| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/kernel/time.c | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 | 5 |  * | 
 | 6 |  *  This file contains the interface functions for the various | 
 | 7 |  *  time related system calls: time, stime, gettimeofday, settimeofday, | 
 | 8 |  *			       adjtime | 
 | 9 |  */ | 
 | 10 | /* | 
 | 11 |  * Modification history kernel/time.c | 
 | 12 |  *  | 
 | 13 |  * 1993-09-02    Philip Gladstone | 
 | 14 |  *      Created file with time related functions from sched.c and adjtimex()  | 
 | 15 |  * 1993-10-08    Torsten Duwe | 
 | 16 |  *      adjtime interface update and CMOS clock write code | 
 | 17 |  * 1995-08-13    Torsten Duwe | 
 | 18 |  *      kernel PLL updated to 1994-12-13 specs (rfc-1589) | 
 | 19 |  * 1999-01-16    Ulrich Windl | 
 | 20 |  *	Introduced error checking for many cases in adjtimex(). | 
 | 21 |  *	Updated NTP code according to technical memorandum Jan '96 | 
 | 22 |  *	"A Kernel Model for Precision Timekeeping" by Dave Mills | 
 | 23 |  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) | 
 | 24 |  *	(Even though the technical memorandum forbids it) | 
 | 25 |  * 2004-07-14	 Christoph Lameter | 
 | 26 |  *	Added getnstimeofday to allow the posix timer functions to return | 
 | 27 |  *	with nanosecond accuracy | 
 | 28 |  */ | 
 | 29 |  | 
 | 30 | #include <linux/module.h> | 
 | 31 | #include <linux/timex.h> | 
| Randy.Dunlap | c59ede7 | 2006-01-11 12:17:46 -0800 | [diff] [blame] | 32 | #include <linux/capability.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 33 | #include <linux/errno.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 34 | #include <linux/syscalls.h> | 
 | 35 | #include <linux/security.h> | 
 | 36 | #include <linux/fs.h> | 
 | 37 | #include <linux/module.h> | 
 | 38 |  | 
 | 39 | #include <asm/uaccess.h> | 
 | 40 | #include <asm/unistd.h> | 
 | 41 |  | 
 | 42 | /*  | 
 | 43 |  * The timezone where the local system is located.  Used as a default by some | 
 | 44 |  * programs who obtain this value by using gettimeofday. | 
 | 45 |  */ | 
 | 46 | struct timezone sys_tz; | 
 | 47 |  | 
 | 48 | EXPORT_SYMBOL(sys_tz); | 
 | 49 |  | 
 | 50 | #ifdef __ARCH_WANT_SYS_TIME | 
 | 51 |  | 
 | 52 | /* | 
 | 53 |  * sys_time() can be implemented in user-level using | 
 | 54 |  * sys_gettimeofday().  Is this for backwards compatibility?  If so, | 
 | 55 |  * why not move it into the appropriate arch directory (for those | 
 | 56 |  * architectures that need it). | 
 | 57 |  */ | 
 | 58 | asmlinkage long sys_time(time_t __user * tloc) | 
 | 59 | { | 
 | 60 | 	time_t i; | 
 | 61 | 	struct timeval tv; | 
 | 62 |  | 
 | 63 | 	do_gettimeofday(&tv); | 
 | 64 | 	i = tv.tv_sec; | 
 | 65 |  | 
 | 66 | 	if (tloc) { | 
 | 67 | 		if (put_user(i,tloc)) | 
 | 68 | 			i = -EFAULT; | 
 | 69 | 	} | 
 | 70 | 	return i; | 
 | 71 | } | 
 | 72 |  | 
 | 73 | /* | 
 | 74 |  * sys_stime() can be implemented in user-level using | 
 | 75 |  * sys_settimeofday().  Is this for backwards compatibility?  If so, | 
 | 76 |  * why not move it into the appropriate arch directory (for those | 
 | 77 |  * architectures that need it). | 
 | 78 |  */ | 
 | 79 |   | 
 | 80 | asmlinkage long sys_stime(time_t __user *tptr) | 
 | 81 | { | 
 | 82 | 	struct timespec tv; | 
 | 83 | 	int err; | 
 | 84 |  | 
 | 85 | 	if (get_user(tv.tv_sec, tptr)) | 
 | 86 | 		return -EFAULT; | 
 | 87 |  | 
 | 88 | 	tv.tv_nsec = 0; | 
 | 89 |  | 
 | 90 | 	err = security_settime(&tv, NULL); | 
 | 91 | 	if (err) | 
 | 92 | 		return err; | 
 | 93 |  | 
 | 94 | 	do_settimeofday(&tv); | 
 | 95 | 	return 0; | 
 | 96 | } | 
 | 97 |  | 
 | 98 | #endif /* __ARCH_WANT_SYS_TIME */ | 
 | 99 |  | 
 | 100 | asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz) | 
 | 101 | { | 
 | 102 | 	if (likely(tv != NULL)) { | 
 | 103 | 		struct timeval ktv; | 
 | 104 | 		do_gettimeofday(&ktv); | 
 | 105 | 		if (copy_to_user(tv, &ktv, sizeof(ktv))) | 
 | 106 | 			return -EFAULT; | 
 | 107 | 	} | 
