blob: f4e346092a53addabcf8698bb461b6fadd022739 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/types.h>
11#include <linux/pci.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/interrupt.h>
15
16#include <asm/apb.h>
17#include <asm/pbm.h>
18#include <asm/iommu.h>
19#include <asm/irq.h>
20#include <asm/smp.h>
21#include <asm/oplib.h>
David S. Millere87dc352006-06-21 18:18:47 -070022#include <asm/prom.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070023
24#include "pci_impl.h"
25#include "iommu_common.h"
26
27/* All SABRE registers are 64-bits. The following accessor
28 * routines are how they are accessed. The REG parameter
29 * is a physical address.
30 */
31#define sabre_read(__reg) \
32({ u64 __ret; \
33 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "=r" (__ret) \
35 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
36 : "memory"); \
37 __ret; \
38})
39#define sabre_write(__reg, __val) \
40 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : /* no outputs */ \
42 : "r" (__val), "r" (__reg), \
43 "i" (ASI_PHYS_BYPASS_EC_E) \
44 : "memory")
45
46/* SABRE PCI controller register offsets and definitions. */
47#define SABRE_UE_AFSR 0x0030UL
48#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
49#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
50#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
51#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
52#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
53#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
54#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
55#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
56#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
57#define SABRE_UECE_AFAR 0x0038UL
58#define SABRE_CE_AFSR 0x0040UL
59#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
60#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
61#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
62#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
63#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
64#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
65#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
66#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
67#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
68#define SABRE_IOMMU_CONTROL 0x0200UL
69#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
70#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
71#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
72#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
73#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
74#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
75#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
76#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
77#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
78#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
79#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
80#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
81#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
83#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
84#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
85#define SABRE_IOMMU_TSBBASE 0x0208UL
86#define SABRE_IOMMU_FLUSH 0x0210UL
87#define SABRE_IMAP_A_SLOT0 0x0c00UL
88#define SABRE_IMAP_B_SLOT0 0x0c20UL
89#define SABRE_IMAP_SCSI 0x1000UL
90#define SABRE_IMAP_ETH 0x1008UL
91#define SABRE_IMAP_BPP 0x1010UL
92#define SABRE_IMAP_AU_REC 0x1018UL
93#define SABRE_IMAP_AU_PLAY 0x1020UL
94#define SABRE_IMAP_PFAIL 0x1028UL
95#define SABRE_IMAP_KMS 0x1030UL
96#define SABRE_IMAP_FLPY 0x1038UL
97#define SABRE_IMAP_SHW 0x1040UL
98#define SABRE_IMAP_KBD 0x1048UL
99#define SABRE_IMAP_MS 0x1050UL
100#define SABRE_IMAP_SER 0x1058UL
101#define SABRE_IMAP_UE 0x1070UL
102#define SABRE_IMAP_CE 0x1078UL
103#define SABRE_IMAP_PCIERR 0x1080UL
104#define SABRE_IMAP_GFX 0x1098UL
105#define SABRE_IMAP_EUPA 0x10a0UL
106#define SABRE_ICLR_A_SLOT0 0x1400UL
107#define SABRE_ICLR_B_SLOT0 0x1480UL
108#define SABRE_ICLR_SCSI 0x1800UL
109#define SABRE_ICLR_ETH 0x1808UL
110#define SABRE_ICLR_BPP 0x1810UL
111#define SABRE_ICLR_AU_REC 0x1818UL
112#define SABRE_ICLR_AU_PLAY 0x1820UL
113#define SABRE_ICLR_PFAIL 0x1828UL
114#define SABRE_ICLR_KMS 0x1830UL
115#define SABRE_ICLR_FLPY 0x1838UL
116#define SABRE_ICLR_SHW 0x1840UL
117#define SABRE_ICLR_KBD 0x1848UL
118#define SABRE_ICLR_MS 0x1850UL
119#define SABRE_ICLR_SER 0x1858UL
120#define SABRE_ICLR_UE 0x1870UL
121#define SABRE_ICLR_CE 0x1878UL
122#define SABRE_ICLR_PCIERR 0x1880UL
123#define SABRE_WRSYNC 0x1c20UL
124#define SABRE_PCICTRL 0x2000UL
125#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
126#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
127#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
129#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
130#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
131#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
132#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
133#define SABRE_PIOAFSR 0x2010UL
134#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
135#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
136#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
137#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
138#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
139#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
140#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
141#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
142#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
143#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
144#define SABRE_PIOAFAR 0x2018UL
145#define SABRE_PCIDIAG 0x2020UL
146#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
147#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
148#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
149#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
150#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
151#define SABRE_PCITASR 0x2028UL
152#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
153#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
