| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Generic pidhash and scalable, time-bounded PID allocator | 
 | 3 |  * | 
 | 4 |  * (C) 2002-2003 William Irwin, IBM | 
 | 5 |  * (C) 2004 William Irwin, Oracle | 
 | 6 |  * (C) 2002-2004 Ingo Molnar, Red Hat | 
 | 7 |  * | 
 | 8 |  * pid-structures are backing objects for tasks sharing a given ID to chain | 
 | 9 |  * against. There is very little to them aside from hashing them and | 
 | 10 |  * parking tasks using given ID's on a list. | 
 | 11 |  * | 
 | 12 |  * The hash is always changed with the tasklist_lock write-acquired, | 
 | 13 |  * and the hash is only accessed with the tasklist_lock at least | 
 | 14 |  * read-acquired, so there's no additional SMP locking needed here. | 
 | 15 |  * | 
 | 16 |  * We have a list of bitmap pages, which bitmaps represent the PID space. | 
 | 17 |  * Allocating and freeing PIDs is completely lockless. The worst-case | 
 | 18 |  * allocation scenario when all but one out of 1 million PIDs possible are | 
 | 19 |  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | 
 | 20 |  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | #include <linux/mm.h> | 
 | 24 | #include <linux/module.h> | 
 | 25 | #include <linux/slab.h> | 
 | 26 | #include <linux/init.h> | 
 | 27 | #include <linux/bootmem.h> | 
 | 28 | #include <linux/hash.h> | 
 | 29 |  | 
 | 30 | #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) | 
 | 31 | static struct hlist_head *pid_hash[PIDTYPE_MAX]; | 
 | 32 | static int pidhash_shift; | 
 | 33 |  | 
 | 34 | int pid_max = PID_MAX_DEFAULT; | 
 | 35 | int last_pid; | 
 | 36 |  | 
 | 37 | #define RESERVED_PIDS		300 | 
 | 38 |  | 
 | 39 | int pid_max_min = RESERVED_PIDS + 1; | 
 | 40 | int pid_max_max = PID_MAX_LIMIT; | 
 | 41 |  | 
 | 42 | #define PIDMAP_ENTRIES		((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8) | 
 | 43 | #define BITS_PER_PAGE		(PAGE_SIZE*8) | 
 | 44 | #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1) | 
 | 45 | #define mk_pid(map, off)	(((map) - pidmap_array)*BITS_PER_PAGE + (off)) | 
 | 46 | #define find_next_offset(map, off)					\ | 
 | 47 | 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | 
 | 48 |  | 
 | 49 | /* | 
 | 50 |  * PID-map pages start out as NULL, they get allocated upon | 
 | 51 |  * first use and are never deallocated. This way a low pid_max | 
 | 52 |  * value does not cause lots of bitmaps to be allocated, but | 
 | 53 |  * the scheme scales to up to 4 million PIDs, runtime. | 
 | 54 |  */ | 
 | 55 | typedef struct pidmap { | 
 | 56 | 	atomic_t nr_free; | 
 | 57 | 	void *page; | 
 | 58 | } pidmap_t; | 
 | 59 |  | 
 | 60 | static pidmap_t pidmap_array[PIDMAP_ENTRIES] = | 
 | 61 | 	 { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; | 
 | 62 |  | 
 | 63 | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 
 | 64 |  | 
 | 65 | fastcall void free_pidmap(int pid) | 
 | 66 | { | 
 | 67 | 	pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; | 
 | 68 | 	int offset = pid & BITS_PER_PAGE_MASK; | 
 | 69 |  | 
 | 70 | 	clear_bit(offset, map->page); | 
 | 71 | 	atomic_inc(&map->nr_free); | 
 | 72 | } | 
 | 73 |  | 
 | 74 | int alloc_pidmap(void) | 
 | 75 | { | 
 | 76 | 	int i, offset, max_scan, pid, last = last_pid; | 
 | 77 | 	pidmap_t *map; | 
 | 78 |  | 
 | 79 | 	pid = last + 1; | 
 | 80 | 	if (pid >= pid_max) | 
 | 81 | 		pid = RESERVED_PIDS; | 
 | 82 | 	offset = pid & BITS_PER_PAGE_MASK; | 
 | 83 | 	map = &pidmap_array[pid/BITS_PER_PAGE]; | 
 | 84 | 	max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; | 
 | 85 | 	for (i = 0; i <= max_scan; ++i) { | 
 | 86 | 		if (unlikely(!map->page)) { | 
 | 87 | 			unsigned long page = get_zeroed_page(GFP_KERNEL); | 
