| Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 1 | /**************************************************************************** | 
 | 2 |  * Driver for Solarflare Solarstorm network controllers and boards | 
 | 3 |  * Copyright 2005-2006 Fen Systems Ltd. | 
 | 4 |  * Copyright 2005-2008 Solarflare Communications Inc. | 
 | 5 |  * | 
 | 6 |  * This program is free software; you can redistribute it and/or modify it | 
 | 7 |  * under the terms of the GNU General Public License version 2 as published | 
 | 8 |  * by the Free Software Foundation, incorporated herein by reference. | 
 | 9 |  */ | 
 | 10 |  | 
 | 11 | #include <linux/socket.h> | 
 | 12 | #include <linux/in.h> | 
 | 13 | #include <linux/ip.h> | 
 | 14 | #include <linux/tcp.h> | 
 | 15 | #include <linux/udp.h> | 
 | 16 | #include <net/ip.h> | 
 | 17 | #include <net/checksum.h> | 
 | 18 | #include "net_driver.h" | 
 | 19 | #include "rx.h" | 
 | 20 | #include "efx.h" | 
 | 21 | #include "falcon.h" | 
 | 22 | #include "workarounds.h" | 
 | 23 |  | 
 | 24 | /* Number of RX descriptors pushed at once. */ | 
 | 25 | #define EFX_RX_BATCH  8 | 
 | 26 |  | 
 | 27 | /* Size of buffer allocated for skb header area. */ | 
 | 28 | #define EFX_SKB_HEADERS  64u | 
 | 29 |  | 
 | 30 | /* | 
 | 31 |  * rx_alloc_method - RX buffer allocation method | 
 | 32 |  * | 
 | 33 |  * This driver supports two methods for allocating and using RX buffers: | 
 | 34 |  * each RX buffer may be backed by an skb or by an order-n page. | 
 | 35 |  * | 
 | 36 |  * When LRO is in use then the second method has a lower overhead, | 
 | 37 |  * since we don't have to allocate then free skbs on reassembled frames. | 
 | 38 |  * | 
 | 39 |  * Values: | 
 | 40 |  *   - RX_ALLOC_METHOD_AUTO = 0 | 
 | 41 |  *   - RX_ALLOC_METHOD_SKB  = 1 | 
 | 42 |  *   - RX_ALLOC_METHOD_PAGE = 2 | 
 | 43 |  * | 
 | 44 |  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count | 
 | 45 |  * controlled by the parameters below. | 
 | 46 |  * | 
 | 47 |  *   - Since pushing and popping descriptors are separated by the rx_queue | 
 | 48 |  *     size, so the watermarks should be ~rxd_size. | 
 | 49 |  *   - The performance win by using page-based allocation for LRO is less | 
 | 50 |  *     than the performance hit of using page-based allocation of non-LRO, | 
 | 51 |  *     so the watermarks should reflect this. | 
 | 52 |  * | 
 | 53 |  * Per channel we maintain a single variable, updated by each channel: | 
 | 54 |  * | 
 | 55 |  *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO : | 
 | 56 |  *                      RX_ALLOC_FACTOR_SKB) | 
 | 57 |  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which | 
 | 58 |  * limits the hysteresis), and update the allocation strategy: | 
 | 59 |  * | 
 | 60 |  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ? | 
 | 61 |  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) | 
 | 62 |  */ | 
 | 63 | static int rx_alloc_method = RX_ALLOC_METHOD_PAGE; | 
 | 64 |  | 
 | 65 | #define RX_ALLOC_LEVEL_LRO 0x2000 | 
 | 66 | #define RX_ALLOC_LEVEL_MAX 0x3000 | 
 | 67 | #define RX_ALLOC_FACTOR_LRO 1 | 
 | 68 | #define RX_ALLOC_FACTOR_SKB (-2) | 
 | 69 |  | 
 | 70 | /* This is the percentage fill level below which new RX descriptors | 
 | 71 |  * will be added to the RX descriptor ring. | 
 | 72 |  */ | 
 | 73 | static unsigned int rx_refill_threshold = 90; | 
 | 74 |  | 
 | 75 | /* This is the percentage fill level to which an RX queue will be refilled | 
 | 76 |  * when the "RX refill threshold" is reached. | 
 | 77 |  */ | 
 | 78 | static unsigned int rx_refill_limit = 95; | 
 | 79 |  | 
 | 80 | /* | 
 | 81 |  * RX maximum head room required. | 
 | 82 |  * | 
 | 83 |  * This must be at least 1 to prevent overflow and at least 2 to allow | 
 | 84 |  * pipelined receives. | 
 | 85 |  */ | 
 | 86 | #define EFX_RXD_HEAD_ROOM 2 | 
 | 87 |  | 
 | 88 | /* Macros for zero-order pages (potentially) containing multiple RX buffers */ | 
 | 89 | #define RX_DATA_OFFSET(_data)				\ | 
 | 90 | 	(((unsigned long) (_data)) & (PAGE_SIZE-1)) | 
 | 91 | #define RX_BUF_OFFSET(_rx_buf)				\ | 
 | 92 | 	RX_DATA_OFFSET((_rx_buf)->data) | 
 | 93 |  | 
 | 94 | #define RX_PAGE_SIZE(_efx)				\ | 
 | 95 | 	(PAGE_SIZE * (1u << (_efx)->rx_buffer_order)) | 
 | 96 |  | 
 | 97 |  | 
 | 98 | /************************************************************************** | 
 | 99 |  * | 
 | 100 |  * Linux generic LRO handling | 
 | 101 |  * | 
