blob: 9aac77ca3167ba9247f1dd218f78d4928f01d5cf [file] [log] [blame]
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
32
33#include <asm/prom.h>
34#include <asm/rtas.h>
35#include <asm/lmb.h>
36#include <asm/page.h>
37#include <asm/processor.h>
38#include <asm/irq.h>
39#include <asm/io.h>
Michael Ellerman0cc47462005-12-04 18:39:37 +110040#include <asm/kdump.h>
Paul Mackerras9b6b5632005-10-06 12:06:20 +100041#include <asm/smp.h>
42#include <asm/system.h>
43#include <asm/mmu.h>
44#include <asm/pgtable.h>
45#include <asm/pci.h>
46#include <asm/iommu.h>
47#include <asm/btext.h>
48#include <asm/sections.h>
49#include <asm/machdep.h>
50#include <asm/pSeries_reconfig.h>
Paul Mackerras40ef8cb2005-10-10 22:50:37 +100051#include <asm/pci-bridge.h>
Paul Mackerras9b6b5632005-10-06 12:06:20 +100052
53#ifdef DEBUG
54#define DBG(fmt...) printk(KERN_ERR fmt)
55#else
56#define DBG(fmt...)
57#endif
58
59struct pci_reg_property {
60 struct pci_address addr;
61 u32 size_hi;
62 u32 size_lo;
63};
64
65struct isa_reg_property {
66 u32 space;
67 u32 address;
68 u32 size;
69};
70
71
72typedef int interpret_func(struct device_node *, unsigned long *,
73 int, int, int);
74
Paul Mackerras9b6b5632005-10-06 12:06:20 +100075static int __initdata dt_root_addr_cells;
76static int __initdata dt_root_size_cells;
77
78#ifdef CONFIG_PPC64
79static int __initdata iommu_is_off;
80int __initdata iommu_force_on;
Paul Mackerrascf00a8d2005-10-31 13:07:02 +110081unsigned long tce_alloc_start, tce_alloc_end;
Paul Mackerras9b6b5632005-10-06 12:06:20 +100082#endif
83
84typedef u32 cell_t;
85
86#if 0
87static struct boot_param_header *initial_boot_params __initdata;
88#else
89struct boot_param_header *initial_boot_params;
90#endif
91
92static struct device_node *allnodes = NULL;
93
94/* use when traversing tree through the allnext, child, sibling,
95 * or parent members of struct device_node.
96 */
97static DEFINE_RWLOCK(devtree_lock);
98
99/* export that to outside world */
100struct device_node *of_chosen;
101
102struct device_node *dflt_interrupt_controller;
103int num_interrupt_controllers;
104
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000105/*
106 * Wrapper for allocating memory for various data that needs to be
107 * attached to device nodes as they are processed at boot or when
108 * added to the device tree later (e.g. DLPAR). At boot there is
109 * already a region reserved so we just increment *mem_start by size;
110 * otherwise we call kmalloc.
111 */
112static void * prom_alloc(unsigned long size, unsigned long *mem_start)
113{
114 unsigned long tmp;
115
116 if (!mem_start)
117 return kmalloc(size, GFP_KERNEL);
118
119 tmp = *mem_start;
120 *mem_start += size;
121 return (void *)tmp;
122}
123
124/*
125 * Find the device_node with a given phandle.
126 */
127static struct device_node * find_phandle(phandle ph)
128{
129 struct device_node *np;
130
131 for (np = allnodes; np != 0; np = np->allnext)
132 if (np->linux_phandle == ph)
133 return np;
134 return NULL;
135}
136
137/*
138 * Find the interrupt parent of a node.
139 */
140static struct device_node * __devinit intr_parent(struct device_node *p)
141{
142 phandle *parp;
143
144 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
145 if (parp == NULL)
146 return p->parent;
147 p = find_phandle(*parp);
148 if (p != NULL)
149 return p;
150 /*
151 * On a powermac booted with BootX, we don't get to know the
152 * phandles for any nodes, so find_phandle will return NULL.
153 * Fortunately these machines only have one interrupt controller
154 * so there isn't in fact any ambiguity. -- paulus
155 */
156 if (num_interrupt_controllers == 1)
157 p = dflt_interrupt_controller;
158 return p;
159}
160
161/*
162 * Find out the size of each entry of the interrupts property
163 * for a node.
164 */
165int __devinit prom_n_intr_cells(struct device_node *np)
166{
167 struct device_node *p;
168 unsigned int *icp;
169
170 for (p = np; (p = intr_parent(p)) != NULL; ) {
171 icp = (unsigned int *)
172 get_property(p, "#interrupt-cells", NULL);
173 if (icp != NULL)
174 return *icp;
175 if (get_property(p, "interrupt-controller", NULL) != NULL
176 || get_property(p, "interrupt-map", NULL) != NULL) {
177 printk("oops, node %s doesn't have #interrupt-cells\n",
178 p->full_name);
179 return 1;
180 }
181 }
182#ifdef DEBUG_IRQ
183 printk("prom_n_intr_cells failed for %s\n", np->full_name);
184#endif
185 return 1;
186}
187
188/*
189 * Map an interrupt from a device up to the platform interrupt
190 * descriptor.
191 */
192static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
193 struct device_node *np, unsigned int *ints,
194 int nintrc)
195{
196 struct device_node *p, *ipar;
197 unsigned int *imap, *imask, *ip;
198 int i, imaplen, match;
199 int newintrc = 0, newaddrc = 0;
200 unsigned int *reg;
201 int naddrc;
202
203 reg = (unsigned int *) get_property(np, "reg", NULL);
204 naddrc = prom_n_addr_cells(np);
205 p = intr_parent(np);
206 while (p != NULL) {
207 if (get_property(p, "interrupt-controller", NULL) != NULL)
208 /* this node is an interrupt controller, stop here */
209 break;
210 imap = (unsigned int *)
211 get_property(p, "interrupt-map", &imaplen);
212 if (imap == NULL) {
213 p = intr_parent(p);
214 continue;
215 }
216 imask = (unsigned int *)
217 get_property(p, "interrupt-map-mask", NULL);
218 if (imask == NULL) {
219 printk("oops, %s has interrupt-map but no mask\n",
220 p->full_name);
221 return 0;
222 }
223 imaplen /= sizeof(unsigned int);
224 match = 0;
225 ipar = NULL;
226 while (imaplen > 0 && !match) {
227 /* check the child-interrupt field */
228 match = 1;
229 for (i = 0; i < naddrc && match; ++i)
230 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
231 for (; i < naddrc + nintrc && match; ++i)
232 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
233 imap += naddrc + nintrc;
234 imaplen -= naddrc + nintrc;
235 /* grab the interrupt parent */
236 ipar = find_phandle((phandle) *imap++);
237 --imaplen;
238 if (ipar == NULL && num_interrupt_controllers == 1)
239 /* cope with BootX not giving us phandles */
240 ipar = dflt_interrupt_controller;
241 if (ipar == NULL) {
242 printk("oops, no int parent %x in map of %s\n",
243 imap[-1], p->full_name);
244 return 0;
245 }
246 /* find the parent's # addr and intr cells */
247 ip = (unsigned int *)
248 get_property(ipar, "#interrupt-cells", NULL);
249 if (ip == NULL) {
250 printk("oops, no #interrupt-cells on %s\n",
251 ipar->full_name);
252 return 0;
253 }
254 newintrc = *ip;
255 ip = (unsigned int *)
256 get_property(ipar, "#address-cells", NULL);
257 newaddrc = (ip == NULL)? 0: *ip;
258 imap += newaddrc + newintrc;
259 imaplen -= newaddrc + newintrc;
260 }
261 if (imaplen < 0) {
262 printk("oops, error decoding int-map on %s, len=%d\n",
263 p->full_name, imaplen);
264 return 0;
265 }
266 if (!match) {
267#ifdef DEBUG_IRQ
268 printk("oops, no match in %s int-map for %s\n",
269 p->full_name, np->full_name);
270#endif
271 return 0;
272 }
273 p = ipar;
274 naddrc = newaddrc;
275 nintrc = newintrc;
276 ints = imap - nintrc;
277 reg = ints - naddrc;
278 }
279 if (p == NULL) {
280#ifdef DEBUG_IRQ
281 printk("hmmm, int tree for %s doesn't have ctrler\n",
282 np->full_name);
283#endif
284 return 0;
285 }
286 *irq = ints;
287 *ictrler = p;
288 return nintrc;
289}
290
Paul Mackerras6d0124f2005-10-26 17:19:06 +1000291static unsigned char map_isa_senses[4] = {
292 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
293 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
294 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
295 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
296};
297
298static unsigned char map_mpic_senses[4] = {
299 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
300 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
301 /* 2 seems to be used for the 8259 cascade... */
302 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
303 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
304};
305
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000306static int __devinit finish_node_interrupts(struct device_node *np,
307 unsigned long *mem_start,
308 int measure_only)
309{
310 unsigned int *ints;
311 int intlen, intrcells, intrcount;
Paul Mackerras6d0124f2005-10-26 17:19:06 +1000312 int i, j, n, sense;
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000313 unsigned int *irq, virq;
314 struct device_node *ic;
315
Paul Mackerrasa575b802005-10-23 17:23:21 +1000316 if (num_interrupt_controllers == 0) {
317 /*
318 * Old machines just have a list of interrupt numbers
319 * and no interrupt-controller nodes.