154#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
155#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
156#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
157#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
158#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
159#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
160#define SABRE_PIOBUF_DIAG 0x5000UL
161#define SABRE_DMABUF_DIAGLO 0x5100UL
162#define SABRE_DMABUF_DIAGHI 0x51c0UL
163#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
164#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
165#define SABRE_IOMMU_VADIAG 0xa400UL
166#define SABRE_IOMMU_TCDIAG 0xa408UL
167#define SABRE_IOMMU_TAG 0xa580UL
168#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
169#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
170#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
171#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
172#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
173#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
174#define SABRE_IOMMU_DATA 0xa600UL
175#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
176#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
177#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
178#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
179#define SABRE_PCI_IRQSTATE 0xa800UL
180#define SABRE_OBIO_IRQSTATE 0xa808UL
181#define SABRE_FFBCFG 0xf000UL
182#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
183#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
184#define SABRE_MCCTRL0 0xf010UL
185#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
186#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
187#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
188#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
189#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
190#define SABRE_MCCTRL1 0xf018UL
191#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
192#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
193#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
194#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
195#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
196#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
197#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
198#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
199#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
200#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
201#define SABRE_RESETCTRL 0xf020UL
202
203#define SABRE_CONFIGSPACE 0x001000000UL
204#define SABRE_IOSPACE 0x002000000UL
205#define SABRE_IOSPACE_SIZE 0x000ffffffUL
206#define SABRE_MEMSPACE 0x100000000UL
207#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208
209/* UltraSparc-IIi Programmer's Manual, page 325, PCI
210 * configuration space address format:
211 *
212 * 32 24 23 16 15 11 10 8 7 2 1 0
213 * ---------------------------------------------------------
214 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215 * ---------------------------------------------------------
216 */
217#define SABRE_CONFIG_BASE(PBM) \
218 ((PBM)->config_space | (1UL << 24))
219#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
220 (((unsigned long)(BUS) << 16) | \
221 ((unsigned long)(DEVFN) << 8) | \
222 ((unsigned long)(REG)))
223
224static int hummingbird_p;
225static struct pci_bus *sabre_root_bus;
226
227static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
228 unsigned char bus,
229 unsigned int devfn,
230 int where)
231{
232 if (!pbm)
233 return NULL;
234 return (void *)
235 (SABRE_CONFIG_BASE(pbm) |
236 SABRE_CONFIG_ENCODE(bus, devfn, where));
237}
238
239static int sabre_out_of_range(unsigned char devfn)
240{
241 if (hummingbird_p)
242 return 0;
243
244 return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
245 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
246 (PCI_SLOT(devfn) > 1));
247}
248
249static int __sabre_out_of_range(struct pci_pbm_info *pbm,
250 unsigned char bus,
251 unsigned char devfn)
252{
253 if (hummingbird_p)
254 return 0;
255
256 return ((pbm->parent == 0) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257 ((pbm == &pbm->parent->pbm_A) &&
258 (bus == pbm->pci_first_busno) &&
259 PCI_SLOT(devfn) > 8));
260}
261
262static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
263 int where, int size, u32 *value)
264{
265 struct pci_pbm_info *pbm = bus_dev->sysdata;
266 unsigned char bus = bus_dev->number;
267 u32 *addr;
268 u16 tmp16;
269 u8 tmp8;
270
271 switch (size) {
272 case 1:
273 *value = 0xff;
274 break;
275 case 2:
276 *value = 0xffff;
277 break;
278 case 4:
279 *value = 0xffffffff;
280 break;
281 }
282
283 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
284 if (!addr)
285 return PCIBIOS_SUCCESSFUL;
286
287 if (__sabre_out_of_range(pbm, bus, devfn))
288 return PCIBIOS_SUCCESSFUL;
289
290 switch (size) {
291 case 1:
292 pci_config_read8((u8 *) addr, &tmp8);
293 *value = tmp8;
294 break;
295
296 case 2:
297 if (where & 0x01) {
298 printk("pci_read_config_word: misaligned reg [%x]\n",
299 where);
300 return PCIBIOS_SUCCESSFUL;
301 }
302 pci_config_read16((u16 *) addr, &tmp16);
303 *value = tmp16;
304 break;
305
306 case 4:
307 if (where & 0x03) {
308 printk("pci_read_config_dword: misaligned reg [%x]\n",
309 where);
310 return PCIBIOS_SUCCESSFUL;
311 }
312 pci_config_read32(addr, value);
313 break;
314 }
315
316 return PCIBIOS_SUCCESSFUL;
317}
318
319static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
320 int where, int size, u32 *value)
321{
322 if (!bus->number && sabre_out_of_range(devfn)) {
323 switch (size) {
324 case 1:
325 *value = 0xff;
326 break;
327 case 2:
328 *value = 0xffff;
329 break;
330 case 4:
331 *value = 0xffffffff;
332 break;
333 }
334 return PCIBIOS_SUCCESSFUL;
335 }
336
337 if (bus->number || PCI_SLOT(devfn))
338 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
339
340 /* When accessing PCI config space of the PCI controller itself (bus
341 * 0, device slot 0, function 0) there are restrictions. Each
342 * register must be accessed as it's natural size. Thus, for example
343 * the Vendor ID must be accessed as a 16-bit quantity.
