blob: 82a929f916fd7250c1c6c3f884214181ddf63825 [file] [log] [blame]
Linus Walleijb43d65f2009-06-09 08:11:42 +01001/*
Linus Walleijb43d65f2009-06-09 08:11:42 +01002 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
Linus Walleijb43d65f2009-06-09 08:11:42 +010025#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
32#include <linux/workqueue.h>
Linus Walleijb43d65f2009-06-09 08:11:42 +010033#include <linux/delay.h>
34#include <linux/clk.h>
35#include <linux/err.h>
36#include <linux/amba/bus.h>
37#include <linux/amba/pl022.h>
38#include <linux/io.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090039#include <linux/slab.h>
Linus Walleijb1b6b9a2010-09-29 17:31:35 +090040#include <linux/dmaengine.h>
41#include <linux/dma-mapping.h>
42#include <linux/scatterlist.h>
Rabin Vincentbcda6ff2011-06-16 10:14:40 +020043#include <linux/pm_runtime.h>
Linus Walleijb43d65f2009-06-09 08:11:42 +010044
45/*
46 * This macro is used to define some register default values.
47 * reg is masked with mask, the OR:ed with an (again masked)
48 * val shifted sb steps to the left.
49 */
50#define SSP_WRITE_BITS(reg, val, mask, sb) \
51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
52
53/*
54 * This macro is also used to define some default values.
55 * It will just shift val by sb steps to the left and mask
56 * the result with mask.
57 */
58#define GEN_MASK_BITS(val, mask, sb) \
59 (((val)<<(sb)) & (mask))
60
61#define DRIVE_TX 0
62#define DO_NOT_DRIVE_TX 1
63
64#define DO_NOT_QUEUE_DMA 0
65#define QUEUE_DMA 1
66
67#define RX_TRANSFER 1
68#define TX_TRANSFER 2
69
70/*
71 * Macros to access SSP Registers with their offsets
72 */
73#define SSP_CR0(r) (r + 0x000)
74#define SSP_CR1(r) (r + 0x004)
75#define SSP_DR(r) (r + 0x008)
76#define SSP_SR(r) (r + 0x00C)
77#define SSP_CPSR(r) (r + 0x010)
78#define SSP_IMSC(r) (r + 0x014)
79#define SSP_RIS(r) (r + 0x018)
80#define SSP_MIS(r) (r + 0x01C)
81#define SSP_ICR(r) (r + 0x020)
82#define SSP_DMACR(r) (r + 0x024)
83#define SSP_ITCR(r) (r + 0x080)
84#define SSP_ITIP(r) (r + 0x084)
85#define SSP_ITOP(r) (r + 0x088)
86#define SSP_TDR(r) (r + 0x08C)
87
88#define SSP_PID0(r) (r + 0xFE0)
89#define SSP_PID1(r) (r + 0xFE4)
90#define SSP_PID2(r) (r + 0xFE8)
91#define SSP_PID3(r) (r + 0xFEC)
92
93#define SSP_CID0(r) (r + 0xFF0)
94#define SSP_CID1(r) (r + 0xFF4)
95#define SSP_CID2(r) (r + 0xFF8)
96#define SSP_CID3(r) (r + 0xFFC)
97
98/*
99 * SSP Control Register 0 - SSP_CR0
100 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000101#define SSP_CR0_MASK_DSS (0x0FUL << 0)
102#define SSP_CR0_MASK_FRF (0x3UL << 4)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100103#define SSP_CR0_MASK_SPO (0x1UL << 6)
104#define SSP_CR0_MASK_SPH (0x1UL << 7)
105#define SSP_CR0_MASK_SCR (0xFFUL << 8)
Linus Walleij556f4ae2010-05-05 09:28:15 +0000106
107/*
108 * The ST version of this block moves som bits
109 * in SSP_CR0 and extends it to 32 bits
110 */
111#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
112#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
113#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
114#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
115
Linus Walleijb43d65f2009-06-09 08:11:42 +0100116/*
117 * SSP Control Register 0 - SSP_CR1
118 */
119#define SSP_CR1_MASK_LBM (0x1UL << 0)
120#define SSP_CR1_MASK_SSE (0x1UL << 1)
121#define SSP_CR1_MASK_MS (0x1UL << 2)
122#define SSP_CR1_MASK_SOD (0x1UL << 3)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100123
124/*
Linus Walleij556f4ae2010-05-05 09:28:15 +0000125 * The ST version of this block adds some bits
126 * in SSP_CR1
Linus Walleijb43d65f2009-06-09 08:11:42 +0100127 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000128#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
129#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
130#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
131#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
132#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
Linus Walleij781c7b12010-05-07 08:40:53 +0000133/* This one is only in the PL023 variant */
134#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100135
136/*
137 * SSP Status Register - SSP_SR
138 */
139#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
140#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
141#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000142#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
Linus Walleijb43d65f2009-06-09 08:11:42 +0100143#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
144
145/*
146 * SSP Clock Prescale Register - SSP_CPSR
147 */
148#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
149
150/*
151 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
152 */
153#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
154#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
155#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
156#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
157
158/*
159 * SSP Raw Interrupt Status Register - SSP_RIS
160 */
161/* Receive Overrun Raw Interrupt status */
162#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
163/* Receive Timeout Raw Interrupt status */
164#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
165/* Receive FIFO Raw Interrupt status */
166#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
167/* Transmit FIFO Raw Interrupt status */
168#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
169
170/*
171 * SSP Masked Interrupt Status Register - SSP_MIS
172 */
173/* Receive Overrun Masked Interrupt status */
174#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
175/* Receive Timeout Masked Interrupt status */
176#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
177/* Receive FIFO Masked Interrupt status */
178#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
179/* Transmit FIFO Masked Interrupt status */
180#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
181
182/*
183 * SSP Interrupt Clear Register - SSP_ICR
184 */
185/* Receive Overrun Raw Clear Interrupt bit */
186#define SSP_ICR_MASK_RORIC (0x1UL << 0)
187/* Receive Timeout Clear Interrupt bit */
188#define SSP_ICR_MASK_RTIC (0x1UL << 1)
189
190/*
191 * SSP DMA Control Register - SSP_DMACR
192 */
193/* Receive DMA Enable bit */
194#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
195/* Transmit DMA Enable bit */
196#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
197
198/*
199 * SSP Integration Test control Register - SSP_ITCR
200 */
201#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
203
204/*
205 * SSP Integration Test Input Register - SSP_ITIP
206 */
207#define ITIP_MASK_SSPRXD (0x1UL << 0)
208#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210#define ITIP_MASK_RXDMAC (0x1UL << 3)
211#define ITIP_MASK_TXDMAC (0x1UL << 4)
212#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
213
214/*
215 * SSP Integration Test output Register - SSP_ITOP
216 */
217#define ITOP_MASK_SSPTXD (0x1UL << 0)
218#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220#define ITOP_MASK_SSPOEn (0x1UL << 3)
221#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222#define ITOP_MASK_RORINTR (0x1UL << 5)
223#define ITOP_MASK_RTINTR (0x1UL << 6)
224#define ITOP_MASK_RXINTR (0x1UL << 7)
225#define ITOP_MASK_TXINTR (0x1UL << 8)
226#define ITOP_MASK_INTR (0x1UL << 9)
227#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
231
232/*
233 * SSP Test Data Register - SSP_TDR
234 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000235#define TDR_MASK_TESTDATA (0xFFFFFFFF)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100236
237/*
238 * Message State
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
242 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000243#define STATE_START ((void *) 0)
244#define STATE_RUNNING ((void *) 1)
245#define STATE_DONE ((void *) 2)
246#define STATE_ERROR ((void *) -1)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100247
248/*
Linus Walleijb43d65f2009-06-09 08:11:42 +0100249 * SSP State - Whether Enabled or Disabled
250 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000251#define SSP_DISABLED (0)
252#define SSP_ENABLED (1)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100253
254/*
255 * SSP DMA State - Whether DMA Enabled or Disabled
256 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000257#define SSP_DMA_DISABLED (0)
258#define SSP_DMA_ENABLED (1)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100259
260/*
261 * SSP Clock Defaults
262 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000263#define SSP_DEFAULT_CLKRATE 0x2
264#define SSP_DEFAULT_PRESCALE 0x40
Linus Walleijb43d65f2009-06-09 08:11:42 +0100265
266/*
267 * SSP Clock Parameter ranges
268 */
269#define CPSDVR_MIN 0x02
270#define CPSDVR_MAX 0xFE
271#define SCR_MIN 0x00
272#define SCR_MAX 0xFF
273
274/*
275 * SSP Interrupt related Macros
276 */
277#define DEFAULT_SSP_REG_IMSC 0x0UL
278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280
281#define CLEAR_ALL_INTERRUPTS 0x3
282
Magnus Templinga18c2662011-05-19 18:05:34 +0200283#define SPI_POLLING_TIMEOUT 1000
284
Linus Walleijb43d65f2009-06-09 08:11:42 +0100285/*
286 * The type of reading going on on this chip
287 */
288enum ssp_reading {
289 READING_NULL,
290 READING_U8,
291 READING_U16,
292 READING_U32
293};
294
295/**
296 * The type of writing going on on this chip
297 */
298enum ssp_writing {
299 WRITING_NULL,
300 WRITING_U8,
301 WRITING_U16,
302 WRITING_U32
303};
304
305/**
306 * struct vendor_data - vendor-specific config parameters
307 * for PL022 derivates
308 * @fifodepth: depth of FIFOs (both)
309 * @max_bpw: maximum number of bits per word
310 * @unidir: supports unidirection transfers
Linus Walleij556f4ae2010-05-05 09:28:15 +0000311 * @extended_cr: 32 bit wide control register 0 with extra
312 * features and extra features in CR1 as found in the ST variants
Linus Walleij781c7b12010-05-07 08:40:53 +0000313 * @pl023: supports a subset of the ST extensions called "PL023"
Linus Walleijb43d65f2009-06-09 08:11:42 +0100314 */
315struct vendor_data {
316 int fifodepth;
317 int max_bpw;
318 bool unidir;
Linus Walleij556f4ae2010-05-05 09:28:15 +0000319 bool extended_cr;
Linus Walleij781c7b12010-05-07 08:40:53 +0000320 bool pl023;
Philippe Langlais06fb01f2011-03-23 11:05:16 +0100321 bool loopback;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100322};
323
324/**
325 * struct pl022 - This is the private SSP driver data structure
326 * @adev: AMBA device model hookup
Linus Walleij12e8b322011-02-08 13:03:55 +0100327 * @vendor: vendor data for the IP block
328 * @phybase: the physical memory where the SSP device resides
329 * @virtbase: the virtual memory where the SSP is mapped
330 * @clk: outgoing clock "SPICLK" for the SPI bus
Linus Walleijb43d65f2009-06-09 08:11:42 +0100331 * @master: SPI framework hookup
332 * @master_info: controller-specific data from machine setup
Linus Walleijb43d65f2009-06-09 08:11:42 +0100333 * @workqueue: a workqueue on which any spi_message request is queued
Linus Walleij12e8b322011-02-08 13:03:55 +0100334 * @pump_messages: work struct for scheduling work to the workqueue
335 * @queue_lock: spinlock to syncronise access to message queue
336 * @queue: message queue
Linus Walleijb43d65f2009-06-09 08:11:42 +0100337 * @busy: workqueue is busy
Linus Walleij5e8b8212010-12-22 23:13:59 +0100338 * @running: workqueue is running
Linus Walleijb43d65f2009-06-09 08:11:42 +0100339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
340 * @cur_msg: Pointer to current spi_message being processed
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @tx: current position in TX buffer to be read
344 * @tx_end: end position in TX buffer to be read
345 * @rx: current position in RX buffer to be written
346 * @rx_end: end position in RX buffer to be written
Linus Walleij12e8b322011-02-08 13:03:55 +0100347 * @read: the type of read currently going on
348 * @write: the type of write currently going on
349 * @exp_fifo_level: expected FIFO level
350 * @dma_rx_channel: optional channel for RX DMA
351 * @dma_tx_channel: optional channel for TX DMA
352 * @sgt_rx: scattertable for the RX transfer
353 * @sgt_tx: scattertable for the TX transfer
354 * @dummypage: a dummy page used for driving data on the bus with DMA
Linus Walleijb43d65f2009-06-09 08:11:42 +0100355 */
356struct pl022 {
357 struct amba_device *adev;
358 struct vendor_data *vendor;
359 resource_size_t phybase;
360 void __iomem *virtbase;
361 struct clk *clk;
362 struct spi_master *master;
