| /* | 
 |  *  linux/arch/arm/mm/mmu.c | 
 |  * | 
 |  *  Copyright (C) 1995-2005 Russell King | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/nodemask.h> | 
 |  | 
 | #include <asm/cputype.h> | 
 | #include <asm/mach-types.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/cachetype.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/sizes.h> | 
 | #include <asm/smp_plat.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/highmem.h> | 
 |  | 
 | #include <asm/mach/arch.h> | 
 | #include <asm/mach/map.h> | 
 |  | 
 | #include "mm.h" | 
 |  | 
 | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | 
 |  | 
 | /* | 
 |  * empty_zero_page is a special page that is used for | 
 |  * zero-initialized data and COW. | 
 |  */ | 
 | struct page *empty_zero_page; | 
 | EXPORT_SYMBOL(empty_zero_page); | 
 |  | 
 | /* | 
 |  * The pmd table for the upper-most set of pages. | 
 |  */ | 
 | pmd_t *top_pmd; | 
 |  | 
 | #define CPOLICY_UNCACHED	0 | 
 | #define CPOLICY_BUFFERED	1 | 
 | #define CPOLICY_WRITETHROUGH	2 | 
 | #define CPOLICY_WRITEBACK	3 | 
 | #define CPOLICY_WRITEALLOC	4 | 
 |  | 
 | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; | 
 | static unsigned int ecc_mask __initdata = 0; | 
 | pgprot_t pgprot_user; | 
 | pgprot_t pgprot_kernel; | 
 |  | 
 | EXPORT_SYMBOL(pgprot_user); | 
 | EXPORT_SYMBOL(pgprot_kernel); | 
 |  | 
 | struct cachepolicy { | 
 | 	const char	policy[16]; | 
 | 	unsigned int	cr_mask; | 
 | 	unsigned int	pmd; | 
 | 	unsigned int	pte; | 
 | }; | 
 |  | 
 | static struct cachepolicy cache_policies[] __initdata = { | 
 | 	{ | 
 | 		.policy		= "uncached", | 
 | 		.cr_mask	= CR_W|CR_C, | 
 | 		.pmd		= PMD_SECT_UNCACHED, | 
 | 		.pte		= L_PTE_MT_UNCACHED, | 
 | 	}, { | 
 | 		.policy		= "buffered", | 
 | 		.cr_mask	= CR_C, | 
 | 		.pmd		= PMD_SECT_BUFFERED, | 
 | 		.pte		= L_PTE_MT_BUFFERABLE, | 
 | 	}, { | 
 | 		.policy		= "writethrough", | 
 | 		.cr_mask	= 0, | 
 | 		.pmd		= PMD_SECT_WT, | 
 | 		.pte		= L_PTE_MT_WRITETHROUGH, | 
 | 	}, { | 
 | 		.policy		= "writeback", | 
 | 		.cr_mask	= 0, | 
 | 		.pmd		= PMD_SECT_WB, | 
 | 		.pte		= L_PTE_MT_WRITEBACK, | 
 | 	}, { | 
 | 		.policy		= "writealloc", | 
 | 		.cr_mask	= 0, | 
 | 		.pmd		= PMD_SECT_WBWA, | 
 | 		.pte		= L_PTE_MT_WRITEALLOC, | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * These are useful for identifying cache coherency | 
 |  * problems by allowing the cache or the cache and | 
 |  * writebuffer to be turned off.  (Note: the write | 
 |  * buffer should not be on and the cache off). | 
 |  */ | 
 | static void __init early_cachepolicy(char **p) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { | 
 | 		int len = strlen(cache_policies[i].policy); | 
 |  | 
 | 		if (memcmp(*p, cache_policies[i].policy, len) == 0) { | 
 | 			cachepolicy = i; | 
 | 			cr_alignment &= ~cache_policies[i].cr_mask; | 
 | 			cr_no_alignment &= ~cache_policies[i].cr_mask; | 
 | 			*p += len; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (i == ARRAY_SIZE(cache_policies)) | 
 | 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); | 
 | 	/* | 
 | 	 * This restriction is partly to do with the way we boot; it is | 
 | 	 * unpredictable to have memory mapped using two different sets of | 
 | 	 * memory attributes (shared, type, and cache attribs).  We can not | 
 | 	 * change these attributes once the initial assembly has setup the | 
 | 	 * page tables. | 
 | 	 */ | 
 | 	if (cpu_architecture() >= CPU_ARCH_ARMv6) { | 
 | 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); | 
 | 		cachepolicy = CPOLICY_WRITEBACK; | 
 | 	} | 
 | 	flush_cache_all(); | 
 | 	set_cr(cr_alignment); | 
 | } | 
 | __early_param("cachepolicy=", early_cachepolicy); | 
 |  | 
 | static void __init early_nocache(char **__unused) | 
 | { | 
 | 	char *p = "buffered"; | 
 | 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); | 
 | 	early_cachepolicy(&p); | 
 | } | 
 | __early_param("nocache", early_nocache); | 
 |  | 
 | static void __init early_nowrite(char **__unused) | 
 | { | 
 | 	char *p = "uncached"; | 
 | 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); | 
 | 	early_cachepolicy(&p); | 
 | } | 
 | __early_param("nowb", early_nowrite); | 
 |  | 