320 */
321 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
322 &intlen);
323 /* XXX old interpret_pci_props looked in parent too */
324 /* XXX old interpret_macio_props looked for interrupts
325 before AAPL,interrupts */
326 if (ints == NULL)
327 ints = (unsigned int *) get_property(np, "interrupts",
328 &intlen);
329 if (ints == NULL)
330 return 0;
331
332 np->n_intrs = intlen / sizeof(unsigned int);
333 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
334 mem_start);
335 if (!np->intrs)
336 return -ENOMEM;
337 if (measure_only)
338 return 0;
339
340 for (i = 0; i < np->n_intrs; ++i) {
341 np->intrs[i].line = *ints++;
Paul Mackerras6d0124f2005-10-26 17:19:06 +1000342 np->intrs[i].sense = IRQ_SENSE_LEVEL
343 | IRQ_POLARITY_NEGATIVE;
Paul Mackerrasa575b802005-10-23 17:23:21 +1000344 }
345 return 0;
346 }
347
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000348 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
349 if (ints == NULL)
350 return 0;
351 intrcells = prom_n_intr_cells(np);
352 intlen /= intrcells * sizeof(unsigned int);
353
354 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
355 if (!np->intrs)
356 return -ENOMEM;
357
358 if (measure_only)
359 return 0;
360
361 intrcount = 0;
362 for (i = 0; i < intlen; ++i, ints += intrcells) {
363 n = map_interrupt(&irq, &ic, np, ints, intrcells);
364 if (n <= 0)
365 continue;
366
367 /* don't map IRQ numbers under a cascaded 8259 controller */
368 if (ic && device_is_compatible(ic, "chrp,iic")) {
369 np->intrs[intrcount].line = irq[0];
Paul Mackerras6d0124f2005-10-26 17:19:06 +1000370 sense = (n > 1)? (irq[1] & 3): 3;
371 np->intrs[intrcount].sense = map_isa_senses[sense];
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000372 } else {
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000373 virq = virt_irq_create_mapping(irq[0]);
Paul Mackerras6d0124f2005-10-26 17:19:06 +1000374#ifdef CONFIG_PPC64
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000375 if (virq == NO_IRQ) {
376 printk(KERN_CRIT "Could not allocate interrupt"
377 " number for %s\n", np->full_name);
378 continue;
379 }
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000380#endif
Paul Mackerras6d0124f2005-10-26 17:19:06 +1000381 np->intrs[intrcount].line = irq_offset_up(virq);
382 sense = (n > 1)? (irq[1] & 3): 1;
383 np->intrs[intrcount].sense = map_mpic_senses[sense];
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000384 }
385
386#ifdef CONFIG_PPC64
387 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
Paul Mackerras799d6042005-11-10 13:37:51 +1100388 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000389 char *name = get_property(ic->parent, "name", NULL);
390 if (name && !strcmp(name, "u3"))
391 np->intrs[intrcount].line += 128;
392 else if (!(name && !strcmp(name, "mac-io")))
393 /* ignore other cascaded controllers, such as
394 the k2-sata-root */
395 break;
396 }
397#endif
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000398 if (n > 2) {
399 printk("hmmm, got %d intr cells for %s:", n,
400 np->full_name);
401 for (j = 0; j < n; ++j)
402 printk(" %d", irq[j]);
403 printk("\n");
404 }
405 ++intrcount;
406 }
407 np->n_intrs = intrcount;
408
409 return 0;
410}
411
412static int __devinit interpret_pci_props(struct device_node *np,
413 unsigned long *mem_start,
414 int naddrc, int nsizec,
415 int measure_only)
416{
417 struct address_range *adr;
418 struct pci_reg_property *pci_addrs;
419 int i, l, n_addrs;
420
421 pci_addrs = (struct pci_reg_property *)
422 get_property(np, "assigned-addresses", &l);
423 if (!pci_addrs)
424 return 0;
425
426 n_addrs = l / sizeof(*pci_addrs);
427
428 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
429 if (!adr)
430 return -ENOMEM;
431
432 if (measure_only)
433 return 0;
434
435 np->addrs = adr;
436 np->n_addrs = n_addrs;
437
438 for (i = 0; i < n_addrs; i++) {
439 adr[i].space = pci_addrs[i].addr.a_hi;
440 adr[i].address = pci_addrs[i].addr.a_lo |
441 ((u64)pci_addrs[i].addr.a_mid << 32);
442 adr[i].size = pci_addrs[i].size_lo;
443 }
444
445 return 0;
446}
447
448static int __init interpret_dbdma_props(struct device_node *np,
449 unsigned long *mem_start,
450 int naddrc, int nsizec,
451 int measure_only)
452{
453 struct reg_property32 *rp;
454 struct address_range *adr;
455 unsigned long base_address;
456 int i, l;
457 struct device_node *db;
458
459 base_address = 0;
460 if (!measure_only) {
461 for (db = np->parent; db != NULL; db = db->parent) {
462 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
463 base_address = db->addrs[0].address;
464 break;
465 }
466 }
467 }
468
469 rp = (struct reg_property32 *) get_property(np, "reg", &l);
470 if (rp != 0 && l >= sizeof(struct reg_property32)) {
471 i = 0;
472 adr = (struct address_range *) (*mem_start);
473 while ((l -= sizeof(struct reg_property32)) >= 0) {
474 if (!measure_only) {
475 adr[i].space = 2;
476 adr[i].address = rp[i].address + base_address;
477 adr[i].size = rp[i].size;
478 }
479 ++i;
480 }
481 np->addrs = adr;
482 np->n_addrs = i;
483 (*mem_start) += i * sizeof(struct address_range);
484 }
485
486 return 0;
487}
488
489static int __init interpret_macio_props(struct device_node *np,
490 unsigned long *mem_start,
491 int naddrc, int nsizec,
492 int measure_only)
493{
494 struct reg_property32 *rp;
495 struct address_range *adr;
496 unsigned long base_address;
497 int i, l;
498 struct device_node *db;
499
500 base_address = 0;
501 if (!measure_only) {
502 for (db = np->parent; db != NULL; db = db->parent) {
503 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
504 base_address = db->addrs[0].address;
505 break;
506 }
507 }
508 }
509
510 rp = (struct reg_property32 *) get_property(np, "reg", &l);
511 if (rp != 0 && l >= sizeof(struct reg_property32)) {
512 i = 0;
513 adr = (struct address_range *) (*mem_start);
514 while ((l -= sizeof(struct reg_property32)) >= 0) {
515 if (!measure_only) {
516 adr[i].space = 2;
517 adr[i].address = rp[i].address + base_address;
518 adr[i].size = rp[i].size;
519 }
520 ++i;
521 }
522 np->addrs = adr;
523 np->n_addrs = i;
524 (*mem_start) += i * sizeof(struct address_range);
525 }
526
527 return 0;
528}
529
530static int __init interpret_isa_props(struct device_node *np,
531 unsigned long *mem_start,
532 int naddrc, int nsizec,
533 int measure_only)
534{
535 struct isa_reg_property *rp;
536 struct address_range *adr;
537 int i, l;
538
539 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
540 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
541 i = 0;
542 adr = (struct address_range *) (*mem_start);
543 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
544 if (!measure_only) {
545 adr[i].space = rp[i].space;
546 adr[i].address = rp[i].address;
547 adr[i].size = rp[i].size;
548 }
549 ++i;
550 }
551 np->addrs = adr;
552 np->n_addrs = i;
553 (*mem_start) += i * sizeof(struct address_range);
554 }
555
556 return 0;
557}
558
559static int __init interpret_root_props(struct device_node *np,
560 unsigned long *mem_start,
561 int naddrc, int nsizec,
562 int measure_only)
563{
564 struct address_range *adr;
565 int i, l;
566 unsigned int *rp;
567 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
568
569 rp = (unsigned int *) get_property(np, "reg", &l);
570 if (rp != 0 && l >= rpsize) {
571 i = 0;
572 adr = (struct address_range *) (*mem_start);
573 while ((l -= rpsize) >= 0) {
574 if (!measure_only) {
575 adr[i].space = 0;
576 adr[i].address = rp[naddrc - 1];
577 adr[i].size = rp[naddrc + nsizec - 1];
578 }
579 ++i;
580 rp += naddrc + nsizec;
581 }
582 np->addrs = adr;
