | if (!cur) | 
|  | return 0; | 
|  |  | 
|  | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | cur->post_handler(cur, regs, 0); | 
|  | } | 
|  |  | 
|  | resume_execution(cur, regs, kcb); | 
|  |  | 
|  | /*Restore back the original saved kprobes variables and continue. */ | 
|  | if (kcb->kprobe_status == KPROBE_REENTER) { | 
|  | restore_previous_kprobe(kcb); | 
|  | goto out; | 
|  | } | 
|  | reset_current_kprobe(); | 
|  | out: | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | switch(kcb->kprobe_status) { | 
|  | case KPROBE_HIT_SS: | 
|  | case KPROBE_REENTER: | 
|  | /* | 
|  | * We are here because the instruction being single | 
|  | * stepped caused a page fault. We reset the current | 
|  | * kprobe and the tpc points back to the probe address | 
|  | * and allow the page fault handler to continue as a | 
|  | * normal page fault. | 
|  | */ | 
|  | regs->tpc = (unsigned long)cur->addr; | 
|  | regs->tnpc = kcb->kprobe_orig_tnpc; | 
|  | regs->tstate = ((regs->tstate & ~TSTATE_PIL) | | 
|  | kcb->kprobe_orig_tstate_pil); | 
|  | if (kcb->kprobe_status == KPROBE_REENTER) | 
|  | restore_previous_kprobe(kcb); | 
|  | else | 
|  | reset_current_kprobe(); | 
|  | preempt_enable_no_resched(); | 
|  | break; | 
|  | case KPROBE_HIT_ACTIVE: | 
|  | case KPROBE_HIT_SSDONE: | 
|  | /* | 
|  | * We increment the nmissed count for accounting, | 
|  | * we can also use npre/npostfault count for accouting | 
|  | * these specific fault cases. | 
|  | */ | 
|  | kprobes_inc_nmissed_count(cur); | 
|  |  | 
|  | /* | 
|  | * We come here because instructions in the pre/post | 
|  | * handler caused the page_fault, this could happen | 
|  | * if handler tries to access user space by | 
|  | * copy_from_user(), get_user() etc. Let the | 
|  | * user-specified handler try to fix it first. | 
|  | */ | 
|  | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * In case the user-specified fault handler returned | 
|  | * zero, try to fix up. | 
|  | */ | 
|  |  | 
|  | entry = search_exception_tables(regs->tpc); | 
|  | if (entry) { | 
|  | regs->tpc = entry->fixup; | 
|  | regs->tnpc = regs->tpc + 4; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup_exception() could not handle it, | 
|  | * Let do_page_fault() fix it. | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper routine to for handling exceptions. | 
|  | */ | 
|  | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | struct die_args *args = (struct die_args *)data; | 
|  | int ret = NOTIFY_DONE; | 
|  |  | 
|  | if (args->regs && user_mode(args->regs)) | 
|  | return ret; | 
|  |  | 
|  | switch (val) { | 
|  | case DIE_DEBUG: | 
|  | if (kprobe_handler(args->regs)) | 
|  | ret = NOTIFY_STOP; | 
|  | break; | 
|  | case DIE_DEBUG_2: | 
|  | if (post_kprobe_handler(args->regs)) | 
|  | ret = NOTIFY_STOP; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | asmlinkage void __kprobes kprobe_trap(unsigned long trap_level, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | BUG_ON(trap_level != 0x170 && trap_level != 0x171); | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | local_irq_enable(); | 
|  | bad_trap(regs, trap_level); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* trap_level == 0x170 --> ta 0x70 | 
|  | * trap_level == 0x171 --> ta 0x71 | 
|  | */ | 
|  | if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2, | 
|  | (trap_level == 0x170) ? "debug" : "debug_2", | 
|  | regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) | 
|  | bad_trap(regs, trap_level); | 
|  | } | 
|  |  | 
|  | /* Jprobes support.  */ | 
|  | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct jprobe *jp = container_of(p, struct jprobe, kp); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs)); | 
|  |  | 
|  | regs->tpc  = (unsigned long) jp->entry; | 
|  | regs->tnpc = ((unsigned long) jp->entry) + 0x4UL; | 
|  | regs->tstate |= TSTATE_PIL; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __kprobes jprobe_return(void) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | register unsigned long orig_fp asm("g1"); | 
|  |  | 
|  | orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP]; | 
|  | __asm__ __volatile__("\n" | 
|  | "1:	cmp		%%sp, %0\n\t" | 
|  | "blu,a,pt	%%xcc, 1b\n\t" | 
|  | " restore\n\t" | 