363 struct pl022_ssp_controller *master_info;
364 /* Driver message queue */
365 struct workqueue_struct *workqueue;
366 struct work_struct pump_messages;
367 spinlock_t queue_lock;
368 struct list_head queue;
Linus Walleijdec5a582010-12-22 23:13:48 +0100369 bool busy;
Linus Walleij5e8b8212010-12-22 23:13:59 +0100370 bool running;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100371 /* Message transfer pump */
372 struct tasklet_struct pump_transfers;
373 struct spi_message *cur_msg;
374 struct spi_transfer *cur_transfer;
375 struct chip_data *cur_chip;
376 void *tx;
377 void *tx_end;
378 void *rx;
379 void *rx_end;
380 enum ssp_reading read;
381 enum ssp_writing write;
Linus Walleijfc054752010-01-22 13:53:30 +0100382 u32 exp_fifo_level;
Linus Walleij083be3f2011-06-16 10:14:28 +0200383 enum ssp_rx_level_trig rx_lev_trig;
384 enum ssp_tx_level_trig tx_lev_trig;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900385 /* DMA settings */
386#ifdef CONFIG_DMA_ENGINE
387 struct dma_chan *dma_rx_channel;
388 struct dma_chan *dma_tx_channel;
389 struct sg_table sgt_rx;
390 struct sg_table sgt_tx;
391 char *dummypage;
392#endif
Linus Walleijb43d65f2009-06-09 08:11:42 +0100393};
394
395/**
396 * struct chip_data - To maintain runtime state of SSP for each client chip
Linus Walleij556f4ae2010-05-05 09:28:15 +0000397 * @cr0: Value of control register CR0 of SSP - on later ST variants this
398 * register is 32 bits wide rather than just 16
Linus Walleijb43d65f2009-06-09 08:11:42 +0100399 * @cr1: Value of control register CR1 of SSP
400 * @dmacr: Value of DMA control Register of SSP
401 * @cpsr: Value of Clock prescale register
402 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
403 * @enable_dma: Whether to enable DMA or not
Linus Walleijb43d65f2009-06-09 08:11:42 +0100404 * @read: function ptr to be used to read when doing xfer for this chip
Linus Walleij12e8b322011-02-08 13:03:55 +0100405 * @write: function ptr to be used to write when doing xfer for this chip
Linus Walleijb43d65f2009-06-09 08:11:42 +0100406 * @cs_control: chip select callback provided by chip
407 * @xfer_type: polling/interrupt/DMA
408 *
409 * Runtime state of the SSP controller, maintained per chip,
410 * This would be set according to the current message that would be served
411 */
412struct chip_data {
Linus Walleij556f4ae2010-05-05 09:28:15 +0000413 u32 cr0;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100414 u16 cr1;
415 u16 dmacr;
416 u16 cpsr;
417 u8 n_bytes;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900418 bool enable_dma;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100419 enum ssp_reading read;
420 enum ssp_writing write;
421 void (*cs_control) (u32 command);
422 int xfer_type;
423};
424
425/**
426 * null_cs_control - Dummy chip select function
427 * @command: select/delect the chip
428 *
429 * If no chip select function is provided by client this is used as dummy
430 * chip select
431 */
432static void null_cs_control(u32 command)
433{
434 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
435}
436
437/**
438 * giveback - current spi_message is over, schedule next message and call
439 * callback of this message. Assumes that caller already
440 * set message->status; dma and pio irqs are blocked
441 * @pl022: SSP driver private data structure
442 */
443static void giveback(struct pl022 *pl022)
444{
445 struct spi_transfer *last_transfer;
446 unsigned long flags;
447 struct spi_message *msg;
448 void (*curr_cs_control) (u32 command);
449
450 /*
451 * This local reference to the chip select function
452 * is needed because we set curr_chip to NULL
453 * as a step toward termininating the message.
454 */
455 curr_cs_control = pl022->cur_chip->cs_control;
456 spin_lock_irqsave(&pl022->queue_lock, flags);
457 msg = pl022->cur_msg;
458 pl022->cur_msg = NULL;
459 pl022->cur_transfer = NULL;
460 pl022->cur_chip = NULL;
461 queue_work(pl022->workqueue, &pl022->pump_messages);
462 spin_unlock_irqrestore(&pl022->queue_lock, flags);
463
464 last_transfer = list_entry(msg->transfers.prev,
465 struct spi_transfer,
466 transfer_list);
467
468 /* Delay if requested before any change in chip select */
469 if (last_transfer->delay_usecs)
470 /*
471 * FIXME: This runs in interrupt context.
472 * Is this really smart?
473 */
474 udelay(last_transfer->delay_usecs);
475
476 /*
477 * Drop chip select UNLESS cs_change is true or we are returning
478 * a message with an error, or next message is for another chip
479 */
480 if (!last_transfer->cs_change)
481 curr_cs_control(SSP_CHIP_DESELECT);
482 else {
483 struct spi_message *next_msg;
484
485 /* Holding of cs was hinted, but we need to make sure
486 * the next message is for the same chip. Don't waste
487 * time with the following tests unless this was hinted.
488 *
489 * We cannot postpone this until pump_messages, because
490 * after calling msg->complete (below) the driver that
491 * sent the current message could be unloaded, which
492 * could invalidate the cs_control() callback...
493 */
494
495 /* get a pointer to the next message, if any */
496 spin_lock_irqsave(&pl022->queue_lock, flags);
497 if (list_empty(&pl022->queue))
498 next_msg = NULL;
499 else
500 next_msg = list_entry(pl022->queue.next,
501 struct spi_message, queue);
502 spin_unlock_irqrestore(&pl022->queue_lock, flags);
503
504 /* see if the next and current messages point
505 * to the same chip
506 */
507 if (next_msg && next_msg->spi != msg->spi)
508 next_msg = NULL;
509 if (!next_msg || msg->state == STATE_ERROR)
510 curr_cs_control(SSP_CHIP_DESELECT);
511 }
512 msg->state = NULL;
513 if (msg->complete)
514 msg->complete(msg->context);
Linus Walleijb43d65f2009-06-09 08:11:42 +0100515}
516
517/**
518 * flush - flush the FIFO to reach a clean state
519 * @pl022: SSP driver private data structure
520 */
521static int flush(struct pl022 *pl022)
522{
523 unsigned long limit = loops_per_jiffy << 1;
524
525 dev_dbg(&pl022->adev->dev, "flush\n");
526 do {
527 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
528 readw(SSP_DR(pl022->virtbase));
529 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
Linus Walleijfc054752010-01-22 13:53:30 +0100530
531 pl022->exp_fifo_level = 0;
532
Linus Walleijb43d65f2009-06-09 08:11:42 +0100533 return limit;
534}
535
536/**
537 * restore_state - Load configuration of current chip
538 * @pl022: SSP driver private data structure
539 */
540static void restore_state(struct pl022 *pl022)
541{
542 struct chip_data *chip = pl022->cur_chip;
543
Linus Walleij556f4ae2010-05-05 09:28:15 +0000544 if (pl022->vendor->extended_cr)
545 writel(chip->cr0, SSP_CR0(pl022->virtbase));
546 else
547 writew(chip->cr0, SSP_CR0(pl022->virtbase));
Linus Walleijb43d65f2009-06-09 08:11:42 +0100548 writew(chip->cr1, SSP_CR1(pl022->virtbase));
549 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
550 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
551 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
552 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
553}
554
Linus Walleijb43d65f2009-06-09 08:11:42 +0100555/*
556 * Default SSP Register Values
557 */
558#define DEFAULT_SSP_REG_CR0 ( \
559 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
Linus Walleij556f4ae2010-05-05 09:28:15 +0000560 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
Linus Walleijb43d65f2009-06-09 08:11:42 +0100561 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
Linus Walleijee2b8052009-08-15 15:12:05 +0100562 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
Linus Walleij556f4ae2010-05-05 09:28:15 +0000563 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
564)
565
566/* ST versions have slightly different bit layout */
567#define DEFAULT_SSP_REG_CR0_ST ( \
568 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
569 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
570 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
571 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
572 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
573 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
574 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
Linus Walleijb43d65f2009-06-09 08:11:42 +0100575)
576
Linus Walleij781c7b12010-05-07 08:40:53 +0000577/* The PL023 version is slightly different again */
578#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
579 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
580 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
581 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
582 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
583)
584
Linus Walleijb43d65f2009-06-09 08:11:42 +0100585#define DEFAULT_SSP_REG_CR1 ( \
586 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
587 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
588 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
Linus Walleij556f4ae2010-05-05 09:28:15 +0000589 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
Linus Walleijb43d65f2009-06-09 08:11:42 +0100590)
591
Linus Walleij556f4ae2010-05-05 09:28:15 +0000592/* ST versions extend this register to use all 16 bits */
593#define DEFAULT_SSP_REG_CR1_ST ( \
594 DEFAULT_SSP_REG_CR1 | \
595 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
596 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
597 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
598 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
599 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
600)
601
Linus Walleij781c7b12010-05-07 08:40:53 +0000602/*
603 * The PL023 variant has further differences: no loopback mode, no microwire
604 * support, and a new clock feedback delay setting.
605 */
606#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
607 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
608 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
609 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
610 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
611 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
612 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
613 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
614 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
615)
Linus Walleij556f4ae2010-05-05 09:28:15 +0000616
Linus Walleijb43d65f2009-06-09 08:11:42 +0100617#define DEFAULT_SSP_REG_CPSR ( \
Linus Walleij556f4ae2010-05-05 09:28:15 +0000618 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
Linus Walleijb43d65f2009-06-09 08:11:42 +0100619)
620
621#define DEFAULT_SSP_REG_DMACR (\
622 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
623 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
624)
625
Linus Walleij781c7b12010-05-07 08:40:53 +0000626/**
627 * load_ssp_default_config - Load default configuration for SSP
628 * @pl022: SSP driver private data structure
629 */
Linus Walleijb43d65f2009-06-09 08:11:42 +0100630static void load_ssp_default_config(struct pl022 *pl022)
631{
Linus Walleij781c7b12010-05-07 08:40:53 +0000632 if (pl022->vendor->pl023) {
633 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
634 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
635 } else if (pl022->vendor->extended_cr) {
Linus Walleij556f4ae2010-05-05 09:28:15 +0000636 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
637 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
638 } else {
639 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
640 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
641 }
Linus Walleijb43d65f2009-06-09 08:11:42 +0100642 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
643 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
644 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
645 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
646}
647
648/**
649 * This will write to TX and read from RX according to the parameters
650 * set in pl022.
651 */
652static void readwriter(struct pl022 *pl022)
653{
654
655 /*
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300656 * The FIFO depth is different between primecell variants.
Linus Walleijb43d65f2009-06-09 08:11:42 +0100657 * I believe filling in too much in the FIFO might cause
658 * errons in 8bit wide transfers on ARM variants (just 8 words
659 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
660 *
Linus Walleijfc054752010-01-22 13:53:30 +0100661 * To prevent this issue, the TX FIFO is only filled to the
662 * unused RX FIFO fill length, regardless of what the TX
663 * FIFO status flag indicates.