 | 108 | 	if (unlikely(tz != NULL)) { | 
 | 109 | 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) | 
 | 110 | 			return -EFAULT; | 
 | 111 | 	} | 
 | 112 | 	return 0; | 
 | 113 | } | 
 | 114 |  | 
 | 115 | /* | 
 | 116 |  * Adjust the time obtained from the CMOS to be UTC time instead of | 
 | 117 |  * local time. | 
 | 118 |  *  | 
 | 119 |  * This is ugly, but preferable to the alternatives.  Otherwise we | 
 | 120 |  * would either need to write a program to do it in /etc/rc (and risk | 
 | 121 |  * confusion if the program gets run more than once; it would also be  | 
 | 122 |  * hard to make the program warp the clock precisely n hours)  or | 
 | 123 |  * compile in the timezone information into the kernel.  Bad, bad.... | 
 | 124 |  * | 
 | 125 |  *              				- TYT, 1992-01-01 | 
 | 126 |  * | 
 | 127 |  * The best thing to do is to keep the CMOS clock in universal time (UTC) | 
 | 128 |  * as real UNIX machines always do it. This avoids all headaches about | 
 | 129 |  * daylight saving times and warping kernel clocks. | 
 | 130 |  */ | 
| Jesper Juhl | 77933d7 | 2005-07-27 11:46:09 -0700 | [diff] [blame] | 131 | static inline void warp_clock(void) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 132 | { | 
 | 133 | 	write_seqlock_irq(&xtime_lock); | 
 | 134 | 	wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; | 
 | 135 | 	xtime.tv_sec += sys_tz.tz_minuteswest * 60; | 
 | 136 | 	time_interpolator_reset(); | 
 | 137 | 	write_sequnlock_irq(&xtime_lock); | 
 | 138 | 	clock_was_set(); | 
 | 139 | } | 
 | 140 |  | 
 | 141 | /* | 
 | 142 |  * In case for some reason the CMOS clock has not already been running | 
 | 143 |  * in UTC, but in some local time: The first time we set the timezone, | 
 | 144 |  * we will warp the clock so that it is ticking UTC time instead of | 
 | 145 |  * local time. Presumably, if someone is setting the timezone then we | 
 | 146 |  * are running in an environment where the programs understand about | 
 | 147 |  * timezones. This should be done at boot time in the /etc/rc script, | 
 | 148 |  * as soon as possible, so that the clock can be set right. Otherwise, | 
 | 149 |  * various programs will get confused when the clock gets warped. | 
 | 150 |  */ | 
 | 151 |  | 
 | 152 | int do_sys_settimeofday(struct timespec *tv, struct timezone *tz) | 
 | 153 | { | 
 | 154 | 	static int firsttime = 1; | 
 | 155 | 	int error = 0; | 
 | 156 |  | 
| Linus Torvalds | 951069e | 2006-01-31 10:16:55 -0800 | [diff] [blame] | 157 | 	if (tv && !timespec_valid(tv)) | 
| Thomas Gleixner | 718bcce | 2006-01-09 20:52:29 -0800 | [diff] [blame] | 158 | 		return -EINVAL; | 
 | 159 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 160 | 	error = security_settime(tv, tz); | 
 | 161 | 	if (error) | 
 | 162 | 		return error; | 
 | 163 |  | 
 | 164 | 	if (tz) { | 
 | 165 | 		/* SMP safe, global irq locking makes it work. */ | 
 | 166 | 		sys_tz = *tz; | 
 | 167 | 		if (firsttime) { | 
 | 168 | 			firsttime = 0; | 
 | 169 | 			if (!tv) | 
 | 170 | 				warp_clock(); | 
 | 171 | 		} | 
 | 172 | 	} | 
 | 173 | 	if (tv) | 
 | 174 | 	{ | 
 | 175 | 		/* SMP safe, again the code in arch/foo/time.c should | 
 | 176 | 		 * globally block out interrupts when it runs. | 
 | 177 | 		 */ | 
 | 178 | 		return do_settimeofday(tv); | 
 | 179 | 	} | 
 | 180 | 	return 0; | 
 | 181 | } | 
 | 182 |  | 
 | 183 | asmlinkage long sys_settimeofday(struct timeval __user *tv, | 
 | 184 | 				struct timezone __user *tz) | 
 | 185 | { | 
 | 186 | 	struct timeval user_tv; | 
 | 187 | 	struct timespec	new_ts; | 
 | 188 | 	struct timezone new_tz; | 
 | 189 |  | 
 | 190 | 	if (tv) { | 
 | 191 | 		if (copy_from_user(&user_tv, tv, sizeof(*tv))) | 
 | 192 | 			return -EFAULT; | 
 | 193 | 		new_ts.tv_sec = user_tv.tv_sec; | 
 | 194 | 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; | 
 | 195 | 	} | 
 | 196 | 	if (tz) { | 
 | 197 | 		if (copy_from_user(&new_tz, tz, sizeof(*tz))) | 
 | 198 | 			return -EFAULT; | 
 | 199 | 	} | 