 | static void __init early_ecc(char **p) | 
 | { | 
 | 	if (memcmp(*p, "on", 2) == 0) { | 
 | 		ecc_mask = PMD_PROTECTION; | 
 | 		*p += 2; | 
 | 	} else if (memcmp(*p, "off", 3) == 0) { | 
 | 		ecc_mask = 0; | 
 | 		*p += 3; | 
 | 	} | 
 | } | 
 | __early_param("ecc=", early_ecc); | 
 |  | 
 | static int __init noalign_setup(char *__unused) | 
 | { | 
 | 	cr_alignment &= ~CR_A; | 
 | 	cr_no_alignment &= ~CR_A; | 
 | 	set_cr(cr_alignment); | 
 | 	return 1; | 
 | } | 
 | __setup("noalign", noalign_setup); | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | void adjust_cr(unsigned long mask, unsigned long set) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	mask &= ~CR_A; | 
 |  | 
 | 	set &= mask; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	cr_no_alignment = (cr_no_alignment & ~mask) | set; | 
 | 	cr_alignment = (cr_alignment & ~mask) | set; | 
 |  | 
 | 	set_cr((get_cr() & ~mask) | set); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 | #endif | 
 |  | 
 | #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE | 
 | #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE | 
 |  | 
 | static struct mem_type mem_types[] = { | 
 | 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */ | 
 | 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | | 
 | 				  L_PTE_SHARED, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ | 
 | 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PROT_SECT_DEVICE, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */ | 
 | 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	},	 | 
 | 	[MT_DEVICE_WC] = {	/* ioremap_wc */ | 
 | 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PROT_SECT_DEVICE, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_UNCACHED] = { | 
 | 		.prot_pte	= PROT_PTE_DEVICE, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_CACHECLEAN] = { | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_MINICLEAN] = { | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_LOW_VECTORS] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 				L_PTE_EXEC, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.domain    = DOMAIN_USER, | 
 | 	}, | 
 | 	[MT_HIGH_VECTORS] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 				L_PTE_USER | L_PTE_EXEC, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.domain    = DOMAIN_USER, | 
 | 	}, | 
 | 	[MT_MEMORY] = { | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_ROM] = { | 
 | 		.prot_sect = PMD_TYPE_SECT, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_MEMORY_NONCACHED] = { | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | }; | 
 |  | 
 | const struct mem_type *get_mem_type(unsigned int type) | 
 | { | 
 | 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; | 
 | } | 
 | EXPORT_SYMBOL(get_mem_type); | 
 |  | 
 | /* | 
 |  * Adjust the PMD section entries according to the CPU in use. | 
 |  */ | 
 | static void __init build_mem_type_table(void) | 
 | { | 
 | 	struct cachepolicy *cp; | 
 | 	unsigned int cr = get_cr(); | 
 | 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot; | 
 | 	int cpu_arch = cpu_architecture(); | 
 | 	int i; | 
 |  | 
 | 	if (cpu_arch < CPU_ARCH_ARMv6) { | 
 | #if defined(CONFIG_CPU_DCACHE_DISABLE) | 
 | 		if (cachepolicy > CPOLICY_BUFFERED) | 
 | 			cachepolicy = CPOLICY_BUFFERED; | 
 | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) | 
 | 		if (cachepolicy > CPOLICY_WRITETHROUGH) | 
 | 			cachepolicy = CPOLICY_WRITETHROUGH; | 
 | #endif | 
 | 	} | 
 | 	if (cpu_arch < CPU_ARCH_ARMv5) { | 
 | 		if (cachepolicy >= CPOLICY_WRITEALLOC) | 
 | 			cachepolicy = CPOLICY_WRITEBACK; | 
 | 		ecc_mask = 0; | 
 | 	} | 
 | #ifdef CONFIG_SMP | 
 | 	cachepolicy = CPOLICY_WRITEALLOC; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Strip out features not present on earlier architectures. | 
 | 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those | 
 | 	 * without extended page tables don't have the 'Shared' bit. | 
 | 	 */ | 
 | 	if (cpu_arch < CPU_ARCH_ARMv5) | 
 | 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
 | 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); | 
 | 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) | 
 | 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