Linus Walleijb43d65f2009-06-09 08:11:42 +0100664 */
665 dev_dbg(&pl022->adev->dev,
666 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
667 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
668
669 /* Read as much as you can */
670 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
671 && (pl022->rx < pl022->rx_end)) {
672 switch (pl022->read) {
673 case READING_NULL:
674 readw(SSP_DR(pl022->virtbase));
675 break;
676 case READING_U8:
677 *(u8 *) (pl022->rx) =
678 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
679 break;
680 case READING_U16:
681 *(u16 *) (pl022->rx) =
682 (u16) readw(SSP_DR(pl022->virtbase));
683 break;
684 case READING_U32:
685 *(u32 *) (pl022->rx) =
686 readl(SSP_DR(pl022->virtbase));
687 break;
688 }
689 pl022->rx += (pl022->cur_chip->n_bytes);
Linus Walleijfc054752010-01-22 13:53:30 +0100690 pl022->exp_fifo_level--;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100691 }
692 /*
Linus Walleijfc054752010-01-22 13:53:30 +0100693 * Write as much as possible up to the RX FIFO size
Linus Walleijb43d65f2009-06-09 08:11:42 +0100694 */
Linus Walleijfc054752010-01-22 13:53:30 +0100695 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100696 && (pl022->tx < pl022->tx_end)) {
697 switch (pl022->write) {
698 case WRITING_NULL:
699 writew(0x0, SSP_DR(pl022->virtbase));
700 break;
701 case WRITING_U8:
702 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
703 break;
704 case WRITING_U16:
705 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
706 break;
707 case WRITING_U32:
708 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
709 break;
710 }
711 pl022->tx += (pl022->cur_chip->n_bytes);
Linus Walleijfc054752010-01-22 13:53:30 +0100712 pl022->exp_fifo_level++;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100713 /*
714 * This inner reader takes care of things appearing in the RX
715 * FIFO as we're transmitting. This will happen a lot since the
716 * clock starts running when you put things into the TX FIFO,
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300717 * and then things are continuously clocked into the RX FIFO.
Linus Walleijb43d65f2009-06-09 08:11:42 +0100718 */
719 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
720 && (pl022->rx < pl022->rx_end)) {
721 switch (pl022->read) {
722 case READING_NULL:
723 readw(SSP_DR(pl022->virtbase));
724 break;
725 case READING_U8:
726 *(u8 *) (pl022->rx) =
727 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
728 break;
729 case READING_U16:
730 *(u16 *) (pl022->rx) =
731 (u16) readw(SSP_DR(pl022->virtbase));
732 break;
733 case READING_U32:
734 *(u32 *) (pl022->rx) =
735 readl(SSP_DR(pl022->virtbase));
736 break;
737 }
738 pl022->rx += (pl022->cur_chip->n_bytes);
Linus Walleijfc054752010-01-22 13:53:30 +0100739 pl022->exp_fifo_level--;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100740 }
741 }
742 /*
743 * When we exit here the TX FIFO should be full and the RX FIFO
744 * should be empty
745 */
746}
747
Linus Walleijb43d65f2009-06-09 08:11:42 +0100748/**
749 * next_transfer - Move to the Next transfer in the current spi message
750 * @pl022: SSP driver private data structure
751 *
752 * This function moves though the linked list of spi transfers in the
753 * current spi message and returns with the state of current spi
754 * message i.e whether its last transfer is done(STATE_DONE) or
755 * Next transfer is ready(STATE_RUNNING)
756 */
757static void *next_transfer(struct pl022 *pl022)
758{
759 struct spi_message *msg = pl022->cur_msg;
760 struct spi_transfer *trans = pl022->cur_transfer;
761
762 /* Move to next transfer */
763 if (trans->transfer_list.next != &msg->transfers) {
764 pl022->cur_transfer =
765 list_entry(trans->transfer_list.next,
766 struct spi_transfer, transfer_list);
767 return STATE_RUNNING;
768 }
769 return STATE_DONE;
770}
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900771
772/*
773 * This DMA functionality is only compiled in if we have
774 * access to the generic DMA devices/DMA engine.
775 */
776#ifdef CONFIG_DMA_ENGINE
777static void unmap_free_dma_scatter(struct pl022 *pl022)
778{
779 /* Unmap and free the SG tables */
Linus Walleijb7298892010-12-22 23:13:07 +0100780 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900781 pl022->sgt_tx.nents, DMA_TO_DEVICE);
Linus Walleijb7298892010-12-22 23:13:07 +0100782 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900783 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
784 sg_free_table(&pl022->sgt_rx);
785 sg_free_table(&pl022->sgt_tx);
786}
787
788static void dma_callback(void *data)
789{
790 struct pl022 *pl022 = data;
791 struct spi_message *msg = pl022->cur_msg;
792
793 BUG_ON(!pl022->sgt_rx.sgl);
794
795#ifdef VERBOSE_DEBUG
796 /*
797 * Optionally dump out buffers to inspect contents, this is
798 * good if you want to convince yourself that the loopback
799 * read/write contents are the same, when adopting to a new
800 * DMA engine.
801 */
802 {
803 struct scatterlist *sg;
804 unsigned int i;
805
806 dma_sync_sg_for_cpu(&pl022->adev->dev,
807 pl022->sgt_rx.sgl,
808 pl022->sgt_rx.nents,
809 DMA_FROM_DEVICE);
810
811 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
812 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
813 print_hex_dump(KERN_ERR, "SPI RX: ",
814 DUMP_PREFIX_OFFSET,
815 16,
816 1,
817 sg_virt(sg),
818 sg_dma_len(sg),
819 1);
820 }
821 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
822 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
823 print_hex_dump(KERN_ERR, "SPI TX: ",
824 DUMP_PREFIX_OFFSET,
825 16,
826 1,
827 sg_virt(sg),
828 sg_dma_len(sg),
829 1);
830 }
831 }
832#endif
833
834 unmap_free_dma_scatter(pl022);
835
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300836 /* Update total bytes transferred */
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900837 msg->actual_length += pl022->cur_transfer->len;
838 if (pl022->cur_transfer->cs_change)
839 pl022->cur_chip->
840 cs_control(SSP_CHIP_DESELECT);
841
842 /* Move to next transfer */
843 msg->state = next_transfer(pl022);
844 tasklet_schedule(&pl022->pump_transfers);
845}
846
847static void setup_dma_scatter(struct pl022 *pl022,
848 void *buffer,
849 unsigned int length,
850 struct sg_table *sgtab)
851{
852 struct scatterlist *sg;
853 int bytesleft = length;
854 void *bufp = buffer;
855 int mapbytes;
856 int i;
857
858 if (buffer) {
859 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
860 /*
861 * If there are less bytes left than what fits
862 * in the current page (plus page alignment offset)
863 * we just feed in this, else we stuff in as much
864 * as we can.
865 */
866 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
867 mapbytes = bytesleft;
868 else
869 mapbytes = PAGE_SIZE - offset_in_page(bufp);
870 sg_set_page(sg, virt_to_page(bufp),
871 mapbytes, offset_in_page(bufp));
872 bufp += mapbytes;
873 bytesleft -= mapbytes;
874 dev_dbg(&pl022->adev->dev,
875 "set RX/TX target page @ %p, %d bytes, %d left\n",
876 bufp, mapbytes, bytesleft);
877 }
878 } else {
879 /* Map the dummy buffer on every page */
880 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
881 if (bytesleft < PAGE_SIZE)
882 mapbytes = bytesleft;
883 else
884 mapbytes = PAGE_SIZE;
885 sg_set_page(sg, virt_to_page(pl022->dummypage),
886 mapbytes, 0);
887 bytesleft -= mapbytes;
888 dev_dbg(&pl022->adev->dev,
889 "set RX/TX to dummy page %d bytes, %d left\n",
890 mapbytes, bytesleft);
891
892 }
893 }
894 BUG_ON(bytesleft);
895}
896
897/**
898 * configure_dma - configures the channels for the next transfer
899 * @pl022: SSP driver's private data structure
900 */
901static int configure_dma(struct pl022 *pl022)
902{
903 struct dma_slave_config rx_conf = {
904 .src_addr = SSP_DR(pl022->phybase),
905 .direction = DMA_FROM_DEVICE,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900906 };
907 struct dma_slave_config tx_conf = {
908 .dst_addr = SSP_DR(pl022->phybase),
909 .direction = DMA_TO_DEVICE,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900910 };
911 unsigned int pages;
912 int ret;
Linus Walleij082086f2010-12-22 23:13:37 +0100913 int rx_sglen, tx_sglen;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900914 struct dma_chan *rxchan = pl022->dma_rx_channel;
915 struct dma_chan *txchan = pl022->dma_tx_channel;
916 struct dma_async_tx_descriptor *rxdesc;
917 struct dma_async_tx_descriptor *txdesc;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900918
919 /* Check that the channels are available */
920 if (!rxchan || !txchan)
921 return -ENODEV;
922
Linus Walleij083be3f2011-06-16 10:14:28 +0200923 /*
924 * If supplied, the DMA burstsize should equal the FIFO trigger level.
925 * Notice that the DMA engine uses one-to-one mapping. Since we can
926 * not trigger on 2 elements this needs explicit mapping rather than
927 * calculation.