 | 200 |  | 
 | 201 | 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); | 
 | 202 | } | 
 | 203 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 204 | asmlinkage long sys_adjtimex(struct timex __user *txc_p) | 
 | 205 | { | 
 | 206 | 	struct timex txc;		/* Local copy of parameter */ | 
 | 207 | 	int ret; | 
 | 208 |  | 
 | 209 | 	/* Copy the user data space into the kernel copy | 
 | 210 | 	 * structure. But bear in mind that the structures | 
 | 211 | 	 * may change | 
 | 212 | 	 */ | 
 | 213 | 	if(copy_from_user(&txc, txc_p, sizeof(struct timex))) | 
 | 214 | 		return -EFAULT; | 
 | 215 | 	ret = do_adjtimex(&txc); | 
 | 216 | 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; | 
 | 217 | } | 
 | 218 |  | 
 | 219 | inline struct timespec current_kernel_time(void) | 
 | 220 | { | 
 | 221 |         struct timespec now; | 
 | 222 |         unsigned long seq; | 
 | 223 |  | 
 | 224 | 	do { | 
 | 225 | 		seq = read_seqbegin(&xtime_lock); | 
 | 226 | 		 | 
 | 227 | 		now = xtime; | 
 | 228 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 | 229 |  | 
 | 230 | 	return now;  | 
 | 231 | } | 
 | 232 |  | 
 | 233 | EXPORT_SYMBOL(current_kernel_time); | 
 | 234 |  | 
 | 235 | /** | 
 | 236 |  * current_fs_time - Return FS time | 
 | 237 |  * @sb: Superblock. | 
 | 238 |  * | 
| Kalin KOZHUHAROV | 8ba8e95 | 2006-04-01 01:41:22 +0200 | [diff] [blame] | 239 |  * Return the current time truncated to the time granularity supported by | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 240 |  * the fs. | 
 | 241 |  */ | 
 | 242 | struct timespec current_fs_time(struct super_block *sb) | 
 | 243 | { | 
 | 244 | 	struct timespec now = current_kernel_time(); | 
 | 245 | 	return timespec_trunc(now, sb->s_time_gran); | 
 | 246 | } | 
 | 247 | EXPORT_SYMBOL(current_fs_time); | 
 | 248 |  | 
| Eric Dumazet | 753e9c5 | 2007-05-08 00:25:32 -0700 | [diff] [blame] | 249 | /* | 
 | 250 |  * Convert jiffies to milliseconds and back. | 
 | 251 |  * | 
 | 252 |  * Avoid unnecessary multiplications/divisions in the | 
 | 253 |  * two most common HZ cases: | 
 | 254 |  */ | 
 | 255 | unsigned int inline jiffies_to_msecs(const unsigned long j) | 
 | 256 | { | 
 | 257 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | 
 | 258 | 	return (MSEC_PER_SEC / HZ) * j; | 
 | 259 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | 
 | 260 | 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); | 
 | 261 | #else | 
 | 262 | 	return (j * MSEC_PER_SEC) / HZ; | 
 | 263 | #endif | 
 | 264 | } | 
 | 265 | EXPORT_SYMBOL(jiffies_to_msecs); | 
 | 266 |  | 
 | 267 | unsigned int inline jiffies_to_usecs(const unsigned long j) | 
 | 268 | { | 
 | 269 | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | 
 | 270 | 	return (USEC_PER_SEC / HZ) * j; | 
 | 271 | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | 
 | 272 | 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); | 
 | 273 | #else | 
 | 274 | 	return (j * USEC_PER_SEC) / HZ; | 
 | 275 | #endif | 
 | 276 | } | 
 | 277 | EXPORT_SYMBOL(jiffies_to_usecs); | 
 | 278 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 279 | /** | 
| Kalin KOZHUHAROV | 8ba8e95 | 2006-04-01 01:41:22 +0200 | [diff] [blame] | 280 |  * timespec_trunc - Truncate timespec to a granularity | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 281 |  * @t: Timespec | 
| Kalin KOZHUHAROV | 8ba8e95 | 2006-04-01 01:41:22 +0200 | [diff] [blame] | 282 |  * @gran: Granularity in ns. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 283 |  * | 
| Kalin KOZHUHAROV | 8ba8e95 | 2006-04-01 01:41:22 +0200 | [diff] [blame] | 284 |  * Truncate a timespec to a granularity. gran must be smaller than a second. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 285 |  * Always rounds down. | 
 | 286 |  * | 
 | 287 |  * This function should be only used for timestamps returned by | 
 | 288 |  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because | 
 | 289 |  * it doesn't handle the better resolution of the later. | 