|  | ".globl		jprobe_return_trap_instruction\n" | 
|  | "jprobe_return_trap_instruction:\n\t" | 
|  | "ta		0x70" | 
|  | : /* no outputs */ | 
|  | : "r" (orig_fp)); | 
|  | } | 
|  |  | 
|  | extern void jprobe_return_trap_instruction(void); | 
|  |  | 
|  | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | u32 *addr = (u32 *) regs->tpc; | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | if (addr == (u32 *) jprobe_return_trap_instruction) { | 
|  | memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs)); | 
|  | preempt_enable_no_resched(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The value stored in the return address register is actually 2 | 
|  | * instructions before where the callee will return to. | 
|  | * Sequences usually look something like this | 
|  | * | 
|  | *		call	some_function	<--- return register points here | 
|  | *		 nop			<--- call delay slot | 
|  | *		whatever		<--- where callee returns to | 
|  | * | 
|  | * To keep trampoline_probe_handler logic simpler, we normalize the | 
|  | * value kept in ri->ret_addr so we don't need to keep adjusting it | 
|  | * back and forth. | 
|  | */ | 
|  | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8); | 
|  |  | 
|  | /* Replace the return addr with trampoline addr */ | 
|  | regs->u_regs[UREG_RETPC] = | 
|  | ((unsigned long)kretprobe_trampoline) - 8; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when the probe at kretprobe trampoline is hit | 
|  | */ | 
|  | int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kretprobe_instance *ri = NULL; | 
|  | struct hlist_head *head, empty_rp; | 
|  | struct hlist_node *node, *tmp; | 
|  | unsigned long flags, orig_ret_address = 0; | 
|  | unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; | 
|  |  | 
|  | INIT_HLIST_HEAD(&empty_rp); | 
|  | kretprobe_hash_lock(current, &head, &flags); | 
|  |  | 
|  | /* | 
|  | * It is possible to have multiple instances associated with a given | 
|  | * task either because an multiple functions in the call path | 
|  | * have a return probe installed on them, and/or more than one return | 
|  | * return probe was registered for a target function. | 
|  | * | 
|  | * We can handle this because: | 
|  | *     - instances are always inserted at the head of the list | 
|  | *     - when multiple return probes are registered for the same | 
|  | *       function, the first instance's ret_addr will point to the | 
|  | *       real return address, and all the rest will point to | 
|  | *       kretprobe_trampoline | 
|  | */ | 
|  | hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
|  | if (ri->task != current) | 
|  | /* another task is sharing our hash bucket */ | 
|  | continue; | 
|  |  | 
|  | if (ri->rp && ri->rp->handler) | 
|  | ri->rp->handler(ri, regs); | 
|  |  | 
|  | orig_ret_address = (unsigned long)ri->ret_addr; | 
|  | recycle_rp_inst(ri, &empty_rp); | 
|  |  | 
|  | if (orig_ret_address != trampoline_address) | 
|  | /* | 
|  | * This is the real return address. Any other | 
|  | * instances associated with this task are for | 
|  | * other calls deeper on the call stack | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
|  | regs->tpc = orig_ret_address; | 
|  | regs->tnpc = orig_ret_address + 4; | 
|  |  | 
|  | reset_current_kprobe(); | 
|  | kretprobe_hash_unlock(current, &flags); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | 
|  | hlist_del(&ri->hlist); | 
|  | kfree(ri); | 
|  | } | 
|  | /* | 
|  | * By returning a non-zero value, we are telling | 
|  | * kprobe_handler() that we don't want the post_handler | 
|  | * to run (and have re-enabled preemption) | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void kretprobe_trampoline_holder(void) | 
|  | { | 
|  | asm volatile(".global kretprobe_trampoline\n" | 
|  | "kretprobe_trampoline:\n" | 
|  | "\tnop\n" | 
|  | "\tnop\n"); | 
|  | } | 
|  | static struct kprobe trampoline_p = { | 
|  | .addr = (kprobe_opcode_t *) &kretprobe_trampoline, | 
|  | .pre_handler = trampoline_probe_handler | 
|  | }; | 
|  |  | 
|  | int __init arch_init_kprobes(void) | 
|  | { | 
|  | return register_kprobe(&trampoline_p); | 
|  | } | 
|  |  | 
|  | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
|  | { | 
|  | if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } |