| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * ECC algorithm for M-systems disk on chip. We use the excellent Reed | 
 | 3 |  * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the | 
 | 4 |  * GNU GPL License. The rest is simply to convert the disk on chip | 
 | 5 |  * syndrom into a standard syndom. | 
 | 6 |  * | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 7 |  * Author: Fabrice Bellard (fabrice.bellard@netgem.com) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 8 |  * Copyright (C) 2000 Netgem S.A. | 
 | 9 |  * | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 10 |  * $Id: docecc.c,v 1.7 2005/11/07 11:14:25 gleixner Exp $ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 11 |  * | 
 | 12 |  * This program is free software; you can redistribute it and/or modify | 
 | 13 |  * it under the terms of the GNU General Public License as published by | 
 | 14 |  * the Free Software Foundation; either version 2 of the License, or | 
 | 15 |  * (at your option) any later version. | 
 | 16 |  * | 
 | 17 |  * This program is distributed in the hope that it will be useful, | 
 | 18 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 19 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 20 |  * GNU General Public License for more details. | 
 | 21 |  * | 
 | 22 |  * You should have received a copy of the GNU General Public License | 
 | 23 |  * along with this program; if not, write to the Free Software | 
 | 24 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 | 25 |  */ | 
 | 26 | #include <linux/kernel.h> | 
 | 27 | #include <linux/module.h> | 
 | 28 | #include <asm/errno.h> | 
 | 29 | #include <asm/io.h> | 
 | 30 | #include <asm/uaccess.h> | 
 | 31 | #include <linux/miscdevice.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 32 | #include <linux/delay.h> | 
 | 33 | #include <linux/slab.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 34 | #include <linux/init.h> | 
 | 35 | #include <linux/types.h> | 
 | 36 |  | 
 | 37 | #include <linux/mtd/compatmac.h> /* for min() in older kernels */ | 
 | 38 | #include <linux/mtd/mtd.h> | 
 | 39 | #include <linux/mtd/doc2000.h> | 
 | 40 |  | 
| Grant Coady | 66c81f0 | 2005-09-22 21:43:54 -0700 | [diff] [blame] | 41 | #define DEBUG_ECC 0 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 42 | /* need to undef it (from asm/termbits.h) */ | 
 | 43 | #undef B0 | 
 | 44 |  | 
 | 45 | #define MM 10 /* Symbol size in bits */ | 
 | 46 | #define KK (1023-4) /* Number of data symbols per block */ | 
 | 47 | #define B0 510 /* First root of generator polynomial, alpha form */ | 
 | 48 | #define PRIM 1 /* power of alpha used to generate roots of generator poly */ | 
 | 49 | #define	NN ((1 << MM) - 1) | 
 | 50 |  | 
 | 51 | typedef unsigned short dtype; | 
 | 52 |  | 
 | 53 | /* 1+x^3+x^10 */ | 
 | 54 | static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; | 
 | 55 |  | 
 | 56 | /* This defines the type used to store an element of the Galois Field | 
 | 57 |  * used by the code. Make sure this is something larger than a char if | 
 | 58 |  * if anything larger than GF(256) is used. | 
 | 59 |  * | 
 | 60 |  * Note: unsigned char will work up to GF(256) but int seems to run | 
 | 61 |  * faster on the Pentium. | 
 | 62 |  */ | 
 | 63 | typedef int gf; | 
 | 64 |  | 
 | 65 | /* No legal value in index form represents zero, so | 
 | 66 |  * we need a special value for this purpose | 
 | 67 |  */ | 
 | 68 | #define A0	(NN) | 
 | 69 |  | 
 | 70 | /* Compute x % NN, where NN is 2**MM - 1, | 
 | 71 |  * without a slow divide | 
 | 72 |  */ | 
 | 73 | static inline gf | 
 | 74 | modnn(int x) | 
 | 75 | { | 
 | 76 |   while (x >= NN) { | 
 | 77 |     x -= NN; | 
 | 78 |     x = (x >> MM) + (x & NN); | 
 | 79 |   } | 
 | 80 |   return x; | 
 | 81 | } | 
 | 82 |  | 
 | 83 | #define	CLEAR(a,n) {\ | 
 | 84 | int ci;\ | 
 | 85 | for(ci=(n)-1;ci >=0;ci--)\ | 
 | 86 | (a)[ci] = 0;\ | 
 | 87 | } | 
 | 88 |  | 
 | 89 | #define	COPY(a,b,n) {\ | 
 | 90 | int ci;\ | 
 | 91 | for(ci=(n)-1;ci >=0;ci--)\ | 
 | 92 | (a)[ci] = (b)[ci];\ | 
 | 93 | } | 
 | 94 |  | 
 | 95 | #define	COPYDOWN(a,b,n) {\ | 
 | 96 | int ci;\ | 
 | 97 | for(ci=(n)-1;ci >=0;ci--)\ | 
 | 98 | (a)[ci] = (b)[ci];\ | 
 | 99 | } | 
 | 100 |  | 
 | 101 | #define Ldec 1 | 
 | 102 |  | 
 | 103 | /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] | 
 | 104 |    lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i; | 
 | 105 |                    polynomial form -> index form  index_of[j=alpha**i] = i | 
 | 106 |    alpha=2 is the primitive element of GF(2**m) | 
 | 107 |    HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: | 
 | 108 |         Let @ represent the primitive element commonly called "alpha" that | 
 | 109 |    is the root of the primitive polynomial p(x). Then in GF(2^m), for any | 
 | 110 |    0 <= i <= 2^m-2, | 
 | 111 |         @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) | 
 | 112 |    where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation | 
 | 113 |    of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for | 
 | 114 |    example the polynomial representation of @^5 would be given by the binary | 
 | 115 |    representation of the integer "alpha_to[5]". | 
 | 116 |                    Similarily, index_of[] can be used as follows: | 
 | 117 |         As above, let @ represent the primitive element of GF(2^m) that is | 
 | 118 |    the root of the primitive polynomial p(x). In order to find the power | 
 | 119 |    of @ (alpha) that has the polynomial representation | 
 | 120 |         a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) | 
 | 121 |    we consider the integer "i" whose binary representation with a(0) being LSB | 
 | 122 |    and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 123 |    "index_of[i]". Now, @^index_of[i] is that element whose polynomial | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 124 |     representation is (a(0),a(1),a(2),...,a(m-1)). | 
 | 125 |    NOTE: | 
 | 126 |         The element alpha_to[2^m-1] = 0 always signifying that the | 
 | 127 |    representation of "@^infinity" = 0 is (0,0,0,...,0). | 
 | 128 |         Similarily, the element index_of[0] = A0 always signifying | 
 | 129 |    that the power of alpha which has the polynomial representation | 
 | 130 |    (0,0,...,0) is "infinity". | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 131 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 132 | */ | 
 | 133 |  | 
 | 134 | static void | 
 | 135 | generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) | 
 | 136 | { | 
 | 137 |   register int i, mask; | 
 | 138 |  | 
 | 139 |   mask = 1; | 
 | 140 |   Alpha_to[MM] = 0; | 
 | 141 |   for (i = 0; i < MM; i++) { | 
 | 142 |     Alpha_to[i] = mask; | 
 | 143 |     Index_of[Alpha_to[i]] = i; | 
 | 144 |     /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ | 
 | 145 |     if (Pp[i] != 0) | 
 | 146 |       Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */ | 
 | 147 |     mask <<= 1;	/* single left-shift */ | 
 | 148 |   } | 
 | 149 |   Index_of[Alpha_to[MM]] = MM; | 
 | 150 |   /* | 
 | 151 |    * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by | 
 | 152 |    * poly-repr of @^i shifted left one-bit and accounting for any @^MM | 
 | 153 |    * term that may occur when poly-repr of @^i is shifted. | 
 | 154 |    */ | 
 | 155 |   mask >>= 1; | 
 | 156 |   for (i = MM + 1; i < NN; i++) { | 
 | 157 |     if (Alpha_to[i - 1] >= mask) | 
 | 158 |       Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); | 
 | 159 |     else | 
 | 160 |       Alpha_to[i] = Alpha_to[i - 1] << 1; | 
 | 161 |     Index_of[Alpha_to[i]] = i; | 
 | 162 |   } | 
 | 163 |   Index_of[0] = A0; | 
 | 164 |   Alpha_to[NN] = 0; | 
 | 165 | } | 
 | 166 |  | 
 | 167 | /* | 
 | 168 |  * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content | 
 | 169 |  * of the feedback shift register after having processed the data and | 
 | 170 |  * the ECC. | 
 | 171 |  * | 
 | 172 |  * Return number of symbols corrected, or -1 if codeword is illegal | 
 | 173 |  * or uncorrectable. If eras_pos is non-null, the detected error locations | 
 | 174 |  * are written back. NOTE! This array must be at least NN-KK elements long. | 
 | 175 |  * The corrected data are written in eras_val[]. They must be xor with the data | 
 | 176 |  * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 177 |  * | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 178 |  * First "no_eras" erasures are declared by the calling program. Then, the | 
 | 179 |  * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). | 
 | 180 |  * If the number of channel errors is not greater than "t_after_eras" the | 
 | 181 |  * transmitted codeword will be recovered. Details of algorithm can be found | 
 | 182 |  * in R. Blahut's "Theory ... of Error-Correcting Codes". | 
 | 183 |  | 
 | 184 |  * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure | 
 | 185 |  * will result. The decoder *could* check for this condition, but it would involve | 
 | 186 |  * extra time on every decoding operation. | 
 | 187 |  * */ | 
 | 188 | static int | 
 | 189 | eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 190 |             gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 191 |             int no_eras) | 
 | 192 | { | 
 | 193 |   int deg_lambda, el, deg_omega; | 
 | 194 |   int i, j, r,k; | 
 | 195 |   gf u,q,tmp,num1,num2,den,discr_r; | 
 | 196 |   gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly | 
 | 197 | 					 * and syndrome poly */ | 
 | 198 |   gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; | 
 | 199 |   gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; | 
 | 200 |   int syn_error, count; | 
 | 201 |  | 
 | 202 |   syn_error = 0; | 
 | 203 |   for(i=0;i<NN-KK;i++) | 
 | 204 |       syn_error |= bb[i]; | 
 | 205 |  | 
 | 206 |   if (!syn_error) { | 
 | 207 |     /* if remainder is zero, data[] is a codeword and there are no | 
 | 208 |      * errors to correct. So return data[] unmodified | 
 | 209 |      */ | 
 | 210 |     count = 0; | 
 | 211 |     goto finish; | 
 | 212 |   } | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 213 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 214 |   for(i=1;i<=NN-KK;i++){ | 
 | 215 |     s[i] = bb[0]; | 
 | 216 |   } | 
 | 217 |   for(j=1;j<NN-KK;j++){ | 
 | 218 |     if(bb[j] == 0) | 
 | 219 |       continue; | 
 | 220 |     tmp = Index_of[bb[j]]; | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 221 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 222 |     for(i=1;i<=NN-KK;i++) | 
 | 223 |       s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; | 
 | 224 |   } | 
 | 225 |  | 
 | 226 |   /* undo the feedback register implicit multiplication and convert | 
 | 227 |      syndromes to index form */ | 
 | 228 |  | 
 | 229 |   for(i=1;i<=NN-KK;i++) { | 
 | 230 |       tmp = Index_of[s[i]]; | 
 | 231 |       if (tmp != A0) | 
 | 232 |           tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); | 
 | 233 |       s[i] = tmp; | 
 | 234 |   } | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 235 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 236 |   CLEAR(&lambda[1],NN-KK); | 
 | 237 |   lambda[0] = 1; | 
 | 238 |  | 
 | 239 |   if (no_eras > 0) { | 
 | 240 |     /* Init lambda to be the erasure locator polynomial */ | 
 | 241 |     lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; | 
 | 242 |     for (i = 1; i < no_eras; i++) { | 
 | 243 |       u = modnn(PRIM*eras_pos[i]); | 
 | 244 |       for (j = i+1; j > 0; j--) { | 
 | 245 | 	tmp = Index_of[lambda[j - 1]]; | 
 | 246 | 	if(tmp != A0) | 
 | 247 | 	  lambda[j] ^= Alpha_to[modnn(u + tmp)]; | 
 | 248 |       } | 
 | 249 |     } | 
| Grant Coady | 66c81f0 | 2005-09-22 21:43:54 -0700 | [diff] [blame] | 250 | #if DEBUG_ECC >= 1 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 251 |     /* Test code that verifies the erasure locator polynomial just constructed | 
 | 252 |        Needed only for decoder debugging. */ | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 253 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 254 |     /* find roots of the erasure location polynomial */ | 
 | 255 |     for(i=1;i<=no_eras;i++) | 
 | 256 |       reg[i] = Index_of[lambda[i]]; | 
 | 257 |     count = 0; | 
 | 258 |     for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { | 
 | 259 |       q = 1; | 
 | 260 |       for (j = 1; j <= no_eras; j++) | 
 | 261 | 	if (reg[j] != A0) { | 
 | 262 | 	  reg[j] = modnn(reg[j] + j); | 
 | 263 | 	  q ^= Alpha_to[reg[j]]; | 
 | 264 | 	} | 
 | 265 |       if (q != 0) | 
 | 266 | 	continue; | 
 | 267 |       /* store root and error location number indices */ | 
 | 268 |       root[count] = i; | 
 | 269 |       loc[count] = k; | 
 | 270 |       count++; | 
 | 271 |     } | 
 | 272 |     if (count != no_eras) { | 
 | 273 |       printf("\n lambda(x) is WRONG\n"); | 
 | 274 |       count = -1; | 
 | 275 |       goto finish; | 
 | 276 |     } | 
| Grant Coady | 66c81f0 | 2005-09-22 21:43:54 -0700 | [diff] [blame] | 277 | #if DEBUG_ECC >= 2 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 278 |     printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); | 
 | 279 |     for (i = 0; i < count; i++) | 
 | 280 |       printf("%d ", loc[i]); | 
 | 281 |     printf("\n"); | 
 | 282 | #endif | 
 | 283 | #endif | 
 | 284 |   } | 
 | 285 |   for(i=0;i<NN-KK+1;i++) | 
 | 286 |     b[i] = Index_of[lambda[i]]; | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 287 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 288 |   /* | 
 | 289 |    * Begin Berlekamp-Massey algorithm to determine error+erasure | 
 | 290 |    * locator polynomial | 
 | 291 |    */ | 
 | 292 |   r = no_eras; | 
 | 293 |   el = no_eras; | 
 | 294 |   while (++r <= NN-KK) {	/* r is the step number */ | 
 | 295 |     /* Compute discrepancy at the r-th step in poly-form */ | 
 | 296 |     discr_r = 0; | 
 | 297 |     for (i = 0; i < r; i++){ | 
 | 298 |       if ((lambda[i] != 0) && (s[r - i] != A0)) { | 
 | 299 | 	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; | 
 | 300 |       } | 
 | 301 |     } | 
 | 302 |     discr_r = Index_of[discr_r];	/* Index form */ | 
 | 303 |     if (discr_r == A0) { | 
 | 304 |       /* 2 lines below: B(x) <-- x*B(x) */ | 
 | 305 |       COPYDOWN(&b[1],b,NN-KK); | 
 | 306 |       b[0] = A0; | 
 | 307 |     } else { | 
 | 308 |       /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ | 
 | 309 |       t[0] = lambda[0]; | 
 | 310 |       for (i = 0 ; i < NN-KK; i++) { | 
 | 311 | 	if(b[i] != A0) | 
 | 312 | 	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; | 
 | 313 | 	else | 
 | 314 | 	  t[i+1] = lambda[i+1]; | 
 | 315 |       } | 
 | 316 |       if (2 * el <= r + no_eras - 1) { | 
 | 317 | 	el = r + no_eras - el; | 
 | 318 | 	/* | 
 | 319 | 	 * 2 lines below: B(x) <-- inv(discr_r) * | 
 | 320 | 	 * lambda(x) | 
 | 321 | 	 */ | 
 | 322 | 	for (i = 0; i <= NN-KK; i++) | 
 | 323 | 	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); | 
 | 324 |       } else { | 
 | 325 | 	/* 2 lines below: B(x) <-- x*B(x) */ | 
 | 326 | 	COPYDOWN(&b[1],b,NN-KK); | 
 | 327 | 	b[0] = A0; | 
 | 328 |       } | 
 | 329 |       COPY(lambda,t,NN-KK+1); | 
 | 330 |     } | 
 | 331 |   } | 
 | 332 |  | 
 | 333 |   /* Convert lambda to index form and compute deg(lambda(x)) */ | 
 | 334 |   deg_lambda = 0; | 
 | 335 |   for(i=0;i<NN-KK+1;i++){ | 
 | 336 |     lambda[i] = Index_of[lambda[i]]; | 
 | 337 |     if(lambda[i] != A0) | 
 | 338 |       deg_lambda = i; | 
 | 339 |   } | 
 | 340 |   /* | 
 | 341 |    * Find roots of the error+erasure locator polynomial by Chien | 
 | 342 |    * Search | 
 | 343 |    */ | 
 | 344 |   COPY(®[1],&lambda[1],NN-KK); | 
 | 345 |   count = 0;		/* Number of roots of lambda(x) */ | 
 | 346 |   for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { | 
 | 347 |     q = 1; | 
 | 348 |     for (j = deg_lambda; j > 0; j--){ | 
 | 349 |       if (reg[j] != A0) { | 
 | 350 | 	reg[j] = modnn(reg[j] + j); | 
 | 351 | 	q ^= Alpha_to[reg[j]]; | 