344 */
345
346 switch (size) {
347 case 1:
348 if (where < 8) {
349 u32 tmp32;
350 u16 tmp16;
351
352 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
353 tmp16 = (u16) tmp32;
354 if (where & 1)
355 *value = tmp16 >> 8;
356 else
357 *value = tmp16 & 0xff;
358 } else
359 return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
360 break;
361
362 case 2:
363 if (where < 8)
364 return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
365 else {
366 u32 tmp32;
367 u8 tmp8;
368
369 __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
370 tmp8 = (u8) tmp32;
371 *value = tmp8;
372 __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
373 tmp8 = (u8) tmp32;
374 *value |= tmp8 << 8;
375 }
376 break;
377
378 case 4: {
379 u32 tmp32;
380 u16 tmp16;
381
382 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
383 tmp16 = (u16) tmp32;
384 *value = tmp16;
385 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
386 tmp16 = (u16) tmp32;
387 *value |= tmp16 << 16;
388 break;
389 }
390 }
391 return PCIBIOS_SUCCESSFUL;
392}
393
394static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
395 int where, int size, u32 value)
396{
397 struct pci_pbm_info *pbm = bus_dev->sysdata;
398 unsigned char bus = bus_dev->number;
399 u32 *addr;
400
401 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
402 if (!addr)
403 return PCIBIOS_SUCCESSFUL;
404
405 if (__sabre_out_of_range(pbm, bus, devfn))
406 return PCIBIOS_SUCCESSFUL;
407
408 switch (size) {
409 case 1:
410 pci_config_write8((u8 *) addr, value);
411 break;
412
413 case 2:
414 if (where & 0x01) {
415 printk("pci_write_config_word: misaligned reg [%x]\n",
416 where);
417 return PCIBIOS_SUCCESSFUL;
418 }
419 pci_config_write16((u16 *) addr, value);
420 break;
421
422 case 4:
423 if (where & 0x03) {
424 printk("pci_write_config_dword: misaligned reg [%x]\n",
425 where);
426 return PCIBIOS_SUCCESSFUL;
427 }
428 pci_config_write32(addr, value);
429 break;
430 }
431
432 return PCIBIOS_SUCCESSFUL;
433}
434
435static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
436 int where, int size, u32 value)
437{
438 if (bus->number)
439 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
440
441 if (sabre_out_of_range(devfn))
442 return PCIBIOS_SUCCESSFUL;
443
444 switch (size) {
445 case 1:
446 if (where < 8) {
447 u32 tmp32;
448 u16 tmp16;
449
450 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
451 tmp16 = (u16) tmp32;
452 if (where & 1) {
453 value &= 0x00ff;
454 value |= tmp16 << 8;
455 } else {
456 value &= 0xff00;
457 value |= tmp16;
458 }
459 tmp32 = (u32) tmp16;
460 return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
461 } else
462 return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
463 break;
464 case 2:
465 if (where < 8)
466 return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
467 else {
468 __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
469 __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
470 }
471 break;
472 case 4:
473 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
474 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
475 break;
476 }
477 return PCIBIOS_SUCCESSFUL;
478}
479
480static struct pci_ops sabre_ops = {
481 .read = sabre_read_pci_cfg,
482 .write = sabre_write_pci_cfg,
483};
484
Linus Torvalds1da177e2005-04-16 15:20:36 -0700485/* SABRE error handling support. */
486static void sabre_check_iommu_error(struct pci_controller_info *p,
487 unsigned long afsr,
488 unsigned long afar)
489{
490 struct pci_iommu *iommu = p->pbm_A.iommu;
491 unsigned long iommu_tag[16];
492 unsigned long iommu_data[16];
493 unsigned long flags;
494 u64 control;
495 int i;
496
497 spin_lock_irqsave(&iommu->lock, flags);
498 control = sabre_read(iommu->iommu_control);
499 if (control & SABRE_IOMMUCTRL_ERR) {
500 char *type_string;
501
502 /* Clear the error encountered bit.
503 * NOTE: On Sabre this is write 1 to clear,
504 * which is different from Psycho.
505 */
506 sabre_write(iommu->iommu_control, control);
507 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
508 case 1:
509 type_string = "Invalid Error";
510 break;
511 case 3:
512 type_string = "ECC Error";
513 break;
514 default:
515 type_string = "Unknown";
516 break;
517 };
518 printk("SABRE%d: IOMMU Error, type[%s]\n",
519 p->index, type_string);
520
521 /* Enter diagnostic mode and probe for error'd
522 * entries in the IOTLB.