583 np->n_addrs = i;
584 (*mem_start) += i * sizeof(struct address_range);
585 }
586
587 return 0;
588}
589
590static int __devinit finish_node(struct device_node *np,
591 unsigned long *mem_start,
592 interpret_func *ifunc,
593 int naddrc, int nsizec,
594 int measure_only)
595{
596 struct device_node *child;
597 int *ip, rc = 0;
598
599 /* get the device addresses and interrupts */
600 if (ifunc != NULL)
601 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
602 if (rc)
603 goto out;
604
605 rc = finish_node_interrupts(np, mem_start, measure_only);
606 if (rc)
607 goto out;
608
609 /* Look for #address-cells and #size-cells properties. */
610 ip = (int *) get_property(np, "#address-cells", NULL);
611 if (ip != NULL)
612 naddrc = *ip;
613 ip = (int *) get_property(np, "#size-cells", NULL);
614 if (ip != NULL)
615 nsizec = *ip;
616
617 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
618 ifunc = interpret_root_props;
619 else if (np->type == 0)
620 ifunc = NULL;
621 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
622 ifunc = interpret_pci_props;
623 else if (!strcmp(np->type, "dbdma"))
624 ifunc = interpret_dbdma_props;
625 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
626 ifunc = interpret_macio_props;
627 else if (!strcmp(np->type, "isa"))
628 ifunc = interpret_isa_props;
629 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
630 ifunc = interpret_root_props;
631 else if (!((ifunc == interpret_dbdma_props
632 || ifunc == interpret_macio_props)
633 && (!strcmp(np->type, "escc")
634 || !strcmp(np->type, "media-bay"))))
635 ifunc = NULL;
636
637 for (child = np->child; child != NULL; child = child->sibling) {
638 rc = finish_node(child, mem_start, ifunc,
639 naddrc, nsizec, measure_only);
640 if (rc)
641 goto out;
642 }
643out:
644 return rc;
645}
646
647static void __init scan_interrupt_controllers(void)
648{
649 struct device_node *np;
650 int n = 0;
651 char *name, *ic;
652 int iclen;
653
654 for (np = allnodes; np != NULL; np = np->allnext) {
655 ic = get_property(np, "interrupt-controller", &iclen);
656 name = get_property(np, "name", NULL);
657 /* checking iclen makes sure we don't get a false
658 match on /chosen.interrupt_controller */
659 if ((name != NULL
660 && strcmp(name, "interrupt-controller") == 0)
661 || (ic != NULL && iclen == 0
662 && strcmp(name, "AppleKiwi"))) {
663 if (n == 0)
664 dflt_interrupt_controller = np;
665 ++n;
666 }
667 }
668 num_interrupt_controllers = n;
669}
670
671/**
672 * finish_device_tree is called once things are running normally
673 * (i.e. with text and data mapped to the address they were linked at).
674 * It traverses the device tree and fills in some of the additional,
675 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
676 * mapping is also initialized at this point.
677 */
678void __init finish_device_tree(void)
679{
680 unsigned long start, end, size = 0;
681
682 DBG(" -> finish_device_tree\n");
683
684#ifdef CONFIG_PPC64
685 /* Initialize virtual IRQ map */
686 virt_irq_init();
687#endif
688 scan_interrupt_controllers();
689
690 /*
691 * Finish device-tree (pre-parsing some properties etc...)
692 * We do this in 2 passes. One with "measure_only" set, which
693 * will only measure the amount of memory needed, then we can
694 * allocate that memory, and call finish_node again. However,
695 * we must be careful as most routines will fail nowadays when
696 * prom_alloc() returns 0, so we must make sure our first pass
697 * doesn't start at 0. We pre-initialize size to 16 for that
698 * reason and then remove those additional 16 bytes
699 */
700 size = 16;
701 finish_node(allnodes, &size, NULL, 0, 0, 1);
702 size -= 16;
703 end = start = (unsigned long) __va(lmb_alloc(size, 128));
704 finish_node(allnodes, &end, NULL, 0, 0, 0);
705 BUG_ON(end != start + size);
706
707 DBG(" <- finish_device_tree\n");
708}
709
710static inline char *find_flat_dt_string(u32 offset)
711{
712 return ((char *)initial_boot_params) +
713 initial_boot_params->off_dt_strings + offset;
714}
715
716/**
717 * This function is used to scan the flattened device-tree, it is
718 * used to extract the memory informations at boot before we can
719 * unflatten the tree
720 */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +1100721int __init of_scan_flat_dt(int (*it)(unsigned long node,
722 const char *uname, int depth,
723 void *data),
724 void *data)
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000725{
726 unsigned long p = ((unsigned long)initial_boot_params) +
727 initial_boot_params->off_dt_struct;
728 int rc = 0;
729 int depth = -1;
730
731 do {
732 u32 tag = *((u32 *)p);
733 char *pathp;
734
735 p += 4;
736 if (tag == OF_DT_END_NODE) {
737 depth --;
738 continue;
739 }
740 if (tag == OF_DT_NOP)
741 continue;
742 if (tag == OF_DT_END)
743 break;
744 if (tag == OF_DT_PROP) {
745 u32 sz = *((u32 *)p);
746 p += 8;
747 if (initial_boot_params->version < 0x10)
748 p = _ALIGN(p, sz >= 8 ? 8 : 4);
749 p += sz;
750 p = _ALIGN(p, 4);
751 continue;
752 }
753 if (tag != OF_DT_BEGIN_NODE) {
754 printk(KERN_WARNING "Invalid tag %x scanning flattened"
755 " device tree !\n", tag);
756 return -EINVAL;
757 }
758 depth++;
759 pathp = (char *)p;
760 p = _ALIGN(p + strlen(pathp) + 1, 4);
761 if ((*pathp) == '/') {
762 char *lp, *np;
763 for (lp = NULL, np = pathp; *np; np++)
764 if ((*np) == '/')
765 lp = np+1;
766 if (lp != NULL)
767 pathp = lp;
768 }
769 rc = it(p, pathp, depth, data);
770 if (rc != 0)
771 break;
772 } while(1);
773
774 return rc;
775}
776
777/**
778 * This function can be used within scan_flattened_dt callback to get
779 * access to properties
780 */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +1100781void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
782 unsigned long *size)
Paul Mackerras9b6b5632005-10-06 12:06:20 +1000783{
784 unsigned long p = node;
785
786 do {
787 u32 tag = *((u32 *)p);
788 u32 sz, noff;
789 const char *nstr;
790
791 p += 4;
792 if (tag == OF_DT_NOP)
793 continue;
794 if (tag != OF_DT_PROP)
795 return NULL;
796
797 sz = *((u32 *)p);
798 noff = *((u32 *)(p + 4));
799 p += 8;
800 if (initial_boot_params->version < 0x10)
801 p = _ALIGN(p, sz >= 8 ? 8 : 4);
802
803 nstr = find_flat_dt_string(noff);
804 if (nstr == NULL) {
805 printk(KERN_WARNING "Can't find property index"
806 " name !\n");
807 return NULL;
808 }
809 if (strcmp(name, nstr) == 0) {
810 if (size)
811 *size = sz;
812 return (void *)p;
813 }
814 p += sz;
815 p = _ALIGN(p, 4);
816 } while(1);
817}
818
819static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
820 unsigned long align)
821{
822 void *res;
823
824 *mem = _ALIGN(*mem, align);
825 res = (void *)*mem;
826 *mem += size;
827
828 return res;
829}
830
831static unsigned long __init unflatten_dt_node(unsigned long mem,
832 unsigned long *p,
833 struct device_node *dad,
834 struct device_node ***allnextpp,
835 unsigned long fpsize)
836{
837 struct device_node *np;
838 struct property *pp, **prev_pp = NULL;
839 char *pathp;
840 u32 tag;
841 unsigned int l, allocl;
842 int has_name = 0;
843 int new_format = 0;
844
845 tag = *((u32 *)(*p));
846 if (tag != OF_DT_BEGIN_NODE) {
847 printk("Weird tag at start of node: %x\n", tag);
848 return mem;
849 }
850 *p += 4;
851 pathp = (char *)*p;
852 l = allocl = strlen(pathp) + 1;
853 *p = _ALIGN(*p + l, 4);
854
855 /* version 0x10 has a more compact unit name here instead of the full
856 * path. we accumulate the full path size using "fpsize", we'll rebuild
857 * it later. We detect this because the first character of the name is
858 * not '/'.
