blob: 5166b9b1af7092faa7e67bf80bbaad4e4a874413 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100891static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
892{
893 rq->nr_numa_running += (p->numa_preferred_nid != -1);
894 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
895}
896
897static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
898{
899 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
900 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
901}
902
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100903struct numa_group {
904 atomic_t refcount;
905
906 spinlock_t lock; /* nr_tasks, tasks */
907 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100908 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100909 struct list_head task_list;
910
911 struct rcu_head rcu;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100912 atomic_long_t total_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100913 atomic_long_t faults[0];
914};
915
Mel Gormane29cf082013-10-07 11:29:22 +0100916pid_t task_numa_group_id(struct task_struct *p)
917{
918 return p->numa_group ? p->numa_group->gid : 0;
919}
920
Mel Gormanac8e8952013-10-07 11:29:03 +0100921static inline int task_faults_idx(int nid, int priv)
922{
923 return 2 * nid + priv;
924}
925
926static inline unsigned long task_faults(struct task_struct *p, int nid)
927{
928 if (!p->numa_faults)
929 return 0;
930
931 return p->numa_faults[task_faults_idx(nid, 0)] +
932 p->numa_faults[task_faults_idx(nid, 1)];
933}
934
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100935static inline unsigned long group_faults(struct task_struct *p, int nid)
936{
937 if (!p->numa_group)
938 return 0;
939
940 return atomic_long_read(&p->numa_group->faults[2*nid]) +
941 atomic_long_read(&p->numa_group->faults[2*nid+1]);
942}
943
944/*
945 * These return the fraction of accesses done by a particular task, or
946 * task group, on a particular numa node. The group weight is given a
947 * larger multiplier, in order to group tasks together that are almost
948 * evenly spread out between numa nodes.
949 */
950static inline unsigned long task_weight(struct task_struct *p, int nid)
951{
952 unsigned long total_faults;
953
954 if (!p->numa_faults)
955 return 0;
956
957 total_faults = p->total_numa_faults;
958
959 if (!total_faults)
960 return 0;
961
962 return 1000 * task_faults(p, nid) / total_faults;
963}
964
965static inline unsigned long group_weight(struct task_struct *p, int nid)
966{
967 unsigned long total_faults;
968
969 if (!p->numa_group)
970 return 0;
971
972 total_faults = atomic_long_read(&p->numa_group->total_faults);
973
974 if (!total_faults)
975 return 0;
976
Rik van Rielca28aa52013-10-07 11:29:32 +0100977 return 1000 * group_faults(p, nid) / total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100978}
979
Mel Gormane6628d52013-10-07 11:29:02 +0100980static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100981static unsigned long source_load(int cpu, int type);
982static unsigned long target_load(int cpu, int type);
983static unsigned long power_of(int cpu);
984static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100985
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100986/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100987struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100988 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100989 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100990
991 /* Total compute capacity of CPUs on a node */
992 unsigned long power;
993
994 /* Approximate capacity in terms of runnable tasks on a node */
995 unsigned long capacity;
996 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100997};
Mel Gormane6628d52013-10-07 11:29:02 +0100998
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100999/*
1000 * XXX borrowed from update_sg_lb_stats
1001 */
1002static void update_numa_stats(struct numa_stats *ns, int nid)
1003{
1004 int cpu;
1005
1006 memset(ns, 0, sizeof(*ns));
1007 for_each_cpu(cpu, cpumask_of_node(nid)) {
1008 struct rq *rq = cpu_rq(cpu);
1009
1010 ns->nr_running += rq->nr_running;
1011 ns->load += weighted_cpuload(cpu);
1012 ns->power += power_of(cpu);
1013 }
1014
1015 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1016 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1017 ns->has_capacity = (ns->nr_running < ns->capacity);
1018}
1019
Mel Gorman58d081b2013-10-07 11:29:10 +01001020struct task_numa_env {
1021 struct task_struct *p;
1022
1023 int src_cpu, src_nid;
1024 int dst_cpu, dst_nid;
1025
1026 struct numa_stats src_stats, dst_stats;
1027
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001028 int imbalance_pct, idx;
1029
1030 struct task_struct *best_task;
1031 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001032 int best_cpu;
1033};
1034
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001035static void task_numa_assign(struct task_numa_env *env,
1036 struct task_struct *p, long imp)
1037{
1038 if (env->best_task)
1039 put_task_struct(env->best_task);
1040 if (p)
1041 get_task_struct(p);
1042
1043 env->best_task = p;
1044 env->best_imp = imp;
1045 env->best_cpu = env->dst_cpu;
1046}
1047
1048/*
1049 * This checks if the overall compute and NUMA accesses of the system would
1050 * be improved if the source tasks was migrated to the target dst_cpu taking
1051 * into account that it might be best if task running on the dst_cpu should
1052 * be exchanged with the source task
1053 */
Rik van Riel887c2902013-10-07 11:29:31 +01001054static void task_numa_compare(struct task_numa_env *env,
1055 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001056{
1057 struct rq *src_rq = cpu_rq(env->src_cpu);
1058 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1059 struct task_struct *cur;
1060 long dst_load, src_load;
1061 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001062 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001063
1064 rcu_read_lock();
1065 cur = ACCESS_ONCE(dst_rq->curr);
1066 if (cur->pid == 0) /* idle */
1067 cur = NULL;
1068
1069 /*
1070 * "imp" is the fault differential for the source task between the
1071 * source and destination node. Calculate the total differential for
1072 * the source task and potential destination task. The more negative
1073 * the value is, the more rmeote accesses that would be expected to
1074 * be incurred if the tasks were swapped.
1075 */
1076 if (cur) {
1077 /* Skip this swap candidate if cannot move to the source cpu */
1078 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1079 goto unlock;
1080
Rik van Riel887c2902013-10-07 11:29:31 +01001081 /*
1082 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001083 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001084 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001085 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001086 imp = taskimp + task_weight(cur, env->src_nid) -
1087 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001088 /*
1089 * Add some hysteresis to prevent swapping the
1090 * tasks within a group over tiny differences.
1091 */
1092 if (cur->numa_group)
1093 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001094 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001095 /*
1096 * Compare the group weights. If a task is all by
1097 * itself (not part of a group), use the task weight
1098 * instead.
1099 */
1100 if (env->p->numa_group)
1101 imp = groupimp;
1102 else
1103 imp = taskimp;
1104
1105 if (cur->numa_group)
1106 imp += group_weight(cur, env->src_nid) -
1107 group_weight(cur, env->dst_nid);
1108 else
1109 imp += task_weight(cur, env->src_nid) -
1110 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001111 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001112 }
1113
1114 if (imp < env->best_imp)
1115 goto unlock;
1116
1117 if (!cur) {
1118 /* Is there capacity at our destination? */
1119 if (env->src_stats.has_capacity &&
1120 !env->dst_stats.has_capacity)
1121 goto unlock;
1122
1123 goto balance;
1124 }
1125
1126 /* Balance doesn't matter much if we're running a task per cpu */
1127 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1128 goto assign;
1129
1130 /*
1131 * In the overloaded case, try and keep the load balanced.
1132 */
1133balance:
1134 dst_load = env->dst_stats.load;
1135 src_load = env->src_stats.load;
1136
1137 /* XXX missing power terms */
1138 load = task_h_load(env->p);
1139 dst_load += load;
1140 src_load -= load;
1141
1142 if (cur) {
1143 load = task_h_load(cur);
1144 dst_load -= load;
1145 src_load += load;
1146 }
1147
1148 /* make src_load the smaller */
1149 if (dst_load < src_load)
1150 swap(dst_load, src_load);
1151
1152 if (src_load * env->imbalance_pct < dst_load * 100)
1153 goto unlock;
1154
1155assign:
1156 task_numa_assign(env, cur, imp);
1157unlock:
1158 rcu_read_unlock();
1159}
1160
Rik van Riel887c2902013-10-07 11:29:31 +01001161static void task_numa_find_cpu(struct task_numa_env *env,
1162 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001163{
1164 int cpu;
1165
1166 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1167 /* Skip this CPU if the source task cannot migrate */
1168 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1169 continue;
1170
1171 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001172 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001173 }
1174}
1175
Mel Gorman58d081b2013-10-07 11:29:10 +01001176static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001177{
Mel Gorman58d081b2013-10-07 11:29:10 +01001178 struct task_numa_env env = {
1179 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001180
Mel Gorman58d081b2013-10-07 11:29:10 +01001181 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001182 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001183
1184 .imbalance_pct = 112,
1185
1186 .best_task = NULL,
1187 .best_imp = 0,
1188 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001189 };
1190 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001191 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001192 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001193 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001194
Mel Gorman58d081b2013-10-07 11:29:10 +01001195 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001196 * Pick the lowest SD_NUMA domain, as that would have the smallest
1197 * imbalance and would be the first to start moving tasks about.