 | 			mem_types[i].prot_sect &= ~PMD_SECT_S; | 
 |  | 
 | 	/* | 
 | 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache | 
 | 	 * "update-able on write" bit on ARM610).  However, Xscale and | 
 | 	 * Xscale3 require this bit to be cleared. | 
 | 	 */ | 
 | 	if (cpu_is_xscale() || cpu_is_xsc3()) { | 
 | 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
 | 			mem_types[i].prot_sect &= ~PMD_BIT4; | 
 | 			mem_types[i].prot_l1 &= ~PMD_BIT4; | 
 | 		} | 
 | 	} else if (cpu_arch < CPU_ARCH_ARMv6) { | 
 | 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
 | 			if (mem_types[i].prot_l1) | 
 | 				mem_types[i].prot_l1 |= PMD_BIT4; | 
 | 			if (mem_types[i].prot_sect) | 
 | 				mem_types[i].prot_sect |= PMD_BIT4; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mark the device areas according to the CPU/architecture. | 
 | 	 */ | 
 | 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { | 
 | 		if (!cpu_is_xsc3()) { | 
 | 			/* | 
 | 			 * Mark device regions on ARMv6+ as execute-never | 
 | 			 * to prevent speculative instruction fetches. | 
 | 			 */ | 
 | 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; | 
 | 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; | 
 | 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; | 
 | 		} | 
 | 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
 | 			/* | 
 | 			 * For ARMv7 with TEX remapping, | 
 | 			 * - shared device is SXCB=1100 | 
 | 			 * - nonshared device is SXCB=0100 | 
 | 			 * - write combine device mem is SXCB=0001 | 
 | 			 * (Uncached Normal memory) | 
 | 			 */ | 
 | 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); | 
 | 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
 | 		} else if (cpu_is_xsc3()) { | 
 | 			/* | 
 | 			 * For Xscale3, | 
 | 			 * - shared device is TEXCB=00101 | 
 | 			 * - nonshared device is TEXCB=01000 | 
 | 			 * - write combine device mem is TEXCB=00100 | 
 | 			 * (Inner/Outer Uncacheable in xsc3 parlance) | 
 | 			 */ | 
 | 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; | 
 | 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
 | 		} else { | 
 | 			/* | 
 | 			 * For ARMv6 and ARMv7 without TEX remapping, | 
 | 			 * - shared device is TEXCB=00001 | 
 | 			 * - nonshared device is TEXCB=01000 | 
 | 			 * - write combine device mem is TEXCB=00100 | 
 | 			 * (Uncached Normal in ARMv6 parlance). | 
 | 			 */ | 
 | 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; | 
 | 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * On others, write combining is "Uncached/Buffered" | 
 | 		 */ | 
 | 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now deal with the memory-type mappings | 
 | 	 */ | 
 | 	cp = &cache_policies[cachepolicy]; | 
 | 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | 	/* | 
 | 	 * Only use write-through for non-SMP systems | 
 | 	 */ | 
 | 	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH) | 
 | 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Enable CPU-specific coherency if supported. | 
 | 	 * (Only available on XSC3 at the moment.) | 
 | 	 */ | 
 | 	if (arch_is_coherent() && cpu_is_xsc3()) | 
 | 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; | 
 |  | 
 | 	/* | 
 | 	 * ARMv6 and above have extended page tables. | 
 | 	 */ | 
 | 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { | 
 | 		/* | 
 | 		 * Mark cache clean areas and XIP ROM read only | 
 | 		 * from SVC mode and no access from userspace. | 
 | 		 */ | 
 | 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
 | 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
 | 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 		/* | 
 | 		 * Mark memory with the "shared" attribute for SMP systems | 
 | 		 */ | 
 | 		user_pgprot |= L_PTE_SHARED; | 
 | 		kern_pgprot |= L_PTE_SHARED; | 
 | 		vecs_pgprot |= L_PTE_SHARED; | 
 | 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; | 
 | 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Non-cacheable Normal - intended for memory areas that must | 
 | 	 * not cause dirty cache line writebacks when used | 
 | 	 */ | 
 | 	if (cpu_arch >= CPU_ARCH_ARMv6) { | 
 | 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
 | 			/* Non-cacheable Normal is XCB = 001 */ | 