 | 102 |  ************************************************************************** | 
 | 103 |  */ | 
 | 104 |  | 
 | 105 | static int efx_lro_get_skb_hdr(struct sk_buff *skb, void **ip_hdr, | 
 | 106 | 			       void **tcpudp_hdr, u64 *hdr_flags, void *priv) | 
 | 107 | { | 
 | 108 | 	struct efx_channel *channel = (struct efx_channel *)priv; | 
 | 109 | 	struct iphdr *iph; | 
 | 110 | 	struct tcphdr *th; | 
 | 111 |  | 
 | 112 | 	iph = (struct iphdr *)skb->data; | 
 | 113 | 	if (skb->protocol != htons(ETH_P_IP) || iph->protocol != IPPROTO_TCP) | 
 | 114 | 		goto fail; | 
 | 115 |  | 
 | 116 | 	th = (struct tcphdr *)(skb->data + iph->ihl * 4); | 
 | 117 |  | 
 | 118 | 	*tcpudp_hdr = th; | 
 | 119 | 	*ip_hdr = iph; | 
 | 120 | 	*hdr_flags = LRO_IPV4 | LRO_TCP; | 
 | 121 |  | 
 | 122 | 	channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO; | 
 | 123 | 	return 0; | 
 | 124 | fail: | 
 | 125 | 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | 
 | 126 | 	return -1; | 
 | 127 | } | 
 | 128 |  | 
 | 129 | static int efx_get_frag_hdr(struct skb_frag_struct *frag, void **mac_hdr, | 
 | 130 | 			    void **ip_hdr, void **tcpudp_hdr, u64 *hdr_flags, | 
 | 131 | 			    void *priv) | 
 | 132 | { | 
 | 133 | 	struct efx_channel *channel = (struct efx_channel *)priv; | 
 | 134 | 	struct ethhdr *eh; | 
 | 135 | 	struct iphdr *iph; | 
 | 136 |  | 
 | 137 | 	/* We support EtherII and VLAN encapsulated IPv4 */ | 
 | 138 | 	eh = (struct ethhdr *)(page_address(frag->page) + frag->page_offset); | 
 | 139 | 	*mac_hdr = eh; | 
 | 140 |  | 
 | 141 | 	if (eh->h_proto == htons(ETH_P_IP)) { | 
 | 142 | 		iph = (struct iphdr *)(eh + 1); | 
 | 143 | 	} else { | 
 | 144 | 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)eh; | 
 | 145 | 		if (veh->h_vlan_encapsulated_proto != htons(ETH_P_IP)) | 
 | 146 | 			goto fail; | 
 | 147 |  | 
 | 148 | 		iph = (struct iphdr *)(veh + 1); | 
 | 149 | 	} | 
 | 150 | 	*ip_hdr = iph; | 
 | 151 |  | 
 | 152 | 	/* We can only do LRO over TCP */ | 
 | 153 | 	if (iph->protocol != IPPROTO_TCP) | 
 | 154 | 		goto fail; | 
 | 155 |  | 
 | 156 | 	*hdr_flags = LRO_IPV4 | LRO_TCP; | 
 | 157 | 	*tcpudp_hdr = (struct tcphdr *)((u8 *) iph + iph->ihl * 4); | 
 | 158 |  | 
 | 159 | 	channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO; | 
 | 160 | 	return 0; | 
 | 161 |  fail: | 
 | 162 | 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | 
 | 163 | 	return -1; | 
 | 164 | } | 
 | 165 |  | 
 | 166 | int efx_lro_init(struct net_lro_mgr *lro_mgr, struct efx_nic *efx) | 
 | 167 | { | 
 | 168 | 	size_t s = sizeof(struct net_lro_desc) * EFX_MAX_LRO_DESCRIPTORS; | 
 | 169 | 	struct net_lro_desc *lro_arr; | 
 | 170 |  | 
 | 171 | 	/* Allocate the LRO descriptors structure */ | 
 | 172 | 	lro_arr = kzalloc(s, GFP_KERNEL); | 
 | 173 | 	if (lro_arr == NULL) | 
 | 174 | 		return -ENOMEM; | 
 | 175 |  | 
 | 176 | 	lro_mgr->lro_arr = lro_arr; | 
 | 177 | 	lro_mgr->max_desc = EFX_MAX_LRO_DESCRIPTORS; | 
 | 178 | 	lro_mgr->max_aggr = EFX_MAX_LRO_AGGR; | 
 | 179 | 	lro_mgr->frag_align_pad = EFX_PAGE_SKB_ALIGN; | 
 | 180 |  | 
 | 181 | 	lro_mgr->get_skb_header = efx_lro_get_skb_hdr; | 
 | 182 | 	lro_mgr->get_frag_header = efx_get_frag_hdr; | 
 | 183 | 	lro_mgr->dev = efx->net_dev; | 
 | 184 |  | 
 | 185 | 	lro_mgr->features = LRO_F_NAPI; | 
 | 186 |  | 
 | 187 | 	/* We can pass packets up with the checksum intact */ | 
 | 188 | 	lro_mgr->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 189 |  | 
 | 190 | 	lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY; | 
 | 191 |  | 
 | 192 | 	return 0; | 
 | 193 | } | 
 | 194 |  | 
 | 195 | void efx_lro_fini(struct net_lro_mgr *lro_mgr) | 
 | 196 | { | 
 | 197 | 	kfree(lro_mgr->lro_arr); | 
 | 198 | 	lro_mgr->lro_arr = NULL; | 
 | 199 | } | 
 | 200 |  | 
 | 201 | /** | 
 | 202 |  * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation | 
 | 203 |  * | 
 | 204 |  * @rx_queue:		Efx RX queue | 
 | 205 |  * @rx_buf:		RX buffer structure to populate | 
 | 206 |  * | 
 | 207 |  * This allocates memory for a new receive buffer, maps it for DMA, | 
 | 208 |  * and populates a struct efx_rx_buffer with the relevant | 
 | 209 |  * information.  Return a negative error code or 0 on success. | 
 | 210 |  */ | 
 | 211 | static inline int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue, | 
 | 212 | 					 struct efx_rx_buffer *rx_buf) | 
 | 213 | { | 
 | 214 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 215 | 	struct net_device *net_dev = efx->net_dev; | 