1198 *
1199 * And we want to avoid any moving of tasks about, as that would create
1200 * random movement of tasks -- counter the numa conditions we're trying
1201 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001202 */
Mel Gormane6628d52013-10-07 11:29:02 +01001203 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001204 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1205 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001206 rcu_read_unlock();
1207
Rik van Riel887c2902013-10-07 11:29:31 +01001208 taskweight = task_weight(p, env.src_nid);
1209 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001210 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001211 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001212 taskimp = task_weight(p, env.dst_nid) - taskweight;
1213 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001214 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001215
Rik van Riele1dda8a2013-10-07 11:29:19 +01001216 /* If the preferred nid has capacity, try to use it. */
1217 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001218 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001219
1220 /* No space available on the preferred nid. Look elsewhere. */
1221 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001222 for_each_online_node(nid) {
1223 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001224 continue;
1225
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001226 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001227 taskimp = task_weight(p, nid) - taskweight;
1228 groupimp = group_weight(p, nid) - groupweight;
1229 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001230 continue;
1231
1232 env.dst_nid = nid;
1233 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001234 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001235 }
1236 }
1237
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001238 /* No better CPU than the current one was found. */
1239 if (env.best_cpu == -1)
1240 return -EAGAIN;
1241
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001242 sched_setnuma(p, env.dst_nid);
1243
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001244 if (env.best_task == NULL) {
1245 int ret = migrate_task_to(p, env.best_cpu);
1246 return ret;
1247 }
1248
1249 ret = migrate_swap(p, env.best_task);
1250 put_task_struct(env.best_task);
1251 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001252}
1253
Mel Gorman6b9a7462013-10-07 11:29:11 +01001254/* Attempt to migrate a task to a CPU on the preferred node. */
1255static void numa_migrate_preferred(struct task_struct *p)
1256{
1257 /* Success if task is already running on preferred CPU */
1258 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001259 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1260 /*
1261 * If migration is temporarily disabled due to a task migration
1262 * then re-enable it now as the task is running on its
1263 * preferred node and memory should migrate locally
1264 */
1265 if (!p->numa_migrate_seq)
1266 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001267 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001268 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001269
1270 /* This task has no NUMA fault statistics yet */
1271 if (unlikely(p->numa_preferred_nid == -1))
1272 return;
1273
1274 /* Otherwise, try migrate to a CPU on the preferred node */
1275 if (task_numa_migrate(p) != 0)
1276 p->numa_migrate_retry = jiffies + HZ*5;
1277}
1278
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001279static void task_numa_placement(struct task_struct *p)
1280{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001281 int seq, nid, max_nid = -1, max_group_nid = -1;
1282 unsigned long max_faults = 0, max_group_faults = 0;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001283 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001284
Hugh Dickins2832bc12012-12-19 17:42:16 -08001285 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001286 if (p->numa_scan_seq == seq)
1287 return;
1288 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001289 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001290 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001291
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001292 /* If the task is part of a group prevent parallel updates to group stats */
1293 if (p->numa_group) {
1294 group_lock = &p->numa_group->lock;
1295 spin_lock(group_lock);
1296 }
1297
Mel Gorman688b7582013-10-07 11:28:58 +01001298 /* Find the node with the highest number of faults */
1299 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001300 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001301 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001302
Mel Gormanac8e8952013-10-07 11:29:03 +01001303 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001304 long diff;
1305
Mel Gormanac8e8952013-10-07 11:29:03 +01001306 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001307 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001308
Mel Gormanac8e8952013-10-07 11:29:03 +01001309 /* Decay existing window, copy faults since last scan */
1310 p->numa_faults[i] >>= 1;
1311 p->numa_faults[i] += p->numa_faults_buffer[i];
1312 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001313
1314 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001315 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001316 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001317 if (p->numa_group) {
1318 /* safe because we can only change our own group */
1319 atomic_long_add(diff, &p->numa_group->faults[i]);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001320 atomic_long_add(diff, &p->numa_group->total_faults);
1321 group_faults += atomic_long_read(&p->numa_group->faults[i]);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001322 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001323 }
1324
Mel Gorman688b7582013-10-07 11:28:58 +01001325 if (faults > max_faults) {
1326 max_faults = faults;
1327 max_nid = nid;
1328 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001329
1330 if (group_faults > max_group_faults) {
1331 max_group_faults = group_faults;
1332 max_group_nid = nid;
1333 }
1334 }
1335
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001336 if (p->numa_group) {
1337 /*
1338 * If the preferred task and group nids are different,
1339 * iterate over the nodes again to find the best place.
1340 */
1341 if (max_nid != max_group_nid) {
1342 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001343
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001344 for_each_online_node(nid) {
1345 weight = task_weight(p, nid) + group_weight(p, nid);
1346 if (weight > max_weight) {
1347 max_weight = weight;
1348 max_nid = nid;
1349 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001350 }
1351 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001352
1353 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001354 }
1355
Mel Gorman6b9a7462013-10-07 11:29:11 +01001356 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001357 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001358 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001359 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001360 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001361 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001362}
1363
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001364static inline int get_numa_group(struct numa_group *grp)
1365{
1366 return atomic_inc_not_zero(&grp->refcount);
1367}
1368
1369static inline void put_numa_group(struct numa_group *grp)
1370{
1371 if (atomic_dec_and_test(&grp->refcount))
1372 kfree_rcu(grp, rcu);
1373}
1374
1375static void double_lock(spinlock_t *l1, spinlock_t *l2)
1376{
1377 if (l1 > l2)
1378 swap(l1, l2);
1379
1380 spin_lock(l1);
1381 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1382}
1383
1384static void task_numa_group(struct task_struct *p, int cpupid)
1385{
1386 struct numa_group *grp, *my_grp;
1387 struct task_struct *tsk;
1388 bool join = false;
1389 int cpu = cpupid_to_cpu(cpupid);
1390 int i;
1391
1392 if (unlikely(!p->numa_group)) {
1393 unsigned int size = sizeof(struct numa_group) +
1394 2*nr_node_ids*sizeof(atomic_long_t);
1395
1396 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1397 if (!grp)
1398 return;
1399
1400 atomic_set(&grp->refcount, 1);
1401 spin_lock_init(&grp->lock);
1402 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001403 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001404
1405 for (i = 0; i < 2*nr_node_ids; i++)
1406 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1407
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001408 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1409
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001410 list_add(&p->numa_entry, &grp->task_list);
1411 grp->nr_tasks++;
1412 rcu_assign_pointer(p->numa_group, grp);
1413 }
1414
1415 rcu_read_lock();
1416 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1417
1418 if (!cpupid_match_pid(tsk, cpupid))
1419 goto unlock;
1420
1421 grp = rcu_dereference(tsk->numa_group);
1422 if (!grp)
1423 goto unlock;
1424
1425 my_grp = p->numa_group;
1426 if (grp == my_grp)
1427 goto unlock;
1428
1429 /*
1430 * Only join the other group if its bigger; if we're the bigger group,
1431 * the other task will join us.
1432 */
1433 if (my_grp->nr_tasks > grp->nr_tasks)
1434 goto unlock;
1435
1436 /*
1437 * Tie-break on the grp address.
1438 */
1439 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1440 goto unlock;
1441
1442 if (!get_numa_group(grp))
1443 goto unlock;
1444
1445 join = true;
1446
1447unlock:
1448 rcu_read_unlock();
1449
1450 if (!join)
1451 return;
1452
1453 for (i = 0; i < 2*nr_node_ids; i++) {
1454 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1455 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1456 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001457 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1458 atomic_long_add(p->total_numa_faults, &grp->total_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001459
1460 double_lock(&my_grp->lock, &grp->lock);
1461
1462 list_move(&p->numa_entry, &grp->task_list);
1463 my_grp->nr_tasks--;
1464 grp->nr_tasks++;
1465
1466 spin_unlock(&my_grp->lock);
1467 spin_unlock(&grp->lock);
1468
1469 rcu_assign_pointer(p->numa_group, grp);
1470
1471 put_numa_group(my_grp);
1472}
1473
1474void task_numa_free(struct task_struct *p)
1475{
1476 struct numa_group *grp = p->numa_group;
1477 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001478 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001479
1480 if (grp) {
1481 for (i = 0; i < 2*nr_node_ids; i++)
1482 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1483
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001484 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1485
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001486 spin_lock(&grp->lock);
1487 list_del(&p->numa_entry);
1488 grp->nr_tasks--;
1489 spin_unlock(&grp->lock);
1490 rcu_assign_pointer(p->numa_group, NULL);
1491 put_numa_group(grp);
1492 }
1493
Rik van Riel82727012013-10-07 11:29:28 +01001494 p->numa_faults = NULL;
1495 p->numa_faults_buffer = NULL;
1496 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001497}
1498
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001499/*
1500 * Got a PROT_NONE fault for a page on @node.