 | 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= | 
 | 				PMD_SECT_BUFFERED; | 
 | 		} else { | 
 | 			/* For both ARMv6 and non-TEX-remapping ARMv7 */ | 
 | 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= | 
 | 				PMD_SECT_TEX(1); | 
 | 		} | 
 | 	} else { | 
 | 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 16; i++) { | 
 | 		unsigned long v = pgprot_val(protection_map[i]); | 
 | 		protection_map[i] = __pgprot(v | user_pgprot); | 
 | 	} | 
 |  | 
 | 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; | 
 | 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; | 
 |  | 
 | 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); | 
 | 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | | 
 | 				 L_PTE_DIRTY | L_PTE_WRITE | | 
 | 				 L_PTE_EXEC | kern_pgprot); | 
 |  | 
 | 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; | 
 | 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; | 
 | 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; | 
 | 	mem_types[MT_ROM].prot_sect |= cp->pmd; | 
 |  | 
 | 	switch (cp->pmd) { | 
 | 	case PMD_SECT_WT: | 
 | 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; | 
 | 		break; | 
 | 	case PMD_SECT_WB: | 
 | 	case PMD_SECT_WBWA: | 
 | 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; | 
 | 		break; | 
 | 	} | 
 | 	printk("Memory policy: ECC %sabled, Data cache %s\n", | 
 | 		ecc_mask ? "en" : "dis", cp->policy); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
 | 		struct mem_type *t = &mem_types[i]; | 
 | 		if (t->prot_l1) | 
 | 			t->prot_l1 |= PMD_DOMAIN(t->domain); | 
 | 		if (t->prot_sect) | 
 | 			t->prot_sect |= PMD_DOMAIN(t->domain); | 
 | 	} | 
 | } | 
 |  | 
 | #define vectors_base()	(vectors_high() ? 0xffff0000 : 0) | 
 |  | 
 | static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, | 
 | 				  unsigned long end, unsigned long pfn, | 
 | 				  const struct mem_type *type) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (pmd_none(*pmd)) { | 
 | 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); | 
 | 		__pmd_populate(pmd, __pa(pte) | type->prot_l1); | 
 | 	} | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	do { | 
 | 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); | 
 | 		pfn++; | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | } | 
 |  | 
 | static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, | 
 | 				      unsigned long end, unsigned long phys, | 
 | 				      const struct mem_type *type) | 
 | { | 
 | 	pmd_t *pmd = pmd_offset(pgd, addr); | 
 |  | 
 | 	/* | 
 | 	 * Try a section mapping - end, addr and phys must all be aligned | 
 | 	 * to a section boundary.  Note that PMDs refer to the individual | 
 | 	 * L1 entries, whereas PGDs refer to a group of L1 entries making | 
 | 	 * up one logical pointer to an L2 table. | 
 | 	 */ | 
 | 	if (((addr | end | phys) & ~SECTION_MASK) == 0) { | 
 | 		pmd_t *p = pmd; | 
 |  | 
 | 		if (addr & SECTION_SIZE) | 
 | 			pmd++; | 
 |  | 
 | 		do { | 
 | 			*pmd = __pmd(phys | type->prot_sect); | 
 | 			phys += SECTION_SIZE; | 
 | 		} while (pmd++, addr += SECTION_SIZE, addr != end); | 
 |  | 
 | 		flush_pmd_entry(p); | 
 | 	} else { | 
 | 		/* | 
 | 		 * No need to loop; pte's aren't interested in the | 
 | 		 * individual L1 entries. | 
 | 		 */ | 
 | 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init create_36bit_mapping(struct map_desc *md, | 
 | 					const struct mem_type *type) | 
 | { | 
 | 	unsigned long phys, addr, length, end; | 
 | 	pgd_t *pgd; | 
 |  | 
 | 	addr = md->virtual; | 
 | 	phys = (unsigned long)__pfn_to_phys(md->pfn); | 
 | 	length = PAGE_ALIGN(md->length); | 
 |  | 
 | 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { | 
 | 		printk(KERN_ERR "MM: CPU does not support supersection " | 
 | 		       "mapping for 0x%08llx at 0x%08lx\n", | 
 | 		       __pfn_to_phys((u64)md->pfn), addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* N.B.	ARMv6 supersections are only defined to work with domain 0. | 
 | 	 *	Since domain assignments can in fact be arbitrary, the | 
 | 	 *	'domain == 0' check below is required to insure that ARMv6 | 
 | 	 *	supersections are only allocated for domain 0 regardless | 