523 */
524 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
525 sabre_write(iommu->iommu_control,
526 (control | SABRE_IOMMUCTRL_DENAB));
527 for (i = 0; i < 16; i++) {
528 unsigned long base = p->pbm_A.controller_regs;
529
530 iommu_tag[i] =
531 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
532 iommu_data[i] =
533 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
534 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
535 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
536 }
537 sabre_write(iommu->iommu_control, control);
538
539 for (i = 0; i < 16; i++) {
540 unsigned long tag, data;
541
542 tag = iommu_tag[i];
543 if (!(tag & SABRE_IOMMUTAG_ERR))
544 continue;
545
546 data = iommu_data[i];
547 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
548 case 1:
549 type_string = "Invalid Error";
550 break;
551 case 3:
552 type_string = "ECC Error";
553 break;
554 default:
555 type_string = "Unknown";
556 break;
557 };
558 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
559 p->index, i, tag, type_string,
560 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
561 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
562 ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
563 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
564 p->index, i, data,
565 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
566 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
567 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
568 ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
569 }
570 }
571 spin_unlock_irqrestore(&iommu->lock, flags);
572}
573
Al Viro6d24c8d2006-10-08 08:23:28 -0400574static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700575{
576 struct pci_controller_info *p = dev_id;
577 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
578 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
579 unsigned long afsr, afar, error_bits;
580 int reported;
581
582 /* Latch uncorrectable error status. */
583 afar = sabre_read(afar_reg);
584 afsr = sabre_read(afsr_reg);
585
586 /* Clear the primary/secondary error status bits. */
587 error_bits = afsr &
588 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
589 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
590 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
591 if (!error_bits)
592 return IRQ_NONE;
593 sabre_write(afsr_reg, error_bits);
594
595 /* Log the error. */
596 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
597 p->index,
598 ((error_bits & SABRE_UEAFSR_PDRD) ?
599 "DMA Read" :
600 ((error_bits & SABRE_UEAFSR_PDWR) ?
601 "DMA Write" : "???")),
602 ((error_bits & SABRE_UEAFSR_PDTE) ?
603 ":Translation Error" : ""));
604 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
605 p->index,
606 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
607 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
608 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
609 printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
610 printk("SABRE%d: UE Secondary errors [", p->index);
611 reported = 0;
612 if (afsr & SABRE_UEAFSR_SDRD) {
613 reported++;
614 printk("(DMA Read)");
615 }
616 if (afsr & SABRE_UEAFSR_SDWR) {
617 reported++;
618 printk("(DMA Write)");
619 }
620 if (afsr & SABRE_UEAFSR_SDTE) {
621 reported++;
622 printk("(Translation Error)");
623 }
624 if (!reported)
625 printk("(none)");
626 printk("]\n");
627
628 /* Interrogate IOMMU for error status. */
629 sabre_check_iommu_error(p, afsr, afar);
630
631 return IRQ_HANDLED;
632}
633
Al Viro6d24c8d2006-10-08 08:23:28 -0400634static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635{
636 struct pci_controller_info *p = dev_id;
637 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
638 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
639 unsigned long afsr, afar, error_bits;
640 int reported;
641
642 /* Latch error status. */
643 afar = sabre_read(afar_reg);
644 afsr = sabre_read(afsr_reg);
645
646 /* Clear primary/secondary error status bits. */
647 error_bits = afsr &
648 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
649 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
650 if (!error_bits)
651 return IRQ_NONE;
652 sabre_write(afsr_reg, error_bits);
653
654 /* Log the error. */
655 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
656 p->index,
657 ((error_bits & SABRE_CEAFSR_PDRD) ?
658 "DMA Read" :
659 ((error_bits & SABRE_CEAFSR_PDWR) ?