1501 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001502void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001503{
1504 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001505 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001506 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001507
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001508 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001509 return;
1510
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001511 /* for example, ksmd faulting in a user's mm */
1512 if (!p->mm)
1513 return;
1514
Rik van Riel82727012013-10-07 11:29:28 +01001515 /* Do not worry about placement if exiting */
1516 if (p->state == TASK_DEAD)
1517 return;
1518
Mel Gormanf809ca92013-10-07 11:28:57 +01001519 /* Allocate buffer to track faults on a per-node basis */
1520 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001521 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001522
Mel Gorman745d6142013-10-07 11:28:59 +01001523 /* numa_faults and numa_faults_buffer share the allocation */
1524 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001525 if (!p->numa_faults)
1526 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001527
1528 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001529 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001530 p->total_numa_faults = 0;
Mel Gormanf809ca92013-10-07 11:28:57 +01001531 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001532
Mel Gormanfb003b82012-11-15 09:01:14 +00001533 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001534 * First accesses are treated as private, otherwise consider accesses
1535 * to be private if the accessing pid has not changed
1536 */
1537 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1538 priv = 1;
1539 } else {
1540 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001541 if (!priv && !(flags & TNF_NO_GROUP))
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001542 task_numa_group(p, last_cpupid);
1543 }
1544
1545 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001546 * If pages are properly placed (did not migrate) then scan slower.
1547 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001548 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001549 if (!migrated) {
1550 /* Initialise if necessary */
1551 if (!p->numa_scan_period_max)
1552 p->numa_scan_period_max = task_scan_max(p);
1553
1554 p->numa_scan_period = min(p->numa_scan_period_max,
1555 p->numa_scan_period + 10);
1556 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001557
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001558 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001559
Mel Gorman6b9a7462013-10-07 11:29:11 +01001560 /* Retry task to preferred node migration if it previously failed */
1561 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1562 numa_migrate_preferred(p);
1563
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001564 if (migrated)
1565 p->numa_pages_migrated += pages;
1566
Mel Gormanac8e8952013-10-07 11:29:03 +01001567 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001568}
1569
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001570static void reset_ptenuma_scan(struct task_struct *p)
1571{
1572 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1573 p->mm->numa_scan_offset = 0;
1574}
1575
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001576/*
1577 * The expensive part of numa migration is done from task_work context.
1578 * Triggered from task_tick_numa().
1579 */
1580void task_numa_work(struct callback_head *work)
1581{
1582 unsigned long migrate, next_scan, now = jiffies;
1583 struct task_struct *p = current;
1584 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001585 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001586 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001587 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001588 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001589
1590 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1591
1592 work->next = work; /* protect against double add */
1593 /*
1594 * Who cares about NUMA placement when they're dying.
1595 *
1596 * NOTE: make sure not to dereference p->mm before this check,
1597 * exit_task_work() happens _after_ exit_mm() so we could be called
1598 * without p->mm even though we still had it when we enqueued this
1599 * work.
1600 */
1601 if (p->flags & PF_EXITING)
1602 return;
1603
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001604 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1605 mm->numa_next_scan = now +
1606 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1607 mm->numa_next_reset = now +
1608 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1609 }
1610
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001611 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001612 * Reset the scan period if enough time has gone by. Objective is that
1613 * scanning will be reduced if pages are properly placed. As tasks
1614 * can enter different phases this needs to be re-examined. Lacking
1615 * proper tracking of reference behaviour, this blunt hammer is used.
1616 */
1617 migrate = mm->numa_next_reset;
1618 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001619 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001620 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1621 xchg(&mm->numa_next_reset, next_scan);
1622 }
1623
1624 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001625 * Enforce maximal scan/migration frequency..
1626 */
1627 migrate = mm->numa_next_scan;
1628 if (time_before(now, migrate))
1629 return;
1630
Mel Gorman598f0ec2013-10-07 11:28:55 +01001631 if (p->numa_scan_period == 0) {
1632 p->numa_scan_period_max = task_scan_max(p);
1633 p->numa_scan_period = task_scan_min(p);
1634 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001635
Mel Gormanfb003b82012-11-15 09:01:14 +00001636 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001637 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1638 return;
1639
Mel Gormane14808b2012-11-19 10:59:15 +00001640 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001641 * Delay this task enough that another task of this mm will likely win
1642 * the next time around.
1643 */
1644 p->node_stamp += 2 * TICK_NSEC;
1645
Mel Gorman9f406042012-11-14 18:34:32 +00001646 start = mm->numa_scan_offset;
1647 pages = sysctl_numa_balancing_scan_size;
1648 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1649 if (!pages)
1650 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001651
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001652 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001653 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001654 if (!vma) {
1655 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001656 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001657 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001658 }
Mel Gorman9f406042012-11-14 18:34:32 +00001659 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001660 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001661 continue;
1662
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001663 /*
1664 * Shared library pages mapped by multiple processes are not
1665 * migrated as it is expected they are cache replicated. Avoid
1666 * hinting faults in read-only file-backed mappings or the vdso
1667 * as migrating the pages will be of marginal benefit.
1668 */
1669 if (!vma->vm_mm ||
1670 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1671 continue;
1672
Mel Gorman9f406042012-11-14 18:34:32 +00001673 do {
1674 start = max(start, vma->vm_start);
1675 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1676 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001677 nr_pte_updates += change_prot_numa(vma, start, end);
1678
1679 /*
1680 * Scan sysctl_numa_balancing_scan_size but ensure that
1681 * at least one PTE is updated so that unused virtual
1682 * address space is quickly skipped.
1683 */
1684 if (nr_pte_updates)
1685 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001686
Mel Gorman9f406042012-11-14 18:34:32 +00001687 start = end;
1688 if (pages <= 0)
1689 goto out;
1690 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001691 }
1692
Mel Gorman9f406042012-11-14 18:34:32 +00001693out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001694 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001695 * If the whole process was scanned without updates then no NUMA
1696 * hinting faults are being recorded and scan rate should be lower.
1697 */
1698 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1699 p->numa_scan_period = min(p->numa_scan_period_max,
1700 p->numa_scan_period << 1);
1701
1702 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1703 mm->numa_next_scan = next_scan;
1704 }
1705
1706 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001707 * It is possible to reach the end of the VMA list but the last few
1708 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1709 * would find the !migratable VMA on the next scan but not reset the
1710 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001711 */
1712 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001713 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001714 else
1715 reset_ptenuma_scan(p);
1716 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001717}
1718
1719/*
1720 * Drive the periodic memory faults..
1721 */
1722void task_tick_numa(struct rq *rq, struct task_struct *curr)
1723{
1724 struct callback_head *work = &curr->numa_work;
1725 u64 period, now;
1726
1727 /*
1728 * We don't care about NUMA placement if we don't have memory.
1729 */
1730 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1731 return;
1732
1733 /*
1734 * Using runtime rather than walltime has the dual advantage that
1735 * we (mostly) drive the selection from busy threads and that the
1736 * task needs to have done some actual work before we bother with
1737 * NUMA placement.
1738 */
1739 now = curr->se.sum_exec_runtime;
1740 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1741
1742 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001743 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001744 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001745 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001746
1747 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1748 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1749 task_work_add(curr, work, true);
1750 }
1751 }
1752}
1753#else
1754static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1755{
1756}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001757
1758static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1759{
1760}
1761
1762static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1763{
1764}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001765#endif /* CONFIG_NUMA_BALANCING */
1766
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001767static void
1768account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1769{
1770 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001771 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001772 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001773#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001774 if (entity_is_task(se)) {
1775 struct rq *rq = rq_of(cfs_rq);
1776
1777 account_numa_enqueue(rq, task_of(se));
1778 list_add(&se->group_node, &rq->cfs_tasks);
1779 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001780#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001781 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001782}
1783
1784static void
1785account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1786{
1787 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001788 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001789 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001790 if (entity_is_task(se)) {
1791 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301792 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001793 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001794 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001795}
1796
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001797#ifdef CONFIG_FAIR_GROUP_SCHED
1798# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001799static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1800{
1801 long tg_weight;
1802
1803 /*
1804 * Use this CPU's actual weight instead of the last load_contribution
1805 * to gain a more accurate current total weight. See
1806 * update_cfs_rq_load_contribution().