928 */
929 switch (pl022->rx_lev_trig) {
930 case SSP_RX_1_OR_MORE_ELEM:
931 rx_conf.src_maxburst = 1;
932 break;
933 case SSP_RX_4_OR_MORE_ELEM:
934 rx_conf.src_maxburst = 4;
935 break;
936 case SSP_RX_8_OR_MORE_ELEM:
937 rx_conf.src_maxburst = 8;
938 break;
939 case SSP_RX_16_OR_MORE_ELEM:
940 rx_conf.src_maxburst = 16;
941 break;
942 case SSP_RX_32_OR_MORE_ELEM:
943 rx_conf.src_maxburst = 32;
944 break;
945 default:
946 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
947 break;
948 }
949
950 switch (pl022->tx_lev_trig) {
951 case SSP_TX_1_OR_MORE_EMPTY_LOC:
952 tx_conf.dst_maxburst = 1;
953 break;
954 case SSP_TX_4_OR_MORE_EMPTY_LOC:
955 tx_conf.dst_maxburst = 4;
956 break;
957 case SSP_TX_8_OR_MORE_EMPTY_LOC:
958 tx_conf.dst_maxburst = 8;
959 break;
960 case SSP_TX_16_OR_MORE_EMPTY_LOC:
961 tx_conf.dst_maxburst = 16;
962 break;
963 case SSP_TX_32_OR_MORE_EMPTY_LOC:
964 tx_conf.dst_maxburst = 32;
965 break;
966 default:
967 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
968 break;
969 }
970
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900971 switch (pl022->read) {
972 case READING_NULL:
973 /* Use the same as for writing */
974 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
975 break;
976 case READING_U8:
977 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
978 break;
979 case READING_U16:
980 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
981 break;
982 case READING_U32:
983 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
984 break;
985 }
986
987 switch (pl022->write) {
988 case WRITING_NULL:
989 /* Use the same as for reading */
990 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
991 break;
992 case WRITING_U8:
993 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
994 break;
995 case WRITING_U16:
996 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
997 break;
998 case WRITING_U32:
Joe Perchesbc3f67a2010-11-14 19:04:47 -0800999 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001000 break;
1001 }
1002
1003 /* SPI pecularity: we need to read and write the same width */
1004 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1005 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1006 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1007 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1008 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1009
Linus Walleijecd442f2011-02-08 13:03:12 +01001010 dmaengine_slave_config(rxchan, &rx_conf);
1011 dmaengine_slave_config(txchan, &tx_conf);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001012
1013 /* Create sglists for the transfers */
Viresh Kumarb1815652011-08-10 17:12:11 +05301014 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001015 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1016
Viresh Kumar538a18d2011-08-10 14:20:55 +05301017 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001018 if (ret)
1019 goto err_alloc_rx_sg;
1020
Viresh Kumar538a18d2011-08-10 14:20:55 +05301021 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001022 if (ret)
1023 goto err_alloc_tx_sg;
1024
1025 /* Fill in the scatterlists for the RX+TX buffers */
1026 setup_dma_scatter(pl022, pl022->rx,
1027 pl022->cur_transfer->len, &pl022->sgt_rx);
1028 setup_dma_scatter(pl022, pl022->tx,
1029 pl022->cur_transfer->len, &pl022->sgt_tx);
1030
1031 /* Map DMA buffers */
Linus Walleij082086f2010-12-22 23:13:37 +01001032 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001033 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
Linus Walleij082086f2010-12-22 23:13:37 +01001034 if (!rx_sglen)
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001035 goto err_rx_sgmap;
1036
Linus Walleij082086f2010-12-22 23:13:37 +01001037 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001038 pl022->sgt_tx.nents, DMA_TO_DEVICE);
Linus Walleij082086f2010-12-22 23:13:37 +01001039 if (!tx_sglen)
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001040 goto err_tx_sgmap;
1041
1042 /* Send both scatterlists */
1043 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1044 pl022->sgt_rx.sgl,
Linus Walleij082086f2010-12-22 23:13:37 +01001045 rx_sglen,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001046 DMA_FROM_DEVICE,
1047 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1048 if (!rxdesc)
1049 goto err_rxdesc;
1050
1051 txdesc = txchan->device->device_prep_slave_sg(txchan,
1052 pl022->sgt_tx.sgl,
Linus Walleij082086f2010-12-22 23:13:37 +01001053 tx_sglen,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001054 DMA_TO_DEVICE,
1055 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1056 if (!txdesc)
1057 goto err_txdesc;
1058
1059 /* Put the callback on the RX transfer only, that should finish last */
1060 rxdesc->callback = dma_callback;
1061 rxdesc->callback_param = pl022;
1062
1063 /* Submit and fire RX and TX with TX last so we're ready to read! */
Linus Walleijecd442f2011-02-08 13:03:12 +01001064 dmaengine_submit(rxdesc);
1065 dmaengine_submit(txdesc);
1066 dma_async_issue_pending(rxchan);
1067 dma_async_issue_pending(txchan);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001068
1069 return 0;
1070
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001071err_txdesc:
Linus Walleijecd442f2011-02-08 13:03:12 +01001072 dmaengine_terminate_all(txchan);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001073err_rxdesc:
Linus Walleijecd442f2011-02-08 13:03:12 +01001074 dmaengine_terminate_all(rxchan);
Linus Walleijb7298892010-12-22 23:13:07 +01001075 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001076 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1077err_tx_sgmap:
Linus Walleijb7298892010-12-22 23:13:07 +01001078 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001079 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1080err_rx_sgmap:
1081 sg_free_table(&pl022->sgt_tx);
1082err_alloc_tx_sg:
1083 sg_free_table(&pl022->sgt_rx);
1084err_alloc_rx_sg:
1085 return -ENOMEM;
1086}
1087
1088static int __init pl022_dma_probe(struct pl022 *pl022)
1089{
1090 dma_cap_mask_t mask;
1091
1092 /* Try to acquire a generic DMA engine slave channel */
1093 dma_cap_zero(mask);
1094 dma_cap_set(DMA_SLAVE, mask);
1095 /*
1096 * We need both RX and TX channels to do DMA, else do none
1097 * of them.
1098 */
1099 pl022->dma_rx_channel = dma_request_channel(mask,
1100 pl022->master_info->dma_filter,
1101 pl022->master_info->dma_rx_param);
1102 if (!pl022->dma_rx_channel) {
Viresh Kumar43c64012011-05-16 09:40:10 +05301103 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001104 goto err_no_rxchan;
1105 }
1106
1107 pl022->dma_tx_channel = dma_request_channel(mask,
1108 pl022->master_info->dma_filter,
1109 pl022->master_info->dma_tx_param);
1110 if (!pl022->dma_tx_channel) {
Viresh Kumar43c64012011-05-16 09:40:10 +05301111 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001112 goto err_no_txchan;
1113 }
1114
1115 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1116 if (!pl022->dummypage) {
Viresh Kumar43c64012011-05-16 09:40:10 +05301117 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001118 goto err_no_dummypage;
1119 }
1120
1121 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1122 dma_chan_name(pl022->dma_rx_channel),
1123 dma_chan_name(pl022->dma_tx_channel));
1124
1125 return 0;
1126
1127err_no_dummypage:
1128 dma_release_channel(pl022->dma_tx_channel);
1129err_no_txchan:
1130 dma_release_channel(pl022->dma_rx_channel);
1131 pl022->dma_rx_channel = NULL;
1132err_no_rxchan:
Viresh Kumar43c64012011-05-16 09:40:10 +05301133 dev_err(&pl022->adev->dev,
1134 "Failed to work in dma mode, work without dma!\n");
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001135 return -ENODEV;
1136}
1137
1138static void terminate_dma(struct pl022 *pl022)
1139{
1140 struct dma_chan *rxchan = pl022->dma_rx_channel;
1141 struct dma_chan *txchan = pl022->dma_tx_channel;
1142
Linus Walleijecd442f2011-02-08 13:03:12 +01001143 dmaengine_terminate_all(rxchan);
1144 dmaengine_terminate_all(txchan);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001145 unmap_free_dma_scatter(pl022);
1146}
1147
1148static void pl022_dma_remove(struct pl022 *pl022)
1149{
1150 if (pl022->busy)
1151 terminate_dma(pl022);
1152 if (pl022->dma_tx_channel)
1153 dma_release_channel(pl022->dma_tx_channel);
1154 if (pl022->dma_rx_channel)
1155 dma_release_channel(pl022->dma_rx_channel);
1156 kfree(pl022->dummypage);
1157}
1158
1159#else
1160static inline int configure_dma(struct pl022 *pl022)
1161{
1162 return -ENODEV;
1163}
1164
1165static inline int pl022_dma_probe(struct pl022 *pl022)
1166{
1167 return 0;
1168}
1169
1170static inline void pl022_dma_remove(struct pl022 *pl022)
1171{
1172}
1173#endif
1174
Linus Walleijb43d65f2009-06-09 08:11:42 +01001175/**
1176 * pl022_interrupt_handler - Interrupt handler for SSP controller
1177 *
1178 * This function handles interrupts generated for an interrupt based transfer.
1179 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1180 * current message's state as STATE_ERROR and schedule the tasklet
1181 * pump_transfers which will do the postprocessing of the current message by
1182 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1183 * more data, and writes data in TX FIFO till it is not full. If we complete
1184 * the transfer we move to the next transfer and schedule the tasklet.
1185 */
1186static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1187{
1188 struct pl022 *pl022 = dev_id;
1189 struct spi_message *msg = pl022->cur_msg;
1190 u16 irq_status = 0;
1191 u16 flag = 0;
1192
1193 if (unlikely(!msg)) {
1194 dev_err(&pl022->adev->dev,
1195 "bad message state in interrupt handler");
1196 /* Never fail */
1197 return IRQ_HANDLED;
1198 }
1199
1200 /* Read the Interrupt Status Register */
1201 irq_status = readw(SSP_MIS(pl022->virtbase));
1202
1203 if (unlikely(!irq_status))
1204 return IRQ_NONE;
1205
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001206 /*
1207 * This handles the FIFO interrupts, the timeout
1208 * interrupts are flatly ignored, they cannot be
1209 * trusted.
1210 */
Linus Walleijb43d65f2009-06-09 08:11:42 +01001211 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1212 /*
1213 * Overrun interrupt - bail out since our Data has been
1214 * corrupted
1215 */
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001216 dev_err(&pl022->adev->dev, "FIFO overrun\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001217 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1218 dev_err(&pl022->adev->dev,
1219 "RXFIFO is full\n");
1220 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1221 dev_err(&pl022->adev->dev,
1222 "TXFIFO is full\n");
1223
1224 /*
1225 * Disable and clear interrupts, disable SSP,
1226 * mark message with bad status so it can be
1227 * retried.
1228 */
1229 writew(DISABLE_ALL_INTERRUPTS,
1230 SSP_IMSC(pl022->virtbase));
1231 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1232 writew((readw(SSP_CR1(pl022->virtbase)) &
1233 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1234 msg->state = STATE_ERROR;
1235
1236 /* Schedule message queue handler */
1237 tasklet_schedule(&pl022->pump_transfers);
1238 return IRQ_HANDLED;
1239 }
1240
1241 readwriter(pl022);
1242
1243 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1244 flag = 1;
Chris Blair172289d2011-06-04 07:57:47 +01001245 /* Disable Transmit interrupt, enable receive interrupt */
1246 writew((readw(SSP_IMSC(pl022->virtbase)) &
1247 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001248 SSP_IMSC(pl022->virtbase));
1249 }
1250
1251 /*
1252 * Since all transactions must write as much as shall be read,
1253 * we can conclude the entire transaction once RX is complete.
1254 * At this point, all TX will always be finished.
1255 */
1256 if (pl022->rx >= pl022->rx_end) {
1257 writew(DISABLE_ALL_INTERRUPTS,
1258 SSP_IMSC(pl022->virtbase));
1259 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1260 if (unlikely(pl022->rx > pl022->rx_end)) {
1261 dev_warn(&pl022->adev->dev, "read %u surplus "
1262 "bytes (did you request an odd "
1263 "number of bytes on a 16bit bus?)\n",
1264 (u32) (pl022->rx - pl022->rx_end));
1265 }
Lucas De Marchi25985ed2011-03-30 22:57:33 -03001266 /* Update total bytes transferred */
Linus Walleijb43d65f2009-06-09 08:11:42 +01001267 msg->actual_length += pl022->cur_transfer->len;
1268 if (pl022->cur_transfer->cs_change)
1269 pl022->cur_chip->
1270 cs_control(SSP_CHIP_DESELECT);
1271 /* Move to next transfer */
1272 msg->state = next_transfer(pl022);
1273 tasklet_schedule(&pl022->pump_transfers);
1274 return IRQ_HANDLED;
1275 }
1276
1277 return IRQ_HANDLED;
1278}
1279
1280/**
1281 * This sets up the pointers to memory for the next message to
1282 * send out on the SPI bus.
1283 */
1284static int set_up_next_transfer(struct pl022 *pl022,
1285 struct spi_transfer *transfer)
1286{
1287 int residue;
1288
1289 /* Sanity check the message for this bus width */
1290 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1291 if (unlikely(residue != 0)) {
1292 dev_err(&pl022->adev->dev,
1293 "message of %u bytes to transmit but the current "
1294 "chip bus has a data width of %u bytes!\n",
1295 pl022->cur_transfer->len,
1296 pl022->cur_chip->n_bytes);
1297 dev_err(&pl022->adev->dev, "skipping this message\n");
1298 return -EIO;
1299 }
1300 pl022->tx = (void *)transfer->tx_buf;
1301 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1302 pl022->rx = (void *)transfer->rx_buf;
1303 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1304 pl022->write =
1305 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1306 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1307 return 0;
1308}
1309
1310/**
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001311 * pump_transfers - Tasklet function which schedules next transfer
1312 * when running in interrupt or DMA transfer mode.
