| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (c) 2006 Oracle.  All rights reserved. | 
 | 3 |  * | 
 | 4 |  * This software is available to you under a choice of one of two | 
 | 5 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 | 6 |  * General Public License (GPL) Version 2, available from the file | 
 | 7 |  * COPYING in the main directory of this source tree, or the | 
 | 8 |  * OpenIB.org BSD license below: | 
 | 9 |  * | 
 | 10 |  *     Redistribution and use in source and binary forms, with or | 
 | 11 |  *     without modification, are permitted provided that the following | 
 | 12 |  *     conditions are met: | 
 | 13 |  * | 
 | 14 |  *      - Redistributions of source code must retain the above | 
 | 15 |  *        copyright notice, this list of conditions and the following | 
 | 16 |  *        disclaimer. | 
 | 17 |  * | 
 | 18 |  *      - Redistributions in binary form must reproduce the above | 
 | 19 |  *        copyright notice, this list of conditions and the following | 
 | 20 |  *        disclaimer in the documentation and/or other materials | 
 | 21 |  *        provided with the distribution. | 
 | 22 |  * | 
 | 23 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 | 24 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 | 25 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 | 26 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 | 27 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 | 28 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 | 29 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 | 30 |  * SOFTWARE. | 
 | 31 |  * | 
 | 32 |  */ | 
 | 33 | #include <linux/kernel.h> | 
 | 34 | #include <linux/pci.h> | 
 | 35 | #include <linux/dma-mapping.h> | 
 | 36 | #include <rdma/rdma_cm.h> | 
 | 37 |  | 
 | 38 | #include "rds.h" | 
 | 39 | #include "iw.h" | 
 | 40 |  | 
 | 41 | static struct kmem_cache *rds_iw_incoming_slab; | 
 | 42 | static struct kmem_cache *rds_iw_frag_slab; | 
 | 43 | static atomic_t	rds_iw_allocation = ATOMIC_INIT(0); | 
 | 44 |  | 
 | 45 | static void rds_iw_frag_drop_page(struct rds_page_frag *frag) | 
 | 46 | { | 
 | 47 | 	rdsdebug("frag %p page %p\n", frag, frag->f_page); | 
 | 48 | 	__free_page(frag->f_page); | 
 | 49 | 	frag->f_page = NULL; | 
 | 50 | } | 
 | 51 |  | 
 | 52 | static void rds_iw_frag_free(struct rds_page_frag *frag) | 
 | 53 | { | 
 | 54 | 	rdsdebug("frag %p page %p\n", frag, frag->f_page); | 
 | 55 | 	BUG_ON(frag->f_page != NULL); | 
 | 56 | 	kmem_cache_free(rds_iw_frag_slab, frag); | 
 | 57 | } | 
 | 58 |  | 
 | 59 | /* | 
 | 60 |  * We map a page at a time.  Its fragments are posted in order.  This | 
 | 61 |  * is called in fragment order as the fragments get send completion events. | 
 | 62 |  * Only the last frag in the page performs the unmapping. | 
 | 63 |  * | 
 | 64 |  * It's OK for ring cleanup to call this in whatever order it likes because | 
 | 65 |  * DMA is not in flight and so we can unmap while other ring entries still | 
 | 66 |  * hold page references in their frags. | 
 | 67 |  */ | 
 | 68 | static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic, | 
 | 69 | 				   struct rds_iw_recv_work *recv) | 
 | 70 | { | 
 | 71 | 	struct rds_page_frag *frag = recv->r_frag; | 
 | 72 |  | 
 | 73 | 	rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page); | 
 | 74 | 	if (frag->f_mapped) | 
 | 75 | 		ib_dma_unmap_page(ic->i_cm_id->device, | 
 | 76 | 			       frag->f_mapped, | 
 | 77 | 			       RDS_FRAG_SIZE, DMA_FROM_DEVICE); | 
 | 78 | 	frag->f_mapped = 0; | 
 | 79 | } | 
 | 80 |  | 
 | 81 | void rds_iw_recv_init_ring(struct rds_iw_connection *ic) | 
 | 82 | { | 
 | 83 | 	struct rds_iw_recv_work *recv; | 
 | 84 | 	u32 i; | 
 | 85 |  | 
 | 86 | 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { | 
 | 87 | 		struct ib_sge *sge; | 
 | 88 |  | 
 | 89 | 		recv->r_iwinc = NULL; | 
 | 90 | 		recv->r_frag = NULL; | 
 | 91 |  | 
 | 92 | 		recv->r_wr.next = NULL; | 
 | 93 | 		recv->r_wr.wr_id = i; | 
 | 94 | 		recv->r_wr.sg_list = recv->r_sge; | 
 | 95 | 		recv->r_wr.num_sge = RDS_IW_RECV_SGE; | 
 | 96 |  | 
 | 97 | 		sge = rds_iw_data_sge(ic, recv->r_sge); | 
 | 98 | 		sge->addr = 0; | 
 | 99 | 		sge->length = RDS_FRAG_SIZE; | 
 | 100 | 		sge->lkey = 0; | 
 | 101 |  | 
 | 102 | 		sge = rds_iw_header_sge(ic, recv->r_sge); | 
 | 103 | 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); | 
 | 104 | 		sge->length = sizeof(struct rds_header); | 
 | 105 | 		sge->lkey = 0; | 
 | 106 | 	} | 
 | 107 | } | 
 | 108 |  | 
 | 109 | static void rds_iw_recv_clear_one(struct rds_iw_connection *ic, | 
 | 110 | 				  struct rds_iw_recv_work *recv) | 