1807 */
Alex Shibf5b9862013-06-20 10:18:54 +08001808 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001809 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001810 tg_weight += cfs_rq->load.weight;
1811
1812 return tg_weight;
1813}
1814
Paul Turner6d5ab292011-01-21 20:45:01 -08001815static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001816{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001817 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001818
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001819 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001820 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001821
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001822 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001823 if (tg_weight)
1824 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001825
1826 if (shares < MIN_SHARES)
1827 shares = MIN_SHARES;
1828 if (shares > tg->shares)
1829 shares = tg->shares;
1830
1831 return shares;
1832}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001833# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001834static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001835{
1836 return tg->shares;
1837}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001838# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001839static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1840 unsigned long weight)
1841{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001842 if (se->on_rq) {
1843 /* commit outstanding execution time */
1844 if (cfs_rq->curr == se)
1845 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001846 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001847 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001848
1849 update_load_set(&se->load, weight);
1850
1851 if (se->on_rq)
1852 account_entity_enqueue(cfs_rq, se);
1853}
1854
Paul Turner82958362012-10-04 13:18:31 +02001855static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1856
Paul Turner6d5ab292011-01-21 20:45:01 -08001857static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001858{
1859 struct task_group *tg;
1860 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001861 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001862
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001863 tg = cfs_rq->tg;
1864 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001865 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001866 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001867#ifndef CONFIG_SMP
1868 if (likely(se->load.weight == tg->shares))
1869 return;
1870#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001871 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001872
1873 reweight_entity(cfs_rq_of(se), se, shares);
1874}
1875#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001876static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001877{
1878}
1879#endif /* CONFIG_FAIR_GROUP_SCHED */
1880
Alex Shi141965c2013-06-26 13:05:39 +08001881#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001882/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001883 * We choose a half-life close to 1 scheduling period.
1884 * Note: The tables below are dependent on this value.
1885 */
1886#define LOAD_AVG_PERIOD 32
1887#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1888#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1889
1890/* Precomputed fixed inverse multiplies for multiplication by y^n */
1891static const u32 runnable_avg_yN_inv[] = {
1892 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1893 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1894 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1895 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1896 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1897 0x85aac367, 0x82cd8698,
1898};
1899
1900/*
1901 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1902 * over-estimates when re-combining.
1903 */
1904static const u32 runnable_avg_yN_sum[] = {
1905 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1906 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1907 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1908};
1909
1910/*
Paul Turner9d85f212012-10-04 13:18:29 +02001911 * Approximate:
1912 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1913 */
1914static __always_inline u64 decay_load(u64 val, u64 n)
1915{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001916 unsigned int local_n;
1917
1918 if (!n)
1919 return val;
1920 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1921 return 0;
1922
1923 /* after bounds checking we can collapse to 32-bit */
1924 local_n = n;
1925
1926 /*
1927 * As y^PERIOD = 1/2, we can combine
1928 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1929 * With a look-up table which covers k^n (n<PERIOD)
1930 *
1931 * To achieve constant time decay_load.
1932 */
1933 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1934 val >>= local_n / LOAD_AVG_PERIOD;
1935 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001936 }
1937
Paul Turner5b51f2f2012-10-04 13:18:32 +02001938 val *= runnable_avg_yN_inv[local_n];
1939 /* We don't use SRR here since we always want to round down. */
1940 return val >> 32;
1941}
1942
1943/*
1944 * For updates fully spanning n periods, the contribution to runnable
1945 * average will be: \Sum 1024*y^n
1946 *
1947 * We can compute this reasonably efficiently by combining:
1948 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1949 */
1950static u32 __compute_runnable_contrib(u64 n)
1951{
1952 u32 contrib = 0;
1953
1954 if (likely(n <= LOAD_AVG_PERIOD))
1955 return runnable_avg_yN_sum[n];
1956 else if (unlikely(n >= LOAD_AVG_MAX_N))
1957 return LOAD_AVG_MAX;
1958
1959 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1960 do {
1961 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1962 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1963
1964 n -= LOAD_AVG_PERIOD;
1965 } while (n > LOAD_AVG_PERIOD);
1966
1967 contrib = decay_load(contrib, n);
1968 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001969}
1970
1971/*
1972 * We can represent the historical contribution to runnable average as the
1973 * coefficients of a geometric series. To do this we sub-divide our runnable
1974 * history into segments of approximately 1ms (1024us); label the segment that
1975 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1976 *
1977 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1978 * p0 p1 p2
1979 * (now) (~1ms ago) (~2ms ago)
1980 *
1981 * Let u_i denote the fraction of p_i that the entity was runnable.
1982 *
1983 * We then designate the fractions u_i as our co-efficients, yielding the
1984 * following representation of historical load:
1985 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1986 *
1987 * We choose y based on the with of a reasonably scheduling period, fixing:
1988 * y^32 = 0.5
1989 *
1990 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1991 * approximately half as much as the contribution to load within the last ms
1992 * (u_0).
1993 *
1994 * When a period "rolls over" and we have new u_0`, multiplying the previous
1995 * sum again by y is sufficient to update:
1996 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1997 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1998 */
1999static __always_inline int __update_entity_runnable_avg(u64 now,
2000 struct sched_avg *sa,
2001 int runnable)
2002{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002003 u64 delta, periods;
2004 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002005 int delta_w, decayed = 0;
2006
2007 delta = now - sa->last_runnable_update;
2008 /*
2009 * This should only happen when time goes backwards, which it
2010 * unfortunately does during sched clock init when we swap over to TSC.
2011 */
2012 if ((s64)delta < 0) {
2013 sa->last_runnable_update = now;
2014 return 0;
2015 }
2016
2017 /*
2018 * Use 1024ns as the unit of measurement since it's a reasonable
2019 * approximation of 1us and fast to compute.
2020 */
2021 delta >>= 10;
2022 if (!delta)
2023 return 0;
2024 sa->last_runnable_update = now;
2025
2026 /* delta_w is the amount already accumulated against our next period */
2027 delta_w = sa->runnable_avg_period % 1024;
2028 if (delta + delta_w >= 1024) {
2029 /* period roll-over */
2030 decayed = 1;
2031
2032 /*
2033 * Now that we know we're crossing a period boundary, figure
2034 * out how much from delta we need to complete the current
2035 * period and accrue it.
2036 */
2037 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002038 if (runnable)
2039 sa->runnable_avg_sum += delta_w;
2040 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002041
Paul Turner5b51f2f2012-10-04 13:18:32 +02002042 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002043
Paul Turner5b51f2f2012-10-04 13:18:32 +02002044 /* Figure out how many additional periods this update spans */
2045 periods = delta / 1024;
2046 delta %= 1024;
2047
2048 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2049 periods + 1);
2050 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2051 periods + 1);
2052
2053 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2054 runnable_contrib = __compute_runnable_contrib(periods);
2055 if (runnable)
2056 sa->runnable_avg_sum += runnable_contrib;
2057 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002058 }
2059
2060 /* Remainder of delta accrued against u_0` */
2061 if (runnable)
2062 sa->runnable_avg_sum += delta;
2063 sa->runnable_avg_period += delta;
2064
2065 return decayed;
2066}
2067
Paul Turner9ee474f2012-10-04 13:18:30 +02002068/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002069static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002070{
2071 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2072 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2073
2074 decays -= se->avg.decay_count;
2075 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002076 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002077
2078 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2079 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002080
2081 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002082}
2083
Paul Turnerc566e8e2012-10-04 13:18:30 +02002084#ifdef CONFIG_FAIR_GROUP_SCHED
2085static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2086 int force_update)
2087{
2088 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002089 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002090
2091 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2092 tg_contrib -= cfs_rq->tg_load_contrib;
2093
Alex Shibf5b9862013-06-20 10:18:54 +08002094 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2095 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002096 cfs_rq->tg_load_contrib += tg_contrib;
2097 }
2098}
Paul Turner8165e142012-10-04 13:18:31 +02002099
Paul Turnerbb17f652012-10-04 13:18:31 +02002100/*
2101 * Aggregate cfs_rq runnable averages into an equivalent task_group
2102 * representation for computing load contributions.