660 "DMA Write" : "???")));
661
662 /* XXX Use syndrome and afar to print out module string just like
663 * XXX UDB CE trap handler does... -DaveM
664 */
665 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
666 "was_block(%d)\n",
667 p->index,
668 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
669 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
670 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
671 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
672 printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
673 printk("SABRE%d: CE Secondary errors [", p->index);
674 reported = 0;
675 if (afsr & SABRE_CEAFSR_SDRD) {
676 reported++;
677 printk("(DMA Read)");
678 }
679 if (afsr & SABRE_CEAFSR_SDWR) {
680 reported++;
681 printk("(DMA Write)");
682 }
683 if (!reported)
684 printk("(none)");
685 printk("]\n");
686
687 return IRQ_HANDLED;
688}
689
690static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
691{
692 unsigned long csr_reg, csr, csr_error_bits;
693 irqreturn_t ret = IRQ_NONE;
694 u16 stat;
695
696 csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
697 csr = sabre_read(csr_reg);
698 csr_error_bits =
699 csr & SABRE_PCICTRL_SERR;
700 if (csr_error_bits) {
701 /* Clear the errors. */
702 sabre_write(csr_reg, csr);
703
704 /* Log 'em. */
705 if (csr_error_bits & SABRE_PCICTRL_SERR)
706 printk("SABRE%d: PCI SERR signal asserted.\n",
707 p->index);
708 ret = IRQ_HANDLED;
709 }
David S. Millera2fb23a2007-02-28 23:35:04 -0800710 pci_bus_read_config_word(sabre_root_bus, 0,
711 PCI_STATUS, &stat);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700712 if (stat & (PCI_STATUS_PARITY |
713 PCI_STATUS_SIG_TARGET_ABORT |
714 PCI_STATUS_REC_TARGET_ABORT |
715 PCI_STATUS_REC_MASTER_ABORT |
716 PCI_STATUS_SIG_SYSTEM_ERROR)) {
717 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
718 p->index, stat);
David S. Millera2fb23a2007-02-28 23:35:04 -0800719 pci_bus_write_config_word(sabre_root_bus, 0,
720 PCI_STATUS, 0xffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700721 ret = IRQ_HANDLED;
722 }
723 return ret;
724}
725
Al Viro6d24c8d2006-10-08 08:23:28 -0400726static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700727{
728 struct pci_controller_info *p = dev_id;
729 unsigned long afsr_reg, afar_reg;
730 unsigned long afsr, afar, error_bits;
731 int reported;
732
733 afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
734 afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
735
736 /* Latch error status. */
737 afar = sabre_read(afar_reg);
738 afsr = sabre_read(afsr_reg);
739
740 /* Clear primary/secondary error status bits. */
741 error_bits = afsr &
742 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
743 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
744 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
745 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
746 if (!error_bits)
747 return sabre_pcierr_intr_other(p);
748 sabre_write(afsr_reg, error_bits);
749
750 /* Log the error. */
751 printk("SABRE%d: PCI Error, primary error type[%s]\n",
752 p->index,
753 (((error_bits & SABRE_PIOAFSR_PMA) ?
754 "Master Abort" :
755 ((error_bits & SABRE_PIOAFSR_PTA) ?
756 "Target Abort" :
757 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
758 "Excessive Retries" :
759 ((error_bits & SABRE_PIOAFSR_PPERR) ?
760 "Parity Error" : "???"))))));
761 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
762 p->index,
763 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
764 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
765 printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
766 printk("SABRE%d: PCI Secondary errors [", p->index);
767 reported = 0;
768 if (afsr & SABRE_PIOAFSR_SMA) {
769 reported++;
770 printk("(Master Abort)");
771 }
772 if (afsr & SABRE_PIOAFSR_STA) {
773 reported++;
774 printk("(Target Abort)");
775 }
776 if (afsr & SABRE_PIOAFSR_SRTRY) {
777 reported++;
778 printk("(Excessive Retries)");
779 }
780 if (afsr & SABRE_PIOAFSR_SPERR) {
781 reported++;
782 printk("(Parity Error)");
783 }
784 if (!reported)
785 printk("(none)");
786 printk("]\n");
787
788 /* For the error types shown, scan both PCI buses for devices
789 * which have logged that error type.
790 */
791
792 /* If we see a Target Abort, this could be the result of an
793 * IOMMU translation error of some sort. It is extremely
794 * useful to log this information as usually it indicates
795 * a bug in the IOMMU support code or a PCI device driver.
796 */
797 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
798 sabre_check_iommu_error(p, afsr, afar);
799 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 }
David S. Miller01f94c42007-03-04 12:53:19 -0800801 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
David S. Miller01f94c42007-03-04 12:53:19 -0800803
Linus Torvalds1da177e2005-04-16 15:20:36 -0700804 /* For excessive retries, SABRE/PBM will abort the device
805 * and there is no way to specifically check for excessive
806 * retries in the config space status registers. So what
807 * we hope is that we'll catch it via the master/target
808 * abort events.
809 */
810
David S. Miller01f94c42007-03-04 12:53:19 -0800811 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700812 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700813
814 return IRQ_HANDLED;
815}
816
David S. Miller085ae412005-08-08 13:19:08 -0700817static void sabre_register_error_handlers(struct pci_controller_info *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700818{
819 struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
David S. Miller2b1e5972006-06-29 15:07:37 -0700820 struct device_node *dp = pbm->prom_node;
821 struct of_device *op;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700822 unsigned long base = pbm->controller_regs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700823 u64 tmp;
824
David S. Miller2b1e5972006-06-29 15:07:37 -0700825 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
826 dp = dp->parent;
827
828 op = of_find_device_by_node(dp);
829 if (!op)
830 return;
831
832 /* Sabre/Hummingbird IRQ property layout is:
833 * 0: PCI ERR
834 * 1: UE ERR
835 * 2: CE ERR
836 * 3: POWER FAIL
837 */
838 if (op->num_irqs < 4)
839 return;
840
Linus Torvalds1da177e2005-04-16 15:20:36 -0700841 /* We clear the error bits in the appropriate AFSR before
842 * registering the handler so that we don't get spurious
843 * interrupts.