 | 111 | { | 
 | 112 | 	if (recv->r_iwinc) { | 
 | 113 | 		rds_inc_put(&recv->r_iwinc->ii_inc); | 
 | 114 | 		recv->r_iwinc = NULL; | 
 | 115 | 	} | 
 | 116 | 	if (recv->r_frag) { | 
 | 117 | 		rds_iw_recv_unmap_page(ic, recv); | 
 | 118 | 		if (recv->r_frag->f_page) | 
 | 119 | 			rds_iw_frag_drop_page(recv->r_frag); | 
 | 120 | 		rds_iw_frag_free(recv->r_frag); | 
 | 121 | 		recv->r_frag = NULL; | 
 | 122 | 	} | 
 | 123 | } | 
 | 124 |  | 
 | 125 | void rds_iw_recv_clear_ring(struct rds_iw_connection *ic) | 
 | 126 | { | 
 | 127 | 	u32 i; | 
 | 128 |  | 
 | 129 | 	for (i = 0; i < ic->i_recv_ring.w_nr; i++) | 
 | 130 | 		rds_iw_recv_clear_one(ic, &ic->i_recvs[i]); | 
 | 131 |  | 
 | 132 | 	if (ic->i_frag.f_page) | 
 | 133 | 		rds_iw_frag_drop_page(&ic->i_frag); | 
 | 134 | } | 
 | 135 |  | 
 | 136 | static int rds_iw_recv_refill_one(struct rds_connection *conn, | 
 | 137 | 				  struct rds_iw_recv_work *recv, | 
 | 138 | 				  gfp_t kptr_gfp, gfp_t page_gfp) | 
 | 139 | { | 
 | 140 | 	struct rds_iw_connection *ic = conn->c_transport_data; | 
 | 141 | 	dma_addr_t dma_addr; | 
 | 142 | 	struct ib_sge *sge; | 
 | 143 | 	int ret = -ENOMEM; | 
 | 144 |  | 
 | 145 | 	if (recv->r_iwinc == NULL) { | 
 | 146 | 		if (atomic_read(&rds_iw_allocation) >= rds_iw_sysctl_max_recv_allocation) { | 
 | 147 | 			rds_iw_stats_inc(s_iw_rx_alloc_limit); | 
 | 148 | 			goto out; | 
 | 149 | 		} | 
 | 150 | 		recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab, | 
 | 151 | 						 kptr_gfp); | 
 | 152 | 		if (recv->r_iwinc == NULL) | 
 | 153 | 			goto out; | 
 | 154 | 		atomic_inc(&rds_iw_allocation); | 
 | 155 | 		INIT_LIST_HEAD(&recv->r_iwinc->ii_frags); | 
 | 156 | 		rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr); | 
 | 157 | 	} | 
 | 158 |  | 
 | 159 | 	if (recv->r_frag == NULL) { | 
 | 160 | 		recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp); | 
 | 161 | 		if (recv->r_frag == NULL) | 
 | 162 | 			goto out; | 
 | 163 | 		INIT_LIST_HEAD(&recv->r_frag->f_item); | 
 | 164 | 		recv->r_frag->f_page = NULL; | 
 | 165 | 	} | 
 | 166 |  | 
 | 167 | 	if (ic->i_frag.f_page == NULL) { | 
 | 168 | 		ic->i_frag.f_page = alloc_page(page_gfp); | 
 | 169 | 		if (ic->i_frag.f_page == NULL) | 
 | 170 | 			goto out; | 
 | 171 | 		ic->i_frag.f_offset = 0; | 
 | 172 | 	} | 
 | 173 |  | 
 | 174 | 	dma_addr = ib_dma_map_page(ic->i_cm_id->device, | 
 | 175 | 				  ic->i_frag.f_page, | 
 | 176 | 				  ic->i_frag.f_offset, | 
 | 177 | 				  RDS_FRAG_SIZE, | 
 | 178 | 				  DMA_FROM_DEVICE); | 
 | 179 | 	if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr)) | 
 | 180 | 		goto out; | 
 | 181 |  | 
 | 182 | 	/* | 
 | 183 | 	 * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap() | 
 | 184 | 	 * must be called on this recv.  This happens as completions hit | 
 | 185 | 	 * in order or on connection shutdown. | 
 | 186 | 	 */ | 
 | 187 | 	recv->r_frag->f_page = ic->i_frag.f_page; | 
 | 188 | 	recv->r_frag->f_offset = ic->i_frag.f_offset; | 
 | 189 | 	recv->r_frag->f_mapped = dma_addr; | 
 | 190 |  | 
 | 191 | 	sge = rds_iw_data_sge(ic, recv->r_sge); | 
 | 192 | 	sge->addr = dma_addr; | 
 | 193 | 	sge->length = RDS_FRAG_SIZE; | 
 | 194 |  | 
 | 195 | 	sge = rds_iw_header_sge(ic, recv->r_sge); | 
 | 196 | 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); | 
 | 197 | 	sge->length = sizeof(struct rds_header); | 
 | 198 |  | 
 | 199 | 	get_page(recv->r_frag->f_page); | 
 | 200 |  | 
 | 201 | 	if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) { | 
 | 202 | 		ic->i_frag.f_offset += RDS_FRAG_SIZE; | 
 | 203 | 	} else { | 
 | 204 | 		put_page(ic->i_frag.f_page); | 
 | 205 | 		ic->i_frag.f_page = NULL; | 
 | 206 | 		ic->i_frag.f_offset = 0; | 
 | 207 | 	} | 
 | 208 |  | 
 | 209 | 	ret = 0; | 
 | 210 | out: | 
 | 211 | 	return ret; | 
 | 212 | } | 
 | 213 |  | 
 | 214 | /* | 
 | 215 |  * This tries to allocate and post unused work requests after making sure that | 
 | 216 |  * they have all the allocations they need to queue received fragments into | 
 | 217 |  * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc | 
 | 218 |  * pairs don't go unmatched. | 
 | 219 |  * | 
 | 220 |  * -1 is returned if posting fails due to temporary resource exhaustion. | 
 | 221 |  */ | 
 | 222 | int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp, | 
 | 223 | 		       gfp_t page_gfp, int prefill) | 
 | 224 | { | 
 | 225 | 	struct rds_iw_connection *ic = conn->c_transport_data; | 
 | 226 | 	struct rds_iw_recv_work *recv; | 
 | 227 | 	struct ib_recv_wr *failed_wr; | 
 | 228 | 	unsigned int posted = 0; | 
 | 229 | 	int ret = 0; | 
 | 230 | 	u32 pos; | 
 | 231 |  | 