2103 */
2104static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2105 struct cfs_rq *cfs_rq)
2106{
2107 struct task_group *tg = cfs_rq->tg;
2108 long contrib;
2109
2110 /* The fraction of a cpu used by this cfs_rq */
2111 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2112 sa->runnable_avg_period + 1);
2113 contrib -= cfs_rq->tg_runnable_contrib;
2114
2115 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2116 atomic_add(contrib, &tg->runnable_avg);
2117 cfs_rq->tg_runnable_contrib += contrib;
2118 }
2119}
2120
Paul Turner8165e142012-10-04 13:18:31 +02002121static inline void __update_group_entity_contrib(struct sched_entity *se)
2122{
2123 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2124 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002125 int runnable_avg;
2126
Paul Turner8165e142012-10-04 13:18:31 +02002127 u64 contrib;
2128
2129 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002130 se->avg.load_avg_contrib = div_u64(contrib,
2131 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002132
2133 /*
2134 * For group entities we need to compute a correction term in the case
2135 * that they are consuming <1 cpu so that we would contribute the same
2136 * load as a task of equal weight.
2137 *
2138 * Explicitly co-ordinating this measurement would be expensive, but
2139 * fortunately the sum of each cpus contribution forms a usable
2140 * lower-bound on the true value.
2141 *
2142 * Consider the aggregate of 2 contributions. Either they are disjoint
2143 * (and the sum represents true value) or they are disjoint and we are
2144 * understating by the aggregate of their overlap.
2145 *
2146 * Extending this to N cpus, for a given overlap, the maximum amount we
2147 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2148 * cpus that overlap for this interval and w_i is the interval width.
2149 *
2150 * On a small machine; the first term is well-bounded which bounds the
2151 * total error since w_i is a subset of the period. Whereas on a
2152 * larger machine, while this first term can be larger, if w_i is the
2153 * of consequential size guaranteed to see n_i*w_i quickly converge to
2154 * our upper bound of 1-cpu.
2155 */
2156 runnable_avg = atomic_read(&tg->runnable_avg);
2157 if (runnable_avg < NICE_0_LOAD) {
2158 se->avg.load_avg_contrib *= runnable_avg;
2159 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2160 }
Paul Turner8165e142012-10-04 13:18:31 +02002161}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002162#else
2163static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2164 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002165static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2166 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002167static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002168#endif
2169
Paul Turner8165e142012-10-04 13:18:31 +02002170static inline void __update_task_entity_contrib(struct sched_entity *se)
2171{
2172 u32 contrib;
2173
2174 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2175 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2176 contrib /= (se->avg.runnable_avg_period + 1);
2177 se->avg.load_avg_contrib = scale_load(contrib);
2178}
2179
Paul Turner2dac7542012-10-04 13:18:30 +02002180/* Compute the current contribution to load_avg by se, return any delta */
2181static long __update_entity_load_avg_contrib(struct sched_entity *se)
2182{
2183 long old_contrib = se->avg.load_avg_contrib;
2184
Paul Turner8165e142012-10-04 13:18:31 +02002185 if (entity_is_task(se)) {
2186 __update_task_entity_contrib(se);
2187 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002188 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002189 __update_group_entity_contrib(se);
2190 }
Paul Turner2dac7542012-10-04 13:18:30 +02002191
2192 return se->avg.load_avg_contrib - old_contrib;
2193}
2194
Paul Turner9ee474f2012-10-04 13:18:30 +02002195static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2196 long load_contrib)
2197{
2198 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2199 cfs_rq->blocked_load_avg -= load_contrib;
2200 else
2201 cfs_rq->blocked_load_avg = 0;
2202}
2203
Paul Turnerf1b17282012-10-04 13:18:31 +02002204static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2205
Paul Turner9d85f212012-10-04 13:18:29 +02002206/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002207static inline void update_entity_load_avg(struct sched_entity *se,
2208 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002209{
Paul Turner2dac7542012-10-04 13:18:30 +02002210 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2211 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002212 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002213
Paul Turnerf1b17282012-10-04 13:18:31 +02002214 /*
2215 * For a group entity we need to use their owned cfs_rq_clock_task() in
2216 * case they are the parent of a throttled hierarchy.
2217 */
2218 if (entity_is_task(se))
2219 now = cfs_rq_clock_task(cfs_rq);
2220 else
2221 now = cfs_rq_clock_task(group_cfs_rq(se));
2222
2223 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002224 return;
2225
2226 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002227
2228 if (!update_cfs_rq)
2229 return;
2230
Paul Turner2dac7542012-10-04 13:18:30 +02002231 if (se->on_rq)
2232 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002233 else
2234 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2235}
2236
2237/*
2238 * Decay the load contributed by all blocked children and account this so that
2239 * their contribution may appropriately discounted when they wake up.
2240 */
Paul Turneraff3e492012-10-04 13:18:30 +02002241static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002242{
Paul Turnerf1b17282012-10-04 13:18:31 +02002243 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002244 u64 decays;
2245
2246 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002247 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002248 return;
2249
Alex Shi25099402013-06-20 10:18:55 +08002250 if (atomic_long_read(&cfs_rq->removed_load)) {
2251 unsigned long removed_load;
2252 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002253 subtract_blocked_load_contrib(cfs_rq, removed_load);
2254 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002255
Paul Turneraff3e492012-10-04 13:18:30 +02002256 if (decays) {
2257 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2258 decays);
2259 atomic64_add(decays, &cfs_rq->decay_counter);
2260 cfs_rq->last_decay = now;
2261 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002262
2263 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002264}
Ben Segall18bf2802012-10-04 12:51:20 +02002265
2266static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2267{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002268 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002269 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002270}
Paul Turner2dac7542012-10-04 13:18:30 +02002271
2272/* Add the load generated by se into cfs_rq's child load-average */
2273static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002274 struct sched_entity *se,
2275 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002276{
Paul Turneraff3e492012-10-04 13:18:30 +02002277 /*
2278 * We track migrations using entity decay_count <= 0, on a wake-up
2279 * migration we use a negative decay count to track the remote decays
2280 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002281 *
2282 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2283 * are seen by enqueue_entity_load_avg() as a migration with an already
2284 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002285 */
2286 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002287 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002288 if (se->avg.decay_count) {
2289 /*
2290 * In a wake-up migration we have to approximate the
2291 * time sleeping. This is because we can't synchronize
2292 * clock_task between the two cpus, and it is not
2293 * guaranteed to be read-safe. Instead, we can
2294 * approximate this using our carried decays, which are
2295 * explicitly atomically readable.
2296 */
2297 se->avg.last_runnable_update -= (-se->avg.decay_count)
2298 << 20;
2299 update_entity_load_avg(se, 0);
2300 /* Indicate that we're now synchronized and on-rq */
2301 se->avg.decay_count = 0;
2302 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002303 wakeup = 0;
2304 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002305 /*
2306 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2307 * would have made count negative); we must be careful to avoid
2308 * double-accounting blocked time after synchronizing decays.
2309 */
2310 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2311 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002312 }
2313
Paul Turneraff3e492012-10-04 13:18:30 +02002314 /* migrated tasks did not contribute to our blocked load */
2315 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002316 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002317 update_entity_load_avg(se, 0);
2318 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002319
Paul Turner2dac7542012-10-04 13:18:30 +02002320 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002321 /* we force update consideration on load-balancer moves */
2322 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002323}
2324
Paul Turner9ee474f2012-10-04 13:18:30 +02002325/*
2326 * Remove se's load from this cfs_rq child load-average, if the entity is
2327 * transitioning to a blocked state we track its projected decay using
2328 * blocked_load_avg.
2329 */
Paul Turner2dac7542012-10-04 13:18:30 +02002330static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002331 struct sched_entity *se,
2332 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002333{
Paul Turner9ee474f2012-10-04 13:18:30 +02002334 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002335 /* we force update consideration on load-balancer moves */
2336 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002337
Paul Turner2dac7542012-10-04 13:18:30 +02002338 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002339 if (sleep) {
2340 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2341 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2342 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002343}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002344
2345/*
2346 * Update the rq's load with the elapsed running time before entering
2347 * idle. if the last scheduled task is not a CFS task, idle_enter will
2348 * be the only way to update the runnable statistic.
2349 */
2350void idle_enter_fair(struct rq *this_rq)
2351{
2352 update_rq_runnable_avg(this_rq, 1);
2353}
2354
2355/*
2356 * Update the rq's load with the elapsed idle time before a task is
2357 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2358 * be the only way to update the runnable statistic.