Linus Walleijb43d65f2009-06-09 08:11:42 +01001313 * @data: SSP driver private data structure
1314 *
1315 */
1316static void pump_transfers(unsigned long data)
1317{
1318 struct pl022 *pl022 = (struct pl022 *) data;
1319 struct spi_message *message = NULL;
1320 struct spi_transfer *transfer = NULL;
1321 struct spi_transfer *previous = NULL;
1322
1323 /* Get current state information */
1324 message = pl022->cur_msg;
1325 transfer = pl022->cur_transfer;
1326
1327 /* Handle for abort */
1328 if (message->state == STATE_ERROR) {
1329 message->status = -EIO;
1330 giveback(pl022);
1331 return;
1332 }
1333
1334 /* Handle end of message */
1335 if (message->state == STATE_DONE) {
1336 message->status = 0;
1337 giveback(pl022);
1338 return;
1339 }
1340
1341 /* Delay if requested at end of transfer before CS change */
1342 if (message->state == STATE_RUNNING) {
1343 previous = list_entry(transfer->transfer_list.prev,
1344 struct spi_transfer,
1345 transfer_list);
1346 if (previous->delay_usecs)
1347 /*
1348 * FIXME: This runs in interrupt context.
1349 * Is this really smart?
1350 */
1351 udelay(previous->delay_usecs);
1352
1353 /* Drop chip select only if cs_change is requested */
1354 if (previous->cs_change)
1355 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1356 } else {
1357 /* STATE_START */
1358 message->state = STATE_RUNNING;
1359 }
1360
1361 if (set_up_next_transfer(pl022, transfer)) {
1362 message->state = STATE_ERROR;
1363 message->status = -EIO;
1364 giveback(pl022);
1365 return;
1366 }
1367 /* Flush the FIFOs and let's go! */
1368 flush(pl022);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001369
1370 if (pl022->cur_chip->enable_dma) {
1371 if (configure_dma(pl022)) {
1372 dev_dbg(&pl022->adev->dev,
1373 "configuration of DMA failed, fall back to interrupt mode\n");
1374 goto err_config_dma;
1375 }
1376 return;
1377 }
1378
1379err_config_dma:
Chris Blair172289d2011-06-04 07:57:47 +01001380 /* enable all interrupts except RX */
1381 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
Linus Walleijb43d65f2009-06-09 08:11:42 +01001382}
1383
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001384static void do_interrupt_dma_transfer(struct pl022 *pl022)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001385{
Chris Blair172289d2011-06-04 07:57:47 +01001386 /*
1387 * Default is to enable all interrupts except RX -
1388 * this will be enabled once TX is complete
1389 */
1390 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001391
1392 /* Enable target chip */
1393 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1394 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1395 /* Error path */
1396 pl022->cur_msg->state = STATE_ERROR;
1397 pl022->cur_msg->status = -EIO;
1398 giveback(pl022);
1399 return;
1400 }
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001401 /* If we're using DMA, set up DMA here */
1402 if (pl022->cur_chip->enable_dma) {
1403 /* Configure DMA transfer */
1404 if (configure_dma(pl022)) {
1405 dev_dbg(&pl022->adev->dev,
1406 "configuration of DMA failed, fall back to interrupt mode\n");
1407 goto err_config_dma;
1408 }
1409 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 irqflags = DISABLE_ALL_INTERRUPTS;
1411 }
1412err_config_dma:
Linus Walleijb43d65f2009-06-09 08:11:42 +01001413 /* Enable SSP, turn on interrupts */
1414 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415 SSP_CR1(pl022->virtbase));
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001416 writew(irqflags, SSP_IMSC(pl022->virtbase));
Linus Walleijb43d65f2009-06-09 08:11:42 +01001417}
1418
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001419static void do_polling_transfer(struct pl022 *pl022)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001420{
Linus Walleijb43d65f2009-06-09 08:11:42 +01001421 struct spi_message *message = NULL;
1422 struct spi_transfer *transfer = NULL;
1423 struct spi_transfer *previous = NULL;
1424 struct chip_data *chip;
Magnus Templinga18c2662011-05-19 18:05:34 +02001425 unsigned long time, timeout;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001426
1427 chip = pl022->cur_chip;
1428 message = pl022->cur_msg;
1429
1430 while (message->state != STATE_DONE) {
1431 /* Handle for abort */
1432 if (message->state == STATE_ERROR)
1433 break;
1434 transfer = pl022->cur_transfer;
1435
1436 /* Delay if requested at end of transfer */
1437 if (message->state == STATE_RUNNING) {
1438 previous =
1439 list_entry(transfer->transfer_list.prev,
1440 struct spi_transfer, transfer_list);
1441 if (previous->delay_usecs)
1442 udelay(previous->delay_usecs);
1443 if (previous->cs_change)
1444 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1445 } else {
1446 /* STATE_START */
1447 message->state = STATE_RUNNING;
1448 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1449 }
1450
1451 /* Configuration Changing Per Transfer */
1452 if (set_up_next_transfer(pl022, transfer)) {
1453 /* Error path */
1454 message->state = STATE_ERROR;
1455 break;
1456 }
1457 /* Flush FIFOs and enable SSP */
1458 flush(pl022);
1459 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1460 SSP_CR1(pl022->virtbase));
1461
Linus Walleij556f4ae2010-05-05 09:28:15 +00001462 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
Magnus Templinga18c2662011-05-19 18:05:34 +02001463
1464 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1465 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1466 time = jiffies;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001467 readwriter(pl022);
Magnus Templinga18c2662011-05-19 18:05:34 +02001468 if (time_after(time, timeout)) {
1469 dev_warn(&pl022->adev->dev,
1470 "%s: timeout!\n", __func__);
1471 message->state = STATE_ERROR;
1472 goto out;
1473 }
Linus Walleij521999b2011-05-19 20:01:25 +02001474 cpu_relax();
Magnus Templinga18c2662011-05-19 18:05:34 +02001475 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01001476
Lucas De Marchi25985ed2011-03-30 22:57:33 -03001477 /* Update total byte transferred */
Linus Walleijb43d65f2009-06-09 08:11:42 +01001478 message->actual_length += pl022->cur_transfer->len;
1479 if (pl022->cur_transfer->cs_change)
1480 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1481 /* Move to next transfer */
1482 message->state = next_transfer(pl022);
1483 }
Magnus Templinga18c2662011-05-19 18:05:34 +02001484out:
Linus Walleijb43d65f2009-06-09 08:11:42 +01001485 /* Handle end of message */
1486 if (message->state == STATE_DONE)
1487 message->status = 0;
1488 else
1489 message->status = -EIO;
1490
1491 giveback(pl022);
1492 return;
1493}
1494
1495/**
1496 * pump_messages - Workqueue function which processes spi message queue
1497 * @data: pointer to private data of SSP driver
1498 *
1499 * This function checks if there is any spi message in the queue that
1500 * needs processing and delegate control to appropriate function
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001501 * do_polling_transfer()/do_interrupt_dma_transfer()
Linus Walleijb43d65f2009-06-09 08:11:42 +01001502 * based on the kind of the transfer
1503 *
1504 */
1505static void pump_messages(struct work_struct *work)
1506{
1507 struct pl022 *pl022 =
1508 container_of(work, struct pl022, pump_messages);
1509 unsigned long flags;
Chris Blaird4b6af22011-11-04 07:43:41 +00001510 bool was_busy = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001511
1512 /* Lock queue and check for queue work */
1513 spin_lock_irqsave(&pl022->queue_lock, flags);
Linus Walleij5e8b8212010-12-22 23:13:59 +01001514 if (list_empty(&pl022->queue) || !pl022->running) {
Virupax Sadashivpetimath0ad2dee2011-10-17 14:52:47 +02001515 if (pl022->busy) {
1516 /* nothing more to do - disable spi/ssp and power off */
1517 writew((readw(SSP_CR1(pl022->virtbase)) &
1518 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
Chris Blaird4b6af22011-11-04 07:43:41 +00001519 pm_runtime_put(&pl022->adev->dev);
Virupax Sadashivpetimath0ad2dee2011-10-17 14:52:47 +02001520 }
Linus Walleijdec5a582010-12-22 23:13:48 +01001521 pl022->busy = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001522 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1523 return;
1524 }
Chris Blaird4b6af22011-11-04 07:43:41 +00001525
Linus Walleijb43d65f2009-06-09 08:11:42 +01001526 /* Make sure we are not already running a message */
1527 if (pl022->cur_msg) {
1528 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1529 return;
1530 }
1531 /* Extract head of queue */
1532 pl022->cur_msg =
1533 list_entry(pl022->queue.next, struct spi_message, queue);
1534
1535 list_del_init(&pl022->cur_msg->queue);
Chris Blaird4b6af22011-11-04 07:43:41 +00001536 if (pl022->busy)
1537 was_busy = true;
1538 else
1539 pl022->busy = true;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001540 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1541
1542 /* Initial message state */
1543 pl022->cur_msg->state = STATE_START;
1544 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
Viresh Kumarf1e45f82011-08-10 14:20:54 +05301545 struct spi_transfer, transfer_list);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001546
1547 /* Setup the SPI using the per chip configuration */
1548 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
Chris Blaird4b6af22011-11-04 07:43:41 +00001549 if (!was_busy)
1550 /*
1551 * We enable the core voltage and clocks here, then the clocks
1552 * and core will be disabled when this workqueue is run again
1553 * and there is no more work to be done.
1554 */
1555 pm_runtime_get_sync(&pl022->adev->dev);
1556
Linus Walleijb43d65f2009-06-09 08:11:42 +01001557 restore_state(pl022);
1558 flush(pl022);
1559
1560 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1561 do_polling_transfer(pl022);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001562 else
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001563 do_interrupt_dma_transfer(pl022);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001564}
1565
Linus Walleijb43d65f2009-06-09 08:11:42 +01001566static int __init init_queue(struct pl022 *pl022)
1567{
1568 INIT_LIST_HEAD(&pl022->queue);
1569 spin_lock_init(&pl022->queue_lock);
1570
Linus Walleij5e8b8212010-12-22 23:13:59 +01001571 pl022->running = false;
Linus Walleijdec5a582010-12-22 23:13:48 +01001572 pl022->busy = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001573
Viresh Kumarf1e45f82011-08-10 14:20:54 +05301574 tasklet_init(&pl022->pump_transfers, pump_transfers,
1575 (unsigned long)pl022);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001576
1577 INIT_WORK(&pl022->pump_messages, pump_messages);
1578 pl022->workqueue = create_singlethread_workqueue(
1579 dev_name(pl022->master->dev.parent));
1580 if (pl022->workqueue == NULL)
1581 return -EBUSY;
1582
1583 return 0;
1584}
1585
Linus Walleijb43d65f2009-06-09 08:11:42 +01001586static int start_queue(struct pl022 *pl022)
1587{
1588 unsigned long flags;
1589
1590 spin_lock_irqsave(&pl022->queue_lock, flags);
1591
Linus Walleij5e8b8212010-12-22 23:13:59 +01001592 if (pl022->running || pl022->busy) {
Linus Walleijb43d65f2009-06-09 08:11:42 +01001593 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1594 return -EBUSY;
1595 }
1596
Linus Walleij5e8b8212010-12-22 23:13:59 +01001597 pl022->running = true;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001598 pl022->cur_msg = NULL;
1599 pl022->cur_transfer = NULL;
1600 pl022->cur_chip = NULL;
1601 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1602
1603 queue_work(pl022->workqueue, &pl022->pump_messages);
1604
1605 return 0;
1606}
1607
Linus Walleijb43d65f2009-06-09 08:11:42 +01001608static int stop_queue(struct pl022 *pl022)
1609{
1610 unsigned long flags;
1611 unsigned limit = 500;
1612 int status = 0;
1613
1614 spin_lock_irqsave(&pl022->queue_lock, flags);
1615
1616 /* This is a bit lame, but is optimized for the common execution path.
1617 * A wait_queue on the pl022->busy could be used, but then the common
1618 * execution path (pump_messages) would be required to call wake_up or
1619 * friends on every SPI message. Do this instead */
Vasily Khoruzhick850a28e2011-04-06 17:49:15 +03001620 while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
Linus Walleijb43d65f2009-06-09 08:11:42 +01001621 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1622 msleep(10);
1623 spin_lock_irqsave(&pl022->queue_lock, flags);
1624 }
1625
1626 if (!list_empty(&pl022->queue) || pl022->busy)
1627 status = -EBUSY;
Linus Walleij5e8b8212010-12-22 23:13:59 +01001628 else
1629 pl022->running = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001630
1631 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1632
1633 return status;
1634}
1635
1636static int destroy_queue(struct pl022 *pl022)
1637{
1638 int status;
1639
1640 status = stop_queue(pl022);
1641 /* we are unloading the module or failing to load (only two calls
1642 * to this routine), and neither call can handle a return value.