 | 352 |       } | 
 | 353 |     } | 
 | 354 |     if (q != 0) | 
 | 355 |       continue; | 
 | 356 |     /* store root (index-form) and error location number */ | 
 | 357 |     root[count] = i; | 
 | 358 |     loc[count] = k; | 
 | 359 |     /* If we've already found max possible roots, | 
 | 360 |      * abort the search to save time | 
 | 361 |      */ | 
 | 362 |     if(++count == deg_lambda) | 
 | 363 |       break; | 
 | 364 |   } | 
 | 365 |   if (deg_lambda != count) { | 
 | 366 |     /* | 
 | 367 |      * deg(lambda) unequal to number of roots => uncorrectable | 
 | 368 |      * error detected | 
 | 369 |      */ | 
 | 370 |     count = -1; | 
 | 371 |     goto finish; | 
 | 372 |   } | 
 | 373 |   /* | 
 | 374 |    * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | 
 | 375 |    * x**(NN-KK)). in index form. Also find deg(omega). | 
 | 376 |    */ | 
 | 377 |   deg_omega = 0; | 
 | 378 |   for (i = 0; i < NN-KK;i++){ | 
 | 379 |     tmp = 0; | 
 | 380 |     j = (deg_lambda < i) ? deg_lambda : i; | 
 | 381 |     for(;j >= 0; j--){ | 
 | 382 |       if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) | 
 | 383 | 	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; | 
 | 384 |     } | 
 | 385 |     if(tmp != 0) | 
 | 386 |       deg_omega = i; | 
 | 387 |     omega[i] = Index_of[tmp]; | 
 | 388 |   } | 
 | 389 |   omega[NN-KK] = A0; | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 390 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 391 |   /* | 
 | 392 |    * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | 
 | 393 |    * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form | 
 | 394 |    */ | 
 | 395 |   for (j = count-1; j >=0; j--) { | 
 | 396 |     num1 = 0; | 
 | 397 |     for (i = deg_omega; i >= 0; i--) { | 
 | 398 |       if (omega[i] != A0) | 
 | 399 | 	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])]; | 
 | 400 |     } | 
 | 401 |     num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; | 
 | 402 |     den = 0; | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 403 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 404 |     /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ | 
 | 405 |     for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { | 
 | 406 |       if(lambda[i+1] != A0) | 
 | 407 | 	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; | 
 | 408 |     } | 
 | 409 |     if (den == 0) { | 
| Grant Coady | 66c81f0 | 2005-09-22 21:43:54 -0700 | [diff] [blame] | 410 | #if DEBUG_ECC >= 1 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 411 |       printf("\n ERROR: denominator = 0\n"); | 
 | 412 | #endif | 
 | 413 |       /* Convert to dual- basis */ | 
 | 414 |       count = -1; | 
 | 415 |       goto finish; | 
 | 416 |     } | 
 | 417 |     /* Apply error to data */ | 
 | 418 |     if (num1 != 0) { | 
 | 419 |         eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; | 
 | 420 |     } else { | 
 | 421 |         eras_val[j] = 0; | 
 | 422 |     } | 
 | 423 |   } | 
 | 424 |  finish: | 
 | 425 |   for(i=0;i<count;i++) | 
 | 426 |       eras_pos[i] = loc[i]; | 
 | 427 |   return count; | 
 | 428 | } | 
 | 429 |  | 
 | 430 | /***************************************************************************/ | 
 | 431 | /* The DOC specific code begins here */ | 
 | 432 |  | 
 | 433 | #define SECTOR_SIZE 512 | 
 | 434 | /* The sector bytes are packed into NB_DATA MM bits words */ | 
 | 435 | #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) | 
 | 436 |  | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 437 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 438 |  * Correct the errors in 'sector[]' by using 'ecc1[]' which is the | 
 | 439 |  * content of the feedback shift register applyied to the sector and | 
 | 440 |  * the ECC. Return the number of errors corrected (and correct them in | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 441 |  * sector), or -1 if error | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 442 |  */ | 