 | 232 | 	while ((prefill || rds_conn_up(conn)) | 
 | 233 | 			&& rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) { | 
 | 234 | 		if (pos >= ic->i_recv_ring.w_nr) { | 
 | 235 | 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", | 
 | 236 | 					pos); | 
 | 237 | 			ret = -EINVAL; | 
 | 238 | 			break; | 
 | 239 | 		} | 
 | 240 |  | 
 | 241 | 		recv = &ic->i_recvs[pos]; | 
 | 242 | 		ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp); | 
 | 243 | 		if (ret) { | 
 | 244 | 			ret = -1; | 
 | 245 | 			break; | 
 | 246 | 		} | 
 | 247 |  | 
 | 248 | 		/* XXX when can this fail? */ | 
 | 249 | 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); | 
 | 250 | 		rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv, | 
 | 251 | 			 recv->r_iwinc, recv->r_frag->f_page, | 
 | 252 | 			 (long) recv->r_frag->f_mapped, ret); | 
 | 253 | 		if (ret) { | 
 | 254 | 			rds_iw_conn_error(conn, "recv post on " | 
 | 255 | 			       "%pI4 returned %d, disconnecting and " | 
 | 256 | 			       "reconnecting\n", &conn->c_faddr, | 
 | 257 | 			       ret); | 
 | 258 | 			ret = -1; | 
 | 259 | 			break; | 
 | 260 | 		} | 
 | 261 |  | 
 | 262 | 		posted++; | 
 | 263 | 	} | 
 | 264 |  | 
 | 265 | 	/* We're doing flow control - update the window. */ | 
 | 266 | 	if (ic->i_flowctl && posted) | 
 | 267 | 		rds_iw_advertise_credits(conn, posted); | 
 | 268 |  | 
 | 269 | 	if (ret) | 
 | 270 | 		rds_iw_ring_unalloc(&ic->i_recv_ring, 1); | 
 | 271 | 	return ret; | 
 | 272 | } | 
 | 273 |  | 
 | 274 | void rds_iw_inc_purge(struct rds_incoming *inc) | 
 | 275 | { | 
 | 276 | 	struct rds_iw_incoming *iwinc; | 
 | 277 | 	struct rds_page_frag *frag; | 
 | 278 | 	struct rds_page_frag *pos; | 
 | 279 |  | 
 | 280 | 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | 
 | 281 | 	rdsdebug("purging iwinc %p inc %p\n", iwinc, inc); | 
 | 282 |  | 
 | 283 | 	list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) { | 
 | 284 | 		list_del_init(&frag->f_item); | 
 | 285 | 		rds_iw_frag_drop_page(frag); | 
 | 286 | 		rds_iw_frag_free(frag); | 
 | 287 | 	} | 
 | 288 | } | 
 | 289 |  | 
 | 290 | void rds_iw_inc_free(struct rds_incoming *inc) | 
 | 291 | { | 
 | 292 | 	struct rds_iw_incoming *iwinc; | 
 | 293 |  | 
 | 294 | 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | 
 | 295 |  | 
 | 296 | 	rds_iw_inc_purge(inc); | 
 | 297 | 	rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc); | 
 | 298 | 	BUG_ON(!list_empty(&iwinc->ii_frags)); | 
 | 299 | 	kmem_cache_free(rds_iw_incoming_slab, iwinc); | 
 | 300 | 	atomic_dec(&rds_iw_allocation); | 
 | 301 | 	BUG_ON(atomic_read(&rds_iw_allocation) < 0); | 
 | 302 | } | 
 | 303 |  | 
 | 304 | int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov, | 
 | 305 | 			    size_t size) | 
 | 306 | { | 
 | 307 | 	struct rds_iw_incoming *iwinc; | 
 | 308 | 	struct rds_page_frag *frag; | 
 | 309 | 	struct iovec *iov = first_iov; | 
 | 310 | 	unsigned long to_copy; | 
 | 311 | 	unsigned long frag_off = 0; | 
 | 312 | 	unsigned long iov_off = 0; | 
 | 313 | 	int copied = 0; | 
 | 314 | 	int ret; | 
 | 315 | 	u32 len; | 
 | 316 |  | 
 | 317 | 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | 
 | 318 | 	frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item); | 
 | 319 | 	len = be32_to_cpu(inc->i_hdr.h_len); | 
 | 320 |  | 
 | 321 | 	while (copied < size && copied < len) { | 
 | 322 | 		if (frag_off == RDS_FRAG_SIZE) { | 
 | 323 | 			frag = list_entry(frag->f_item.next, | 
 | 324 | 					  struct rds_page_frag, f_item); | 
 | 325 | 			frag_off = 0; | 
 | 326 | 		} | 
 | 327 | 		while (iov_off == iov->iov_len) { | 
 | 328 | 			iov_off = 0; | 
 | 329 | 			iov++; | 
 | 330 | 		} | 
 | 331 |  | 
 | 332 | 		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off); | 
 | 333 | 		to_copy = min_t(size_t, to_copy, size - copied); | 
 | 334 | 		to_copy = min_t(unsigned long, to_copy, len - copied); | 
 | 335 |  | 
 | 336 | 		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag " | 
 | 337 | 			 "[%p, %lu] + %lu\n", | 
 | 338 | 			 to_copy, iov->iov_base, iov->iov_len, iov_off, | 
 | 339 | 			 frag->f_page, frag->f_offset, frag_off); | 
 | 340 |  | 
 | 341 | 		/* XXX needs + offset for multiple recvs per page */ | 
 | 342 | 		ret = rds_page_copy_to_user(frag->f_page, | 
 | 343 | 					    frag->f_offset + frag_off, | 
 | 344 | 					    iov->iov_base + iov_off, | 
 | 345 | 					    to_copy); | 
 | 346 | 		if (ret) { | 
 | 347 | 			copied = ret; | 
 | 348 | 			break; | 
 | 349 | 		} | 
 | 350 |  | 
 | 351 | 		iov_off += to_copy; | 
 | 352 | 		frag_off += to_copy; | 
 | 353 | 		copied += to_copy; | 
 | 354 | 	} | 
 | 355 |  | 