2359 */
2360void idle_exit_fair(struct rq *this_rq)
2361{
2362 update_rq_runnable_avg(this_rq, 0);
2363}
2364
Paul Turner9d85f212012-10-04 13:18:29 +02002365#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002366static inline void update_entity_load_avg(struct sched_entity *se,
2367 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002368static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002369static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002370 struct sched_entity *se,
2371 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002372static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002373 struct sched_entity *se,
2374 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002375static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2376 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002377#endif
2378
Ingo Molnar2396af62007-08-09 11:16:48 +02002379static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002380{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002381#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002382 struct task_struct *tsk = NULL;
2383
2384 if (entity_is_task(se))
2385 tsk = task_of(se);
2386
Lucas De Marchi41acab82010-03-10 23:37:45 -03002387 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002388 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002389
2390 if ((s64)delta < 0)
2391 delta = 0;
2392
Lucas De Marchi41acab82010-03-10 23:37:45 -03002393 if (unlikely(delta > se->statistics.sleep_max))
2394 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002395
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002396 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002397 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002398
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002399 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002400 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002401 trace_sched_stat_sleep(tsk, delta);
2402 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002403 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002404 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002405 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002406
2407 if ((s64)delta < 0)
2408 delta = 0;
2409
Lucas De Marchi41acab82010-03-10 23:37:45 -03002410 if (unlikely(delta > se->statistics.block_max))
2411 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002412
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002413 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002414 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002415
Peter Zijlstrae4143142009-07-23 20:13:26 +02002416 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002417 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002418 se->statistics.iowait_sum += delta;
2419 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002420 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002421 }
2422
Andrew Vaginb781a602011-11-28 12:03:35 +03002423 trace_sched_stat_blocked(tsk, delta);
2424
Peter Zijlstrae4143142009-07-23 20:13:26 +02002425 /*
2426 * Blocking time is in units of nanosecs, so shift by
2427 * 20 to get a milliseconds-range estimation of the
2428 * amount of time that the task spent sleeping:
2429 */
2430 if (unlikely(prof_on == SLEEP_PROFILING)) {
2431 profile_hits(SLEEP_PROFILING,
2432 (void *)get_wchan(tsk),
2433 delta >> 20);
2434 }
2435 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002436 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002437 }
2438#endif
2439}
2440
Peter Zijlstraddc97292007-10-15 17:00:10 +02002441static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2442{
2443#ifdef CONFIG_SCHED_DEBUG
2444 s64 d = se->vruntime - cfs_rq->min_vruntime;
2445
2446 if (d < 0)
2447 d = -d;
2448
2449 if (d > 3*sysctl_sched_latency)
2450 schedstat_inc(cfs_rq, nr_spread_over);
2451#endif
2452}
2453
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002454static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002455place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2456{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002457 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002458
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002459 /*
2460 * The 'current' period is already promised to the current tasks,
2461 * however the extra weight of the new task will slow them down a
2462 * little, place the new task so that it fits in the slot that
2463 * stays open at the end.
2464 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002465 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002466 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002467
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002468 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002469 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002470 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002471
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002472 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002473 * Halve their sleep time's effect, to allow
2474 * for a gentler effect of sleepers:
2475 */
2476 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2477 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002478
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002479 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002480 }
2481
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002482 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302483 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002484}
2485
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002486static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2487
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002488static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002489enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002490{
2491 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002492 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302493 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002494 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002495 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002496 se->vruntime += cfs_rq->min_vruntime;
2497
2498 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002499 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002500 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002501 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002502 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002503 account_entity_enqueue(cfs_rq, se);
2504 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002505
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002506 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002507 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002508 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002509 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002510
Ingo Molnard2417e52007-08-09 11:16:47 +02002511 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002512 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002513 if (se != cfs_rq->curr)
2514 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002515 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002516
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002517 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002518 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002519 check_enqueue_throttle(cfs_rq);
2520 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002521}
2522
Rik van Riel2c13c9192011-02-01 09:48:37 -05002523static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002524{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002525 for_each_sched_entity(se) {
2526 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2527 if (cfs_rq->last == se)
2528 cfs_rq->last = NULL;
2529 else
2530 break;
2531 }
2532}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002533
Rik van Riel2c13c9192011-02-01 09:48:37 -05002534static void __clear_buddies_next(struct sched_entity *se)
2535{
2536 for_each_sched_entity(se) {
2537 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2538 if (cfs_rq->next == se)
2539 cfs_rq->next = NULL;
2540 else
2541 break;
2542 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002543}
2544
Rik van Rielac53db52011-02-01 09:51:03 -05002545static void __clear_buddies_skip(struct sched_entity *se)
2546{
2547 for_each_sched_entity(se) {
2548 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2549 if (cfs_rq->skip == se)
2550 cfs_rq->skip = NULL;
2551 else
2552 break;
2553 }
2554}
2555
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002556static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2557{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002558 if (cfs_rq->last == se)
2559 __clear_buddies_last(se);
2560
2561 if (cfs_rq->next == se)
2562 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002563
2564 if (cfs_rq->skip == se)
2565 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002566}
2567
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002568static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002569
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002570static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002571dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002572{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002573 /*
2574 * Update run-time statistics of the 'current'.
2575 */
2576 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002577 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002578
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002579 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002580 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002581#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002582 if (entity_is_task(se)) {
2583 struct task_struct *tsk = task_of(se);
2584
2585 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002586 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002587 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002588 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002589 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002590#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002591 }
2592
Peter Zijlstra2002c692008-11-11 11:52:33 +01002593 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002594
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002595 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002596 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002597 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002598 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002599
2600 /*
2601 * Normalize the entity after updating the min_vruntime because the
2602 * update can refer to the ->curr item and we need to reflect this
2603 * movement in our normalized position.
2604 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002605 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002606 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002607
Paul Turnerd8b49862011-07-21 09:43:41 -07002608 /* return excess runtime on last dequeue */
2609 return_cfs_rq_runtime(cfs_rq);
2610
Peter Zijlstra1e876232011-05-17 16:21:10 -07002611 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002612 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002613}
2614
2615/*
2616 * Preempt the current task with a newly woken task if needed:
2617 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002618static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002619check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002620{
Peter Zijlstra11697832007-09-05 14:32:49 +02002621 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002622 struct sched_entity *se;
2623 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002624
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002625 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002626 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002627 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002628 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002629 /*
2630 * The current task ran long enough, ensure it doesn't get
2631 * re-elected due to buddy favours.
2632 */
2633 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002634 return;
2635 }
2636
2637 /*
2638 * Ensure that a task that missed wakeup preemption by a
2639 * narrow margin doesn't have to wait for a full slice.
2640 * This also mitigates buddy induced latencies under load.
2641 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002642 if (delta_exec < sysctl_sched_min_granularity)
2643 return;
2644
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002645 se = __pick_first_entity(cfs_rq);
2646 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002647
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002648 if (delta < 0)
2649 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002650
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002651 if (delta > ideal_runtime)
2652 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002653}
2654
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002655static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002656set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002657{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002658 /* 'current' is not kept within the tree. */
2659 if (se->on_rq) {
2660 /*
2661 * Any task has to be enqueued before it get to execute on
2662 * a CPU. So account for the time it spent waiting on the
2663 * runqueue.
2664 */
2665 update_stats_wait_end(cfs_rq, se);
2666 __dequeue_entity(cfs_rq, se);
2667 }
2668
Ingo Molnar79303e92007-08-09 11:16:47 +02002669 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002670 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002671#ifdef CONFIG_SCHEDSTATS
2672 /*
2673 * Track our maximum slice length, if the CPU's load is at
2674 * least twice that of our own weight (i.e. dont track it
2675 * when there are only lesser-weight tasks around):
2676 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002677 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002678 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002679 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2680 }
2681#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002682 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002683}
2684
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002685static int
2686wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2687
Rik van Rielac53db52011-02-01 09:51:03 -05002688/*
2689 * Pick the next process, keeping these things in mind, in this order:
2690 * 1) keep things fair between processes/task groups
2691 * 2) pick the "next" process, since someone really wants that to run
2692 * 3) pick the "last" process, for cache locality
2693 * 4) do not run the "skip" process, if something else is available
2694 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002695static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002696{
Rik van Rielac53db52011-02-01 09:51:03 -05002697 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002698 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002699
Rik van Rielac53db52011-02-01 09:51:03 -05002700 /*
2701 * Avoid running the skip buddy, if running something else can
2702 * be done without getting too unfair.
2703 */
2704 if (cfs_rq->skip == se) {
2705 struct sched_entity *second = __pick_next_entity(se);
2706 if (second && wakeup_preempt_entity(second, left) < 1)
2707 se = second;
2708 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002709
Mike Galbraithf685cea2009-10-23 23:09:22 +02002710 /*
2711 * Prefer last buddy, try to return the CPU to a preempted task.
2712 */
2713 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2714 se = cfs_rq->last;
2715
Rik van Rielac53db52011-02-01 09:51:03 -05002716 /*
2717 * Someone really wants this to run. If it's not unfair, run it.