 | 88 | 			/* | 
 | 89 | 			 * Free the page if someone raced with us | 
 | 90 | 			 * installing it: | 
 | 91 | 			 */ | 
 | 92 | 			spin_lock(&pidmap_lock); | 
 | 93 | 			if (map->page) | 
 | 94 | 				free_page(page); | 
 | 95 | 			else | 
 | 96 | 				map->page = (void *)page; | 
 | 97 | 			spin_unlock(&pidmap_lock); | 
 | 98 | 			if (unlikely(!map->page)) | 
 | 99 | 				break; | 
 | 100 | 		} | 
 | 101 | 		if (likely(atomic_read(&map->nr_free))) { | 
 | 102 | 			do { | 
 | 103 | 				if (!test_and_set_bit(offset, map->page)) { | 
 | 104 | 					atomic_dec(&map->nr_free); | 
 | 105 | 					last_pid = pid; | 
 | 106 | 					return pid; | 
 | 107 | 				} | 
 | 108 | 				offset = find_next_offset(map, offset); | 
 | 109 | 				pid = mk_pid(map, offset); | 
 | 110 | 			/* | 
 | 111 | 			 * find_next_offset() found a bit, the pid from it | 
 | 112 | 			 * is in-bounds, and if we fell back to the last | 
 | 113 | 			 * bitmap block and the final block was the same | 
 | 114 | 			 * as the starting point, pid is before last_pid. | 
 | 115 | 			 */ | 
 | 116 | 			} while (offset < BITS_PER_PAGE && pid < pid_max && | 
 | 117 | 					(i != max_scan || pid < last || | 
 | 118 | 					    !((last+1) & BITS_PER_PAGE_MASK))); | 
 | 119 | 		} | 
 | 120 | 		if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) { | 
 | 121 | 			++map; | 
 | 122 | 			offset = 0; | 
 | 123 | 		} else { | 
 | 124 | 			map = &pidmap_array[0]; | 
 | 125 | 			offset = RESERVED_PIDS; | 
 | 126 | 			if (unlikely(last == offset)) | 
 | 127 | 				break; | 
 | 128 | 		} | 
 | 129 | 		pid = mk_pid(map, offset); | 
 | 130 | 	} | 
 | 131 | 	return -1; | 
 | 132 | } | 
 | 133 |  | 
 | 134 | struct pid * fastcall find_pid(enum pid_type type, int nr) | 
 | 135 | { | 
 | 136 | 	struct hlist_node *elem; | 
 | 137 | 	struct pid *pid; | 
 | 138 |  | 
 | 139 | 	hlist_for_each_entry(pid, elem, | 
 | 140 | 			&pid_hash[type][pid_hashfn(nr)], pid_chain) { | 
 | 141 | 		if (pid->nr == nr) | 
 | 142 | 			return pid; | 
 | 143 | 	} | 
 | 144 | 	return NULL; | 
 | 145 | } | 
 | 146 |  | 
 | 147 | int fastcall attach_pid(task_t *task, enum pid_type type, int nr) | 
 | 148 | { | 
 | 149 | 	struct pid *pid, *task_pid; | 
 | 150 |  | 
 | 151 | 	task_pid = &task->pids[type]; | 
 | 152 | 	pid = find_pid(type, nr); | 
 | 153 | 	if (pid == NULL) { | 
 | 154 | 		hlist_add_head(&task_pid->pid_chain, | 
 | 155 | 				&pid_hash[type][pid_hashfn(nr)]); | 
 | 156 | 		INIT_LIST_HEAD(&task_pid->pid_list); | 
 | 157 | 	} else { | 
 | 158 | 		INIT_HLIST_NODE(&task_pid->pid_chain); | 
 | 159 | 		list_add_tail(&task_pid->pid_list, &pid->pid_list); | 
 | 160 | 	} | 
 | 161 | 	task_pid->nr = nr; | 
 | 162 |  | 
 | 163 | 	return 0; | 
 | 164 | } | 
 | 165 |  | 
 | 166 | static fastcall int __detach_pid(task_t *task, enum pid_type type) | 
 | 167 | { | 
 | 168 | 	struct pid *pid, *pid_next; | 
 | 169 | 	int nr = 0; | 
 | 170 |  | 
 | 171 | 	pid = &task->pids[type]; | 
 | 172 | 	if (!hlist_unhashed(&pid->pid_chain)) { | 
 | 173 | 		hlist_del(&pid->pid_chain); | 
 | 174 |  | 
 | 175 | 		if (list_empty(&pid->pid_list)) | 
 | 176 | 			nr = pid->nr; | 
 | 177 | 		else { | 
 | 178 | 			pid_next = list_entry(pid->pid_list.next, | 
 | 179 | 						struct pid, pid_list); | 
 | 180 | 			/* insert next pid from pid_list to hash */ | 
 | 181 | 			hlist_add_head(&pid_next->pid_chain, | 
 | 182 | 				&pid_hash[type][pid_hashfn(pid_next->nr)]); | 
 | 183 | 		} | 
 | 184 | 	} | 
 | 185 |  | 
 | 186 | 	list_del(&pid->pid_list); | 
 | 187 | 	pid->nr = 0; | 
 | 188 |  | 
 | 189 | 	return nr; | 
 | 190 | } | 
 | 191 |  | 
 | 192 | void fastcall detach_pid(task_t *task, enum pid_type type) | 
 | 193 | { | 