 | 356 | 	return copied; | 
 | 357 | } | 
 | 358 |  | 
 | 359 | /* ic starts out kzalloc()ed */ | 
 | 360 | void rds_iw_recv_init_ack(struct rds_iw_connection *ic) | 
 | 361 | { | 
 | 362 | 	struct ib_send_wr *wr = &ic->i_ack_wr; | 
 | 363 | 	struct ib_sge *sge = &ic->i_ack_sge; | 
 | 364 |  | 
 | 365 | 	sge->addr = ic->i_ack_dma; | 
 | 366 | 	sge->length = sizeof(struct rds_header); | 
 | 367 | 	sge->lkey = rds_iw_local_dma_lkey(ic); | 
 | 368 |  | 
 | 369 | 	wr->sg_list = sge; | 
 | 370 | 	wr->num_sge = 1; | 
 | 371 | 	wr->opcode = IB_WR_SEND; | 
 | 372 | 	wr->wr_id = RDS_IW_ACK_WR_ID; | 
 | 373 | 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; | 
 | 374 | } | 
 | 375 |  | 
 | 376 | /* | 
 | 377 |  * You'd think that with reliable IB connections you wouldn't need to ack | 
 | 378 |  * messages that have been received.  The problem is that IB hardware generates | 
 | 379 |  * an ack message before it has DMAed the message into memory.  This creates a | 
 | 380 |  * potential message loss if the HCA is disabled for any reason between when it | 
 | 381 |  * sends the ack and before the message is DMAed and processed.  This is only a | 
 | 382 |  * potential issue if another HCA is available for fail-over. | 
 | 383 |  * | 
 | 384 |  * When the remote host receives our ack they'll free the sent message from | 
 | 385 |  * their send queue.  To decrease the latency of this we always send an ack | 
 | 386 |  * immediately after we've received messages. | 
 | 387 |  * | 
 | 388 |  * For simplicity, we only have one ack in flight at a time.  This puts | 
 | 389 |  * pressure on senders to have deep enough send queues to absorb the latency of | 
 | 390 |  * a single ack frame being in flight.  This might not be good enough. | 
 | 391 |  * | 
 | 392 |  * This is implemented by have a long-lived send_wr and sge which point to a | 
 | 393 |  * statically allocated ack frame.  This ack wr does not fall under the ring | 
 | 394 |  * accounting that the tx and rx wrs do.  The QP attribute specifically makes | 
 | 395 |  * room for it beyond the ring size.  Send completion notices its special | 
 | 396 |  * wr_id and avoids working with the ring in that case. | 
 | 397 |  */ | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 398 | #ifndef KERNEL_HAS_ATOMIC64 | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 399 | static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq, | 
 | 400 | 				int ack_required) | 
 | 401 | { | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 402 | 	unsigned long flags; | 
 | 403 |  | 
 | 404 | 	spin_lock_irqsave(&ic->i_ack_lock, flags); | 
 | 405 | 	ic->i_ack_next = seq; | 
 | 406 | 	if (ack_required) | 
 | 407 | 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
 | 408 | 	spin_unlock_irqrestore(&ic->i_ack_lock, flags); | 
 | 409 | } | 
 | 410 |  | 
 | 411 | static u64 rds_iw_get_ack(struct rds_iw_connection *ic) | 
 | 412 | { | 
 | 413 | 	unsigned long flags; | 
 | 414 | 	u64 seq; | 
 | 415 |  | 
 | 416 | 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
 | 417 |  | 
 | 418 | 	spin_lock_irqsave(&ic->i_ack_lock, flags); | 
 | 419 | 	seq = ic->i_ack_next; | 
 | 420 | 	spin_unlock_irqrestore(&ic->i_ack_lock, flags); | 
 | 421 |  | 
 | 422 | 	return seq; | 
 | 423 | } | 
 | 424 | #else | 
 | 425 | static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq, | 
 | 426 | 				int ack_required) | 
 | 427 | { | 
 | 428 | 	atomic64_set(&ic->i_ack_next, seq); | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 429 | 	if (ack_required) { | 
 | 430 | 		smp_mb__before_clear_bit(); | 
 | 431 | 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
 | 432 | 	} | 
 | 433 | } | 
 | 434 |  | 
 | 435 | static u64 rds_iw_get_ack(struct rds_iw_connection *ic) | 
 | 436 | { | 
 | 437 | 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
 | 438 | 	smp_mb__after_clear_bit(); | 
 | 439 |  | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 440 | 	return atomic64_read(&ic->i_ack_next); | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 441 | } | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 442 | #endif | 
 | 443 |  | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 444 |  | 
 | 445 | static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits) | 
 | 446 | { | 
 | 447 | 	struct rds_header *hdr = ic->i_ack; | 
 | 448 | 	struct ib_send_wr *failed_wr; | 
 | 449 | 	u64 seq; | 
 | 450 | 	int ret; | 
 | 451 |  | 
 | 452 | 	seq = rds_iw_get_ack(ic); | 
 | 453 |  | 
 | 454 | 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); | 
 | 455 | 	rds_message_populate_header(hdr, 0, 0, 0); | 
 | 456 | 	hdr->h_ack = cpu_to_be64(seq); | 