 | 290 |  */ | 
 | 291 | struct timespec timespec_trunc(struct timespec t, unsigned gran) | 
 | 292 | { | 
 | 293 | 	/* | 
 | 294 | 	 * Division is pretty slow so avoid it for common cases. | 
 | 295 | 	 * Currently current_kernel_time() never returns better than | 
 | 296 | 	 * jiffies resolution. Exploit that. | 
 | 297 | 	 */ | 
 | 298 | 	if (gran <= jiffies_to_usecs(1) * 1000) { | 
 | 299 | 		/* nothing */ | 
 | 300 | 	} else if (gran == 1000000000) { | 
 | 301 | 		t.tv_nsec = 0; | 
 | 302 | 	} else { | 
 | 303 | 		t.tv_nsec -= t.tv_nsec % gran; | 
 | 304 | 	} | 
 | 305 | 	return t; | 
 | 306 | } | 
 | 307 | EXPORT_SYMBOL(timespec_trunc); | 
 | 308 |  | 
 | 309 | #ifdef CONFIG_TIME_INTERPOLATION | 
 | 310 | void getnstimeofday (struct timespec *tv) | 
 | 311 | { | 
 | 312 | 	unsigned long seq,sec,nsec; | 
 | 313 |  | 
 | 314 | 	do { | 
 | 315 | 		seq = read_seqbegin(&xtime_lock); | 
 | 316 | 		sec = xtime.tv_sec; | 
 | 317 | 		nsec = xtime.tv_nsec+time_interpolator_get_offset(); | 
 | 318 | 	} while (unlikely(read_seqretry(&xtime_lock, seq))); | 
 | 319 |  | 
 | 320 | 	while (unlikely(nsec >= NSEC_PER_SEC)) { | 
 | 321 | 		nsec -= NSEC_PER_SEC; | 
 | 322 | 		++sec; | 
 | 323 | 	} | 
 | 324 | 	tv->tv_sec = sec; | 
 | 325 | 	tv->tv_nsec = nsec; | 
 | 326 | } | 
 | 327 | EXPORT_SYMBOL_GPL(getnstimeofday); | 
 | 328 |  | 
 | 329 | int do_settimeofday (struct timespec *tv) | 
 | 330 | { | 
 | 331 | 	time_t wtm_sec, sec = tv->tv_sec; | 
 | 332 | 	long wtm_nsec, nsec = tv->tv_nsec; | 
 | 333 |  | 
 | 334 | 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
 | 335 | 		return -EINVAL; | 
 | 336 |  | 
 | 337 | 	write_seqlock_irq(&xtime_lock); | 
 | 338 | 	{ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 339 | 		wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
 | 340 | 		wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
 | 341 |  | 
 | 342 | 		set_normalized_timespec(&xtime, sec, nsec); | 
 | 343 | 		set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
 | 344 |  | 
 | 345 | 		time_adjust = 0;		/* stop active adjtime() */ | 
 | 346 | 		time_status |= STA_UNSYNC; | 
 | 347 | 		time_maxerror = NTP_PHASE_LIMIT; | 
 | 348 | 		time_esterror = NTP_PHASE_LIMIT; | 
 | 349 | 		time_interpolator_reset(); | 
 | 350 | 	} | 
 | 351 | 	write_sequnlock_irq(&xtime_lock); | 
 | 352 | 	clock_was_set(); | 
 | 353 | 	return 0; | 
 | 354 | } | 
| Al Viro | 943eae0 | 2005-10-29 07:32:07 +0100 | [diff] [blame] | 355 | EXPORT_SYMBOL(do_settimeofday); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 356 |  | 
 | 357 | void do_gettimeofday (struct timeval *tv) | 
 | 358 | { | 
 | 359 | 	unsigned long seq, nsec, usec, sec, offset; | 
 | 360 | 	do { | 
 | 361 | 		seq = read_seqbegin(&xtime_lock); | 
 | 362 | 		offset = time_interpolator_get_offset(); | 
 | 363 | 		sec = xtime.tv_sec; | 
 | 364 | 		nsec = xtime.tv_nsec; | 
 | 365 | 	} while (unlikely(read_seqretry(&xtime_lock, seq))); | 
 | 366 |  | 
 | 367 | 	usec = (nsec + offset) / 1000; | 
 | 368 |  | 
 | 369 | 	while (unlikely(usec >= USEC_PER_SEC)) { | 
 | 370 | 		usec -= USEC_PER_SEC; | 
 | 371 | 		++sec; | 
 | 372 | 	} | 
 | 373 |  | 
 | 374 | 	tv->tv_sec = sec; | 
 | 375 | 	tv->tv_usec = usec; | 
 | 376 | } | 
 | 377 |  | 
 | 378 | EXPORT_SYMBOL(do_gettimeofday); | 
 | 379 |  | 
 | 380 |  | 
 | 381 | #else | 
| john stultz | cf3c769 | 2006-06-26 00:25:08 -0700 | [diff] [blame] | 382 | #ifndef CONFIG_GENERIC_TIME | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 383 | /* | 
 | 384 |  * Simulate gettimeofday using do_gettimeofday which only allows a timeval | 
 | 385 |  * and therefore only yields usec accuracy | 
 | 386 |  */ | 
 | 387 | void getnstimeofday(struct timespec *tv) | 
 | 388 | { | 
 | 389 | 	struct timeval x; | 
 | 390 |  | 
 | 391 | 	do_gettimeofday(&x); | 
 | 392 | 	tv->tv_sec = x.tv_sec; | 
 | 393 | 	tv->tv_nsec = x.tv_usec * NSEC_PER_USEC; | 
 | 394 | } | 