 | 216 | 	int skb_len = efx->rx_buffer_len; | 
 | 217 |  | 
 | 218 | 	rx_buf->skb = netdev_alloc_skb(net_dev, skb_len); | 
 | 219 | 	if (unlikely(!rx_buf->skb)) | 
 | 220 | 		return -ENOMEM; | 
 | 221 |  | 
 | 222 | 	/* Adjust the SKB for padding and checksum */ | 
 | 223 | 	skb_reserve(rx_buf->skb, NET_IP_ALIGN); | 
 | 224 | 	rx_buf->len = skb_len - NET_IP_ALIGN; | 
 | 225 | 	rx_buf->data = (char *)rx_buf->skb->data; | 
 | 226 | 	rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 227 |  | 
 | 228 | 	rx_buf->dma_addr = pci_map_single(efx->pci_dev, | 
 | 229 | 					  rx_buf->data, rx_buf->len, | 
 | 230 | 					  PCI_DMA_FROMDEVICE); | 
 | 231 |  | 
 | 232 | 	if (unlikely(pci_dma_mapping_error(rx_buf->dma_addr))) { | 
 | 233 | 		dev_kfree_skb_any(rx_buf->skb); | 
 | 234 | 		rx_buf->skb = NULL; | 
 | 235 | 		return -EIO; | 
 | 236 | 	} | 
 | 237 |  | 
 | 238 | 	return 0; | 
 | 239 | } | 
 | 240 |  | 
 | 241 | /** | 
 | 242 |  * efx_init_rx_buffer_page - create new RX buffer using page-based allocation | 
 | 243 |  * | 
 | 244 |  * @rx_queue:		Efx RX queue | 
 | 245 |  * @rx_buf:		RX buffer structure to populate | 
 | 246 |  * | 
 | 247 |  * This allocates memory for a new receive buffer, maps it for DMA, | 
 | 248 |  * and populates a struct efx_rx_buffer with the relevant | 
 | 249 |  * information.  Return a negative error code or 0 on success. | 
 | 250 |  */ | 
 | 251 | static inline int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue, | 
 | 252 | 					  struct efx_rx_buffer *rx_buf) | 
 | 253 | { | 
 | 254 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 255 | 	int bytes, space, offset; | 
 | 256 |  | 
 | 257 | 	bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; | 
 | 258 |  | 
 | 259 | 	/* If there is space left in the previously allocated page, | 
 | 260 | 	 * then use it. Otherwise allocate a new one */ | 
 | 261 | 	rx_buf->page = rx_queue->buf_page; | 
 | 262 | 	if (rx_buf->page == NULL) { | 
 | 263 | 		dma_addr_t dma_addr; | 
 | 264 |  | 
 | 265 | 		rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, | 
 | 266 | 					   efx->rx_buffer_order); | 
 | 267 | 		if (unlikely(rx_buf->page == NULL)) | 
 | 268 | 			return -ENOMEM; | 
 | 269 |  | 
 | 270 | 		dma_addr = pci_map_page(efx->pci_dev, rx_buf->page, | 
 | 271 | 					0, RX_PAGE_SIZE(efx), | 
 | 272 | 					PCI_DMA_FROMDEVICE); | 
 | 273 |  | 
 | 274 | 		if (unlikely(pci_dma_mapping_error(dma_addr))) { | 
 | 275 | 			__free_pages(rx_buf->page, efx->rx_buffer_order); | 
 | 276 | 			rx_buf->page = NULL; | 
 | 277 | 			return -EIO; | 
 | 278 | 		} | 
 | 279 |  | 
 | 280 | 		rx_queue->buf_page = rx_buf->page; | 
 | 281 | 		rx_queue->buf_dma_addr = dma_addr; | 
 | 282 | 		rx_queue->buf_data = ((char *) page_address(rx_buf->page) + | 
 | 283 | 				      EFX_PAGE_IP_ALIGN); | 
 | 284 | 	} | 
 | 285 |  | 
 | 286 | 	offset = RX_DATA_OFFSET(rx_queue->buf_data); | 
 | 287 | 	rx_buf->len = bytes; | 
 | 288 | 	rx_buf->dma_addr = rx_queue->buf_dma_addr + offset; | 
 | 289 | 	rx_buf->data = rx_queue->buf_data; | 
 | 290 |  | 
 | 291 | 	/* Try to pack multiple buffers per page */ | 
 | 292 | 	if (efx->rx_buffer_order == 0) { | 
 | 293 | 		/* The next buffer starts on the next 512 byte boundary */ | 
 | 294 | 		rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff); | 
 | 295 | 		offset += ((bytes + 0x1ff) & ~0x1ff); | 
 | 296 |  | 
 | 297 | 		space = RX_PAGE_SIZE(efx) - offset; | 
 | 298 | 		if (space >= bytes) { | 
 | 299 | 			/* Refs dropped on kernel releasing each skb */ | 
 | 300 | 			get_page(rx_queue->buf_page); | 
 | 301 | 			goto out; | 
 | 302 | 		} | 
 | 303 | 	} | 
 | 304 |  | 
 | 305 | 	/* This is the final RX buffer for this page, so mark it for | 
 | 306 | 	 * unmapping */ | 
 | 307 | 	rx_queue->buf_page = NULL; | 
 | 308 | 	rx_buf->unmap_addr = rx_queue->buf_dma_addr; | 
 | 309 |  | 
 | 310 |  out: | 
 | 311 | 	return 0; | 
 | 312 | } | 
 | 313 |  | 
 | 314 | /* This allocates memory for a new receive buffer, maps it for DMA, | 
 | 315 |  * and populates a struct efx_rx_buffer with the relevant | 
 | 316 |  * information. | 
 | 317 |  */ | 
 | 318 | static inline int efx_init_rx_buffer(struct efx_rx_queue *rx_queue, | 
 | 319 | 				     struct efx_rx_buffer *new_rx_buf) | 
 | 320 | { | 
 | 321 | 	int rc = 0; | 
 | 322 |  | 
 | 323 | 	if (rx_queue->channel->rx_alloc_push_pages) { | 
 | 324 | 		new_rx_buf->skb = NULL; | 