859 */
860 if ((*pathp) != '/') {
861 new_format = 1;
862 if (fpsize == 0) {
863 /* root node: special case. fpsize accounts for path
864 * plus terminating zero. root node only has '/', so
865 * fpsize should be 2, but we want to avoid the first
866 * level nodes to have two '/' so we use fpsize 1 here
867 */
868 fpsize = 1;
869 allocl = 2;
870 } else {
871 /* account for '/' and path size minus terminal 0
872 * already in 'l'
873 */
874 fpsize += l;
875 allocl = fpsize;
876 }
877 }
878
879
880 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
881 __alignof__(struct device_node));
882 if (allnextpp) {
883 memset(np, 0, sizeof(*np));
884 np->full_name = ((char*)np) + sizeof(struct device_node);
885 if (new_format) {
886 char *p = np->full_name;
887 /* rebuild full path for new format */
888 if (dad && dad->parent) {
889 strcpy(p, dad->full_name);
890#ifdef DEBUG
891 if ((strlen(p) + l + 1) != allocl) {
892 DBG("%s: p: %d, l: %d, a: %d\n",
893 pathp, strlen(p), l, allocl);
894 }
895#endif
896 p += strlen(p);
897 }
898 *(p++) = '/';
899 memcpy(p, pathp, l);
900 } else
901 memcpy(np->full_name, pathp, l);
902 prev_pp = &np->properties;
903 **allnextpp = np;
904 *allnextpp = &np->allnext;
905 if (dad != NULL) {
906 np->parent = dad;
907 /* we temporarily use the next field as `last_child'*/
908 if (dad->next == 0)
909 dad->child = np;
910 else
911 dad->next->sibling = np;
912 dad->next = np;
913 }
914 kref_init(&np->kref);
915 }
916 while(1) {
917 u32 sz, noff;
918 char *pname;
919
920 tag = *((u32 *)(*p));
921 if (tag == OF_DT_NOP) {
922 *p += 4;
923 continue;
924 }
925 if (tag != OF_DT_PROP)
926 break;
927 *p += 4;
928 sz = *((u32 *)(*p));
929 noff = *((u32 *)((*p) + 4));
930 *p += 8;
931 if (initial_boot_params->version < 0x10)
932 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
933
934 pname = find_flat_dt_string(noff);
935 if (pname == NULL) {
936 printk("Can't find property name in list !\n");
937 break;
938 }
939 if (strcmp(pname, "name") == 0)
940 has_name = 1;
941 l = strlen(pname) + 1;
942 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
943 __alignof__(struct property));
944 if (allnextpp) {
945 if (strcmp(pname, "linux,phandle") == 0) {
946 np->node = *((u32 *)*p);
947 if (np->linux_phandle == 0)
948 np->linux_phandle = np->node;
949 }
950 if (strcmp(pname, "ibm,phandle") == 0)
951 np->linux_phandle = *((u32 *)*p);
952 pp->name = pname;
953 pp->length = sz;
954 pp->value = (void *)*p;
955 *prev_pp = pp;
956 prev_pp = &pp->next;
957 }
958 *p = _ALIGN((*p) + sz, 4);
959 }
960 /* with version 0x10 we may not have the name property, recreate
961 * it here from the unit name if absent
962 */
963 if (!has_name) {
964 char *p = pathp, *ps = pathp, *pa = NULL;
965 int sz;
966
967 while (*p) {
968 if ((*p) == '@')
969 pa = p;
970 if ((*p) == '/')
971 ps = p + 1;
972 p++;
973 }
974 if (pa < ps)
975 pa = p;
976 sz = (pa - ps) + 1;
977 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
978 __alignof__(struct property));
979 if (allnextpp) {
980 pp->name = "name";
981 pp->length = sz;
982 pp->value = (unsigned char *)(pp + 1);
983 *prev_pp = pp;
984 prev_pp = &pp->next;
985 memcpy(pp->value, ps, sz - 1);
986 ((char *)pp->value)[sz - 1] = 0;
987 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
988 }
989 }
990 if (allnextpp) {
991 *prev_pp = NULL;
992 np->name = get_property(np, "name", NULL);
993 np->type = get_property(np, "device_type", NULL);
994
995 if (!np->name)
996 np->name = "<NULL>";
997 if (!np->type)
998 np->type = "<NULL>";
999 }
1000 while (tag == OF_DT_BEGIN_NODE) {
1001 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1002 tag = *((u32 *)(*p));
1003 }
1004 if (tag != OF_DT_END_NODE) {
1005 printk("Weird tag at end of node: %x\n", tag);
1006 return mem;
1007 }
1008 *p += 4;
1009 return mem;
1010}
1011
1012
1013/**
1014 * unflattens the device-tree passed by the firmware, creating the
1015 * tree of struct device_node. It also fills the "name" and "type"
1016 * pointers of the nodes so the normal device-tree walking functions
1017 * can be used (this used to be done by finish_device_tree)
1018 */
1019void __init unflatten_device_tree(void)
1020{
1021 unsigned long start, mem, size;
1022 struct device_node **allnextp = &allnodes;
1023 char *p = NULL;
1024 int l = 0;
1025
1026 DBG(" -> unflatten_device_tree()\n");
1027
1028 /* First pass, scan for size */
1029 start = ((unsigned long)initial_boot_params) +
1030 initial_boot_params->off_dt_struct;
1031 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1032 size = (size | 3) + 1;
1033
1034 DBG(" size is %lx, allocating...\n", size);
1035
1036 /* Allocate memory for the expanded device tree */
1037 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1038 if (!mem) {
1039 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1040 panic("Couldn't allocate memory with lmb_alloc()!\n");
1041 }
1042 mem = (unsigned long) __va(mem);
1043
1044 ((u32 *)mem)[size / 4] = 0xdeadbeef;
1045
1046 DBG(" unflattening %lx...\n", mem);
1047
1048 /* Second pass, do actual unflattening */
1049 start = ((unsigned long)initial_boot_params) +
1050 initial_boot_params->off_dt_struct;
1051 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1052 if (*((u32 *)start) != OF_DT_END)
1053 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1054 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1055 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1056 ((u32 *)mem)[size / 4] );
1057 *allnextp = NULL;
1058
1059 /* Get pointer to OF "/chosen" node for use everywhere */
1060 of_chosen = of_find_node_by_path("/chosen");
Paul Mackerrasa575b802005-10-23 17:23:21 +10001061 if (of_chosen == NULL)
1062 of_chosen = of_find_node_by_path("/chosen@0");
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001063
1064 /* Retreive command line */
1065 if (of_chosen != NULL) {
1066 p = (char *)get_property(of_chosen, "bootargs", &l);
1067 if (p != NULL && l > 0)
1068 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1069 }
1070#ifdef CONFIG_CMDLINE
1071 if (l == 0 || (l == 1 && (*p) == 0))
1072 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1073#endif /* CONFIG_CMDLINE */
1074
1075 DBG("Command line is: %s\n", cmd_line);
1076
1077 DBG(" <- unflatten_device_tree()\n");
1078}
1079
1080
1081static int __init early_init_dt_scan_cpus(unsigned long node,
1082 const char *uname, int depth, void *data)
1083{
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001084 u32 *prop;
Stephen Rothwell676e2492005-11-10 14:16:21 +11001085 unsigned long size;
1086 char *type = of_get_flat_dt_prop(node, "device_type", &size);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001087
1088 /* We are scanning "cpu" nodes only */
1089 if (type == NULL || strcmp(type, "cpu") != 0)
1090 return 0;
1091
Paul Mackerras80579e12005-10-27 22:42:04 +10001092 boot_cpuid = 0;
1093 boot_cpuid_phys = 0;
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001094 if (initial_boot_params && initial_boot_params->version >= 2) {
1095 /* version 2 of the kexec param format adds the phys cpuid
1096 * of booted proc.