844 */
845 sabre_write(base + SABRE_UE_AFSR,
846 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
847 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
848 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
David S. Miller2b1e5972006-06-29 15:07:37 -0700849
Thomas Gleixnerd356d7f2006-07-01 19:29:26 -0700850 request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851
852 sabre_write(base + SABRE_CE_AFSR,
853 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
854 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855
Thomas Gleixnerd356d7f2006-07-01 19:29:26 -0700856 request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
857 request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
David S. Miller2b1e5972006-06-29 15:07:37 -0700858 "SABRE PCIERR", p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859
860 tmp = sabre_read(base + SABRE_PCICTRL);
861 tmp |= SABRE_PCICTRL_ERREN;
862 sabre_write(base + SABRE_PCICTRL, tmp);
863}
864
David S. Miller085ae412005-08-08 13:19:08 -0700865static void sabre_resource_adjust(struct pci_dev *pdev,
866 struct resource *res,
867 struct resource *root)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700868{
869 struct pci_pbm_info *pbm = pdev->bus->sysdata;
870 unsigned long base;
871
872 if (res->flags & IORESOURCE_IO)
873 base = pbm->controller_regs + SABRE_IOSPACE;
874 else
875 base = pbm->controller_regs + SABRE_MEMSPACE;
876
877 res->start += base;
878 res->end += base;
879}
880
David S. Miller085ae412005-08-08 13:19:08 -0700881static void sabre_base_address_update(struct pci_dev *pdev, int resource)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882{
David S. Millera2fb23a2007-02-28 23:35:04 -0800883 struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700884 struct resource *res;
885 unsigned long base;
886 u32 reg;
887 int where, size, is_64bit;
888
889 res = &pdev->resource[resource];
890 if (resource < 6) {
891 where = PCI_BASE_ADDRESS_0 + (resource * 4);
892 } else if (resource == PCI_ROM_RESOURCE) {
893 where = pdev->rom_base_reg;
894 } else {
895 /* Somebody might have asked allocation of a non-standard resource */
896 return;
897 }
898
899 is_64bit = 0;
900 if (res->flags & IORESOURCE_IO)
901 base = pbm->controller_regs + SABRE_IOSPACE;
902 else {
903 base = pbm->controller_regs + SABRE_MEMSPACE;
904 if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
905 == PCI_BASE_ADDRESS_MEM_TYPE_64)
906 is_64bit = 1;
907 }
908
909 size = res->end - res->start;
910 pci_read_config_dword(pdev, where, &reg);
911 reg = ((reg & size) |
912 (((u32)(res->start - base)) & ~size));
913 if (resource == PCI_ROM_RESOURCE) {
914 reg |= PCI_ROM_ADDRESS_ENABLE;
915 res->flags |= IORESOURCE_ROM_ENABLE;
916 }
917 pci_write_config_dword(pdev, where, reg);
918
919 /* This knows that the upper 32-bits of the address
920 * must be zero. Our PCI common layer enforces this.
921 */
922 if (is_64bit)
923 pci_write_config_dword(pdev, where + 4, 0);
924}
925
David S. Miller085ae412005-08-08 13:19:08 -0700926static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927{
928 struct pci_dev *pdev;
929
930 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700931 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
932 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700933 u16 word16;
934
David S. Miller01f94c42007-03-04 12:53:19 -0800935 pci_read_config_word(pdev, PCI_COMMAND, &word16);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700936 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
937 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
938 PCI_COMMAND_IO;
David S. Miller01f94c42007-03-04 12:53:19 -0800939 pci_write_config_word(pdev, PCI_COMMAND, word16);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940
941 /* Status register bits are "write 1 to clear". */
David S. Miller01f94c42007-03-04 12:53:19 -0800942 pci_write_config_word(pdev, PCI_STATUS, 0xffff);
943 pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944
945 /* Use a primary/seconday latency timer value
946 * of 64.
947 */
David S. Miller01f94c42007-03-04 12:53:19 -0800948 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
949 pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700950
951 /* Enable reporting/forwarding of master aborts,
952 * parity, and SERR.
953 */
David S. Miller01f94c42007-03-04 12:53:19 -0800954 pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
955 (PCI_BRIDGE_CTL_PARITY |
956 PCI_BRIDGE_CTL_SERR |
957 PCI_BRIDGE_CTL_MASTER_ABORT));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700958 }
959 }
960}
961
David S. Miller085ae412005-08-08 13:19:08 -0700962static void sabre_scan_bus(struct pci_controller_info *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700963{
964 static int once;
David S. Miller01f94c42007-03-04 12:53:19 -0800965 struct pci_bus *pbus;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966
967 /* The APB bridge speaks to the Sabre host PCI bridge
968 * at 66Mhz, but the front side of APB runs at 33Mhz
969 * for both segments.
970 */
971 p->pbm_A.is_66mhz_capable = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972
973 /* This driver has not been verified to handle
974 * multiple SABREs yet, so trap this.