 | 457 | 	hdr->h_credit = adv_credits; | 
 | 458 | 	rds_message_make_checksum(hdr); | 
 | 459 | 	ic->i_ack_queued = jiffies; | 
 | 460 |  | 
 | 461 | 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); | 
 | 462 | 	if (unlikely(ret)) { | 
 | 463 | 		/* Failed to send. Release the WR, and | 
 | 464 | 		 * force another ACK. | 
 | 465 | 		 */ | 
 | 466 | 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
 | 467 | 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
 | 468 |  | 
 | 469 | 		rds_iw_stats_inc(s_iw_ack_send_failure); | 
 | 470 | 		/* Need to finesse this later. */ | 
 | 471 | 		BUG(); | 
 | 472 | 	} else | 
 | 473 | 		rds_iw_stats_inc(s_iw_ack_sent); | 
 | 474 | } | 
 | 475 |  | 
 | 476 | /* | 
 | 477 |  * There are 3 ways of getting acknowledgements to the peer: | 
 | 478 |  *  1.	We call rds_iw_attempt_ack from the recv completion handler | 
 | 479 |  *	to send an ACK-only frame. | 
 | 480 |  *	However, there can be only one such frame in the send queue | 
 | 481 |  *	at any time, so we may have to postpone it. | 
 | 482 |  *  2.	When another (data) packet is transmitted while there's | 
 | 483 |  *	an ACK in the queue, we piggyback the ACK sequence number | 
 | 484 |  *	on the data packet. | 
 | 485 |  *  3.	If the ACK WR is done sending, we get called from the | 
 | 486 |  *	send queue completion handler, and check whether there's | 
 | 487 |  *	another ACK pending (postponed because the WR was on the | 
 | 488 |  *	queue). If so, we transmit it. | 
 | 489 |  * | 
 | 490 |  * We maintain 2 variables: | 
 | 491 |  *  -	i_ack_flags, which keeps track of whether the ACK WR | 
 | 492 |  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT) | 
 | 493 |  *  -	i_ack_next, which is the last sequence number we received | 
 | 494 |  * | 
 | 495 |  * Potentially, send queue and receive queue handlers can run concurrently. | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 496 |  * It would be nice to not have to use a spinlock to synchronize things, | 
 | 497 |  * but the one problem that rules this out is that 64bit updates are | 
 | 498 |  * not atomic on all platforms. Things would be a lot simpler if | 
 | 499 |  * we had atomic64 or maybe cmpxchg64 everywhere. | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 500 |  * | 
 | 501 |  * Reconnecting complicates this picture just slightly. When we | 
 | 502 |  * reconnect, we may be seeing duplicate packets. The peer | 
 | 503 |  * is retransmitting them, because it hasn't seen an ACK for | 
 | 504 |  * them. It is important that we ACK these. | 
 | 505 |  * | 
 | 506 |  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with | 
 | 507 |  * this flag set *MUST* be acknowledged immediately. | 
 | 508 |  */ | 
 | 509 |  | 
 | 510 | /* | 
 | 511 |  * When we get here, we're called from the recv queue handler. | 
 | 512 |  * Check whether we ought to transmit an ACK. | 
 | 513 |  */ | 
 | 514 | void rds_iw_attempt_ack(struct rds_iw_connection *ic) | 
 | 515 | { | 
 | 516 | 	unsigned int adv_credits; | 
 | 517 |  | 
 | 518 | 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | 
 | 519 | 		return; | 
 | 520 |  | 
 | 521 | 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { | 
 | 522 | 		rds_iw_stats_inc(s_iw_ack_send_delayed); | 
 | 523 | 		return; | 
 | 524 | 	} | 
 | 525 |  | 
 | 526 | 	/* Can we get a send credit? */ | 
| Steve Wise | 7b70d03 | 2009-04-09 14:09:39 +0000 | [diff] [blame] | 527 | 	if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 528 | 		rds_iw_stats_inc(s_iw_tx_throttle); | 
 | 529 | 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
 | 530 | 		return; | 
 | 531 | 	} | 
 | 532 |  | 
 | 533 | 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
 | 534 | 	rds_iw_send_ack(ic, adv_credits); | 
 | 535 | } | 
 | 536 |  | 
 | 537 | /* | 
 | 538 |  * We get here from the send completion handler, when the | 
 | 539 |  * adapter tells us the ACK frame was sent. | 
 | 540 |  */ | 
 | 541 | void rds_iw_ack_send_complete(struct rds_iw_connection *ic) | 
 | 542 | { | 
 | 543 | 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
 | 544 | 	rds_iw_attempt_ack(ic); | 
 | 545 | } | 
 | 546 |  | 
 | 547 | /* | 
 | 548 |  * This is called by the regular xmit code when it wants to piggyback | 
 | 549 |  * an ACK on an outgoing frame. | 
 | 550 |  */ | 
 | 551 | u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic) | 
 | 552 | { | 
 | 553 | 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | 
 | 554 | 		rds_iw_stats_inc(s_iw_ack_send_piggybacked); | 
 | 555 | 	return rds_iw_get_ack(ic); | 
 | 556 | } | 
 | 557 |  | 
 | 558 | /* | 