1097 */
1098 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001099 } else {
Paul Mackerras80579e12005-10-27 22:42:04 +10001100 /* Check if it's the boot-cpu, set it's hw index now */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001101 if (of_get_flat_dt_prop(node,
1102 "linux,boot-cpu", NULL) != NULL) {
1103 prop = of_get_flat_dt_prop(node, "reg", NULL);
Paul Mackerras80579e12005-10-27 22:42:04 +10001104 if (prop != NULL)
1105 boot_cpuid_phys = *prop;
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001106 }
1107 }
Paul Mackerras80579e12005-10-27 22:42:04 +10001108 set_hard_smp_processor_id(0, boot_cpuid_phys);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001109
1110#ifdef CONFIG_ALTIVEC
1111 /* Check if we have a VMX and eventually update CPU features */
Stephen Rothwell676e2492005-11-10 14:16:21 +11001112 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001113 if (prop && (*prop) > 0) {
1114 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1115 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1116 }
1117
1118 /* Same goes for Apple's "altivec" property */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001119 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001120 if (prop) {
1121 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1122 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1123 }
1124#endif /* CONFIG_ALTIVEC */
1125
1126#ifdef CONFIG_PPC_PSERIES
1127 /*
1128 * Check for an SMT capable CPU and set the CPU feature. We do
1129 * this by looking at the size of the ibm,ppc-interrupt-server#s
1130 * property
1131 */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001132 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001133 &size);
1134 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1135 if (prop && ((size / sizeof(u32)) > 1))
1136 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1137#endif
1138
1139 return 0;
1140}
1141
1142static int __init early_init_dt_scan_chosen(unsigned long node,
1143 const char *uname, int depth, void *data)
1144{
1145 u32 *prop;
1146 unsigned long *lprop;
1147
1148 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1149
Paul Mackerrasa575b802005-10-23 17:23:21 +10001150 if (depth != 1 ||
1151 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001152 return 0;
1153
1154 /* get platform type */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001155 prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001156 if (prop == NULL)
1157 return 0;
Kumar Gala60dda252005-10-20 11:44:03 -05001158#ifdef CONFIG_PPC_MULTIPLATFORM
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001159 _machine = *prop;
1160#endif
1161
1162#ifdef CONFIG_PPC64
1163 /* check if iommu is forced on or off */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001164 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001165 iommu_is_off = 1;
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001166 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001167 iommu_force_on = 1;
1168#endif
1169
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001170 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001171 if (lprop)
1172 memory_limit = *lprop;
1173
1174#ifdef CONFIG_PPC64
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001175 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001176 if (lprop)
1177 tce_alloc_start = *lprop;
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001178 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001179 if (lprop)
1180 tce_alloc_end = *lprop;
1181#endif
1182
1183#ifdef CONFIG_PPC_RTAS
1184 /* To help early debugging via the front panel, we retreive a minimal
1185 * set of RTAS infos now if available
1186 */
1187 {
1188 u64 *basep, *entryp;
1189
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001190 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1191 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1192 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001193 if (basep && entryp && prop) {
1194 rtas.base = *basep;
1195 rtas.entry = *entryp;
1196 rtas.size = *prop;
1197 }
1198 }
1199#endif /* CONFIG_PPC_RTAS */
1200
1201 /* break now */
1202 return 1;
1203}
1204
1205static int __init early_init_dt_scan_root(unsigned long node,
1206 const char *uname, int depth, void *data)
1207{
1208 u32 *prop;
1209
1210 if (depth != 0)
1211 return 0;
1212
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001213 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001214 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1215 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1216
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001217 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001218 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1219 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1220
1221 /* break now */
1222 return 1;
1223}
1224
1225static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1226{
1227 cell_t *p = *cellp;
1228 unsigned long r;
1229
1230 /* Ignore more than 2 cells */
1231 while (s > sizeof(unsigned long) / 4) {
1232 p++;
1233 s--;
1234 }
1235 r = *p++;
1236#ifdef CONFIG_PPC64
1237 if (s > 1) {
1238 r <<= 32;
1239 r |= *(p++);
1240 s--;
1241 }
1242#endif
1243
1244 *cellp = p;
1245 return r;
1246}
1247
1248
1249static int __init early_init_dt_scan_memory(unsigned long node,
1250 const char *uname, int depth, void *data)
1251{
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001252 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001253 cell_t *reg, *endp;
1254 unsigned long l;
1255
1256 /* We are scanning "memory" nodes only */
Paul Mackerrasa23414b2005-11-10 12:00:55 +11001257 if (type == NULL) {
1258 /*
1259 * The longtrail doesn't have a device_type on the
1260 * /memory node, so look for the node called /memory@0.
1261 */
1262 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1263 return 0;
1264 } else if (strcmp(type, "memory") != 0)
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001265 return 0;
1266
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001267 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001268 if (reg == NULL)
1269 return 0;
1270
1271 endp = reg + (l / sizeof(cell_t));
1272
Michael Ellerman358c86f2005-11-03 15:39:09 +11001273 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001274 uname, l, reg[0], reg[1], reg[2], reg[3]);
1275
1276 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1277 unsigned long base, size;
1278
1279 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1280 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1281
1282 if (size == 0)
1283 continue;
1284 DBG(" - %lx , %lx\n", base, size);
1285#ifdef CONFIG_PPC64
1286 if (iommu_is_off) {
1287 if (base >= 0x80000000ul)
1288 continue;
1289 if ((base + size) > 0x80000000ul)
1290 size = 0x80000000ul - base;
1291 }
1292#endif
1293 lmb_add(base, size);
1294 }
1295 return 0;
1296}
1297
1298static void __init early_reserve_mem(void)
1299{
1300 unsigned long base, size;
1301 unsigned long *reserve_map;
1302
1303 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1304 initial_boot_params->off_mem_rsvmap);
1305 while (1) {
1306 base = *(reserve_map++);
1307 size = *(reserve_map++);
1308 if (size == 0)
1309 break;
1310 DBG("reserving: %lx -> %lx\n", base, size);
1311 lmb_reserve(base, size);
1312 }
1313
1314#if 0
1315 DBG("memory reserved, lmbs :\n");
1316 lmb_dump_all();
1317#endif
1318}
1319
1320void __init early_init_devtree(void *params)
1321{
1322 DBG(" -> early_init_devtree()\n");
1323
1324 /* Setup flat device-tree pointer */
1325 initial_boot_params = params;
1326
1327 /* Retrieve various informations from the /chosen node of the
1328 * device-tree, including the platform type, initrd location and
1329 * size, TCE reserve, and more ...
1330 */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001331 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001332
1333 /* Scan memory nodes and rebuild LMBs */
1334 lmb_init();
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001335 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1336 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001337 lmb_enforce_memory_limit(memory_limit);
1338 lmb_analyze();
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001339
1340 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1341
1342 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
Michael Ellerman0cc47462005-12-04 18:39:37 +11001343 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1344#ifdef CONFIG_CRASH_DUMP
1345 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1346#endif
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001347 early_reserve_mem();
1348
1349 DBG("Scanning CPUs ...\n");
1350
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001351 /* Retreive CPU related informations from the flat tree
1352 * (altivec support, boot CPU ID, ...)