2718 */
2719 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2720 se = cfs_rq->next;
2721
Mike Galbraithf685cea2009-10-23 23:09:22 +02002722 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002723
2724 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002725}
2726
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002727static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2728
Ingo Molnarab6cde22007-08-09 11:16:48 +02002729static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002730{
2731 /*
2732 * If still on the runqueue then deactivate_task()
2733 * was not called and update_curr() has to be done:
2734 */
2735 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002736 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002737
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002738 /* throttle cfs_rqs exceeding runtime */
2739 check_cfs_rq_runtime(cfs_rq);
2740
Peter Zijlstraddc97292007-10-15 17:00:10 +02002741 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002742 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002743 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002744 /* Put 'current' back into the tree. */
2745 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002746 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002747 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002748 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002749 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002750}
2751
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002752static void
2753entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002754{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002755 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002756 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002757 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002758 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002759
Paul Turner43365bd2010-12-15 19:10:17 -08002760 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002761 * Ensure that runnable average is periodically updated.
2762 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002763 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002764 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002765 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002766
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002767#ifdef CONFIG_SCHED_HRTICK
2768 /*
2769 * queued ticks are scheduled to match the slice, so don't bother
2770 * validating it and just reschedule.
2771 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002772 if (queued) {
2773 resched_task(rq_of(cfs_rq)->curr);
2774 return;
2775 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002776 /*
2777 * don't let the period tick interfere with the hrtick preemption
2778 */
2779 if (!sched_feat(DOUBLE_TICK) &&
2780 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2781 return;
2782#endif
2783
Yong Zhang2c2efae2011-07-29 16:20:33 +08002784 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002785 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002786}
2787
Paul Turnerab84d312011-07-21 09:43:28 -07002788
2789/**************************************************
2790 * CFS bandwidth control machinery
2791 */
2792
2793#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002794
2795#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002796static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002797
2798static inline bool cfs_bandwidth_used(void)
2799{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002800 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002801}
2802
2803void account_cfs_bandwidth_used(int enabled, int was_enabled)
2804{
2805 /* only need to count groups transitioning between enabled/!enabled */
2806 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002807 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002808 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002809 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002810}
2811#else /* HAVE_JUMP_LABEL */
2812static bool cfs_bandwidth_used(void)
2813{
2814 return true;
2815}
2816
2817void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2818#endif /* HAVE_JUMP_LABEL */
2819
Paul Turnerab84d312011-07-21 09:43:28 -07002820/*
2821 * default period for cfs group bandwidth.
2822 * default: 0.1s, units: nanoseconds
2823 */
2824static inline u64 default_cfs_period(void)
2825{
2826 return 100000000ULL;
2827}
Paul Turnerec12cb72011-07-21 09:43:30 -07002828
2829static inline u64 sched_cfs_bandwidth_slice(void)
2830{
2831 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2832}
2833
Paul Turnera9cf55b2011-07-21 09:43:32 -07002834/*
2835 * Replenish runtime according to assigned quota and update expiration time.
2836 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2837 * additional synchronization around rq->lock.
2838 *
2839 * requires cfs_b->lock
2840 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002841void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002842{
2843 u64 now;
2844
2845 if (cfs_b->quota == RUNTIME_INF)
2846 return;
2847
2848 now = sched_clock_cpu(smp_processor_id());
2849 cfs_b->runtime = cfs_b->quota;
2850 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2851}
2852
Peter Zijlstra029632f2011-10-25 10:00:11 +02002853static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2854{
2855 return &tg->cfs_bandwidth;
2856}
2857
Paul Turnerf1b17282012-10-04 13:18:31 +02002858/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2859static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2860{
2861 if (unlikely(cfs_rq->throttle_count))
2862 return cfs_rq->throttled_clock_task;
2863
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002864 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002865}
2866
Paul Turner85dac902011-07-21 09:43:33 -07002867/* returns 0 on failure to allocate runtime */
2868static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002869{
2870 struct task_group *tg = cfs_rq->tg;
2871 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002872 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002873
2874 /* note: this is a positive sum as runtime_remaining <= 0 */
2875 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2876
2877 raw_spin_lock(&cfs_b->lock);
2878 if (cfs_b->quota == RUNTIME_INF)
2879 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002880 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002881 /*
2882 * If the bandwidth pool has become inactive, then at least one
2883 * period must have elapsed since the last consumption.
2884 * Refresh the global state and ensure bandwidth timer becomes
2885 * active.
2886 */
2887 if (!cfs_b->timer_active) {
2888 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002889 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002890 }
Paul Turner58088ad2011-07-21 09:43:31 -07002891
2892 if (cfs_b->runtime > 0) {
2893 amount = min(cfs_b->runtime, min_amount);
2894 cfs_b->runtime -= amount;
2895 cfs_b->idle = 0;
2896 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002897 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002898 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002899 raw_spin_unlock(&cfs_b->lock);
2900
2901 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002902 /*
2903 * we may have advanced our local expiration to account for allowed
2904 * spread between our sched_clock and the one on which runtime was
2905 * issued.
2906 */
2907 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2908 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002909
2910 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002911}
2912
2913/*
2914 * Note: This depends on the synchronization provided by sched_clock and the
2915 * fact that rq->clock snapshots this value.
2916 */
2917static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2918{
2919 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002920
2921 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002922 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002923 return;
2924
2925 if (cfs_rq->runtime_remaining < 0)
2926 return;
2927
2928 /*
2929 * If the local deadline has passed we have to consider the
2930 * possibility that our sched_clock is 'fast' and the global deadline
2931 * has not truly expired.
2932 *
2933 * Fortunately we can check determine whether this the case by checking
2934 * whether the global deadline has advanced.
2935 */
2936
2937 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2938 /* extend local deadline, drift is bounded above by 2 ticks */
2939 cfs_rq->runtime_expires += TICK_NSEC;
2940 } else {
2941 /* global deadline is ahead, expiration has passed */
2942 cfs_rq->runtime_remaining = 0;
2943 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002944}
2945
2946static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2947 unsigned long delta_exec)
2948{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002949 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002950 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002951 expire_cfs_rq_runtime(cfs_rq);
2952
2953 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002954 return;
2955
Paul Turner85dac902011-07-21 09:43:33 -07002956 /*
2957 * if we're unable to extend our runtime we resched so that the active
2958 * hierarchy can be throttled
2959 */
2960 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2961 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002962}
2963
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002964static __always_inline
2965void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002966{
Paul Turner56f570e2011-11-07 20:26:33 -08002967 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002968 return;
2969
2970 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2971}
2972
Paul Turner85dac902011-07-21 09:43:33 -07002973static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2974{
Paul Turner56f570e2011-11-07 20:26:33 -08002975 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002976}
2977
Paul Turner64660c82011-07-21 09:43:36 -07002978/* check whether cfs_rq, or any parent, is throttled */
2979static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2980{
Paul Turner56f570e2011-11-07 20:26:33 -08002981 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002982}
2983
2984/*
2985 * Ensure that neither of the group entities corresponding to src_cpu or
2986 * dest_cpu are members of a throttled hierarchy when performing group
2987 * load-balance operations.