 | 325 | 		rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf); | 
 | 326 | 		rx_queue->alloc_page_count++; | 
 | 327 | 	} else { | 
 | 328 | 		new_rx_buf->page = NULL; | 
 | 329 | 		rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf); | 
 | 330 | 		rx_queue->alloc_skb_count++; | 
 | 331 | 	} | 
 | 332 |  | 
 | 333 | 	if (unlikely(rc < 0)) | 
 | 334 | 		EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__, | 
 | 335 | 			   rx_queue->queue, rc); | 
 | 336 | 	return rc; | 
 | 337 | } | 
 | 338 |  | 
 | 339 | static inline void efx_unmap_rx_buffer(struct efx_nic *efx, | 
 | 340 | 				       struct efx_rx_buffer *rx_buf) | 
 | 341 | { | 
 | 342 | 	if (rx_buf->page) { | 
 | 343 | 		EFX_BUG_ON_PARANOID(rx_buf->skb); | 
 | 344 | 		if (rx_buf->unmap_addr) { | 
 | 345 | 			pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr, | 
 | 346 | 				       RX_PAGE_SIZE(efx), PCI_DMA_FROMDEVICE); | 
 | 347 | 			rx_buf->unmap_addr = 0; | 
 | 348 | 		} | 
 | 349 | 	} else if (likely(rx_buf->skb)) { | 
 | 350 | 		pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, | 
 | 351 | 				 rx_buf->len, PCI_DMA_FROMDEVICE); | 
 | 352 | 	} | 
 | 353 | } | 
 | 354 |  | 
 | 355 | static inline void efx_free_rx_buffer(struct efx_nic *efx, | 
 | 356 | 				      struct efx_rx_buffer *rx_buf) | 
 | 357 | { | 
 | 358 | 	if (rx_buf->page) { | 
 | 359 | 		__free_pages(rx_buf->page, efx->rx_buffer_order); | 
 | 360 | 		rx_buf->page = NULL; | 
 | 361 | 	} else if (likely(rx_buf->skb)) { | 
 | 362 | 		dev_kfree_skb_any(rx_buf->skb); | 
 | 363 | 		rx_buf->skb = NULL; | 
 | 364 | 	} | 
 | 365 | } | 
 | 366 |  | 
 | 367 | static inline void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, | 
 | 368 | 				      struct efx_rx_buffer *rx_buf) | 
 | 369 | { | 
 | 370 | 	efx_unmap_rx_buffer(rx_queue->efx, rx_buf); | 
 | 371 | 	efx_free_rx_buffer(rx_queue->efx, rx_buf); | 
 | 372 | } | 
 | 373 |  | 
 | 374 | /** | 
 | 375 |  * efx_fast_push_rx_descriptors - push new RX descriptors quickly | 
 | 376 |  * @rx_queue:		RX descriptor queue | 
 | 377 |  * @retry:              Recheck the fill level | 
 | 378 |  * This will aim to fill the RX descriptor queue up to | 
 | 379 |  * @rx_queue->@fast_fill_limit. If there is insufficient atomic | 
 | 380 |  * memory to do so, the caller should retry. | 
 | 381 |  */ | 
 | 382 | static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, | 
 | 383 | 					  int retry) | 
 | 384 | { | 
 | 385 | 	struct efx_rx_buffer *rx_buf; | 
 | 386 | 	unsigned fill_level, index; | 
 | 387 | 	int i, space, rc = 0; | 
 | 388 |  | 
 | 389 | 	/* Calculate current fill level.  Do this outside the lock, | 
 | 390 | 	 * because most of the time we'll end up not wanting to do the | 
 | 391 | 	 * fill anyway. | 
 | 392 | 	 */ | 
 | 393 | 	fill_level = (rx_queue->added_count - rx_queue->removed_count); | 
 | 394 | 	EFX_BUG_ON_PARANOID(fill_level > | 
 | 395 | 			    rx_queue->efx->type->rxd_ring_mask + 1); | 
 | 396 |  | 
 | 397 | 	/* Don't fill if we don't need to */ | 
 | 398 | 	if (fill_level >= rx_queue->fast_fill_trigger) | 
 | 399 | 		return 0; | 
 | 400 |  | 
 | 401 | 	/* Record minimum fill level */ | 
 | 402 | 	if (unlikely(fill_level < rx_queue->min_fill)) | 
 | 403 | 		if (fill_level) | 
 | 404 | 			rx_queue->min_fill = fill_level; | 
 | 405 |  | 
 | 406 | 	/* Acquire RX add lock.  If this lock is contended, then a fast | 
 | 407 | 	 * fill must already be in progress (e.g. in the refill | 
 | 408 | 	 * tasklet), so we don't need to do anything | 
 | 409 | 	 */ | 
 | 410 | 	if (!spin_trylock_bh(&rx_queue->add_lock)) | 
 | 411 | 		return -1; | 
 | 412 |  | 
 | 413 |  retry: | 
 | 414 | 	/* Recalculate current fill level now that we have the lock */ | 
 | 415 | 	fill_level = (rx_queue->added_count - rx_queue->removed_count); | 
 | 416 | 	EFX_BUG_ON_PARANOID(fill_level > | 
 | 417 | 			    rx_queue->efx->type->rxd_ring_mask + 1); | 
 | 418 | 	space = rx_queue->fast_fill_limit - fill_level; | 
 | 419 | 	if (space < EFX_RX_BATCH) | 
 | 420 | 		goto out_unlock; | 
 | 421 |  | 
 | 422 | 	EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from" | 
 | 423 | 		  " level %d to level %d using %s allocation\n", | 
 | 424 | 		  rx_queue->queue, fill_level, rx_queue->fast_fill_limit, | 
 | 425 | 		  rx_queue->channel->rx_alloc_push_pages ? "page" : "skb"); | 
 | 426 |  | 
 | 427 | 	do { | 
 | 428 | 		for (i = 0; i < EFX_RX_BATCH; ++i) { | 
 | 429 | 			index = (rx_queue->added_count & | 