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001353 */
Benjamin Herrenschmidt3c726f82005-11-07 11:06:55 +11001354 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001355
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001356 DBG(" <- early_init_devtree()\n");
1357}
1358
1359#undef printk
1360
1361int
1362prom_n_addr_cells(struct device_node* np)
1363{
1364 int* ip;
1365 do {
1366 if (np->parent)
1367 np = np->parent;
1368 ip = (int *) get_property(np, "#address-cells", NULL);
1369 if (ip != NULL)
1370 return *ip;
1371 } while (np->parent);
1372 /* No #address-cells property for the root node, default to 1 */
1373 return 1;
1374}
Paul Mackerras1dfc6772005-11-14 17:30:40 +11001375EXPORT_SYMBOL(prom_n_addr_cells);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001376
1377int
1378prom_n_size_cells(struct device_node* np)
1379{
1380 int* ip;
1381 do {
1382 if (np->parent)
1383 np = np->parent;
1384 ip = (int *) get_property(np, "#size-cells", NULL);
1385 if (ip != NULL)
1386 return *ip;
1387 } while (np->parent);
1388 /* No #size-cells property for the root node, default to 1 */
1389 return 1;
1390}
Paul Mackerras1dfc6772005-11-14 17:30:40 +11001391EXPORT_SYMBOL(prom_n_size_cells);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001392
1393/**
1394 * Work out the sense (active-low level / active-high edge)
1395 * of each interrupt from the device tree.
1396 */
1397void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1398{
1399 struct device_node *np;
1400 int i, j;
1401
1402 /* default to level-triggered */
Paul Mackerras6d0124f2005-10-26 17:19:06 +10001403 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001404
1405 for (np = allnodes; np != 0; np = np->allnext) {
1406 for (j = 0; j < np->n_intrs; j++) {
1407 i = np->intrs[j].line;
1408 if (i >= off && i < max)
Paul Mackerras6d0124f2005-10-26 17:19:06 +10001409 senses[i-off] = np->intrs[j].sense;
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001410 }
1411 }
1412}
1413
1414/**
1415 * Construct and return a list of the device_nodes with a given name.
1416 */
1417struct device_node *find_devices(const char *name)
1418{
1419 struct device_node *head, **prevp, *np;
1420
1421 prevp = &head;
1422 for (np = allnodes; np != 0; np = np->allnext) {
1423 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1424 *prevp = np;
1425 prevp = &np->next;
1426 }
1427 }
1428 *prevp = NULL;
1429 return head;
1430}
1431EXPORT_SYMBOL(find_devices);
1432
1433/**
1434 * Construct and return a list of the device_nodes with a given type.
1435 */
1436struct device_node *find_type_devices(const char *type)
1437{
1438 struct device_node *head, **prevp, *np;
1439
1440 prevp = &head;
1441 for (np = allnodes; np != 0; np = np->allnext) {
1442 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1443 *prevp = np;
1444 prevp = &np->next;
1445 }
1446 }
1447 *prevp = NULL;
1448 return head;
1449}
1450EXPORT_SYMBOL(find_type_devices);
1451
1452/**
1453 * Returns all nodes linked together
1454 */
1455struct device_node *find_all_nodes(void)
1456{
1457 struct device_node *head, **prevp, *np;
1458
1459 prevp = &head;
1460 for (np = allnodes; np != 0; np = np->allnext) {
1461 *prevp = np;
1462 prevp = &np->next;
1463 }
1464 *prevp = NULL;
1465 return head;
1466}
1467EXPORT_SYMBOL(find_all_nodes);
1468
1469/** Checks if the given "compat" string matches one of the strings in
1470 * the device's "compatible" property
1471 */
1472int device_is_compatible(struct device_node *device, const char *compat)
1473{
1474 const char* cp;
1475 int cplen, l;
1476
1477 cp = (char *) get_property(device, "compatible", &cplen);
1478 if (cp == NULL)
1479 return 0;
1480 while (cplen > 0) {
1481 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1482 return 1;
1483 l = strlen(cp) + 1;
1484 cp += l;
1485 cplen -= l;
1486 }
1487
1488 return 0;
1489}
1490EXPORT_SYMBOL(device_is_compatible);
1491
1492
1493/**
1494 * Indicates whether the root node has a given value in its
1495 * compatible property.
1496 */
1497int machine_is_compatible(const char *compat)
1498{
1499 struct device_node *root;
1500 int rc = 0;
1501
1502 root = of_find_node_by_path("/");
1503 if (root) {
1504 rc = device_is_compatible(root, compat);
1505 of_node_put(root);
1506 }
1507 return rc;
1508}
1509EXPORT_SYMBOL(machine_is_compatible);
1510
1511/**
1512 * Construct and return a list of the device_nodes with a given type
1513 * and compatible property.
1514 */
1515struct device_node *find_compatible_devices(const char *type,
1516 const char *compat)
1517{
1518 struct device_node *head, **prevp, *np;
1519
1520 prevp = &head;
1521 for (np = allnodes; np != 0; np = np->allnext) {
1522 if (type != NULL
1523 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1524 continue;
1525 if (device_is_compatible(np, compat)) {
1526 *prevp = np;
1527 prevp = &np->next;
1528 }
1529 }
1530 *prevp = NULL;
1531 return head;
1532}
1533EXPORT_SYMBOL(find_compatible_devices);
1534
1535/**
1536 * Find the device_node with a given full_name.
1537 */
1538struct device_node *find_path_device(const char *path)
1539{
1540 struct device_node *np;
1541
1542 for (np = allnodes; np != 0; np = np->allnext)
1543 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1544 return np;
1545 return NULL;
1546}
1547EXPORT_SYMBOL(find_path_device);
1548
1549/*******
1550 *
1551 * New implementation of the OF "find" APIs, return a refcounted
1552 * object, call of_node_put() when done. The device tree and list
1553 * are protected by a rw_lock.
1554 *
1555 * Note that property management will need some locking as well,
1556 * this isn't dealt with yet.
1557 *
1558 *******/
1559
1560/**
1561 * of_find_node_by_name - Find a node by its "name" property
1562 * @from: The node to start searching from or NULL, the node
1563 * you pass will not be searched, only the next one
1564 * will; typically, you pass what the previous call
1565 * returned. of_node_put() will be called on it
1566 * @name: The name string to match against
1567 *
1568 * Returns a node pointer with refcount incremented, use
1569 * of_node_put() on it when done.
1570 */
1571struct device_node *of_find_node_by_name(struct device_node *from,
1572 const char *name)
1573{
1574 struct device_node *np;
1575
1576 read_lock(&devtree_lock);
1577 np = from ? from->allnext : allnodes;
1578 for (; np != 0; np = np->allnext)
1579 if (np->name != 0 && strcasecmp(np->name, name) == 0
1580 && of_node_get(np))
1581 break;
1582 if (from)
1583 of_node_put(from);
1584 read_unlock(&devtree_lock);
1585 return np;
1586}
1587EXPORT_SYMBOL(of_find_node_by_name);
1588
1589/**
1590 * of_find_node_by_type - Find a node by its "device_type" property
1591 * @from: The node to start searching from or NULL, the node
1592 * you pass will not be searched, only the next one
1593 * will; typically, you pass what the previous call
1594 * returned. of_node_put() will be called on it
1595 * @name: The type string to match against
1596 *
1597 * Returns a node pointer with refcount incremented, use
1598 * of_node_put() on it when done.
1599 */
1600struct device_node *of_find_node_by_type(struct device_node *from,
1601 const char *type)
1602{
1603 struct device_node *np;
1604
1605 read_lock(&devtree_lock);
1606 np = from ? from->allnext : allnodes;
1607 for (; np != 0; np = np->allnext)
1608 if (np->type != 0 && strcasecmp(np->type, type) == 0
1609 && of_node_get(np))
1610 break;
1611 if (from)
1612 of_node_put(from);
1613 read_unlock(&devtree_lock);
1614 return np;
1615}
1616EXPORT_SYMBOL(of_find_node_by_type);
1617
1618/**
1619 * of_find_compatible_node - Find a node based on type and one of the
1620 * tokens in its "compatible" property
1621 * @from: The node to start searching from or NULL, the node
1622 * you pass will not be searched, only the next one
1623 * will; typically, you pass what the previous call
1624 * returned. of_node_put() will be called on it
1625 * @type: The type string to match "device_type" or NULL to ignore
1626 * @compatible: The string to match to one of the tokens in the device
1627 * "compatible" list.
1628 *
1629 * Returns a node pointer with refcount incremented, use
1630 * of_node_put() on it when done.