975 *
976 * Also note that the SABRE host bridge is hardwired
977 * to live at bus 0.
978 */
979 if (once != 0) {
980 prom_printf("SABRE: Multiple controllers unsupported.\n");
981 prom_halt();
982 }
983 once++;
984
David S. Miller01f94c42007-03-04 12:53:19 -0800985 pbus = pci_scan_one_pbm(&p->pbm_A);
986 if (!pbus)
David S. Millera2fb23a2007-02-28 23:35:04 -0800987 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700988
David S. Miller01f94c42007-03-04 12:53:19 -0800989 sabre_root_bus = pbus;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700990
David S. Miller01f94c42007-03-04 12:53:19 -0800991 apb_init(p, pbus);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992
993 sabre_register_error_handlers(p);
994}
995
David S. Miller085ae412005-08-08 13:19:08 -0700996static void sabre_iommu_init(struct pci_controller_info *p,
997 int tsbsize, unsigned long dvma_offset,
998 u32 dma_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999{
1000 struct pci_iommu *iommu = p->pbm_A.iommu;
David S. Miller51e85132005-10-13 21:10:08 -07001001 unsigned long i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001002 u64 control;
1003
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004 /* Register addresses. */
1005 iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
1006 iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
1007 iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
1008 iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
1009 /* Sabre's IOMMU lacks ctx flushing. */
1010 iommu->iommu_ctxflush = 0;
1011
1012 /* Invalidate TLB Entries. */
1013 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1014 control |= SABRE_IOMMUCTRL_DENAB;
1015 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1016
1017 for(i = 0; i < 16; i++) {
1018 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
1019 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
1020 }
1021
1022 /* Leave diag mode enabled for full-flushing done
1023 * in pci_iommu.c
1024 */
David S. Miller51e85132005-10-13 21:10:08 -07001025 pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001026
David S. Miller51e85132005-10-13 21:10:08 -07001027 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
1028 __pa(iommu->page_table));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029
1030 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1031 control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
1032 control |= SABRE_IOMMUCTRL_ENAB;
1033 switch(tsbsize) {
1034 case 64:
1035 control |= SABRE_IOMMU_TSBSZ_64K;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001036 break;
1037 case 128:
1038 control |= SABRE_IOMMU_TSBSZ_128K;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 break;
1040 default:
1041 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
1042 prom_halt();
1043 break;
1044 }
1045 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046}
1047
David S. Miller5aee87c2006-10-17 19:04:44 -07001048static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 dma_start, u32 dma_end)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001049{
1050 struct pci_pbm_info *pbm;
David S. Miller01f94c42007-03-04 12:53:19 -08001051 struct resource *rp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052
David S. Miller01f94c42007-03-04 12:53:19 -08001053 pbm = &p->pbm_A;
1054 pbm->name = dp->full_name;
1055 printk("%s: SABRE PCI Bus Module\n", pbm->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056
David S. Miller01f94c42007-03-04 12:53:19 -08001057 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1058 pbm->parent = p;
1059 pbm->prom_node = dp;
1060 pbm->pci_first_slot = 1;
1061 pbm->pci_first_busno = p->pci_first_busno;
1062 pbm->pci_last_busno = p->pci_last_busno;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063
David S. Miller01f94c42007-03-04 12:53:19 -08001064 pbm->io_space.name = pbm->mem_space.name = pbm->name;
David S. Millere87dc352006-06-21 18:18:47 -07001065
David S. Miller01f94c42007-03-04 12:53:19 -08001066 pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE;
1067 pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL;
1068 pbm->io_space.flags = IORESOURCE_IO;
David S. Millere87dc352006-06-21 18:18:47 -07001069
David S. Miller01f94c42007-03-04 12:53:19 -08001070 pbm->mem_space.start = (p->pbm_A.controller_regs + SABRE_MEMSPACE);
1071 pbm->mem_space.end = (pbm->mem_space.start + ((1UL << 32UL) - 1UL));
1072 pbm->mem_space.flags = IORESOURCE_MEM;
David S. Millere87dc352006-06-21 18:18:47 -07001073
David S. Miller01f94c42007-03-04 12:53:19 -08001074 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1075 prom_printf("Cannot register Sabre's IO space.\n");
1076 prom_halt();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077 }
David S. Miller01f94c42007-03-04 12:53:19 -08001078 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1079 prom_printf("Cannot register Sabre's MEM space.\n");
1080 prom_halt();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001081 }
David S. Miller01f94c42007-03-04 12:53:19 -08001082
1083 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1084 if (!rp) {
1085 prom_printf("Cannot allocate IOMMU resource.\n");
1086 prom_halt();
1087 }
1088 rp->name = "IOMMU";
1089 rp->start = pbm->mem_space.start + (unsigned long) dma_start;