 | 	 *	of the actual domain assignments in use. | 
 | 	 */ | 
 | 	if (type->domain) { | 
 | 		printk(KERN_ERR "MM: invalid domain in supersection " | 
 | 		       "mapping for 0x%08llx at 0x%08lx\n", | 
 | 		       __pfn_to_phys((u64)md->pfn), addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { | 
 | 		printk(KERN_ERR "MM: cannot create mapping for " | 
 | 		       "0x%08llx at 0x%08lx invalid alignment\n", | 
 | 		       __pfn_to_phys((u64)md->pfn), addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Shift bits [35:32] of address into bits [23:20] of PMD | 
 | 	 * (See ARMv6 spec). | 
 | 	 */ | 
 | 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); | 
 |  | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	end = addr + length; | 
 | 	do { | 
 | 		pmd_t *pmd = pmd_offset(pgd, addr); | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < 16; i++) | 
 | 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); | 
 |  | 
 | 		addr += SUPERSECTION_SIZE; | 
 | 		phys += SUPERSECTION_SIZE; | 
 | 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; | 
 | 	} while (addr != end); | 
 | } | 
 |  | 
 | /* | 
 |  * Create the page directory entries and any necessary | 
 |  * page tables for the mapping specified by `md'.  We | 
 |  * are able to cope here with varying sizes and address | 
 |  * offsets, and we take full advantage of sections and | 
 |  * supersections. | 
 |  */ | 
 | void __init create_mapping(struct map_desc *md) | 
 | { | 
 | 	unsigned long phys, addr, length, end; | 
 | 	const struct mem_type *type; | 
 | 	pgd_t *pgd; | 
 |  | 
 | 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { | 
 | 		printk(KERN_WARNING "BUG: not creating mapping for " | 
 | 		       "0x%08llx at 0x%08lx in user region\n", | 
 | 		       __pfn_to_phys((u64)md->pfn), md->virtual); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((md->type == MT_DEVICE || md->type == MT_ROM) && | 
 | 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { | 
 | 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " | 
 | 		       "overlaps vmalloc space\n", | 
 | 		       __pfn_to_phys((u64)md->pfn), md->virtual); | 
 | 	} | 
 |  | 
 | 	type = &mem_types[md->type]; | 
 |  | 
 | 	/* | 
 | 	 * Catch 36-bit addresses | 
 | 	 */ | 
 | 	if (md->pfn >= 0x100000) { | 
 | 		create_36bit_mapping(md, type); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	addr = md->virtual & PAGE_MASK; | 
 | 	phys = (unsigned long)__pfn_to_phys(md->pfn); | 
 | 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
 |  | 
 | 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { | 
 | 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " | 
 | 		       "be mapped using pages, ignoring.\n", | 
 | 		       __pfn_to_phys(md->pfn), addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	end = addr + length; | 
 | 	do { | 
 | 		unsigned long next = pgd_addr_end(addr, end); | 
 |  | 
 | 		alloc_init_section(pgd, addr, next, phys, type); | 
 |  | 
 | 		phys += next - addr; | 
 | 		addr = next; | 
 | 	} while (pgd++, addr != end); | 
 | } | 
 |  | 
 | /* | 
 |  * Create the architecture specific mappings | 
 |  */ | 
 | void __init iotable_init(struct map_desc *io_desc, int nr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) | 
 | 		create_mapping(io_desc + i); | 
 | } | 
 |  | 
 | static unsigned long __initdata vmalloc_reserve = SZ_128M; | 
 |  | 
 | /* | 
 |  * vmalloc=size forces the vmalloc area to be exactly 'size' | 
 |  * bytes. This can be used to increase (or decrease) the vmalloc | 
 |  * area - the default is 128m. | 
 |  */ | 
 | static void __init early_vmalloc(char **arg) | 
 | { | 
 | 	vmalloc_reserve = memparse(*arg, arg); | 
 |  | 
 | 	if (vmalloc_reserve < SZ_16M) { | 
 | 		vmalloc_reserve = SZ_16M; | 
 | 		printk(KERN_WARNING | 
 | 			"vmalloc area too small, limiting to %luMB\n", | 
 | 			vmalloc_reserve >> 20); | 
 | 	} | 
 |  | 
 | 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { | 
 | 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); | 
 | 		printk(KERN_WARNING | 
 | 			"vmalloc area is too big, limiting to %luMB\n", | 
 | 			vmalloc_reserve >> 20); | 
 | 	} | 
 | } | 
 | __early_param("vmalloc=", early_vmalloc); | 
 |  | 