1643 * However, destroy_workqueue calls flush_workqueue, and that will
1644 * block until all work is done. If the reason that stop_queue
1645 * timed out is that the work will never finish, then it does no
1646 * good to call destroy_workqueue, so return anyway. */
1647 if (status != 0)
1648 return status;
1649
1650 destroy_workqueue(pl022->workqueue);
1651
1652 return 0;
1653}
1654
1655static int verify_controller_parameters(struct pl022 *pl022,
Linus Walleijf9d629c2010-10-01 13:33:13 +02001656 struct pl022_config_chip const *chip_info)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001657{
Linus Walleijb43d65f2009-06-09 08:11:42 +01001658 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1659 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001660 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001661 "interface is configured incorrectly\n");
1662 return -EINVAL;
1663 }
1664 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1665 (!pl022->vendor->unidir)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001666 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001667 "unidirectional mode not supported in this "
1668 "hardware version\n");
1669 return -EINVAL;
1670 }
1671 if ((chip_info->hierarchy != SSP_MASTER)
1672 && (chip_info->hierarchy != SSP_SLAVE)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001673 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001674 "hierarchy is configured incorrectly\n");
1675 return -EINVAL;
1676 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01001677 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1678 && (chip_info->com_mode != DMA_TRANSFER)
1679 && (chip_info->com_mode != POLLING_TRANSFER)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001680 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001681 "Communication mode is configured incorrectly\n");
1682 return -EINVAL;
1683 }
Linus Walleij78b2b912011-06-16 10:14:46 +02001684 switch (chip_info->rx_lev_trig) {
1685 case SSP_RX_1_OR_MORE_ELEM:
1686 case SSP_RX_4_OR_MORE_ELEM:
1687 case SSP_RX_8_OR_MORE_ELEM:
1688 /* These are always OK, all variants can handle this */
1689 break;
1690 case SSP_RX_16_OR_MORE_ELEM:
1691 if (pl022->vendor->fifodepth < 16) {
1692 dev_err(&pl022->adev->dev,
1693 "RX FIFO Trigger Level is configured incorrectly\n");
1694 return -EINVAL;
1695 }
1696 break;
1697 case SSP_RX_32_OR_MORE_ELEM:
1698 if (pl022->vendor->fifodepth < 32) {
1699 dev_err(&pl022->adev->dev,
1700 "RX FIFO Trigger Level is configured incorrectly\n");
1701 return -EINVAL;
1702 }
1703 break;
1704 default:
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001705 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001706 "RX FIFO Trigger Level is configured incorrectly\n");
1707 return -EINVAL;
Linus Walleij78b2b912011-06-16 10:14:46 +02001708 break;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001709 }
Linus Walleij78b2b912011-06-16 10:14:46 +02001710 switch (chip_info->tx_lev_trig) {
1711 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1712 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1713 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1714 /* These are always OK, all variants can handle this */
1715 break;
1716 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1717 if (pl022->vendor->fifodepth < 16) {
1718 dev_err(&pl022->adev->dev,
1719 "TX FIFO Trigger Level is configured incorrectly\n");
1720 return -EINVAL;
1721 }
1722 break;
1723 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1724 if (pl022->vendor->fifodepth < 32) {
1725 dev_err(&pl022->adev->dev,
1726 "TX FIFO Trigger Level is configured incorrectly\n");
1727 return -EINVAL;
1728 }
1729 break;
1730 default:
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001731 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001732 "TX FIFO Trigger Level is configured incorrectly\n");
1733 return -EINVAL;
Linus Walleij78b2b912011-06-16 10:14:46 +02001734 break;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001735 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01001736 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1737 if ((chip_info->ctrl_len < SSP_BITS_4)
1738 || (chip_info->ctrl_len > SSP_BITS_32)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001739 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001740 "CTRL LEN is configured incorrectly\n");
1741 return -EINVAL;
1742 }
1743 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1744 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001745 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001746 "Wait State is configured incorrectly\n");
1747 return -EINVAL;
1748 }
Linus Walleij556f4ae2010-05-05 09:28:15 +00001749 /* Half duplex is only available in the ST Micro version */
1750 if (pl022->vendor->extended_cr) {
1751 if ((chip_info->duplex !=
1752 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1753 && (chip_info->duplex !=
Julia Lawall4a4fd472010-09-29 17:31:30 +09001754 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001755 dev_err(&pl022->adev->dev,
Linus Walleij556f4ae2010-05-05 09:28:15 +00001756 "Microwire duplex mode is configured incorrectly\n");
1757 return -EINVAL;
Julia Lawall4a4fd472010-09-29 17:31:30 +09001758 }
Linus Walleij556f4ae2010-05-05 09:28:15 +00001759 } else {
1760 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001761 dev_err(&pl022->adev->dev,
Linus Walleij556f4ae2010-05-05 09:28:15 +00001762 "Microwire half duplex mode requested,"
1763 " but this is only available in the"
1764 " ST version of PL022\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001765 return -EINVAL;
1766 }
1767 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01001768 return 0;
1769}
1770
1771/**
1772 * pl022_transfer - transfer function registered to SPI master framework
1773 * @spi: spi device which is requesting transfer
1774 * @msg: spi message which is to handled is queued to driver queue
1775 *
1776 * This function is registered to the SPI framework for this SPI master
1777 * controller. It will queue the spi_message in the queue of driver if
1778 * the queue is not stopped and return.
1779 */
1780static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1781{
1782 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1783 unsigned long flags;
1784
1785 spin_lock_irqsave(&pl022->queue_lock, flags);
1786
Linus Walleij5e8b8212010-12-22 23:13:59 +01001787 if (!pl022->running) {
Linus Walleijb43d65f2009-06-09 08:11:42 +01001788 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1789 return -ESHUTDOWN;
1790 }
1791 msg->actual_length = 0;
1792 msg->status = -EINPROGRESS;
1793 msg->state = STATE_START;
1794
1795 list_add_tail(&msg->queue, &pl022->queue);
Linus Walleij5e8b8212010-12-22 23:13:59 +01001796 if (pl022->running && !pl022->busy)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001797 queue_work(pl022->workqueue, &pl022->pump_messages);
1798
1799 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1800 return 0;
1801}
1802
Viresh Kumar0379b2a2011-08-10 14:20:57 +05301803static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1804{
1805 return rate / (cpsdvsr * (1 + scr));
1806}
1807
1808static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1809 ssp_clock_params * clk_freq)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001810{
1811 /* Lets calculate the frequency parameters */
Viresh Kumar0379b2a2011-08-10 14:20:57 +05301812 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1813 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1814 best_scr = 0, tmp, found = 0;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001815
1816 rate = clk_get_rate(pl022->clk);
1817 /* cpsdvscr = 2 & scr 0 */
Viresh Kumar0379b2a2011-08-10 14:20:57 +05301818 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001819 /* cpsdvsr = 254 & scr = 255 */
Viresh Kumar0379b2a2011-08-10 14:20:57 +05301820 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001821
Viresh Kumar0379b2a2011-08-10 14:20:57 +05301822 if (!((freq <= max_tclk) && (freq >= min_tclk))) {
Linus Walleijb43d65f2009-06-09 08:11:42 +01001823 dev_err(&pl022->adev->dev,
1824 "controller data is incorrect: out of range frequency");
1825 return -EINVAL;
1826 }
Viresh Kumar0379b2a2011-08-10 14:20:57 +05301827
1828 /*
1829 * best_freq will give closest possible available rate (<= requested
1830 * freq) for all values of scr & cpsdvsr.
1831 */
1832 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1833 while (scr <= SCR_MAX) {
1834 tmp = spi_rate(rate, cpsdvsr, scr);
1835
1836 if (tmp > freq)
1837 scr++;
1838 /*
1839 * If found exact value, update and break.
1840 * If found more closer value, update and continue.
1841 */
1842 else if ((tmp == freq) || (tmp > best_freq)) {
1843 best_freq = tmp;
1844 best_cpsdvsr = cpsdvsr;
1845 best_scr = scr;
1846
1847 if (tmp == freq)
1848 break;
1849 }
1850 scr++;
1851 }
1852 cpsdvsr += 2;
1853 scr = SCR_MIN;
1854 }
1855
1856 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1857 clk_freq->scr = (u8) (best_scr & 0xFF);
1858 dev_dbg(&pl022->adev->dev,
1859 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1860 freq, best_freq);
1861 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1862 clk_freq->cpsdvsr, clk_freq->scr);
1863
Linus Walleijb43d65f2009-06-09 08:11:42 +01001864 return 0;
1865}
1866
Linus Walleijf9d629c2010-10-01 13:33:13 +02001867/*
1868 * A piece of default chip info unless the platform
1869 * supplies it.
1870 */
1871static const struct pl022_config_chip pl022_default_chip_info = {
1872 .com_mode = POLLING_TRANSFER,
1873 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1874 .hierarchy = SSP_SLAVE,
1875 .slave_tx_disable = DO_NOT_DRIVE_TX,
1876 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1877 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1878 .ctrl_len = SSP_BITS_8,
1879 .wait_state = SSP_MWIRE_WAIT_ZERO,
1880 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1881 .cs_control = null_cs_control,
1882};
1883
Linus Walleijb43d65f2009-06-09 08:11:42 +01001884/**
Linus Walleijb43d65f2009-06-09 08:11:42 +01001885 * pl022_setup - setup function registered to SPI master framework
1886 * @spi: spi device which is requesting setup
1887 *
1888 * This function is registered to the SPI framework for this SPI master
1889 * controller. If it is the first time when setup is called by this device,
1890 * this function will initialize the runtime state for this chip and save
1891 * the same in the device structure. Else it will update the runtime info
1892 * with the updated chip info. Nothing is really being written to the
1893 * controller hardware here, that is not done until the actual transfer
1894 * commence.