1090 rp->end = pbm->mem_space.start + (unsigned long) dma_end - 1UL;
1091 rp->flags = IORESOURCE_BUSY;
1092 request_resource(&pbm->mem_space, rp);
1093
1094 pci_register_legacy_regions(&pbm->io_space,
1095 &pbm->mem_space);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001096}
1097
David S. Millere87dc352006-06-21 18:18:47 -07001098void sabre_init(struct device_node *dp, char *model_name)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099{
David S. Millere87dc352006-06-21 18:18:47 -07001100 struct linux_prom64_registers *pr_regs;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001101 struct pci_controller_info *p;
1102 struct pci_iommu *iommu;
David S. Millere87dc352006-06-21 18:18:47 -07001103 int tsbsize;
1104 u32 *busrange;
1105 u32 *vdma;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001106 u32 upa_portid, dma_mask;
1107 u64 clear_irq;
1108
1109 hummingbird_p = 0;
1110 if (!strcmp(model_name, "pci108e,a001"))
1111 hummingbird_p = 1;
1112 else if (!strcmp(model_name, "SUNW,sabre")) {
David S. Miller01f94c42007-03-04 12:53:19 -08001113 const char *compat = of_get_property(dp, "compatible", NULL);
1114 if (compat && !strcmp(compat, "pci108e,a001"))
1115 hummingbird_p = 1;
David S. Millere87dc352006-06-21 18:18:47 -07001116 if (!hummingbird_p) {
David S. Miller07f8e5f2006-06-21 23:34:02 -07001117 struct device_node *dp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001118
1119 /* Of course, Sun has to encode things a thousand
1120 * different ways, inconsistently.
1121 */
David S. Miller07f8e5f2006-06-21 23:34:02 -07001122 cpu_find_by_instance(0, &dp, NULL);
1123 if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124 hummingbird_p = 1;
1125 }
1126 }
1127
Eric Sesterhenn91329832006-03-06 13:48:40 -08001128 p = kzalloc(sizeof(*p), GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129 if (!p) {
1130 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1131 prom_halt();
1132 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001133
Eric Sesterhenn91329832006-03-06 13:48:40 -08001134 iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001135 if (!iommu) {
1136 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1137 prom_halt();
1138 }
David S. Miller01f94c42007-03-04 12:53:19 -08001139 p->pbm_A.iommu = iommu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140
David S. Miller01f94c42007-03-04 12:53:19 -08001141 upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001142
1143 p->next = pci_controller_root;
1144 pci_controller_root = p;
1145
1146 p->pbm_A.portid = upa_portid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147 p->index = pci_num_controllers++;
1148 p->pbms_same_domain = 1;
1149 p->scan_bus = sabre_scan_bus;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150 p->base_address_update = sabre_base_address_update;
1151 p->resource_adjust = sabre_resource_adjust;
1152 p->pci_ops = &sabre_ops;
1153
1154 /*
1155 * Map in SABRE register set and report the presence of this SABRE.
1156 */
David S. Millere87dc352006-06-21 18:18:47 -07001157
David S. Miller01f94c42007-03-04 12:53:19 -08001158 pr_regs = of_get_property(dp, "reg", NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159
1160 /*
1161 * First REG in property is base of entire SABRE register space.
1162 */
1163 p->pbm_A.controller_regs = pr_regs[0].phys_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001164
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165 /* Clear interrupts */
1166
1167 /* PCI first */
1168 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1169 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1170
1171 /* Then OBIO */
1172 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1173 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1174
1175 /* Error interrupts are enabled later after the bus scan. */
1176 sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1177 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
1178 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1179
1180 /* Now map in PCI config space for entire SABRE. */
David S. Miller01f94c42007-03-04 12:53:19 -08001181 p->pbm_A.config_space =
Linus Torvalds1da177e2005-04-16 15:20:36 -07001182 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001183
David S. Miller01f94c42007-03-04 12:53:19 -08001184 vdma = of_get_property(dp, "virtual-dma", NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001185
1186 dma_mask = vdma[0];
1187 switch(vdma[1]) {
1188 case 0x20000000:
1189 dma_mask |= 0x1fffffff;
1190 tsbsize = 64;
1191 break;
1192 case 0x40000000:
1193 dma_mask |= 0x3fffffff;
1194 tsbsize = 128;
1195 break;
1196
1197 case 0x80000000:
1198 dma_mask |= 0x7fffffff;
1199 tsbsize = 128;
1200 break;
1201 default:
1202 prom_printf("SABRE: strange virtual-dma size.\n");
1203 prom_halt();
1204 }
1205
1206 sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1207
David S. Miller01f94c42007-03-04 12:53:19 -08001208 busrange = of_get_property(dp, "bus-range", NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209 p->pci_first_busno = busrange[0];
1210 p->pci_last_busno = busrange[1];
1211
1212 /*
1213 * Look for APB underneath.
1214 */
David S. Millere83f2142006-10-18 12:48:35 -07001215 sabre_pbm_init(p, dp, vdma[0], vdma[0] + vdma[1]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216}