 | #define VMALLOC_MIN	(void *)(VMALLOC_END - vmalloc_reserve) | 
 |  | 
 | static void __init sanity_check_meminfo(void) | 
 | { | 
 | 	int i, j, highmem = 0; | 
 |  | 
 | 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) { | 
 | 		struct membank *bank = &meminfo.bank[j]; | 
 | 		*bank = meminfo.bank[i]; | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | 		if (__va(bank->start) > VMALLOC_MIN || | 
 | 		    __va(bank->start) < (void *)PAGE_OFFSET) | 
 | 			highmem = 1; | 
 |  | 
 | 		bank->highmem = highmem; | 
 |  | 
 | 		/* | 
 | 		 * Split those memory banks which are partially overlapping | 
 | 		 * the vmalloc area greatly simplifying things later. | 
 | 		 */ | 
 | 		if (__va(bank->start) < VMALLOC_MIN && | 
 | 		    bank->size > VMALLOC_MIN - __va(bank->start)) { | 
 | 			if (meminfo.nr_banks >= NR_BANKS) { | 
 | 				printk(KERN_CRIT "NR_BANKS too low, " | 
 | 						 "ignoring high memory\n"); | 
 | 			} else { | 
 | 				memmove(bank + 1, bank, | 
 | 					(meminfo.nr_banks - i) * sizeof(*bank)); | 
 | 				meminfo.nr_banks++; | 
 | 				i++; | 
 | 				bank[1].size -= VMALLOC_MIN - __va(bank->start); | 
 | 				bank[1].start = __pa(VMALLOC_MIN - 1) + 1; | 
 | 				bank[1].highmem = highmem = 1; | 
 | 				j++; | 
 | 			} | 
 | 			bank->size = VMALLOC_MIN - __va(bank->start); | 
 | 		} | 
 | #else | 
 | 		bank->highmem = highmem; | 
 |  | 
 | 		/* | 
 | 		 * Check whether this memory bank would entirely overlap | 
 | 		 * the vmalloc area. | 
 | 		 */ | 
 | 		if (__va(bank->start) >= VMALLOC_MIN || | 
 | 		    __va(bank->start) < (void *)PAGE_OFFSET) { | 
 | 			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx " | 
 | 			       "(vmalloc region overlap).\n", | 
 | 			       bank->start, bank->start + bank->size - 1); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check whether this memory bank would partially overlap | 
 | 		 * the vmalloc area. | 
 | 		 */ | 
 | 		if (__va(bank->start + bank->size) > VMALLOC_MIN || | 
 | 		    __va(bank->start + bank->size) < __va(bank->start)) { | 
 | 			unsigned long newsize = VMALLOC_MIN - __va(bank->start); | 
 | 			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx " | 
 | 			       "to -%.8lx (vmalloc region overlap).\n", | 
 | 			       bank->start, bank->start + bank->size - 1, | 
 | 			       bank->start + newsize - 1); | 
 | 			bank->size = newsize; | 
 | 		} | 
 | #endif | 
 | 		j++; | 
 | 	} | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	if (highmem) { | 
 | 		const char *reason = NULL; | 
 |  | 
 | 		if (cache_is_vipt_aliasing()) { | 
 | 			/* | 
 | 			 * Interactions between kmap and other mappings | 
 | 			 * make highmem support with aliasing VIPT caches | 
 | 			 * rather difficult. | 
 | 			 */ | 
 | 			reason = "with VIPT aliasing cache"; | 
 | #ifdef CONFIG_SMP | 
 | 		} else if (tlb_ops_need_broadcast()) { | 
 | 			/* | 
 | 			 * kmap_high needs to occasionally flush TLB entries, | 
 | 			 * however, if the TLB entries need to be broadcast | 
 | 			 * we may deadlock: | 
 | 			 *  kmap_high(irqs off)->flush_all_zero_pkmaps-> | 
 | 			 *  flush_tlb_kernel_range->smp_call_function_many | 
 | 			 *   (must not be called with irqs off) | 
 | 			 */ | 
 | 			reason = "without hardware TLB ops broadcasting"; | 
 | #endif | 
 | 		} | 
 | 		if (reason) { | 
 | 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n", | 
 | 				reason); | 
 | 			while (j > 0 && meminfo.bank[j - 1].highmem) | 
 | 				j--; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	meminfo.nr_banks = j; | 
 | } | 
 |  | 
 | static inline void prepare_page_table(void) | 
 | { | 
 | 	unsigned long addr; | 
 |  | 
 | 	/* | 
 | 	 * Clear out all the mappings below the kernel image. | 
 | 	 */ | 
 | 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE) | 
 | 		pmd_clear(pmd_off_k(addr)); | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | 	/* The XIP kernel is mapped in the module area -- skip over it */ | 
 | 	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK; | 
 | #endif | 
 | 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) | 
 | 		pmd_clear(pmd_off_k(addr)); | 
 |  | 
 | 	/* | 
 | 	 * Clear out all the kernel space mappings, except for the first | 