 | 430 | 				 rx_queue->efx->type->rxd_ring_mask); | 
 | 431 | 			rx_buf = efx_rx_buffer(rx_queue, index); | 
 | 432 | 			rc = efx_init_rx_buffer(rx_queue, rx_buf); | 
 | 433 | 			if (unlikely(rc)) | 
 | 434 | 				goto out; | 
 | 435 | 			++rx_queue->added_count; | 
 | 436 | 		} | 
 | 437 | 	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); | 
 | 438 |  | 
 | 439 | 	EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring " | 
 | 440 | 		  "to level %d\n", rx_queue->queue, | 
 | 441 | 		  rx_queue->added_count - rx_queue->removed_count); | 
 | 442 |  | 
 | 443 |  out: | 
 | 444 | 	/* Send write pointer to card. */ | 
 | 445 | 	falcon_notify_rx_desc(rx_queue); | 
 | 446 |  | 
 | 447 | 	/* If the fast fill is running inside from the refill tasklet, then | 
 | 448 | 	 * for SMP systems it may be running on a different CPU to | 
 | 449 | 	 * RX event processing, which means that the fill level may now be | 
 | 450 | 	 * out of date. */ | 
 | 451 | 	if (unlikely(retry && (rc == 0))) | 
 | 452 | 		goto retry; | 
 | 453 |  | 
 | 454 |  out_unlock: | 
 | 455 | 	spin_unlock_bh(&rx_queue->add_lock); | 
 | 456 |  | 
 | 457 | 	return rc; | 
 | 458 | } | 
 | 459 |  | 
 | 460 | /** | 
 | 461 |  * efx_fast_push_rx_descriptors - push new RX descriptors quickly | 
 | 462 |  * @rx_queue:		RX descriptor queue | 
 | 463 |  * | 
 | 464 |  * This will aim to fill the RX descriptor queue up to | 
 | 465 |  * @rx_queue->@fast_fill_limit.  If there is insufficient memory to do so, | 
 | 466 |  * it will schedule a work item to immediately continue the fast fill | 
 | 467 |  */ | 
 | 468 | void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) | 
 | 469 | { | 
 | 470 | 	int rc; | 
 | 471 |  | 
 | 472 | 	rc = __efx_fast_push_rx_descriptors(rx_queue, 0); | 
 | 473 | 	if (unlikely(rc)) { | 
 | 474 | 		/* Schedule the work item to run immediately. The hope is | 
 | 475 | 		 * that work is immediately pending to free some memory | 
 | 476 | 		 * (e.g. an RX event or TX completion) | 
 | 477 | 		 */ | 
 | 478 | 		efx_schedule_slow_fill(rx_queue, 0); | 
 | 479 | 	} | 
 | 480 | } | 
 | 481 |  | 
 | 482 | void efx_rx_work(struct work_struct *data) | 
 | 483 | { | 
 | 484 | 	struct efx_rx_queue *rx_queue; | 
 | 485 | 	int rc; | 
 | 486 |  | 
 | 487 | 	rx_queue = container_of(data, struct efx_rx_queue, work.work); | 
 | 488 |  | 
 | 489 | 	if (unlikely(!rx_queue->channel->enabled)) | 
 | 490 | 		return; | 
 | 491 |  | 
 | 492 | 	EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU " | 
 | 493 | 		  "%d\n", rx_queue->queue, raw_smp_processor_id()); | 
 | 494 |  | 
 | 495 | 	++rx_queue->slow_fill_count; | 
 | 496 | 	/* Push new RX descriptors, allowing at least 1 jiffy for | 
 | 497 | 	 * the kernel to free some more memory. */ | 
 | 498 | 	rc = __efx_fast_push_rx_descriptors(rx_queue, 1); | 
 | 499 | 	if (rc) | 
 | 500 | 		efx_schedule_slow_fill(rx_queue, 1); | 
 | 501 | } | 
 | 502 |  | 
 | 503 | static inline void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, | 
 | 504 | 					    struct efx_rx_buffer *rx_buf, | 
 | 505 | 					    int len, int *discard, | 
 | 506 | 					    int *leak_packet) | 
 | 507 | { | 
 | 508 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 509 | 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; | 
 | 510 |  | 
 | 511 | 	if (likely(len <= max_len)) | 
 | 512 | 		return; | 
 | 513 |  | 
 | 514 | 	/* The packet must be discarded, but this is only a fatal error | 
 | 515 | 	 * if the caller indicated it was | 
 | 516 | 	 */ | 
 | 517 | 	*discard = 1; | 
 | 518 |  | 
 | 519 | 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { | 
 | 520 | 		EFX_ERR_RL(efx, " RX queue %d seriously overlength " | 
 | 521 | 			   "RX event (0x%x > 0x%x+0x%x). Leaking\n", | 
 | 522 | 			   rx_queue->queue, len, max_len, | 
 | 523 | 			   efx->type->rx_buffer_padding); | 
 | 524 | 		/* If this buffer was skb-allocated, then the meta | 
 | 525 | 		 * data at the end of the skb will be trashed. So | 
 | 526 | 		 * we have no choice but to leak the fragment. | 
 | 527 | 		 */ | 
 | 528 | 		*leak_packet = (rx_buf->skb != NULL); | 
 | 529 | 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); | 
 | 530 | 	} else { | 
 | 531 | 		EFX_ERR_RL(efx, " RX queue %d overlength RX event " | 
 | 532 | 			   "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len); | 
 | 533 | 	} | 
 | 534 |  | 
 | 535 | 	rx_queue->channel->n_rx_overlength++; | 
 | 536 | } | 