1895 */
Linus Walleijb43d65f2009-06-09 08:11:42 +01001896static int pl022_setup(struct spi_device *spi)
1897{
Linus Walleijf9d629c2010-10-01 13:33:13 +02001898 struct pl022_config_chip const *chip_info;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001899 struct chip_data *chip;
Jonas Aabergc4a47842011-02-28 16:42:41 +01001900 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
Linus Walleijb43d65f2009-06-09 08:11:42 +01001901 int status = 0;
1902 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
Kevin Wellsbde435a2010-09-16 06:18:50 -07001903 unsigned int bits = spi->bits_per_word;
1904 u32 tmp;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001905
1906 if (!spi->max_speed_hz)
1907 return -EINVAL;
1908
1909 /* Get controller_state if one is supplied */
1910 chip = spi_get_ctldata(spi);
1911
1912 if (chip == NULL) {
1913 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1914 if (!chip) {
1915 dev_err(&spi->dev,
1916 "cannot allocate controller state\n");
1917 return -ENOMEM;
1918 }
1919 dev_dbg(&spi->dev,
1920 "allocated memory for controller's runtime state\n");
1921 }
1922
1923 /* Get controller data if one is supplied */
1924 chip_info = spi->controller_data;
1925
1926 if (chip_info == NULL) {
Linus Walleijf9d629c2010-10-01 13:33:13 +02001927 chip_info = &pl022_default_chip_info;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001928 /* spi_board_info.controller_data not is supplied */
1929 dev_dbg(&spi->dev,
1930 "using default controller_data settings\n");
Linus Walleijf9d629c2010-10-01 13:33:13 +02001931 } else
Linus Walleijb43d65f2009-06-09 08:11:42 +01001932 dev_dbg(&spi->dev,
1933 "using user supplied controller_data settings\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001934
1935 /*
1936 * We can override with custom divisors, else we use the board
1937 * frequency setting
1938 */
1939 if ((0 == chip_info->clk_freq.cpsdvsr)
1940 && (0 == chip_info->clk_freq.scr)) {
1941 status = calculate_effective_freq(pl022,
1942 spi->max_speed_hz,
Linus Walleijf9d629c2010-10-01 13:33:13 +02001943 &clk_freq);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001944 if (status < 0)
1945 goto err_config_params;
1946 } else {
Linus Walleijf9d629c2010-10-01 13:33:13 +02001947 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1948 if ((clk_freq.cpsdvsr % 2) != 0)
1949 clk_freq.cpsdvsr =
1950 clk_freq.cpsdvsr - 1;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001951 }
Linus Walleijf9d629c2010-10-01 13:33:13 +02001952 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1953 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
Virupax Sadashivpetimathe3f88ae2011-06-13 16:23:46 +05301954 status = -EINVAL;
Linus Walleijf9d629c2010-10-01 13:33:13 +02001955 dev_err(&spi->dev,
1956 "cpsdvsr is configured incorrectly\n");
1957 goto err_config_params;
1958 }
1959
Linus Walleijb43d65f2009-06-09 08:11:42 +01001960 status = verify_controller_parameters(pl022, chip_info);
1961 if (status) {
1962 dev_err(&spi->dev, "controller data is incorrect");
1963 goto err_config_params;
1964 }
Linus Walleijf9d629c2010-10-01 13:33:13 +02001965
Linus Walleij083be3f2011-06-16 10:14:28 +02001966 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1967 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1968
Linus Walleijb43d65f2009-06-09 08:11:42 +01001969 /* Now set controller state based on controller data */
1970 chip->xfer_type = chip_info->com_mode;
Linus Walleijf9d629c2010-10-01 13:33:13 +02001971 if (!chip_info->cs_control) {
1972 chip->cs_control = null_cs_control;
1973 dev_warn(&spi->dev,
1974 "chip select function is NULL for this chip\n");
1975 } else
1976 chip->cs_control = chip_info->cs_control;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001977
Kevin Wellsbde435a2010-09-16 06:18:50 -07001978 if (bits <= 3) {
1979 /* PL022 doesn't support less than 4-bits */
1980 status = -ENOTSUPP;
1981 goto err_config_params;
1982 } else if (bits <= 8) {
1983 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001984 chip->n_bytes = 1;
1985 chip->read = READING_U8;
1986 chip->write = WRITING_U8;
Kevin Wellsbde435a2010-09-16 06:18:50 -07001987 } else if (bits <= 16) {
Linus Walleijb43d65f2009-06-09 08:11:42 +01001988 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1989 chip->n_bytes = 2;
1990 chip->read = READING_U16;
1991 chip->write = WRITING_U16;
1992 } else {
1993 if (pl022->vendor->max_bpw >= 32) {
1994 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1995 chip->n_bytes = 4;
1996 chip->read = READING_U32;
1997 chip->write = WRITING_U32;
1998 } else {
1999 dev_err(&spi->dev,
2000 "illegal data size for this controller!\n");
2001 dev_err(&spi->dev,
2002 "a standard pl022 can only handle "
2003 "1 <= n <= 16 bit words\n");
Kevin Wellsbde435a2010-09-16 06:18:50 -07002004 status = -ENOTSUPP;
Linus Walleijb43d65f2009-06-09 08:11:42 +01002005 goto err_config_params;
2006 }
2007 }
2008
2009 /* Now Initialize all register settings required for this chip */
2010 chip->cr0 = 0;
2011 chip->cr1 = 0;
2012 chip->dmacr = 0;
2013 chip->cpsr = 0;
2014 if ((chip_info->com_mode == DMA_TRANSFER)
2015 && ((pl022->master_info)->enable_dma)) {
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002016 chip->enable_dma = true;
Linus Walleijb43d65f2009-06-09 08:11:42 +01002017 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01002018 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2019 SSP_DMACR_MASK_RXDMAE, 0);
2020 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2021 SSP_DMACR_MASK_TXDMAE, 1);
2022 } else {
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002023 chip->enable_dma = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01002024 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2025 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2026 SSP_DMACR_MASK_RXDMAE, 0);
2027 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2028 SSP_DMACR_MASK_TXDMAE, 1);
2029 }
2030
Linus Walleijf9d629c2010-10-01 13:33:13 +02002031 chip->cpsr = clk_freq.cpsdvsr;
Linus Walleijb43d65f2009-06-09 08:11:42 +01002032
Linus Walleij556f4ae2010-05-05 09:28:15 +00002033 /* Special setup for the ST micro extended control registers */
2034 if (pl022->vendor->extended_cr) {
Kevin Wellsbde435a2010-09-16 06:18:50 -07002035 u32 etx;
2036
Linus Walleij781c7b12010-05-07 08:40:53 +00002037 if (pl022->vendor->pl023) {
2038 /* These bits are only in the PL023 */
2039 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2040 SSP_CR1_MASK_FBCLKDEL_ST, 13);
2041 } else {
2042 /* These bits are in the PL022 but not PL023 */
2043 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2044 SSP_CR0_MASK_HALFDUP_ST, 5);
2045 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2046 SSP_CR0_MASK_CSS_ST, 16);
2047 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2048 SSP_CR0_MASK_FRF_ST, 21);
2049 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2050 SSP_CR1_MASK_MWAIT_ST, 6);
2051 }
Kevin Wellsbde435a2010-09-16 06:18:50 -07002052 SSP_WRITE_BITS(chip->cr0, bits - 1,
Linus Walleij556f4ae2010-05-05 09:28:15 +00002053 SSP_CR0_MASK_DSS_ST, 0);
Kevin Wellsbde435a2010-09-16 06:18:50 -07002054
2055 if (spi->mode & SPI_LSB_FIRST) {
2056 tmp = SSP_RX_LSB;
2057 etx = SSP_TX_LSB;
2058 } else {
2059 tmp = SSP_RX_MSB;
2060 etx = SSP_TX_MSB;
2061 }
2062 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2063 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
Linus Walleij556f4ae2010-05-05 09:28:15 +00002064 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2065 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2066 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2067 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2068 } else {
Kevin Wellsbde435a2010-09-16 06:18:50 -07002069 SSP_WRITE_BITS(chip->cr0, bits - 1,
Linus Walleij556f4ae2010-05-05 09:28:15 +00002070 SSP_CR0_MASK_DSS, 0);
2071 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2072 SSP_CR0_MASK_FRF, 4);
2073 }
Kevin Wellsbde435a2010-09-16 06:18:50 -07002074
Linus Walleij556f4ae2010-05-05 09:28:15 +00002075 /* Stuff that is common for all versions */
Kevin Wellsbde435a2010-09-16 06:18:50 -07002076 if (spi->mode & SPI_CPOL)
2077 tmp = SSP_CLK_POL_IDLE_HIGH;
2078 else
2079 tmp = SSP_CLK_POL_IDLE_LOW;
2080 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2081
2082 if (spi->mode & SPI_CPHA)
2083 tmp = SSP_CLK_SECOND_EDGE;
2084 else
2085 tmp = SSP_CLK_FIRST_EDGE;
2086 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2087
Linus Walleijf9d629c2010-10-01 13:33:13 +02002088 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
Linus Walleij781c7b12010-05-07 08:40:53 +00002089 /* Loopback is available on all versions except PL023 */
Philippe Langlais06fb01f2011-03-23 11:05:16 +01002090 if (pl022->vendor->loopback) {
Kevin Wellsbde435a2010-09-16 06:18:50 -07002091 if (spi->mode & SPI_LOOP)
2092 tmp = LOOPBACK_ENABLED;
2093 else
2094 tmp = LOOPBACK_DISABLED;
2095 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2096 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01002097 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2098 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
Viresh Kumarf1e45f82011-08-10 14:20:54 +05302099 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2100 3);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002101
2102 /* Save controller_state */
2103 spi_set_ctldata(spi, chip);
2104 return status;
2105 err_config_params:
Kevin Wellsbde435a2010-09-16 06:18:50 -07002106 spi_set_ctldata(spi, NULL);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002107 kfree(chip);
2108 return status;
2109}
2110
2111/**
2112 * pl022_cleanup - cleanup function registered to SPI master framework
2113 * @spi: spi device which is requesting cleanup
2114 *
2115 * This function is registered to the SPI framework for this SPI master
2116 * controller. It will free the runtime state of chip.
2117 */
2118static void pl022_cleanup(struct spi_device *spi)
2119{
2120 struct chip_data *chip = spi_get_ctldata(spi);
2121
2122 spi_set_ctldata(spi, NULL);
2123 kfree(chip);
2124}
2125
Kevin Wellsb4225882010-07-27 16:39:30 +00002126static int __devinit
Russell Kingaa25afa2011-02-19 15:55:00 +00002127pl022_probe(struct amba_device *adev, const struct amba_id *id)
Linus Walleijb43d65f2009-06-09 08:11:42 +01002128{
2129 struct device *dev = &adev->dev;
2130 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2131 struct spi_master *master;
2132 struct pl022 *pl022 = NULL; /*Data for this driver */
2133 int status = 0;
2134
2135 dev_info(&adev->dev,
2136 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2137 if (platform_info == NULL) {
2138 dev_err(&adev->dev, "probe - no platform data supplied\n");
2139 status = -ENODEV;
2140 goto err_no_pdata;
2141 }
2142
2143 /* Allocate master with space for data */
2144 master = spi_alloc_master(dev, sizeof(struct pl022));
2145 if (master == NULL) {
2146 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2147 status = -ENOMEM;
2148 goto err_no_master;
2149 }
2150
2151 pl022 = spi_master_get_devdata(master);
2152 pl022->master = master;
2153 pl022->master_info = platform_info;
2154 pl022->adev = adev;
2155 pl022->vendor = id->data;
2156
2157 /*
2158 * Bus Number Which has been Assigned to this SSP controller
2159 * on this board
2160 */
2161 master->bus_num = platform_info->bus_id;
2162 master->num_chipselect = platform_info->num_chipselect;
2163 master->cleanup = pl022_cleanup;
2164 master->setup = pl022_setup;
2165 master->transfer = pl022_transfer;
2166
Kevin Wellsbde435a2010-09-16 06:18:50 -07002167 /*
2168 * Supports mode 0-3, loopback, and active low CS. Transfers are
2169 * always MS bit first on the original pl022.