 | 	 * memory bank, up to the end of the vmalloc region. | 
 | 	 */ | 
 | 	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0])); | 
 | 	     addr < VMALLOC_END; addr += PGDIR_SIZE) | 
 | 		pmd_clear(pmd_off_k(addr)); | 
 | } | 
 |  | 
 | /* | 
 |  * Reserve the various regions of node 0 | 
 |  */ | 
 | void __init reserve_node_zero(pg_data_t *pgdat) | 
 | { | 
 | 	unsigned long res_size = 0; | 
 |  | 
 | 	/* | 
 | 	 * Register the kernel text and data with bootmem. | 
 | 	 * Note that this can only be in node 0. | 
 | 	 */ | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | 	reserve_bootmem_node(pgdat, __pa(_data), _end - _data, | 
 | 			BOOTMEM_DEFAULT); | 
 | #else | 
 | 	reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext, | 
 | 			BOOTMEM_DEFAULT); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Reserve the page tables.  These are already in use, | 
 | 	 * and can only be in node 0. | 
 | 	 */ | 
 | 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), | 
 | 			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT); | 
 |  | 
 | 	/* | 
 | 	 * Hmm... This should go elsewhere, but we really really need to | 
 | 	 * stop things allocating the low memory; ideally we need a better | 
 | 	 * implementation of GFP_DMA which does not assume that DMA-able | 
 | 	 * memory starts at zero. | 
 | 	 */ | 
 | 	if (machine_is_integrator() || machine_is_cintegrator()) | 
 | 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; | 
 |  | 
 | 	/* | 
 | 	 * These should likewise go elsewhere.  They pre-reserve the | 
 | 	 * screen memory region at the start of main system memory. | 
 | 	 */ | 
 | 	if (machine_is_edb7211()) | 
 | 		res_size = 0x00020000; | 
 | 	if (machine_is_p720t()) | 
 | 		res_size = 0x00014000; | 
 |  | 
 | 	/* H1940 and RX3715 need to reserve this for suspend */ | 
 |  | 
 | 	if (machine_is_h1940() || machine_is_rx3715()) { | 
 | 		reserve_bootmem_node(pgdat, 0x30003000, 0x1000, | 
 | 				BOOTMEM_DEFAULT); | 
 | 		reserve_bootmem_node(pgdat, 0x30081000, 0x1000, | 
 | 				BOOTMEM_DEFAULT); | 
 | 	} | 
 |  | 
 | 	if (machine_is_palmld() || machine_is_palmtx()) { | 
 | 		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000, | 
 | 				BOOTMEM_EXCLUSIVE); | 
 | 		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000, | 
 | 				BOOTMEM_EXCLUSIVE); | 
 | 	} | 
 |  | 
 | 	if (machine_is_treo680()) { | 
 | 		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000, | 
 | 				BOOTMEM_EXCLUSIVE); | 
 | 		reserve_bootmem_node(pgdat, 0xa2000000, 0x1000, | 
 | 				BOOTMEM_EXCLUSIVE); | 
 | 	} | 
 |  | 
 | 	if (machine_is_palmt5()) | 
 | 		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000, | 
 | 				BOOTMEM_EXCLUSIVE); | 
 |  | 
 | 	/* | 
 | 	 * U300 - This platform family can share physical memory | 
 | 	 * between two ARM cpus, one running Linux and the other | 
 | 	 * running another OS. | 
 | 	 */ | 
 | 	if (machine_is_u300()) { | 
 | #ifdef CONFIG_MACH_U300_SINGLE_RAM | 
 | #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&	\ | 
 | 	CONFIG_MACH_U300_2MB_ALIGNMENT_FIX | 
 | 		res_size = 0x00100000; | 
 | #endif | 
 | #endif | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SA1111 | 
 | 	/* | 
 | 	 * Because of the SA1111 DMA bug, we want to preserve our | 
 | 	 * precious DMA-able memory... | 
 | 	 */ | 
 | 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; | 
 | #endif | 
 | 	if (res_size) | 
 | 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size, | 
 | 				BOOTMEM_DEFAULT); | 
 | } | 
 |  | 
 | /* | 
 |  * Set up device the mappings.  Since we clear out the page tables for all | 
 |  * mappings above VMALLOC_END, we will remove any debug device mappings. | 
 |  * This means you have to be careful how you debug this function, or any | 
 |  * called function.  This means you can't use any function or debugging | 
 |  * method which may touch any device, otherwise the kernel _will_ crash. | 
 |  */ | 
 | static void __init devicemaps_init(struct machine_desc *mdesc) | 
 | { | 
 | 	struct map_desc map; | 
 | 	unsigned long addr; | 
 | 	void *vectors; | 
 |  | 
 | 	/* | 
 | 	 * Allocate the vector page early. | 
 | 	 */ | 
 | 	vectors = alloc_bootmem_low_pages(PAGE_SIZE); | 
 |  | 