| Takashi Iwai | c6ecf7e | 2005-10-14 15:59:03 -0700 | [diff] [blame] | 395 | EXPORT_SYMBOL_GPL(getnstimeofday); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 396 | #endif | 
| john stultz | cf3c769 | 2006-06-26 00:25:08 -0700 | [diff] [blame] | 397 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 398 |  | 
| Thomas Gleixner | 753be62 | 2006-01-09 20:52:22 -0800 | [diff] [blame] | 399 | /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. | 
 | 400 |  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 | 
 | 401 |  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. | 
 | 402 |  * | 
 | 403 |  * [For the Julian calendar (which was used in Russia before 1917, | 
 | 404 |  * Britain & colonies before 1752, anywhere else before 1582, | 
 | 405 |  * and is still in use by some communities) leave out the | 
 | 406 |  * -year/100+year/400 terms, and add 10.] | 
 | 407 |  * | 
 | 408 |  * This algorithm was first published by Gauss (I think). | 
 | 409 |  * | 
 | 410 |  * WARNING: this function will overflow on 2106-02-07 06:28:16 on | 
 | 411 |  * machines were long is 32-bit! (However, as time_t is signed, we | 
 | 412 |  * will already get problems at other places on 2038-01-19 03:14:08) | 
 | 413 |  */ | 
 | 414 | unsigned long | 
| Ingo Molnar | f481890 | 2006-01-09 20:52:23 -0800 | [diff] [blame] | 415 | mktime(const unsigned int year0, const unsigned int mon0, | 
 | 416 |        const unsigned int day, const unsigned int hour, | 
 | 417 |        const unsigned int min, const unsigned int sec) | 
| Thomas Gleixner | 753be62 | 2006-01-09 20:52:22 -0800 | [diff] [blame] | 418 | { | 
| Ingo Molnar | f481890 | 2006-01-09 20:52:23 -0800 | [diff] [blame] | 419 | 	unsigned int mon = mon0, year = year0; | 
 | 420 |  | 
 | 421 | 	/* 1..12 -> 11,12,1..10 */ | 
 | 422 | 	if (0 >= (int) (mon -= 2)) { | 
 | 423 | 		mon += 12;	/* Puts Feb last since it has leap day */ | 
| Thomas Gleixner | 753be62 | 2006-01-09 20:52:22 -0800 | [diff] [blame] | 424 | 		year -= 1; | 
 | 425 | 	} | 
 | 426 |  | 
 | 427 | 	return ((((unsigned long) | 
 | 428 | 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) + | 
 | 429 | 		  year*365 - 719499 | 
 | 430 | 	    )*24 + hour /* now have hours */ | 
 | 431 | 	  )*60 + min /* now have minutes */ | 
 | 432 | 	)*60 + sec; /* finally seconds */ | 
 | 433 | } | 
 | 434 |  | 
| Andrew Morton | 199e705 | 2006-01-09 20:52:24 -0800 | [diff] [blame] | 435 | EXPORT_SYMBOL(mktime); | 
 | 436 |  | 
| Thomas Gleixner | 753be62 | 2006-01-09 20:52:22 -0800 | [diff] [blame] | 437 | /** | 
 | 438 |  * set_normalized_timespec - set timespec sec and nsec parts and normalize | 
 | 439 |  * | 
 | 440 |  * @ts:		pointer to timespec variable to be set | 
 | 441 |  * @sec:	seconds to set | 
 | 442 |  * @nsec:	nanoseconds to set | 
 | 443 |  * | 
 | 444 |  * Set seconds and nanoseconds field of a timespec variable and | 
 | 445 |  * normalize to the timespec storage format | 
 | 446 |  * | 
 | 447 |  * Note: The tv_nsec part is always in the range of | 
 | 448 |  * 	0 <= tv_nsec < NSEC_PER_SEC | 
 | 449 |  * For negative values only the tv_sec field is negative ! | 
 | 450 |  */ | 
| Ingo Molnar | f481890 | 2006-01-09 20:52:23 -0800 | [diff] [blame] | 451 | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | 
| Thomas Gleixner | 753be62 | 2006-01-09 20:52:22 -0800 | [diff] [blame] | 452 | { | 
 | 453 | 	while (nsec >= NSEC_PER_SEC) { | 
 | 454 | 		nsec -= NSEC_PER_SEC; | 
 | 455 | 		++sec; | 
 | 456 | 	} | 
 | 457 | 	while (nsec < 0) { | 
 | 458 | 		nsec += NSEC_PER_SEC; | 
 | 459 | 		--sec; | 
 | 460 | 	} | 
 | 461 | 	ts->tv_sec = sec; | 
 | 462 | 	ts->tv_nsec = nsec; | 
 | 463 | } | 
 | 464 |  | 
| Thomas Gleixner | f8f46da | 2006-01-09 20:52:30 -0800 | [diff] [blame] | 465 | /** | 
 | 466 |  * ns_to_timespec - Convert nanoseconds to timespec | 
 | 467 |  * @nsec:       the nanoseconds value to be converted | 
 | 468 |  * | 
 | 469 |  * Returns the timespec representation of the nsec parameter. | 
 | 470 |  */ | 
| Roman Zippel | df869b6 | 2006-03-26 01:38:11 -0800 | [diff] [blame] | 471 | struct timespec ns_to_timespec(const s64 nsec) | 