 | 559 |  * It's kind of lame that we're copying from the posted receive pages into | 
 | 560 |  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into | 
 | 561 |  * them.  But receiving new congestion bitmaps should be a *rare* event, so | 
 | 562 |  * hopefully we won't need to invest that complexity in making it more | 
 | 563 |  * efficient.  By copying we can share a simpler core with TCP which has to | 
 | 564 |  * copy. | 
 | 565 |  */ | 
 | 566 | static void rds_iw_cong_recv(struct rds_connection *conn, | 
 | 567 | 			      struct rds_iw_incoming *iwinc) | 
 | 568 | { | 
 | 569 | 	struct rds_cong_map *map; | 
 | 570 | 	unsigned int map_off; | 
 | 571 | 	unsigned int map_page; | 
 | 572 | 	struct rds_page_frag *frag; | 
 | 573 | 	unsigned long frag_off; | 
 | 574 | 	unsigned long to_copy; | 
 | 575 | 	unsigned long copied; | 
 | 576 | 	uint64_t uncongested = 0; | 
 | 577 | 	void *addr; | 
 | 578 |  | 
 | 579 | 	/* catch completely corrupt packets */ | 
 | 580 | 	if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) | 
 | 581 | 		return; | 
 | 582 |  | 
 | 583 | 	map = conn->c_fcong; | 
 | 584 | 	map_page = 0; | 
 | 585 | 	map_off = 0; | 
 | 586 |  | 
 | 587 | 	frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item); | 
 | 588 | 	frag_off = 0; | 
 | 589 |  | 
 | 590 | 	copied = 0; | 
 | 591 |  | 
 | 592 | 	while (copied < RDS_CONG_MAP_BYTES) { | 
 | 593 | 		uint64_t *src, *dst; | 
 | 594 | 		unsigned int k; | 
 | 595 |  | 
 | 596 | 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); | 
 | 597 | 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ | 
 | 598 |  | 
 | 599 | 		addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0); | 
 | 600 |  | 
 | 601 | 		src = addr + frag_off; | 
 | 602 | 		dst = (void *)map->m_page_addrs[map_page] + map_off; | 
 | 603 | 		for (k = 0; k < to_copy; k += 8) { | 
 | 604 | 			/* Record ports that became uncongested, ie | 
 | 605 | 			 * bits that changed from 0 to 1. */ | 
 | 606 | 			uncongested |= ~(*src) & *dst; | 
 | 607 | 			*dst++ = *src++; | 
 | 608 | 		} | 
 | 609 | 		kunmap_atomic(addr, KM_SOFTIRQ0); | 
 | 610 |  | 
 | 611 | 		copied += to_copy; | 
 | 612 |  | 
 | 613 | 		map_off += to_copy; | 
 | 614 | 		if (map_off == PAGE_SIZE) { | 
 | 615 | 			map_off = 0; | 
 | 616 | 			map_page++; | 
 | 617 | 		} | 
 | 618 |  | 
 | 619 | 		frag_off += to_copy; | 
 | 620 | 		if (frag_off == RDS_FRAG_SIZE) { | 
 | 621 | 			frag = list_entry(frag->f_item.next, | 
 | 622 | 					  struct rds_page_frag, f_item); | 
 | 623 | 			frag_off = 0; | 
 | 624 | 		} | 
 | 625 | 	} | 
 | 626 |  | 
 | 627 | 	/* the congestion map is in little endian order */ | 
 | 628 | 	uncongested = le64_to_cpu(uncongested); | 
 | 629 |  | 
 | 630 | 	rds_cong_map_updated(map, uncongested); | 
 | 631 | } | 
 | 632 |  | 
 | 633 | /* | 
 | 634 |  * Rings are posted with all the allocations they'll need to queue the | 
 | 635 |  * incoming message to the receiving socket so this can't fail. | 
 | 636 |  * All fragments start with a header, so we can make sure we're not receiving | 
 | 637 |  * garbage, and we can tell a small 8 byte fragment from an ACK frame. | 
 | 638 |  */ | 
 | 639 | struct rds_iw_ack_state { | 
 | 640 | 	u64		ack_next; | 
 | 641 | 	u64		ack_recv; | 
 | 642 | 	unsigned int	ack_required:1; | 
 | 643 | 	unsigned int	ack_next_valid:1; | 
 | 644 | 	unsigned int	ack_recv_valid:1; | 
 | 645 | }; | 
 | 646 |  | 
 | 647 | static void rds_iw_process_recv(struct rds_connection *conn, | 
 | 648 | 				struct rds_iw_recv_work *recv, u32 byte_len, | 
 | 649 | 				struct rds_iw_ack_state *state) | 
 | 650 | { | 
 | 651 | 	struct rds_iw_connection *ic = conn->c_transport_data; | 
 | 652 | 	struct rds_iw_incoming *iwinc = ic->i_iwinc; | 
 | 653 | 	struct rds_header *ihdr, *hdr; | 
 | 654 |  | 
 | 655 | 	/* XXX shut down the connection if port 0,0 are seen? */ | 
 | 656 |  | 
 | 657 | 	rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv, | 
 | 658 | 		 byte_len); | 
 | 659 |  | 
 | 660 | 	if (byte_len < sizeof(struct rds_header)) { | 
 | 661 | 		rds_iw_conn_error(conn, "incoming message " | 
 | 662 | 		       "from %pI4 didn't inclue a " | 
 | 663 | 		       "header, disconnecting and " | 
 | 664 | 		       "reconnecting\n", | 
 | 665 | 		       &conn->c_faddr); | 
 | 666 | 		return; | 
 | 667 | 	} | 
 | 668 | 	byte_len -= sizeof(struct rds_header); | 
 | 669 |  | 
 | 670 | 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; | 
 | 671 |  | 
 | 672 | 	/* Validate the checksum. */ | 
 | 673 | 	if (!rds_message_verify_checksum(ihdr)) { | 
 | 674 | 		rds_iw_conn_error(conn, "incoming message " | 
 | 675 | 		       "from %pI4 has corrupted header - " | 