1631 */
1632struct device_node *of_find_compatible_node(struct device_node *from,
1633 const char *type, const char *compatible)
1634{
1635 struct device_node *np;
1636
1637 read_lock(&devtree_lock);
1638 np = from ? from->allnext : allnodes;
1639 for (; np != 0; np = np->allnext) {
1640 if (type != NULL
1641 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1642 continue;
1643 if (device_is_compatible(np, compatible) && of_node_get(np))
1644 break;
1645 }
1646 if (from)
1647 of_node_put(from);
1648 read_unlock(&devtree_lock);
1649 return np;
1650}
1651EXPORT_SYMBOL(of_find_compatible_node);
1652
1653/**
1654 * of_find_node_by_path - Find a node matching a full OF path
1655 * @path: The full path to match
1656 *
1657 * Returns a node pointer with refcount incremented, use
1658 * of_node_put() on it when done.
1659 */
1660struct device_node *of_find_node_by_path(const char *path)
1661{
1662 struct device_node *np = allnodes;
1663
1664 read_lock(&devtree_lock);
1665 for (; np != 0; np = np->allnext) {
1666 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1667 && of_node_get(np))
1668 break;
1669 }
1670 read_unlock(&devtree_lock);
1671 return np;
1672}
1673EXPORT_SYMBOL(of_find_node_by_path);
1674
1675/**
1676 * of_find_node_by_phandle - Find a node given a phandle
1677 * @handle: phandle of the node to find
1678 *
1679 * Returns a node pointer with refcount incremented, use
1680 * of_node_put() on it when done.
1681 */
1682struct device_node *of_find_node_by_phandle(phandle handle)
1683{
1684 struct device_node *np;
1685
1686 read_lock(&devtree_lock);
1687 for (np = allnodes; np != 0; np = np->allnext)
1688 if (np->linux_phandle == handle)
1689 break;
1690 if (np)
1691 of_node_get(np);
1692 read_unlock(&devtree_lock);
1693 return np;
1694}
1695EXPORT_SYMBOL(of_find_node_by_phandle);
1696
1697/**
1698 * of_find_all_nodes - Get next node in global list
1699 * @prev: Previous node or NULL to start iteration
1700 * of_node_put() will be called on it
1701 *
1702 * Returns a node pointer with refcount incremented, use
1703 * of_node_put() on it when done.
1704 */
1705struct device_node *of_find_all_nodes(struct device_node *prev)
1706{
1707 struct device_node *np;
1708
1709 read_lock(&devtree_lock);
1710 np = prev ? prev->allnext : allnodes;
1711 for (; np != 0; np = np->allnext)
1712 if (of_node_get(np))
1713 break;
1714 if (prev)
1715 of_node_put(prev);
1716 read_unlock(&devtree_lock);
1717 return np;
1718}
1719EXPORT_SYMBOL(of_find_all_nodes);
1720
1721/**
1722 * of_get_parent - Get a node's parent if any
1723 * @node: Node to get parent
1724 *
1725 * Returns a node pointer with refcount incremented, use
1726 * of_node_put() on it when done.
1727 */
1728struct device_node *of_get_parent(const struct device_node *node)
1729{
1730 struct device_node *np;
1731
1732 if (!node)
1733 return NULL;
1734
1735 read_lock(&devtree_lock);
1736 np = of_node_get(node->parent);
1737 read_unlock(&devtree_lock);
1738 return np;
1739}
1740EXPORT_SYMBOL(of_get_parent);
1741
1742/**
1743 * of_get_next_child - Iterate a node childs
1744 * @node: parent node
1745 * @prev: previous child of the parent node, or NULL to get first
1746 *
1747 * Returns a node pointer with refcount incremented, use
1748 * of_node_put() on it when done.
1749 */
1750struct device_node *of_get_next_child(const struct device_node *node,
1751 struct device_node *prev)
1752{
1753 struct device_node *next;
1754
1755 read_lock(&devtree_lock);
1756 next = prev ? prev->sibling : node->child;
1757 for (; next != 0; next = next->sibling)
1758 if (of_node_get(next))
1759 break;
1760 if (prev)
1761 of_node_put(prev);
1762 read_unlock(&devtree_lock);
1763 return next;
1764}
1765EXPORT_SYMBOL(of_get_next_child);
1766
1767/**
1768 * of_node_get - Increment refcount of a node
1769 * @node: Node to inc refcount, NULL is supported to
1770 * simplify writing of callers
1771 *
1772 * Returns node.
1773 */
1774struct device_node *of_node_get(struct device_node *node)
1775{
1776 if (node)
1777 kref_get(&node->kref);
1778 return node;
1779}
1780EXPORT_SYMBOL(of_node_get);
1781
1782static inline struct device_node * kref_to_device_node(struct kref *kref)
1783{
1784 return container_of(kref, struct device_node, kref);
1785}
1786
1787/**
1788 * of_node_release - release a dynamically allocated node
1789 * @kref: kref element of the node to be released
1790 *
1791 * In of_node_put() this function is passed to kref_put()
1792 * as the destructor.
1793 */
1794static void of_node_release(struct kref *kref)
1795{
1796 struct device_node *node = kref_to_device_node(kref);
1797 struct property *prop = node->properties;
1798
1799 if (!OF_IS_DYNAMIC(node))
1800 return;
1801 while (prop) {
1802 struct property *next = prop->next;
1803 kfree(prop->name);
1804 kfree(prop->value);
1805 kfree(prop);
1806 prop = next;
1807 }
1808 kfree(node->intrs);
1809 kfree(node->addrs);
1810 kfree(node->full_name);
1811 kfree(node->data);
1812 kfree(node);
1813}
1814
1815/**
1816 * of_node_put - Decrement refcount of a node
1817 * @node: Node to dec refcount, NULL is supported to
1818 * simplify writing of callers
1819 *
1820 */
1821void of_node_put(struct device_node *node)
1822{
1823 if (node)
1824 kref_put(&node->kref, of_node_release);
1825}
1826EXPORT_SYMBOL(of_node_put);
1827
1828/*
1829 * Plug a device node into the tree and global list.
1830 */
1831void of_attach_node(struct device_node *np)
1832{
1833 write_lock(&devtree_lock);
1834 np->sibling = np->parent->child;
1835 np->allnext = allnodes;
1836 np->parent->child = np;
1837 allnodes = np;
1838 write_unlock(&devtree_lock);
1839}
1840
1841/*
1842 * "Unplug" a node from the device tree. The caller must hold
1843 * a reference to the node. The memory associated with the node
1844 * is not freed until its refcount goes to zero.
1845 */
1846void of_detach_node(const struct device_node *np)
1847{
1848 struct device_node *parent;
1849
1850 write_lock(&devtree_lock);
1851
1852 parent = np->parent;
1853
1854 if (allnodes == np)
1855 allnodes = np->allnext;
1856 else {
1857 struct device_node *prev;
1858 for (prev = allnodes;
1859 prev->allnext != np;
1860 prev = prev->allnext)
1861 ;
1862 prev->allnext = np->allnext;
1863 }
1864
1865 if (parent->child == np)
1866 parent->child = np->sibling;
1867 else {
1868 struct device_node *prevsib;
1869 for (prevsib = np->parent->child;
1870 prevsib->sibling != np;
1871 prevsib = prevsib->sibling)
1872 ;
1873 prevsib->sibling = np->sibling;
1874 }
1875
1876 write_unlock(&devtree_lock);
1877}
1878
1879#ifdef CONFIG_PPC_PSERIES
1880/*
1881 * Fix up the uninitialized fields in a new device node:
1882 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1883 *
1884 * A lot of boot-time code is duplicated here, because functions such
1885 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1886 * slab allocator.
1887 *
1888 * This should probably be split up into smaller chunks.
1889 */
1890
1891static int of_finish_dynamic_node(struct device_node *node,
1892 unsigned long *unused1, int unused2,
1893 int unused3, int unused4)
1894{
1895 struct device_node *parent = of_get_parent(node);
1896 int err = 0;
1897 phandle *ibm_phandle;
1898
1899 node->name = get_property(node, "name", NULL);
1900 node->type = get_property(node, "device_type", NULL);
1901
1902 if (!parent) {
1903 err = -ENODEV;
1904 goto out;
1905 }
1906
1907 /* We don't support that function on PowerMac, at least
1908 * not yet
1909 */
Paul Mackerras799d6042005-11-10 13:37:51 +11001910 if (_machine == PLATFORM_POWERMAC)
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001911 return -ENODEV;
1912
1913 /* fix up new node's linux_phandle field */
1914 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1915 node->linux_phandle = *ibm_phandle;
1916
1917out:
1918 of_node_put(parent);
1919 return err;
1920}
1921
1922static int prom_reconfig_notifier(struct notifier_block *nb,
1923 unsigned long action, void *node)
1924{
1925 int err;
1926
1927 switch (action) {
1928 case PSERIES_RECONFIG_ADD:
1929 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1930 if (err < 0) {
1931 printk(KERN_ERR "finish_node returned %d\n", err);
1932 err = NOTIFY_BAD;
1933 }
1934 break;
1935 default:
1936 err = NOTIFY_DONE;
1937 break;
1938 }
1939 return err;
1940}
1941
1942static struct notifier_block prom_reconfig_nb = {
1943 .notifier_call = prom_reconfig_notifier,
1944 .priority = 10, /* This one needs to run first */
1945};
1946
1947static int __init prom_reconfig_setup(void)
1948{
1949 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1950}
1951__initcall(prom_reconfig_setup);
1952#endif
1953
1954/*
1955 * Find a property with a given name for a given node
1956 * and return the value.