| Thomas Gleixner | f8f46da | 2006-01-09 20:52:30 -0800 | [diff] [blame] | 472 | { | 
 | 473 | 	struct timespec ts; | 
 | 474 |  | 
| George Anzinger | 88fc389 | 2006-02-03 03:04:20 -0800 | [diff] [blame] | 475 | 	if (!nsec) | 
 | 476 | 		return (struct timespec) {0, 0}; | 
 | 477 |  | 
 | 478 | 	ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec); | 
 | 479 | 	if (unlikely(nsec < 0)) | 
 | 480 | 		set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec); | 
| Thomas Gleixner | f8f46da | 2006-01-09 20:52:30 -0800 | [diff] [blame] | 481 |  | 
 | 482 | 	return ts; | 
 | 483 | } | 
| Stephen Hemminger | 85795d6 | 2007-03-24 21:35:33 -0700 | [diff] [blame] | 484 | EXPORT_SYMBOL(ns_to_timespec); | 
| Thomas Gleixner | f8f46da | 2006-01-09 20:52:30 -0800 | [diff] [blame] | 485 |  | 
 | 486 | /** | 
 | 487 |  * ns_to_timeval - Convert nanoseconds to timeval | 
 | 488 |  * @nsec:       the nanoseconds value to be converted | 
 | 489 |  * | 
 | 490 |  * Returns the timeval representation of the nsec parameter. | 
 | 491 |  */ | 
| Roman Zippel | df869b6 | 2006-03-26 01:38:11 -0800 | [diff] [blame] | 492 | struct timeval ns_to_timeval(const s64 nsec) | 
| Thomas Gleixner | f8f46da | 2006-01-09 20:52:30 -0800 | [diff] [blame] | 493 | { | 
 | 494 | 	struct timespec ts = ns_to_timespec(nsec); | 
 | 495 | 	struct timeval tv; | 
 | 496 |  | 
 | 497 | 	tv.tv_sec = ts.tv_sec; | 
 | 498 | 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; | 
 | 499 |  | 
 | 500 | 	return tv; | 
 | 501 | } | 
| Eric Dumazet | b7aa0bf | 2007-04-19 16:16:32 -0700 | [diff] [blame] | 502 | EXPORT_SYMBOL(ns_to_timeval); | 
| Thomas Gleixner | f8f46da | 2006-01-09 20:52:30 -0800 | [diff] [blame] | 503 |  | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 504 | /* | 
| Ingo Molnar | 41cf544 | 2007-02-16 01:27:28 -0800 | [diff] [blame] | 505 |  * When we convert to jiffies then we interpret incoming values | 
 | 506 |  * the following way: | 
 | 507 |  * | 
 | 508 |  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) | 
 | 509 |  * | 
 | 510 |  * - 'too large' values [that would result in larger than | 
 | 511 |  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. | 
 | 512 |  * | 
 | 513 |  * - all other values are converted to jiffies by either multiplying | 
 | 514 |  *   the input value by a factor or dividing it with a factor | 
 | 515 |  * | 
 | 516 |  * We must also be careful about 32-bit overflows. | 
 | 517 |  */ | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 518 | unsigned long msecs_to_jiffies(const unsigned int m) | 
 | 519 | { | 
| Ingo Molnar | 41cf544 | 2007-02-16 01:27:28 -0800 | [diff] [blame] | 520 | 	/* | 
 | 521 | 	 * Negative value, means infinite timeout: | 
 | 522 | 	 */ | 
 | 523 | 	if ((int)m < 0) | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 524 | 		return MAX_JIFFY_OFFSET; | 
| Ingo Molnar | 41cf544 | 2007-02-16 01:27:28 -0800 | [diff] [blame] | 525 |  | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 526 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | 
| Ingo Molnar | 41cf544 | 2007-02-16 01:27:28 -0800 | [diff] [blame] | 527 | 	/* | 
 | 528 | 	 * HZ is equal to or smaller than 1000, and 1000 is a nice | 
 | 529 | 	 * round multiple of HZ, divide with the factor between them, | 
 | 530 | 	 * but round upwards: | 
 | 531 | 	 */ | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 532 | 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); | 
 | 533 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | 
| Ingo Molnar | 41cf544 | 2007-02-16 01:27:28 -0800 | [diff] [blame] | 534 | 	/* | 
 | 535 | 	 * HZ is larger than 1000, and HZ is a nice round multiple of | 
 | 536 | 	 * 1000 - simply multiply with the factor between them. | 
 | 537 | 	 * | 
 | 538 | 	 * But first make sure the multiplication result cannot | 
 | 539 | 	 * overflow: | 
 | 540 | 	 */ | 
 | 541 | 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | 