 | 676 | 		       "forcing a reconnect\n", | 
 | 677 | 		       &conn->c_faddr); | 
 | 678 | 		rds_stats_inc(s_recv_drop_bad_checksum); | 
 | 679 | 		return; | 
 | 680 | 	} | 
 | 681 |  | 
 | 682 | 	/* Process the ACK sequence which comes with every packet */ | 
 | 683 | 	state->ack_recv = be64_to_cpu(ihdr->h_ack); | 
 | 684 | 	state->ack_recv_valid = 1; | 
 | 685 |  | 
 | 686 | 	/* Process the credits update if there was one */ | 
 | 687 | 	if (ihdr->h_credit) | 
 | 688 | 		rds_iw_send_add_credits(conn, ihdr->h_credit); | 
 | 689 |  | 
 | 690 | 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) { | 
 | 691 | 		/* This is an ACK-only packet. The fact that it gets | 
 | 692 | 		 * special treatment here is that historically, ACKs | 
 | 693 | 		 * were rather special beasts. | 
 | 694 | 		 */ | 
 | 695 | 		rds_iw_stats_inc(s_iw_ack_received); | 
 | 696 |  | 
 | 697 | 		/* | 
 | 698 | 		 * Usually the frags make their way on to incs and are then freed as | 
 | 699 | 		 * the inc is freed.  We don't go that route, so we have to drop the | 
 | 700 | 		 * page ref ourselves.  We can't just leave the page on the recv | 
 | 701 | 		 * because that confuses the dma mapping of pages and each recv's use | 
 | 702 | 		 * of a partial page.  We can leave the frag, though, it will be | 
 | 703 | 		 * reused. | 
 | 704 | 		 * | 
 | 705 | 		 * FIXME: Fold this into the code path below. | 
 | 706 | 		 */ | 
 | 707 | 		rds_iw_frag_drop_page(recv->r_frag); | 
 | 708 | 		return; | 
 | 709 | 	} | 
 | 710 |  | 
 | 711 | 	/* | 
 | 712 | 	 * If we don't already have an inc on the connection then this | 
 | 713 | 	 * fragment has a header and starts a message.. copy its header | 
 | 714 | 	 * into the inc and save the inc so we can hang upcoming fragments | 
 | 715 | 	 * off its list. | 
 | 716 | 	 */ | 
 | 717 | 	if (iwinc == NULL) { | 
 | 718 | 		iwinc = recv->r_iwinc; | 
 | 719 | 		recv->r_iwinc = NULL; | 
 | 720 | 		ic->i_iwinc = iwinc; | 
 | 721 |  | 
 | 722 | 		hdr = &iwinc->ii_inc.i_hdr; | 
 | 723 | 		memcpy(hdr, ihdr, sizeof(*hdr)); | 
 | 724 | 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); | 
 | 725 |  | 
 | 726 | 		rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc, | 
 | 727 | 			 ic->i_recv_data_rem, hdr->h_flags); | 
 | 728 | 	} else { | 
 | 729 | 		hdr = &iwinc->ii_inc.i_hdr; | 
 | 730 | 		/* We can't just use memcmp here; fragments of a | 
 | 731 | 		 * single message may carry different ACKs */ | 
 | 732 | 		if (hdr->h_sequence != ihdr->h_sequence | 
 | 733 | 		 || hdr->h_len != ihdr->h_len | 
 | 734 | 		 || hdr->h_sport != ihdr->h_sport | 
 | 735 | 		 || hdr->h_dport != ihdr->h_dport) { | 
 | 736 | 			rds_iw_conn_error(conn, | 
 | 737 | 				"fragment header mismatch; forcing reconnect\n"); | 
 | 738 | 			return; | 
 | 739 | 		} | 
 | 740 | 	} | 
 | 741 |  | 
 | 742 | 	list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags); | 
 | 743 | 	recv->r_frag = NULL; | 
 | 744 |  | 
 | 745 | 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE) | 
 | 746 | 		ic->i_recv_data_rem -= RDS_FRAG_SIZE; | 
 | 747 | 	else { | 
 | 748 | 		ic->i_recv_data_rem = 0; | 
 | 749 | 		ic->i_iwinc = NULL; | 
 | 750 |  | 
 | 751 | 		if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) | 
 | 752 | 			rds_iw_cong_recv(conn, iwinc); | 
 | 753 | 		else { | 
 | 754 | 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, | 
 | 755 | 					  &iwinc->ii_inc, GFP_ATOMIC, | 
 | 756 | 					  KM_SOFTIRQ0); | 
 | 757 | 			state->ack_next = be64_to_cpu(hdr->h_sequence); | 
 | 758 | 			state->ack_next_valid = 1; | 
 | 759 | 		} | 
 | 760 |  | 
 | 761 | 		/* Evaluate the ACK_REQUIRED flag *after* we received | 
 | 762 | 		 * the complete frame, and after bumping the next_rx | 
 | 763 | 		 * sequence. */ | 
 | 764 | 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { | 
 | 765 | 			rds_stats_inc(s_recv_ack_required); | 
 | 766 | 			state->ack_required = 1; | 
 | 767 | 		} | 
 | 768 |  | 
 | 769 | 		rds_inc_put(&iwinc->ii_inc); | 
 | 770 | 	} | 
 | 771 | } | 
 | 772 |  | 
 | 773 | /* | 
 | 774 |  * Plucking the oldest entry from the ring can be done concurrently with | 
 | 775 |  * the thread refilling the ring.  Each ring operation is protected by | 
 | 776 |  * spinlocks and the transient state of refilling doesn't change the | 
 | 777 |  * recording of which entry is oldest. | 
 | 778 |  * | 
 | 779 |  * This relies on IB only calling one cq comp_handler for each cq so that | 
 | 780 |  * there will only be one caller of rds_recv_incoming() per RDS connection. | 
 | 781 |  */ | 
 | 782 | void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context) | 