 | 194 | 	int tmp, nr; | 
 | 195 |  | 
 | 196 | 	nr = __detach_pid(task, type); | 
 | 197 | 	if (!nr) | 
 | 198 | 		return; | 
 | 199 |  | 
 | 200 | 	for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 
 | 201 | 		if (tmp != type && find_pid(tmp, nr)) | 
 | 202 | 			return; | 
 | 203 |  | 
 | 204 | 	free_pidmap(nr); | 
 | 205 | } | 
 | 206 |  | 
 | 207 | task_t *find_task_by_pid_type(int type, int nr) | 
 | 208 | { | 
 | 209 | 	struct pid *pid; | 
 | 210 |  | 
 | 211 | 	pid = find_pid(type, nr); | 
 | 212 | 	if (!pid) | 
 | 213 | 		return NULL; | 
 | 214 |  | 
 | 215 | 	return pid_task(&pid->pid_list, type); | 
 | 216 | } | 
 | 217 |  | 
 | 218 | EXPORT_SYMBOL(find_task_by_pid_type); | 
 | 219 |  | 
 | 220 | /* | 
 | 221 |  * This function switches the PIDs if a non-leader thread calls | 
 | 222 |  * sys_execve() - this must be done without releasing the PID. | 
 | 223 |  * (which a detach_pid() would eventually do.) | 
 | 224 |  */ | 
 | 225 | void switch_exec_pids(task_t *leader, task_t *thread) | 
 | 226 | { | 
 | 227 | 	__detach_pid(leader, PIDTYPE_PID); | 
 | 228 | 	__detach_pid(leader, PIDTYPE_TGID); | 
 | 229 | 	__detach_pid(leader, PIDTYPE_PGID); | 
 | 230 | 	__detach_pid(leader, PIDTYPE_SID); | 
 | 231 |  | 
 | 232 | 	__detach_pid(thread, PIDTYPE_PID); | 
 | 233 | 	__detach_pid(thread, PIDTYPE_TGID); | 
 | 234 |  | 
 | 235 | 	leader->pid = leader->tgid = thread->pid; | 
 | 236 | 	thread->pid = thread->tgid; | 
 | 237 |  | 
 | 238 | 	attach_pid(thread, PIDTYPE_PID, thread->pid); | 
 | 239 | 	attach_pid(thread, PIDTYPE_TGID, thread->tgid); | 
 | 240 | 	attach_pid(thread, PIDTYPE_PGID, thread->signal->pgrp); | 
 | 241 | 	attach_pid(thread, PIDTYPE_SID, thread->signal->session); | 
 | 242 | 	list_add_tail(&thread->tasks, &init_task.tasks); | 
 | 243 |  | 
 | 244 | 	attach_pid(leader, PIDTYPE_PID, leader->pid); | 
 | 245 | 	attach_pid(leader, PIDTYPE_TGID, leader->tgid); | 
 | 246 | 	attach_pid(leader, PIDTYPE_PGID, leader->signal->pgrp); | 
 | 247 | 	attach_pid(leader, PIDTYPE_SID, leader->signal->session); | 
 | 248 | } | 
 | 249 |  | 
 | 250 | /* | 
 | 251 |  * The pid hash table is scaled according to the amount of memory in the | 
 | 252 |  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or | 
 | 253 |  * more. | 
 | 254 |  */ | 
 | 255 | void __init pidhash_init(void) | 
 | 256 | { | 
 | 257 | 	int i, j, pidhash_size; | 
 | 258 | 	unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | 
 | 259 |  | 
 | 260 | 	pidhash_shift = max(4, fls(megabytes * 4)); | 
 | 261 | 	pidhash_shift = min(12, pidhash_shift); | 
 | 262 | 	pidhash_size = 1 << pidhash_shift; | 
 | 263 |  | 
 | 264 | 	printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | 
 | 265 | 		pidhash_size, pidhash_shift, | 
 | 266 | 		PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head)); | 
 | 267 |  | 
 | 268 | 	for (i = 0; i < PIDTYPE_MAX; i++) { | 
 | 269 | 		pid_hash[i] = alloc_bootmem(pidhash_size * | 
 | 270 | 					sizeof(*(pid_hash[i]))); | 
 | 271 | 		if (!pid_hash[i]) | 
 | 272 | 			panic("Could not alloc pidhash!\n"); | 
 | 273 | 		for (j = 0; j < pidhash_size; j++) | 
 | 274 | 			INIT_HLIST_HEAD(&pid_hash[i][j]); | 
 | 275 | 	} | 
 | 276 | } | 
 | 277 |  | 
 | 278 | void __init pidmap_init(void) | 
 | 279 | { | 
 | 280 | 	int i; | 
 | 281 |  | 
 | 282 | 	pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); | 
 | 283 | 	set_bit(0, pidmap_array->page); | 
 | 284 | 	atomic_dec(&pidmap_array->nr_free); | 
 | 285 |  | 
 | 286 | 	/* | 
 | 287 | 	 * Allocate PID 0, and hash it via all PID types: | 
 | 288 | 	 */ | 
 | 289 |  | 
 | 290 | 	for (i = 0; i < PIDTYPE_MAX; i++) | 
 | 291 | 		attach_pid(current, i, 0); | 
 | 292 | } |