 | 542 | 		return MAX_JIFFY_OFFSET; | 
 | 543 |  | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 544 | 	return m * (HZ / MSEC_PER_SEC); | 
 | 545 | #else | 
| Ingo Molnar | 41cf544 | 2007-02-16 01:27:28 -0800 | [diff] [blame] | 546 | 	/* | 
 | 547 | 	 * Generic case - multiply, round and divide. But first | 
 | 548 | 	 * check that if we are doing a net multiplication, that | 
 | 549 | 	 * we wouldnt overflow: | 
 | 550 | 	 */ | 
 | 551 | 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | 
 | 552 | 		return MAX_JIFFY_OFFSET; | 
 | 553 |  | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 554 | 	return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC; | 
 | 555 | #endif | 
 | 556 | } | 
 | 557 | EXPORT_SYMBOL(msecs_to_jiffies); | 
 | 558 |  | 
 | 559 | unsigned long usecs_to_jiffies(const unsigned int u) | 
 | 560 | { | 
 | 561 | 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) | 
 | 562 | 		return MAX_JIFFY_OFFSET; | 
 | 563 | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | 
 | 564 | 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); | 
 | 565 | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | 
 | 566 | 	return u * (HZ / USEC_PER_SEC); | 
 | 567 | #else | 
 | 568 | 	return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC; | 
 | 569 | #endif | 
 | 570 | } | 
 | 571 | EXPORT_SYMBOL(usecs_to_jiffies); | 
 | 572 |  | 
 | 573 | /* | 
 | 574 |  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note | 
 | 575 |  * that a remainder subtract here would not do the right thing as the | 
 | 576 |  * resolution values don't fall on second boundries.  I.e. the line: | 
 | 577 |  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. | 
 | 578 |  * | 
 | 579 |  * Rather, we just shift the bits off the right. | 
 | 580 |  * | 
 | 581 |  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec | 
 | 582 |  * value to a scaled second value. | 
 | 583 |  */ | 
 | 584 | unsigned long | 
 | 585 | timespec_to_jiffies(const struct timespec *value) | 
 | 586 | { | 
 | 587 | 	unsigned long sec = value->tv_sec; | 
 | 588 | 	long nsec = value->tv_nsec + TICK_NSEC - 1; | 
 | 589 |  | 
 | 590 | 	if (sec >= MAX_SEC_IN_JIFFIES){ | 
 | 591 | 		sec = MAX_SEC_IN_JIFFIES; | 
 | 592 | 		nsec = 0; | 
 | 593 | 	} | 
 | 594 | 	return (((u64)sec * SEC_CONVERSION) + | 
 | 595 | 		(((u64)nsec * NSEC_CONVERSION) >> | 
 | 596 | 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | 
 | 597 |  | 
 | 598 | } | 
 | 599 | EXPORT_SYMBOL(timespec_to_jiffies); | 
 | 600 |  | 
 | 601 | void | 
 | 602 | jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | 
 | 603 | { | 
 | 604 | 	/* | 
 | 605 | 	 * Convert jiffies to nanoseconds and separate with | 
 | 606 | 	 * one divide. | 
 | 607 | 	 */ | 
 | 608 | 	u64 nsec = (u64)jiffies * TICK_NSEC; | 
 | 609 | 	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); | 
 | 610 | } | 
 | 611 | EXPORT_SYMBOL(jiffies_to_timespec); | 
 | 612 |  | 
 | 613 | /* Same for "timeval" | 
 | 614 |  * | 
 | 615 |  * Well, almost.  The problem here is that the real system resolution is | 
 | 616 |  * in nanoseconds and the value being converted is in micro seconds. | 
 | 617 |  * Also for some machines (those that use HZ = 1024, in-particular), | 
 | 618 |  * there is a LARGE error in the tick size in microseconds. | 
 | 619 |  | 
 | 620 |  * The solution we use is to do the rounding AFTER we convert the | 
 | 621 |  * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off. | 
 | 622 |  * Instruction wise, this should cost only an additional add with carry | 
 | 623 |  * instruction above the way it was done above. | 
 | 624 |  */ | 
 | 625 | unsigned long | 
 | 626 | timeval_to_jiffies(const struct timeval *value) | 
 | 627 | { | 
 | 628 | 	unsigned long sec = value->tv_sec; | 
 | 629 | 	long usec = value->tv_usec; | 
 | 630 |  | 
 | 631 | 	if (sec >= MAX_SEC_IN_JIFFIES){ | 
 | 632 | 		sec = MAX_SEC_IN_JIFFIES; | 
 | 633 | 		usec = 0; | 
 | 634 | 	} | 
 | 635 | 	return (((u64)sec * SEC_CONVERSION) + | 