 | 783 | { | 
 | 784 | 	struct rds_connection *conn = context; | 
 | 785 | 	struct rds_iw_connection *ic = conn->c_transport_data; | 
 | 786 | 	struct ib_wc wc; | 
 | 787 | 	struct rds_iw_ack_state state = { 0, }; | 
 | 788 | 	struct rds_iw_recv_work *recv; | 
 | 789 |  | 
 | 790 | 	rdsdebug("conn %p cq %p\n", conn, cq); | 
 | 791 |  | 
 | 792 | 	rds_iw_stats_inc(s_iw_rx_cq_call); | 
 | 793 |  | 
 | 794 | 	ib_req_notify_cq(cq, IB_CQ_SOLICITED); | 
 | 795 |  | 
 | 796 | 	while (ib_poll_cq(cq, 1, &wc) > 0) { | 
 | 797 | 		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", | 
 | 798 | 			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len, | 
 | 799 | 			 be32_to_cpu(wc.ex.imm_data)); | 
 | 800 | 		rds_iw_stats_inc(s_iw_rx_cq_event); | 
 | 801 |  | 
 | 802 | 		recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)]; | 
 | 803 |  | 
 | 804 | 		rds_iw_recv_unmap_page(ic, recv); | 
 | 805 |  | 
 | 806 | 		/* | 
 | 807 | 		 * Also process recvs in connecting state because it is possible | 
 | 808 | 		 * to get a recv completion _before_ the rdmacm ESTABLISHED | 
 | 809 | 		 * event is processed. | 
 | 810 | 		 */ | 
 | 811 | 		if (rds_conn_up(conn) || rds_conn_connecting(conn)) { | 
 | 812 | 			/* We expect errors as the qp is drained during shutdown */ | 
 | 813 | 			if (wc.status == IB_WC_SUCCESS) { | 
 | 814 | 				rds_iw_process_recv(conn, recv, wc.byte_len, &state); | 
 | 815 | 			} else { | 
 | 816 | 				rds_iw_conn_error(conn, "recv completion on " | 
 | 817 | 				       "%pI4 had status %u, disconnecting and " | 
 | 818 | 				       "reconnecting\n", &conn->c_faddr, | 
 | 819 | 				       wc.status); | 
 | 820 | 			} | 
 | 821 | 		} | 
 | 822 |  | 
 | 823 | 		rds_iw_ring_free(&ic->i_recv_ring, 1); | 
 | 824 | 	} | 
 | 825 |  | 
 | 826 | 	if (state.ack_next_valid) | 
 | 827 | 		rds_iw_set_ack(ic, state.ack_next, state.ack_required); | 
 | 828 | 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { | 
 | 829 | 		rds_send_drop_acked(conn, state.ack_recv, NULL); | 
 | 830 | 		ic->i_ack_recv = state.ack_recv; | 
 | 831 | 	} | 
 | 832 | 	if (rds_conn_up(conn)) | 
 | 833 | 		rds_iw_attempt_ack(ic); | 
 | 834 |  | 
 | 835 | 	/* If we ever end up with a really empty receive ring, we're | 
 | 836 | 	 * in deep trouble, as the sender will definitely see RNR | 
 | 837 | 	 * timeouts. */ | 
 | 838 | 	if (rds_iw_ring_empty(&ic->i_recv_ring)) | 
 | 839 | 		rds_iw_stats_inc(s_iw_rx_ring_empty); | 
 | 840 |  | 
 | 841 | 	/* | 
 | 842 | 	 * If the ring is running low, then schedule the thread to refill. | 
 | 843 | 	 */ | 
 | 844 | 	if (rds_iw_ring_low(&ic->i_recv_ring)) | 
 | 845 | 		queue_delayed_work(rds_wq, &conn->c_recv_w, 0); | 
 | 846 | } | 
 | 847 |  | 
 | 848 | int rds_iw_recv(struct rds_connection *conn) | 
 | 849 | { | 
 | 850 | 	struct rds_iw_connection *ic = conn->c_transport_data; | 
 | 851 | 	int ret = 0; | 
 | 852 |  | 
 | 853 | 	rdsdebug("conn %p\n", conn); | 
 | 854 |  | 
 | 855 | 	/* | 
 | 856 | 	 * If we get a temporary posting failure in this context then | 
 | 857 | 	 * we're really low and we want the caller to back off for a bit. | 
 | 858 | 	 */ | 
 | 859 | 	mutex_lock(&ic->i_recv_mutex); | 
 | 860 | 	if (rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0)) | 
 | 861 | 		ret = -ENOMEM; | 
 | 862 | 	else | 
 | 863 | 		rds_iw_stats_inc(s_iw_rx_refill_from_thread); | 
 | 864 | 	mutex_unlock(&ic->i_recv_mutex); | 
 | 865 |  | 
 | 866 | 	if (rds_conn_up(conn)) | 
 | 867 | 		rds_iw_attempt_ack(ic); | 
 | 868 |  | 
 | 869 | 	return ret; | 
 | 870 | } | 
 | 871 |  | 
 | 872 | int __init rds_iw_recv_init(void) | 
 | 873 | { | 
 | 874 | 	struct sysinfo si; | 
 | 875 | 	int ret = -ENOMEM; | 
 | 876 |  | 
 | 877 | 	/* Default to 30% of all available RAM for recv memory */ | 
 | 878 | 	si_meminfo(&si); | 
 | 879 | 	rds_iw_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; | 
 | 880 |  | 
 | 881 | 	rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming", | 
 | 882 | 					sizeof(struct rds_iw_incoming), | 
 | 883 | 					0, 0, NULL); | 
 | 884 | 	if (rds_iw_incoming_slab == NULL) | 
 | 885 | 		goto out; | 
 | 886 |  | 
 | 887 | 	rds_iw_frag_slab = kmem_cache_create("rds_iw_frag", | 
 | 888 | 					sizeof(struct rds_page_frag), | 
 | 889 | 					0, 0, NULL); | 
 | 890 | 	if (rds_iw_frag_slab == NULL) | 
 | 891 | 		kmem_cache_destroy(rds_iw_incoming_slab); | 
 | 892 | 	else | 
 | 893 | 		ret = 0; | 
 | 894 | out: | 
 | 895 | 	return ret; | 
 | 896 | } | 
 | 897 |  | 
 | 898 | void rds_iw_recv_exit(void) | 
 | 899 | { | 
 | 900 | 	kmem_cache_destroy(rds_iw_incoming_slab); | 
 | 901 | 	kmem_cache_destroy(rds_iw_frag_slab); | 
 | 902 | } |