2170 */
2171 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2172 if (pl022->vendor->extended_cr)
2173 master->mode_bits |= SPI_LSB_FIRST;
2174
Linus Walleijb43d65f2009-06-09 08:11:42 +01002175 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2176
2177 status = amba_request_regions(adev, NULL);
2178 if (status)
2179 goto err_no_ioregion;
2180
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002181 pl022->phybase = adev->res.start;
Linus Walleijb43d65f2009-06-09 08:11:42 +01002182 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2183 if (pl022->virtbase == NULL) {
2184 status = -ENOMEM;
2185 goto err_no_ioremap;
2186 }
2187 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2188 adev->res.start, pl022->virtbase);
2189
2190 pl022->clk = clk_get(&adev->dev, NULL);
2191 if (IS_ERR(pl022->clk)) {
2192 status = PTR_ERR(pl022->clk);
2193 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2194 goto err_no_clk;
2195 }
Russell King7ff6bcf2011-09-22 14:27:11 +01002196
2197 status = clk_prepare(pl022->clk);
2198 if (status) {
2199 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2200 goto err_clk_prep;
2201 }
2202
Ulf Hansson71e63e72011-11-04 08:10:09 +01002203 status = clk_enable(pl022->clk);
2204 if (status) {
2205 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2206 goto err_no_clk_en;
2207 }
2208
Linus Walleijb43d65f2009-06-09 08:11:42 +01002209 /* Disable SSP */
Linus Walleijb43d65f2009-06-09 08:11:42 +01002210 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2211 SSP_CR1(pl022->virtbase));
2212 load_ssp_default_config(pl022);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002213
2214 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2215 pl022);
2216 if (status < 0) {
2217 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2218 goto err_no_irq;
2219 }
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002220
2221 /* Get DMA channels */
2222 if (platform_info->enable_dma) {
2223 status = pl022_dma_probe(pl022);
2224 if (status != 0)
Viresh Kumar43c64012011-05-16 09:40:10 +05302225 platform_info->enable_dma = 0;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002226 }
2227
Linus Walleijb43d65f2009-06-09 08:11:42 +01002228 /* Initialize and start queue */
2229 status = init_queue(pl022);
2230 if (status != 0) {
2231 dev_err(&adev->dev, "probe - problem initializing queue\n");
2232 goto err_init_queue;
2233 }
2234 status = start_queue(pl022);
2235 if (status != 0) {
2236 dev_err(&adev->dev, "probe - problem starting queue\n");
2237 goto err_start_queue;
2238 }
2239 /* Register with the SPI framework */
2240 amba_set_drvdata(adev, pl022);
2241 status = spi_register_master(master);
2242 if (status != 0) {
2243 dev_err(&adev->dev,
2244 "probe - problem registering spi master\n");
2245 goto err_spi_register;
2246 }
Lucas De Marchi25985ed2011-03-30 22:57:33 -03002247 dev_dbg(dev, "probe succeeded\n");
Russell King92b97f02011-08-14 09:13:48 +01002248
2249 /* let runtime pm put suspend */
2250 pm_runtime_put(dev);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002251 return 0;
2252
2253 err_spi_register:
2254 err_start_queue:
2255 err_init_queue:
2256 destroy_queue(pl022);
Viresh Kumar3e3ea712011-08-10 14:20:58 +05302257 if (platform_info->enable_dma)
2258 pl022_dma_remove(pl022);
2259
Linus Walleijb43d65f2009-06-09 08:11:42 +01002260 free_irq(adev->irq[0], pl022);
2261 err_no_irq:
Ulf Hansson71e63e72011-11-04 08:10:09 +01002262 clk_disable(pl022->clk);
2263 err_no_clk_en:
Russell King7ff6bcf2011-09-22 14:27:11 +01002264 clk_unprepare(pl022->clk);
2265 err_clk_prep:
Linus Walleijb43d65f2009-06-09 08:11:42 +01002266 clk_put(pl022->clk);
2267 err_no_clk:
2268 iounmap(pl022->virtbase);
2269 err_no_ioremap:
2270 amba_release_regions(adev);
2271 err_no_ioregion:
2272 spi_master_put(master);
2273 err_no_master:
2274 err_no_pdata:
2275 return status;
2276}
2277
Kevin Wellsb4225882010-07-27 16:39:30 +00002278static int __devexit
Linus Walleijb43d65f2009-06-09 08:11:42 +01002279pl022_remove(struct amba_device *adev)
2280{
2281 struct pl022 *pl022 = amba_get_drvdata(adev);
Linus Walleij50658b62011-08-02 11:29:24 +02002282
Linus Walleijb43d65f2009-06-09 08:11:42 +01002283 if (!pl022)
2284 return 0;
2285
Russell King92b97f02011-08-14 09:13:48 +01002286 /*
2287 * undo pm_runtime_put() in probe. I assume that we're not
2288 * accessing the primecell here.
2289 */
2290 pm_runtime_get_noresume(&adev->dev);
2291
Linus Walleijb43d65f2009-06-09 08:11:42 +01002292 /* Remove the queue */
Linus Walleij50658b62011-08-02 11:29:24 +02002293 if (destroy_queue(pl022) != 0)
2294 dev_err(&adev->dev, "queue remove failed\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01002295 load_ssp_default_config(pl022);
Viresh Kumar3e3ea712011-08-10 14:20:58 +05302296 if (pl022->master_info->enable_dma)
2297 pl022_dma_remove(pl022);
2298
Linus Walleijb43d65f2009-06-09 08:11:42 +01002299 free_irq(adev->irq[0], pl022);
2300 clk_disable(pl022->clk);
Russell King7ff6bcf2011-09-22 14:27:11 +01002301 clk_unprepare(pl022->clk);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002302 clk_put(pl022->clk);
2303 iounmap(pl022->virtbase);
2304 amba_release_regions(adev);
2305 tasklet_disable(&pl022->pump_transfers);
2306 spi_unregister_master(pl022->master);
2307 spi_master_put(pl022->master);
2308 amba_set_drvdata(adev, NULL);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002309 return 0;
2310}
2311
Russell King92b97f02011-08-14 09:13:48 +01002312#ifdef CONFIG_SUSPEND
Peter Hüwe6cfa6272011-09-05 21:07:23 +01002313static int pl022_suspend(struct device *dev)
Linus Walleijb43d65f2009-06-09 08:11:42 +01002314{
Russell King92b97f02011-08-14 09:13:48 +01002315 struct pl022 *pl022 = dev_get_drvdata(dev);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002316 int status = 0;
2317
2318 status = stop_queue(pl022);
2319 if (status) {
Peter Hüwe6cfa6272011-09-05 21:07:23 +01002320 dev_warn(dev, "suspend cannot stop queue\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01002321 return status;
2322 }
2323
Peter Hüwe6cfa6272011-09-05 21:07:23 +01002324 dev_dbg(dev, "suspended\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01002325 return 0;
2326}
2327
Russell King92b97f02011-08-14 09:13:48 +01002328static int pl022_resume(struct device *dev)
Linus Walleijb43d65f2009-06-09 08:11:42 +01002329{
Russell King92b97f02011-08-14 09:13:48 +01002330 struct pl022 *pl022 = dev_get_drvdata(dev);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002331 int status = 0;
2332
2333 /* Start the queue running */
2334 status = start_queue(pl022);
2335 if (status)
Russell King92b97f02011-08-14 09:13:48 +01002336 dev_err(dev, "problem starting queue (%d)\n", status);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002337 else
Russell King92b97f02011-08-14 09:13:48 +01002338 dev_dbg(dev, "resumed\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01002339
2340 return status;
2341}
Linus Walleijb43d65f2009-06-09 08:11:42 +01002342#endif /* CONFIG_PM */
2343
Russell King92b97f02011-08-14 09:13:48 +01002344#ifdef CONFIG_PM_RUNTIME
2345static int pl022_runtime_suspend(struct device *dev)
2346{
2347 struct pl022 *pl022 = dev_get_drvdata(dev);
2348
2349 clk_disable(pl022->clk);
2350 amba_vcore_disable(pl022->adev);
2351
2352 return 0;
2353}
2354
2355static int pl022_runtime_resume(struct device *dev)
2356{
2357 struct pl022 *pl022 = dev_get_drvdata(dev);
2358
2359 amba_vcore_enable(pl022->adev);
2360 clk_enable(pl022->clk);
2361
2362 return 0;
2363}
2364#endif
2365
2366static const struct dev_pm_ops pl022_dev_pm_ops = {
2367 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2368 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2369};
2370
Linus Walleijb43d65f2009-06-09 08:11:42 +01002371static struct vendor_data vendor_arm = {
2372 .fifodepth = 8,
2373 .max_bpw = 16,
2374 .unidir = false,
Linus Walleij556f4ae2010-05-05 09:28:15 +00002375 .extended_cr = false,
Linus Walleij781c7b12010-05-07 08:40:53 +00002376 .pl023 = false,
Philippe Langlais06fb01f2011-03-23 11:05:16 +01002377 .loopback = true,
Linus Walleijb43d65f2009-06-09 08:11:42 +01002378};
2379
Linus Walleijb43d65f2009-06-09 08:11:42 +01002380static struct vendor_data vendor_st = {
2381 .fifodepth = 32,
2382 .max_bpw = 32,
2383 .unidir = false,
Linus Walleij556f4ae2010-05-05 09:28:15 +00002384 .extended_cr = true,
Linus Walleij781c7b12010-05-07 08:40:53 +00002385 .pl023 = false,
Philippe Langlais06fb01f2011-03-23 11:05:16 +01002386 .loopback = true,
Linus Walleij781c7b12010-05-07 08:40:53 +00002387};
2388
2389static struct vendor_data vendor_st_pl023 = {
2390 .fifodepth = 32,
2391 .max_bpw = 32,
2392 .unidir = false,
2393 .extended_cr = true,
2394 .pl023 = true,
Philippe Langlais06fb01f2011-03-23 11:05:16 +01002395 .loopback = false,
2396};
2397
2398static struct vendor_data vendor_db5500_pl023 = {
2399 .fifodepth = 32,
2400 .max_bpw = 32,
2401 .unidir = false,
2402 .extended_cr = true,
2403 .pl023 = true,
2404 .loopback = true,
Linus Walleijb43d65f2009-06-09 08:11:42 +01002405};
2406
2407static struct amba_id pl022_ids[] = {
2408 {
2409 /*
2410 * ARM PL022 variant, this has a 16bit wide
2411 * and 8 locations deep TX/RX FIFO
2412 */
2413 .id = 0x00041022,
2414 .mask = 0x000fffff,
2415 .data = &vendor_arm,
2416 },
2417 {
2418 /*
2419 * ST Micro derivative, this has 32bit wide
2420 * and 32 locations deep TX/RX FIFO
2421 */
Srinidhi Kasagare89e04f2009-10-05 06:13:53 +01002422 .id = 0x01080022,
Linus Walleijb43d65f2009-06-09 08:11:42 +01002423 .mask = 0xffffffff,
2424 .data = &vendor_st,
2425 },
Linus Walleij781c7b12010-05-07 08:40:53 +00002426 {
2427 /*
2428 * ST-Ericsson derivative "PL023" (this is not
2429 * an official ARM number), this is a PL022 SSP block
2430 * stripped to SPI mode only, it has 32bit wide
2431 * and 32 locations deep TX/RX FIFO but no extended
2432 * CR0/CR1 register
2433 */
Viresh Kumarf1e45f82011-08-10 14:20:54 +05302434 .id = 0x00080023,
2435 .mask = 0xffffffff,
2436 .data = &vendor_st_pl023,
Linus Walleij781c7b12010-05-07 08:40:53 +00002437 },
Philippe Langlais06fb01f2011-03-23 11:05:16 +01002438 {
2439 .id = 0x10080023,
2440 .mask = 0xffffffff,
2441 .data = &vendor_db5500_pl023,
2442 },
Linus Walleijb43d65f2009-06-09 08:11:42 +01002443 { 0, 0 },
2444};
2445
2446static struct amba_driver pl022_driver = {
2447 .drv = {
2448 .name = "ssp-pl022",
Russell King92b97f02011-08-14 09:13:48 +01002449 .pm = &pl022_dev_pm_ops,
Linus Walleijb43d65f2009-06-09 08:11:42 +01002450 },
2451 .id_table = pl022_ids,
2452 .probe = pl022_probe,
Kevin Wellsb4225882010-07-27 16:39:30 +00002453 .remove = __devexit_p(pl022_remove),
Linus Walleijb43d65f2009-06-09 08:11:42 +01002454};
2455
Linus Walleijb43d65f2009-06-09 08:11:42 +01002456static int __init pl022_init(void)
2457{
2458 return amba_driver_register(&pl022_driver);
2459}
Linus Walleij25c8e032010-09-06 11:02:12 +02002460subsys_initcall(pl022_init);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002461
2462static void __exit pl022_exit(void)
2463{
2464 amba_driver_unregister(&pl022_driver);
2465}
Linus Walleijb43d65f2009-06-09 08:11:42 +01002466module_exit(pl022_exit);
2467
2468MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2469MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2470MODULE_LICENSE("GPL");