 | 636 | 		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >> | 
 | 637 | 		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | 
 | 638 | } | 
| Thomas Bittermann | 456a09d | 2007-04-04 22:20:54 +0200 | [diff] [blame] | 639 | EXPORT_SYMBOL(timeval_to_jiffies); | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 640 |  | 
 | 641 | void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | 
 | 642 | { | 
 | 643 | 	/* | 
 | 644 | 	 * Convert jiffies to nanoseconds and separate with | 
 | 645 | 	 * one divide. | 
 | 646 | 	 */ | 
 | 647 | 	u64 nsec = (u64)jiffies * TICK_NSEC; | 
 | 648 | 	long tv_usec; | 
 | 649 |  | 
 | 650 | 	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec); | 
 | 651 | 	tv_usec /= NSEC_PER_USEC; | 
 | 652 | 	value->tv_usec = tv_usec; | 
 | 653 | } | 
| Thomas Bittermann | 456a09d | 2007-04-04 22:20:54 +0200 | [diff] [blame] | 654 | EXPORT_SYMBOL(jiffies_to_timeval); | 
| Ingo Molnar | 8b9365d | 2007-02-16 01:27:27 -0800 | [diff] [blame] | 655 |  | 
 | 656 | /* | 
 | 657 |  * Convert jiffies/jiffies_64 to clock_t and back. | 
 | 658 |  */ | 
 | 659 | clock_t jiffies_to_clock_t(long x) | 
 | 660 | { | 
 | 661 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | 
 | 662 | 	return x / (HZ / USER_HZ); | 
 | 663 | #else | 
 | 664 | 	u64 tmp = (u64)x * TICK_NSEC; | 
 | 665 | 	do_div(tmp, (NSEC_PER_SEC / USER_HZ)); | 
 | 666 | 	return (long)tmp; | 
 | 667 | #endif | 
 | 668 | } | 
 | 669 | EXPORT_SYMBOL(jiffies_to_clock_t); | 
 | 670 |  | 
 | 671 | unsigned long clock_t_to_jiffies(unsigned long x) | 
 | 672 | { | 
 | 673 | #if (HZ % USER_HZ)==0 | 
 | 674 | 	if (x >= ~0UL / (HZ / USER_HZ)) | 
 | 675 | 		return ~0UL; | 
 | 676 | 	return x * (HZ / USER_HZ); | 
 | 677 | #else | 
 | 678 | 	u64 jif; | 
 | 679 |  | 
 | 680 | 	/* Don't worry about loss of precision here .. */ | 
 | 681 | 	if (x >= ~0UL / HZ * USER_HZ) | 
 | 682 | 		return ~0UL; | 
 | 683 |  | 
 | 684 | 	/* .. but do try to contain it here */ | 
 | 685 | 	jif = x * (u64) HZ; | 
 | 686 | 	do_div(jif, USER_HZ); | 
 | 687 | 	return jif; | 
 | 688 | #endif | 
 | 689 | } | 
 | 690 | EXPORT_SYMBOL(clock_t_to_jiffies); | 
 | 691 |  | 
 | 692 | u64 jiffies_64_to_clock_t(u64 x) | 
 | 693 | { | 
 | 694 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | 
 | 695 | 	do_div(x, HZ / USER_HZ); | 
 | 696 | #else | 
 | 697 | 	/* | 
 | 698 | 	 * There are better ways that don't overflow early, | 
 | 699 | 	 * but even this doesn't overflow in hundreds of years | 
 | 700 | 	 * in 64 bits, so.. | 
 | 701 | 	 */ | 
 | 702 | 	x *= TICK_NSEC; | 
 | 703 | 	do_div(x, (NSEC_PER_SEC / USER_HZ)); | 
 | 704 | #endif | 
 | 705 | 	return x; | 
 | 706 | } | 
 | 707 |  | 
 | 708 | EXPORT_SYMBOL(jiffies_64_to_clock_t); | 
 | 709 |  | 
 | 710 | u64 nsec_to_clock_t(u64 x) | 
 | 711 | { | 
 | 712 | #if (NSEC_PER_SEC % USER_HZ) == 0 | 
 | 713 | 	do_div(x, (NSEC_PER_SEC / USER_HZ)); | 
 | 714 | #elif (USER_HZ % 512) == 0 | 
 | 715 | 	x *= USER_HZ/512; | 
 | 716 | 	do_div(x, (NSEC_PER_SEC / 512)); | 
 | 717 | #else | 
 | 718 | 	/* | 
 | 719 |          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | 
 | 720 |          * overflow after 64.99 years. | 
 | 721 |          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | 
 | 722 |          */ | 
 | 723 | 	x *= 9; | 
 | 724 | 	do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) / | 
 | 725 | 				  USER_HZ)); | 
 | 726 | #endif | 
 | 727 | 	return x; | 
 | 728 | } | 
 | 729 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 730 | #if (BITS_PER_LONG < 64) | 
 | 731 | u64 get_jiffies_64(void) | 
 | 732 | { | 
 | 733 | 	unsigned long seq; | 
 | 734 | 	u64 ret; | 
 | 735 |  | 
 | 736 | 	do { | 
 | 737 | 		seq = read_seqbegin(&xtime_lock); | 
 | 738 | 		ret = jiffies_64; | 
 | 739 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 | 740 | 	return ret; | 
 | 741 | } | 
 | 742 |  | 
 | 743 | EXPORT_SYMBOL(get_jiffies_64); | 
 | 744 | #endif | 
 | 745 |  | 
 | 746 | EXPORT_SYMBOL(jiffies); |