 | 443 | int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) | 
 | 444 | { | 
 | 445 |     int parity, i, nb_errors; | 
 | 446 |     gf bb[NN - KK + 1]; | 
 | 447 |     gf error_val[NN-KK]; | 
 | 448 |     int error_pos[NN-KK], pos, bitpos, index, val; | 
 | 449 |     dtype *Alpha_to, *Index_of; | 
 | 450 |  | 
 | 451 |     /* init log and exp tables here to save memory. However, it is slower */ | 
 | 452 |     Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); | 
 | 453 |     if (!Alpha_to) | 
 | 454 |         return -1; | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 455 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 456 |     Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); | 
 | 457 |     if (!Index_of) { | 
 | 458 |         kfree(Alpha_to); | 
 | 459 |         return -1; | 
 | 460 |     } | 
 | 461 |  | 
 | 462 |     generate_gf(Alpha_to, Index_of); | 
 | 463 |  | 
 | 464 |     parity = ecc1[1]; | 
 | 465 |  | 
 | 466 |     bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); | 
 | 467 |     bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); | 
 | 468 |     bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); | 
 | 469 |     bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); | 
 | 470 |  | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 471 |     nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 472 |                             error_val, error_pos, 0); | 
 | 473 |     if (nb_errors <= 0) | 
 | 474 |         goto the_end; | 
 | 475 |  | 
 | 476 |     /* correct the errors */ | 
 | 477 |     for(i=0;i<nb_errors;i++) { | 
 | 478 |         pos = error_pos[i]; | 
 | 479 |         if (pos >= NB_DATA && pos < KK) { | 
 | 480 |             nb_errors = -1; | 
 | 481 |             goto the_end; | 
 | 482 |         } | 
 | 483 |         if (pos < NB_DATA) { | 
 | 484 |             /* extract bit position (MSB first) */ | 
 | 485 |             pos = 10 * (NB_DATA - 1 - pos) - 6; | 
 | 486 |             /* now correct the following 10 bits. At most two bytes | 
 | 487 |                can be modified since pos is even */ | 
 | 488 |             index = (pos >> 3) ^ 1; | 
 | 489 |             bitpos = pos & 7; | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 490 |             if ((index >= 0 && index < SECTOR_SIZE) || | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 491 |                 index == (SECTOR_SIZE + 1)) { | 
 | 492 |                 val = error_val[i] >> (2 + bitpos); | 
 | 493 |                 parity ^= val; | 
 | 494 |                 if (index < SECTOR_SIZE) | 
 | 495 |                     sector[index] ^= val; | 
 | 496 |             } | 
 | 497 |             index = ((pos >> 3) + 1) ^ 1; | 
 | 498 |             bitpos = (bitpos + 10) & 7; | 
 | 499 |             if (bitpos == 0) | 
 | 500 |                 bitpos = 8; | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 501 |             if ((index >= 0 && index < SECTOR_SIZE) || | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 502 |                 index == (SECTOR_SIZE + 1)) { | 
 | 503 |                 val = error_val[i] << (8 - bitpos); | 
 | 504 |                 parity ^= val; | 
 | 505 |                 if (index < SECTOR_SIZE) | 
 | 506 |                     sector[index] ^= val; | 
 | 507 |             } | 
 | 508 |         } | 
 | 509 |     } | 
| Thomas Gleixner | e5580fb | 2005-11-07 11:15:40 +0000 | [diff] [blame] | 510 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 511 |     /* use parity to test extra errors */ | 
 | 512 |     if ((parity & 0xff) != 0) | 
 | 513 |         nb_errors = -1; | 
 | 514 |  | 
 | 515 |  the_end: | 
 | 516 |     kfree(Alpha_to); | 
 | 517 |     kfree(Index_of); | 
 | 518 |     return nb_errors; | 
 | 519 | } | 
 | 520 |  | 
 | 521 | EXPORT_SYMBOL_GPL(doc_decode_ecc); | 
 | 522 |  | 
 | 523 | MODULE_LICENSE("GPL"); | 
 | 524 | MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>"); | 
 | 525 | MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware"); |