 | 537 |  | 
 | 538 | /* Pass a received packet up through the generic LRO stack | 
 | 539 |  * | 
 | 540 |  * Handles driverlink veto, and passes the fragment up via | 
 | 541 |  * the appropriate LRO method | 
 | 542 |  */ | 
 | 543 | static inline void efx_rx_packet_lro(struct efx_channel *channel, | 
 | 544 | 				     struct efx_rx_buffer *rx_buf) | 
 | 545 | { | 
 | 546 | 	struct net_lro_mgr *lro_mgr = &channel->lro_mgr; | 
 | 547 | 	void *priv = channel; | 
 | 548 |  | 
 | 549 | 	/* Pass the skb/page into the LRO engine */ | 
 | 550 | 	if (rx_buf->page) { | 
 | 551 | 		struct skb_frag_struct frags; | 
 | 552 |  | 
 | 553 | 		frags.page = rx_buf->page; | 
 | 554 | 		frags.page_offset = RX_BUF_OFFSET(rx_buf); | 
 | 555 | 		frags.size = rx_buf->len; | 
 | 556 |  | 
 | 557 | 		lro_receive_frags(lro_mgr, &frags, rx_buf->len, | 
 | 558 | 				  rx_buf->len, priv, 0); | 
 | 559 |  | 
 | 560 | 		EFX_BUG_ON_PARANOID(rx_buf->skb); | 
 | 561 | 		rx_buf->page = NULL; | 
 | 562 | 	} else { | 
 | 563 | 		EFX_BUG_ON_PARANOID(!rx_buf->skb); | 
 | 564 |  | 
 | 565 | 		lro_receive_skb(lro_mgr, rx_buf->skb, priv); | 
 | 566 | 		rx_buf->skb = NULL; | 
 | 567 | 	} | 
 | 568 | } | 
 | 569 |  | 
 | 570 | /* Allocate and construct an SKB around a struct page.*/ | 
 | 571 | static inline struct sk_buff *efx_rx_mk_skb(struct efx_rx_buffer *rx_buf, | 
 | 572 | 					    struct efx_nic *efx, | 
 | 573 | 					    int hdr_len) | 
 | 574 | { | 
 | 575 | 	struct sk_buff *skb; | 
 | 576 |  | 
 | 577 | 	/* Allocate an SKB to store the headers */ | 
 | 578 | 	skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN); | 
 | 579 | 	if (unlikely(skb == NULL)) { | 
 | 580 | 		EFX_ERR_RL(efx, "RX out of memory for skb\n"); | 
 | 581 | 		return NULL; | 
 | 582 | 	} | 
 | 583 |  | 
 | 584 | 	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags); | 
 | 585 | 	EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len); | 
 | 586 |  | 
 | 587 | 	skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 588 | 	skb_reserve(skb, EFX_PAGE_SKB_ALIGN); | 
 | 589 |  | 
 | 590 | 	skb->len = rx_buf->len; | 
 | 591 | 	skb->truesize = rx_buf->len + sizeof(struct sk_buff); | 
 | 592 | 	memcpy(skb->data, rx_buf->data, hdr_len); | 
 | 593 | 	skb->tail += hdr_len; | 
 | 594 |  | 
 | 595 | 	/* Append the remaining page onto the frag list */ | 
 | 596 | 	if (unlikely(rx_buf->len > hdr_len)) { | 
 | 597 | 		struct skb_frag_struct *frag = skb_shinfo(skb)->frags; | 
 | 598 | 		frag->page = rx_buf->page; | 
 | 599 | 		frag->page_offset = RX_BUF_OFFSET(rx_buf) + hdr_len; | 
 | 600 | 		frag->size = skb->len - hdr_len; | 
 | 601 | 		skb_shinfo(skb)->nr_frags = 1; | 
 | 602 | 		skb->data_len = frag->size; | 
 | 603 | 	} else { | 
 | 604 | 		__free_pages(rx_buf->page, efx->rx_buffer_order); | 
 | 605 | 		skb->data_len = 0; | 
 | 606 | 	} | 
 | 607 |  | 
 | 608 | 	/* Ownership has transferred from the rx_buf to skb */ | 
 | 609 | 	rx_buf->page = NULL; | 
 | 610 |  | 
 | 611 | 	/* Move past the ethernet header */ | 
 | 612 | 	skb->protocol = eth_type_trans(skb, efx->net_dev); | 
 | 613 |  | 
 | 614 | 	return skb; | 
 | 615 | } | 
 | 616 |  | 
 | 617 | void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, | 
 | 618 | 		   unsigned int len, int checksummed, int discard) | 
 | 619 | { | 
 | 620 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 621 | 	struct efx_rx_buffer *rx_buf; | 
 | 622 | 	int leak_packet = 0; | 
 | 623 |  | 
 | 624 | 	rx_buf = efx_rx_buffer(rx_queue, index); | 
 | 625 | 	EFX_BUG_ON_PARANOID(!rx_buf->data); | 
 | 626 | 	EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page); | 
 | 627 | 	EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page)); | 
 | 628 |  | 
 | 629 | 	/* This allows the refill path to post another buffer. | 
 | 630 | 	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using | 
 | 631 | 	 * isn't overwritten yet. | 
 | 632 | 	 */ | 
 | 633 | 	rx_queue->removed_count++; | 
 | 634 |  | 
 | 635 | 	/* Validate the length encoded in the event vs the descriptor pushed */ | 
 | 636 | 	efx_rx_packet__check_len(rx_queue, rx_buf, len, | 
 | 637 | 				 &discard, &leak_packet); | 
 | 638 |  | 
 | 639 | 	EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n", | 
 | 640 | 		  rx_queue->queue, index, | 
 | 641 | 		  (unsigned long long)rx_buf->dma_addr, len, | 
 | 642 | 		  (checksummed ? " [SUMMED]" : ""), | 
 | 643 | 		  (discard ? " [DISCARD]" : "")); | 
 | 644 |  | 