 | 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) | 
 | 		pmd_clear(pmd_off_k(addr)); | 
 |  | 
 | 	/* | 
 | 	 * Map the kernel if it is XIP. | 
 | 	 * It is always first in the modulearea. | 
 | 	 */ | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); | 
 | 	map.virtual = MODULES_VADDR; | 
 | 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; | 
 | 	map.type = MT_ROM; | 
 | 	create_mapping(&map); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Map the cache flushing regions. | 
 | 	 */ | 
 | #ifdef FLUSH_BASE | 
 | 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); | 
 | 	map.virtual = FLUSH_BASE; | 
 | 	map.length = SZ_1M; | 
 | 	map.type = MT_CACHECLEAN; | 
 | 	create_mapping(&map); | 
 | #endif | 
 | #ifdef FLUSH_BASE_MINICACHE | 
 | 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); | 
 | 	map.virtual = FLUSH_BASE_MINICACHE; | 
 | 	map.length = SZ_1M; | 
 | 	map.type = MT_MINICLEAN; | 
 | 	create_mapping(&map); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Create a mapping for the machine vectors at the high-vectors | 
 | 	 * location (0xffff0000).  If we aren't using high-vectors, also | 
 | 	 * create a mapping at the low-vectors virtual address. | 
 | 	 */ | 
 | 	map.pfn = __phys_to_pfn(virt_to_phys(vectors)); | 
 | 	map.virtual = 0xffff0000; | 
 | 	map.length = PAGE_SIZE; | 
 | 	map.type = MT_HIGH_VECTORS; | 
 | 	create_mapping(&map); | 
 |  | 
 | 	if (!vectors_high()) { | 
 | 		map.virtual = 0; | 
 | 		map.type = MT_LOW_VECTORS; | 
 | 		create_mapping(&map); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ask the machine support to map in the statically mapped devices. | 
 | 	 */ | 
 | 	if (mdesc->map_io) | 
 | 		mdesc->map_io(); | 
 |  | 
 | 	/* | 
 | 	 * Finally flush the caches and tlb to ensure that we're in a | 
 | 	 * consistent state wrt the writebuffer.  This also ensures that | 
 | 	 * any write-allocated cache lines in the vector page are written | 
 | 	 * back.  After this point, we can start to touch devices again. | 
 | 	 */ | 
 | 	local_flush_tlb_all(); | 
 | 	flush_cache_all(); | 
 | } | 
 |  | 
 | static void __init kmap_init(void) | 
 | { | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	pmd_t *pmd = pmd_off_k(PKMAP_BASE); | 
 | 	pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); | 
 | 	BUG_ON(!pmd_none(*pmd) || !pte); | 
 | 	__pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE); | 
 | 	pkmap_page_table = pte + PTRS_PER_PTE; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * paging_init() sets up the page tables, initialises the zone memory | 
 |  * maps, and sets up the zero page, bad page and bad page tables. | 
 |  */ | 
 | void __init paging_init(struct machine_desc *mdesc) | 
 | { | 
 | 	void *zero_page; | 
 |  | 
 | 	build_mem_type_table(); | 
 | 	sanity_check_meminfo(); | 
 | 	prepare_page_table(); | 
 | 	bootmem_init(); | 
 | 	devicemaps_init(mdesc); | 
 | 	kmap_init(); | 
 |  | 
 | 	top_pmd = pmd_off_k(0xffff0000); | 
 |  | 
 | 	/* | 
 | 	 * allocate the zero page.  Note that this always succeeds and | 
 | 	 * returns a zeroed result. | 
 | 	 */ | 
 | 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE); | 
 | 	empty_zero_page = virt_to_page(zero_page); | 
 | 	flush_dcache_page(empty_zero_page); | 
 | } | 
 |  | 
 | /* | 
 |  * In order to soft-boot, we need to insert a 1:1 mapping in place of | 
 |  * the user-mode pages.  This will then ensure that we have predictable | 
 |  * results when turning the mmu off | 
 |  */ | 
 | void setup_mm_for_reboot(char mode) | 
 | { | 
 | 	unsigned long base_pmdval; | 
 | 	pgd_t *pgd; | 
 | 	int i; | 
 |  | 
 | 	if (current->mm && current->mm->pgd) | 
 | 		pgd = current->mm->pgd; | 
 | 	else | 
 | 		pgd = init_mm.pgd; | 
 |  | 
 | 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; | 
 | 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) | 
 | 		base_pmdval |= PMD_BIT4; | 
 |  | 
 | 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { | 
 | 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; | 
 | 		pmd_t *pmd; | 
 |  | 
 | 		pmd = pmd_off(pgd, i << PGDIR_SHIFT); | 
 | 		pmd[0] = __pmd(pmdval); | 
 | 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); | 
 | 		flush_pmd_entry(pmd); | 
 | 	} | 
 | } |