1957 */
1958unsigned char *get_property(struct device_node *np, const char *name,
1959 int *lenp)
1960{
1961 struct property *pp;
1962
1963 for (pp = np->properties; pp != 0; pp = pp->next)
1964 if (strcmp(pp->name, name) == 0) {
1965 if (lenp != 0)
1966 *lenp = pp->length;
1967 return pp->value;
1968 }
1969 return NULL;
1970}
1971EXPORT_SYMBOL(get_property);
1972
1973/*
1974 * Add a property to a node
1975 */
Benjamin Herrenschmidt183d0202005-11-07 14:29:02 +11001976int prom_add_property(struct device_node* np, struct property* prop)
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001977{
Benjamin Herrenschmidt183d0202005-11-07 14:29:02 +11001978 struct property **next;
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001979
1980 prop->next = NULL;
Benjamin Herrenschmidt183d0202005-11-07 14:29:02 +11001981 write_lock(&devtree_lock);
1982 next = &np->properties;
1983 while (*next) {
1984 if (strcmp(prop->name, (*next)->name) == 0) {
1985 /* duplicate ! don't insert it */
1986 write_unlock(&devtree_lock);
1987 return -1;
1988 }
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001989 next = &(*next)->next;
Benjamin Herrenschmidt183d0202005-11-07 14:29:02 +11001990 }
Paul Mackerras9b6b5632005-10-06 12:06:20 +10001991 *next = prop;
Benjamin Herrenschmidt183d0202005-11-07 14:29:02 +11001992 write_unlock(&devtree_lock);
1993
Paul Mackerras799d6042005-11-10 13:37:51 +11001994#ifdef CONFIG_PROC_DEVICETREE
Benjamin Herrenschmidt183d0202005-11-07 14:29:02 +11001995 /* try to add to proc as well if it was initialized */
1996 if (np->pde)
1997 proc_device_tree_add_prop(np->pde, prop);
Paul Mackerras799d6042005-11-10 13:37:51 +11001998#endif /* CONFIG_PROC_DEVICETREE */
Benjamin Herrenschmidt183d0202005-11-07 14:29:02 +11001999
2000 return 0;
Paul Mackerras9b6b5632005-10-06 12:06:20 +10002001}
2002
2003/* I quickly hacked that one, check against spec ! */
2004static inline unsigned long
2005bus_space_to_resource_flags(unsigned int bus_space)
2006{
2007 u8 space = (bus_space >> 24) & 0xf;
2008 if (space == 0)
2009 space = 0x02;
2010 if (space == 0x02)
2011 return IORESOURCE_MEM;
2012 else if (space == 0x01)
2013 return IORESOURCE_IO;
2014 else {
2015 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2016 bus_space);
2017 return 0;
2018 }
2019}
2020
Kumar Gala60dda252005-10-20 11:44:03 -05002021#ifdef CONFIG_PCI
Paul Mackerras9b6b5632005-10-06 12:06:20 +10002022static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2023 struct address_range *range)
2024{
2025 unsigned long mask;
2026 int i;
2027
2028 /* Check this one */
2029 mask = bus_space_to_resource_flags(range->space);
2030 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2031 if ((pdev->resource[i].flags & mask) == mask &&
2032 pdev->resource[i].start <= range->address &&
2033 pdev->resource[i].end > range->address) {
2034 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2035 /* Add better message */
2036 printk(KERN_WARNING "PCI/OF resource overlap !\n");
2037 return NULL;
2038 }
2039 break;
2040 }
2041 }
2042 if (i == DEVICE_COUNT_RESOURCE)
2043 return NULL;
2044 return &pdev->resource[i];
2045}
2046
2047/*
2048 * Request an OF device resource. Currently handles child of PCI devices,
2049 * or other nodes attached to the root node. Ultimately, put some
2050 * link to resources in the OF node.
2051 */
2052struct resource *request_OF_resource(struct device_node* node, int index,
2053 const char* name_postfix)
2054{
2055 struct pci_dev* pcidev;
2056 u8 pci_bus, pci_devfn;
2057 unsigned long iomask;
2058 struct device_node* nd;
2059 struct resource* parent;
2060 struct resource *res = NULL;
2061 int nlen, plen;
2062
2063 if (index >= node->n_addrs)
2064 goto fail;
2065
2066 /* Sanity check on bus space */
2067 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2068 if (iomask & IORESOURCE_MEM)
2069 parent = &iomem_resource;
2070 else if (iomask & IORESOURCE_IO)
2071 parent = &ioport_resource;
2072 else
2073 goto fail;
2074
2075 /* Find a PCI parent if any */
2076 nd = node;
2077 pcidev = NULL;
2078 while (nd) {
2079 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2080 pcidev = pci_find_slot(pci_bus, pci_devfn);
2081 if (pcidev) break;
2082 nd = nd->parent;
2083 }
2084 if (pcidev)
2085 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2086 if (!parent) {
2087 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2088 node->name);
2089 goto fail;
2090 }
2091
2092 res = __request_region(parent, node->addrs[index].address,
2093 node->addrs[index].size, NULL);
2094 if (!res)
2095 goto fail;
2096 nlen = strlen(node->name);
2097 plen = name_postfix ? strlen(name_postfix) : 0;
2098 res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2099 if (res->name) {
2100 strcpy((char *)res->name, node->name);
2101 if (plen)
2102 strcpy((char *)res->name+nlen, name_postfix);
2103 }
2104 return res;
2105fail:
2106 return NULL;
2107}
2108EXPORT_SYMBOL(request_OF_resource);
2109
2110int release_OF_resource(struct device_node *node, int index)
2111{
2112 struct pci_dev* pcidev;
2113 u8 pci_bus, pci_devfn;
2114 unsigned long iomask, start, end;
2115 struct device_node* nd;
2116 struct resource* parent;
2117 struct resource *res = NULL;
2118
2119 if (index >= node->n_addrs)
2120 return -EINVAL;
2121
2122 /* Sanity check on bus space */
2123 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2124 if (iomask & IORESOURCE_MEM)
2125 parent = &iomem_resource;
2126 else if (iomask & IORESOURCE_IO)
2127 parent = &ioport_resource;
2128 else
2129 return -EINVAL;
2130
2131 /* Find a PCI parent if any */
2132 nd = node;
2133 pcidev = NULL;
2134 while(nd) {
2135 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2136 pcidev = pci_find_slot(pci_bus, pci_devfn);
2137 if (pcidev) break;
2138 nd = nd->parent;
2139 }
2140 if (pcidev)
2141 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2142 if (!parent) {
2143 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2144 node->name);
2145 return -ENODEV;
2146 }
2147
2148 /* Find us in the parent and its childs */
2149 res = parent->child;
2150 start = node->addrs[index].address;
2151 end = start + node->addrs[index].size - 1;
2152 while (res) {
2153 if (res->start == start && res->end == end &&
2154 (res->flags & IORESOURCE_BUSY))
2155 break;
2156 if (res->start <= start && res->end >= end)
2157 res = res->child;
2158 else
2159 res = res->sibling;
2160 }
2161 if (!res)
2162 return -ENODEV;
2163
2164 if (res->name) {
2165 kfree(res->name);
2166 res->name = NULL;
2167 }
2168 release_resource(res);
2169 kfree(res);
2170
2171 return 0;
2172}
2173EXPORT_SYMBOL(release_OF_resource);
Kumar Gala60dda252005-10-20 11:44:03 -05002174#endif /* CONFIG_PCI */