 | 645 | 	/* Discard packet, if instructed to do so */ | 
 | 646 | 	if (unlikely(discard)) { | 
 | 647 | 		if (unlikely(leak_packet)) | 
 | 648 | 			rx_queue->channel->n_skbuff_leaks++; | 
 | 649 | 		else | 
 | 650 | 			/* We haven't called efx_unmap_rx_buffer yet, | 
 | 651 | 			 * so fini the entire rx_buffer here */ | 
 | 652 | 			efx_fini_rx_buffer(rx_queue, rx_buf); | 
 | 653 | 		return; | 
 | 654 | 	} | 
 | 655 |  | 
 | 656 | 	/* Release card resources - assumes all RX buffers consumed in-order | 
 | 657 | 	 * per RX queue | 
 | 658 | 	 */ | 
 | 659 | 	efx_unmap_rx_buffer(efx, rx_buf); | 
 | 660 |  | 
 | 661 | 	/* Prefetch nice and early so data will (hopefully) be in cache by | 
 | 662 | 	 * the time we look at it. | 
 | 663 | 	 */ | 
 | 664 | 	prefetch(rx_buf->data); | 
 | 665 |  | 
 | 666 | 	/* Pipeline receives so that we give time for packet headers to be | 
 | 667 | 	 * prefetched into cache. | 
 | 668 | 	 */ | 
 | 669 | 	rx_buf->len = len; | 
 | 670 | 	if (rx_queue->channel->rx_pkt) | 
 | 671 | 		__efx_rx_packet(rx_queue->channel, | 
 | 672 | 				rx_queue->channel->rx_pkt, | 
 | 673 | 				rx_queue->channel->rx_pkt_csummed); | 
 | 674 | 	rx_queue->channel->rx_pkt = rx_buf; | 
 | 675 | 	rx_queue->channel->rx_pkt_csummed = checksummed; | 
 | 676 | } | 
 | 677 |  | 
 | 678 | /* Handle a received packet.  Second half: Touches packet payload. */ | 
 | 679 | void __efx_rx_packet(struct efx_channel *channel, | 
 | 680 | 		     struct efx_rx_buffer *rx_buf, int checksummed) | 
 | 681 | { | 
 | 682 | 	struct efx_nic *efx = channel->efx; | 
 | 683 | 	struct sk_buff *skb; | 
 | 684 | 	int lro = efx->net_dev->features & NETIF_F_LRO; | 
 | 685 |  | 
 | 686 | 	if (rx_buf->skb) { | 
 | 687 | 		prefetch(skb_shinfo(rx_buf->skb)); | 
 | 688 |  | 
 | 689 | 		skb_put(rx_buf->skb, rx_buf->len); | 
 | 690 |  | 
 | 691 | 		/* Move past the ethernet header. rx_buf->data still points | 
 | 692 | 		 * at the ethernet header */ | 
 | 693 | 		rx_buf->skb->protocol = eth_type_trans(rx_buf->skb, | 
 | 694 | 						       efx->net_dev); | 
 | 695 | 	} | 
 | 696 |  | 
 | 697 | 	/* Both our generic-LRO and SFC-SSR support skb and page based | 
 | 698 | 	 * allocation, but neither support switching from one to the | 
 | 699 | 	 * other on the fly. If we spot that the allocation mode has | 
 | 700 | 	 * changed, then flush the LRO state. | 
 | 701 | 	 */ | 
 | 702 | 	if (unlikely(channel->rx_alloc_pop_pages != (rx_buf->page != NULL))) { | 
 | 703 | 		efx_flush_lro(channel); | 
 | 704 | 		channel->rx_alloc_pop_pages = (rx_buf->page != NULL); | 
 | 705 | 	} | 
 | 706 | 	if (likely(checksummed && lro)) { | 
 | 707 | 		efx_rx_packet_lro(channel, rx_buf); | 
 | 708 | 		goto done; | 
 | 709 | 	} | 
 | 710 |  | 
 | 711 | 	/* Form an skb if required */ | 
 | 712 | 	if (rx_buf->page) { | 
 | 713 | 		int hdr_len = min(rx_buf->len, EFX_SKB_HEADERS); | 
 | 714 | 		skb = efx_rx_mk_skb(rx_buf, efx, hdr_len); | 
 | 715 | 		if (unlikely(skb == NULL)) { | 
 | 716 | 			efx_free_rx_buffer(efx, rx_buf); | 
 | 717 | 			goto done; | 
 | 718 | 		} | 
 | 719 | 	} else { | 
 | 720 | 		/* We now own the SKB */ | 
 | 721 | 		skb = rx_buf->skb; | 
 | 722 | 		rx_buf->skb = NULL; | 
 | 723 | 	} | 
 | 724 |  | 
 | 725 | 	EFX_BUG_ON_PARANOID(rx_buf->page); | 
 | 726 | 	EFX_BUG_ON_PARANOID(rx_buf->skb); | 
 | 727 | 	EFX_BUG_ON_PARANOID(!skb); | 
 | 728 |  | 
 | 729 | 	/* Set the SKB flags */ | 
 | 730 | 	if (unlikely(!checksummed || !efx->rx_checksum_enabled)) | 
 | 731 | 		skb->ip_summed = CHECKSUM_NONE; | 
 | 732 |  | 
 | 733 | 	/* Pass the packet up */ | 
 | 734 | 	netif_receive_skb(skb); | 
 | 735 |  | 
 | 736 | 	/* Update allocation strategy method */ | 
 | 737 | 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | 
 | 738 |  | 
 | 739 | 	/* fall-thru */ | 
 | 740 | done: | 
 | 741 | 	efx->net_dev->last_rx = jiffies; | 
 | 742 | } | 
 | 743 |  | 
 | 744 | void efx_rx_strategy(struct efx_channel *channel) | 
 | 745 | { | 
 | 746 | 	enum efx_rx_alloc_method method = rx_alloc_method; | 
 | 747 |  | 
 | 748 | 	/* Only makes sense to use page based allocation if LRO is enabled */ | 
 | 749 | 	if (!(channel->efx->net_dev->features & NETIF_F_LRO)) { | 
 | 750 | 		method = RX_ALLOC_METHOD_SKB; | 
 | 751 | 	} else if (method == RX_ALLOC_METHOD_AUTO) { | 
 | 752 | 		/* Constrain the rx_alloc_level */ | 
 | 753 | 		if (channel->rx_alloc_level < 0) | 
 | 754 | 			channel->rx_alloc_level = 0; | 
 | 755 | 		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) | 
 | 756 | 			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; | 
 | 757 |  | 
 | 758 | 		/* Decide on the allocation method */ | 
 | 759 | 		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ? | 
 | 760 | 			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); | 
 | 761 | 	} | 
 | 762 |  | 
 | 763 | 	/* Push the option */ | 
 | 764 | 	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); | 
 | 765 | } | 
 | 766 |  | 
 | 767 | int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) | 
 | 768 | { | 
 | 769 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 770 | 	unsigned int rxq_size; | 
 | 771 | 	int rc; | 
 | 772 |  | 
 | 773 | 	EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue); | 
 | 774 |  | 
 | 775 | 	/* Allocate RX buffers */ | 
 | 776 | 	rxq_size = (efx->type->rxd_ring_mask + 1) * sizeof(*rx_queue->buffer); | 
 | 777 | 	rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL); | 
 | 778 | 	if (!rx_queue->buffer) { | 
 | 779 | 		rc = -ENOMEM; | 
 | 780 | 		goto fail1; | 
 | 781 | 	} | 
 | 782 |  | 
 | 783 | 	rc = falcon_probe_rx(rx_queue); | 
 | 784 | 	if (rc) | 
 | 785 | 		goto fail2; | 
 | 786 |  | 
 | 787 | 	return 0; | 
 | 788 |  | 
 | 789 |  fail2: | 
 | 790 | 	kfree(rx_queue->buffer); | 
 | 791 | 	rx_queue->buffer = NULL; | 
 | 792 |  fail1: | 
 | 793 | 	rx_queue->used = 0; | 
 | 794 |  | 
 | 795 | 	return rc; | 
 | 796 | } | 
 | 797 |  | 
 | 798 | int efx_init_rx_queue(struct efx_rx_queue *rx_queue) | 
 | 799 | { | 
 | 800 | 	struct efx_nic *efx = rx_queue->efx; | 
 | 801 | 	unsigned int max_fill, trigger, limit; | 
 | 802 |  | 
 | 803 | 	EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue); | 
 | 804 |  | 
 | 805 | 	/* Initialise ptr fields */ | 
 | 806 | 	rx_queue->added_count = 0; | 
 | 807 | 	rx_queue->notified_count = 0; | 
 | 808 | 	rx_queue->removed_count = 0; | 
 | 809 | 	rx_queue->min_fill = -1U; | 
 | 810 | 	rx_queue->min_overfill = -1U; | 
 | 811 |  | 
 | 812 | 	/* Initialise limit fields */ | 
 | 813 | 	max_fill = efx->type->rxd_ring_mask + 1 - EFX_RXD_HEAD_ROOM; | 
 | 814 | 	trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; | 
 | 815 | 	limit = max_fill * min(rx_refill_limit, 100U) / 100U; | 
 | 816 |  | 
 | 817 | 	rx_queue->max_fill = max_fill; | 
 | 818 | 	rx_queue->fast_fill_trigger = trigger; | 
 | 819 | 	rx_queue->fast_fill_limit = limit; | 
 | 820 |  | 
 | 821 | 	/* Set up RX descriptor ring */ | 
 | 822 | 	return falcon_init_rx(rx_queue); | 
 | 823 | } | 
 | 824 |  | 
 | 825 | void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) | 
 | 826 | { | 
 | 827 | 	int i; | 
 | 828 | 	struct efx_rx_buffer *rx_buf; | 
 | 829 |  | 
 | 830 | 	EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue); | 
 | 831 |  | 
 | 832 | 	falcon_fini_rx(rx_queue); | 
 | 833 |  | 
 | 834 | 	/* Release RX buffers NB start at index 0 not current HW ptr */ | 
 | 835 | 	if (rx_queue->buffer) { | 
 | 836 | 		for (i = 0; i <= rx_queue->efx->type->rxd_ring_mask; i++) { | 
 | 837 | 			rx_buf = efx_rx_buffer(rx_queue, i); | 
 | 838 | 			efx_fini_rx_buffer(rx_queue, rx_buf); | 
 | 839 | 		} | 
 | 840 | 	} | 
 | 841 |  | 
 | 842 | 	/* For a page that is part-way through splitting into RX buffers */ | 
 | 843 | 	if (rx_queue->buf_page != NULL) { | 
 | 844 | 		pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr, | 
 | 845 | 			       RX_PAGE_SIZE(rx_queue->efx), PCI_DMA_FROMDEVICE); | 
 | 846 | 		__free_pages(rx_queue->buf_page, | 
 | 847 | 			     rx_queue->efx->rx_buffer_order); | 
 | 848 | 		rx_queue->buf_page = NULL; | 
 | 849 | 	} | 
 | 850 | } | 
 | 851 |  | 
 | 852 | void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) | 
 | 853 | { | 
 | 854 | 	EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue); | 
 | 855 |  | 
 | 856 | 	falcon_remove_rx(rx_queue); | 
 | 857 |  | 
 | 858 | 	kfree(rx_queue->buffer); | 
 | 859 | 	rx_queue->buffer = NULL; | 
 | 860 | 	rx_queue->used = 0; | 
 | 861 | } | 
 | 862 |  | 
 | 863 | void efx_flush_lro(struct efx_channel *channel) | 
 | 864 | { | 
 | 865 | 	lro_flush_all(&channel->lro_mgr); | 
 | 866 | } | 
 | 867 |  | 
 | 868 |  | 
 | 869 | module_param(rx_alloc_method, int, 0644); | 
 | 870 | MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); | 
 | 871 |  | 
 | 872 | module_param(rx_refill_threshold, uint, 0444); | 
 | 873 | MODULE_PARM_DESC(rx_refill_threshold, | 
 | 874 | 		 "RX descriptor ring fast/slow fill threshold (%)"); | 
 | 875 |  |