2988 */
2989static inline int throttled_lb_pair(struct task_group *tg,
2990 int src_cpu, int dest_cpu)
2991{
2992 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2993
2994 src_cfs_rq = tg->cfs_rq[src_cpu];
2995 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2996
2997 return throttled_hierarchy(src_cfs_rq) ||
2998 throttled_hierarchy(dest_cfs_rq);
2999}
3000
3001/* updated child weight may affect parent so we have to do this bottom up */
3002static int tg_unthrottle_up(struct task_group *tg, void *data)
3003{
3004 struct rq *rq = data;
3005 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3006
3007 cfs_rq->throttle_count--;
3008#ifdef CONFIG_SMP
3009 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003010 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003011 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003012 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003013 }
3014#endif
3015
3016 return 0;
3017}
3018
3019static int tg_throttle_down(struct task_group *tg, void *data)
3020{
3021 struct rq *rq = data;
3022 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3023
Paul Turner82958362012-10-04 13:18:31 +02003024 /* group is entering throttled state, stop time */
3025 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003026 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003027 cfs_rq->throttle_count++;
3028
3029 return 0;
3030}
3031
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003032static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003033{
3034 struct rq *rq = rq_of(cfs_rq);
3035 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3036 struct sched_entity *se;
3037 long task_delta, dequeue = 1;
3038
3039 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3040
Paul Turnerf1b17282012-10-04 13:18:31 +02003041 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003042 rcu_read_lock();
3043 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3044 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003045
3046 task_delta = cfs_rq->h_nr_running;
3047 for_each_sched_entity(se) {
3048 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3049 /* throttled entity or throttle-on-deactivate */
3050 if (!se->on_rq)
3051 break;
3052
3053 if (dequeue)
3054 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3055 qcfs_rq->h_nr_running -= task_delta;
3056
3057 if (qcfs_rq->load.weight)
3058 dequeue = 0;
3059 }
3060
3061 if (!se)
3062 rq->nr_running -= task_delta;
3063
3064 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003065 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003066 raw_spin_lock(&cfs_b->lock);
3067 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3068 raw_spin_unlock(&cfs_b->lock);
3069}
3070
Peter Zijlstra029632f2011-10-25 10:00:11 +02003071void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003072{
3073 struct rq *rq = rq_of(cfs_rq);
3074 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3075 struct sched_entity *se;
3076 int enqueue = 1;
3077 long task_delta;
3078
Michael Wang22b958d2013-06-04 14:23:39 +08003079 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003080
3081 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003082
3083 update_rq_clock(rq);
3084
Paul Turner671fd9d2011-07-21 09:43:34 -07003085 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003086 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003087 list_del_rcu(&cfs_rq->throttled_list);
3088 raw_spin_unlock(&cfs_b->lock);
3089
Paul Turner64660c82011-07-21 09:43:36 -07003090 /* update hierarchical throttle state */
3091 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3092
Paul Turner671fd9d2011-07-21 09:43:34 -07003093 if (!cfs_rq->load.weight)
3094 return;
3095
3096 task_delta = cfs_rq->h_nr_running;
3097 for_each_sched_entity(se) {
3098 if (se->on_rq)
3099 enqueue = 0;
3100
3101 cfs_rq = cfs_rq_of(se);
3102 if (enqueue)
3103 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3104 cfs_rq->h_nr_running += task_delta;
3105
3106 if (cfs_rq_throttled(cfs_rq))
3107 break;
3108 }
3109
3110 if (!se)
3111 rq->nr_running += task_delta;
3112
3113 /* determine whether we need to wake up potentially idle cpu */
3114 if (rq->curr == rq->idle && rq->cfs.nr_running)
3115 resched_task(rq->curr);
3116}
3117
3118static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3119 u64 remaining, u64 expires)
3120{
3121 struct cfs_rq *cfs_rq;
3122 u64 runtime = remaining;
3123
3124 rcu_read_lock();
3125 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3126 throttled_list) {
3127 struct rq *rq = rq_of(cfs_rq);
3128
3129 raw_spin_lock(&rq->lock);
3130 if (!cfs_rq_throttled(cfs_rq))
3131 goto next;
3132
3133 runtime = -cfs_rq->runtime_remaining + 1;
3134 if (runtime > remaining)
3135 runtime = remaining;
3136 remaining -= runtime;
3137
3138 cfs_rq->runtime_remaining += runtime;
3139 cfs_rq->runtime_expires = expires;
3140
3141 /* we check whether we're throttled above */
3142 if (cfs_rq->runtime_remaining > 0)
3143 unthrottle_cfs_rq(cfs_rq);
3144
3145next:
3146 raw_spin_unlock(&rq->lock);
3147
3148 if (!remaining)
3149 break;
3150 }
3151 rcu_read_unlock();
3152
3153 return remaining;
3154}
3155
Paul Turner58088ad2011-07-21 09:43:31 -07003156/*
3157 * Responsible for refilling a task_group's bandwidth and unthrottling its
3158 * cfs_rqs as appropriate. If there has been no activity within the last
3159 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3160 * used to track this state.
3161 */
3162static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3163{
Paul Turner671fd9d2011-07-21 09:43:34 -07003164 u64 runtime, runtime_expires;
3165 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003166
3167 raw_spin_lock(&cfs_b->lock);
3168 /* no need to continue the timer with no bandwidth constraint */
3169 if (cfs_b->quota == RUNTIME_INF)
3170 goto out_unlock;
3171
Paul Turner671fd9d2011-07-21 09:43:34 -07003172 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3173 /* idle depends on !throttled (for the case of a large deficit) */
3174 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003175 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003176
Paul Turnera9cf55b2011-07-21 09:43:32 -07003177 /* if we're going inactive then everything else can be deferred */
3178 if (idle)
3179 goto out_unlock;
3180
3181 __refill_cfs_bandwidth_runtime(cfs_b);
3182
Paul Turner671fd9d2011-07-21 09:43:34 -07003183 if (!throttled) {
3184 /* mark as potentially idle for the upcoming period */
3185 cfs_b->idle = 1;
3186 goto out_unlock;
3187 }
Paul Turner58088ad2011-07-21 09:43:31 -07003188
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003189 /* account preceding periods in which throttling occurred */
3190 cfs_b->nr_throttled += overrun;
3191
Paul Turner671fd9d2011-07-21 09:43:34 -07003192 /*
3193 * There are throttled entities so we must first use the new bandwidth
3194 * to unthrottle them before making it generally available. This
3195 * ensures that all existing debts will be paid before a new cfs_rq is
3196 * allowed to run.
3197 */
3198 runtime = cfs_b->runtime;
3199 runtime_expires = cfs_b->runtime_expires;
3200 cfs_b->runtime = 0;
3201
3202 /*
3203 * This check is repeated as we are holding onto the new bandwidth
3204 * while we unthrottle. This can potentially race with an unthrottled
3205 * group trying to acquire new bandwidth from the global pool.
3206 */
3207 while (throttled && runtime > 0) {
3208 raw_spin_unlock(&cfs_b->lock);
3209 /* we can't nest cfs_b->lock while distributing bandwidth */
3210 runtime = distribute_cfs_runtime(cfs_b, runtime,
3211 runtime_expires);
3212 raw_spin_lock(&cfs_b->lock);
3213
3214 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3215 }
3216
3217 /* return (any) remaining runtime */
3218 cfs_b->runtime = runtime;
3219 /*
3220 * While we are ensured activity in the period following an
3221 * unthrottle, this also covers the case in which the new bandwidth is
3222 * insufficient to cover the existing bandwidth deficit. (Forcing the
3223 * timer to remain active while there are any throttled entities.)
3224 */
3225 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003226out_unlock:
3227 if (idle)
3228 cfs_b->timer_active = 0;
3229 raw_spin_unlock(&cfs_b->lock);
3230
3231 return idle;
3232}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003233
Paul Turnerd8b49862011-07-21 09:43:41 -07003234/* a cfs_rq won't donate quota below this amount */
3235static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3236/* minimum remaining period time to redistribute slack quota */
3237static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3238/* how long we wait to gather additional slack before distributing */
3239static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3240
3241/* are we near the end of the current quota period? */
3242static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3243{
3244 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3245 u64 remaining;
3246
3247 /* if the call-back is running a quota refresh is already occurring */
3248 if (hrtimer_callback_running(refresh_timer))
3249 return 1;
3250
3251 /* is a quota refresh about to occur? */
3252 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3253 if (remaining < min_expire)
3254 return 1;
3255
3256 return 0;
3257}
3258
3259static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3260{
3261 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3262
3263 /* if there's a quota refresh soon don't bother with slack */
3264 if (runtime_refresh_within(cfs_b, min_left))
3265 return;
3266
3267 start_bandwidth_timer(&cfs_b->slack_timer,
3268 ns_to_ktime(cfs_bandwidth_slack_period));
3269}
3270
3271/* we know any runtime found here is valid as update_curr() precedes return */
3272static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3273{
3274 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3275 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3276
3277 if (slack_runtime <= 0)
3278 return;
3279
3280 raw_spin_lock(&cfs_b->lock);
3281 if (cfs_b->quota != RUNTIME_INF &&
3282 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3283 cfs_b->runtime += slack_runtime;
3284
3285 /* we are under rq->lock, defer unthrottling using a timer */
3286 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3287 !list_empty(&cfs_b->throttled_cfs_rq))
3288 start_cfs_slack_bandwidth(cfs_b);
3289 }
3290 raw_spin_unlock(&cfs_b->lock);
3291
3292 /* even if it's not valid for return we don't want to try again */
3293 cfs_rq->runtime_remaining -= slack_runtime;
3294}
3295
3296static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3297{
Paul Turner56f570e2011-11-07 20:26:33 -08003298 if (!cfs_bandwidth_used())
3299 return;
3300
Paul Turnerfccfdc62011-11-07 20:26:34 -08003301 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003302 return;
3303
3304 __return_cfs_rq_runtime(cfs_rq);
3305}
3306
3307/*
3308 * This is done with a timer (instead of inline with bandwidth return) since
3309 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3310 */
3311static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3312{
3313 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3314 u64 expires;
3315
3316 /* confirm we're still not at a refresh boundary */
3317 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3318 return;
3319
3320 raw_spin_lock(&cfs_b->lock);
3321 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3322 runtime = cfs_b->runtime;
3323 cfs_b->runtime = 0;
3324 }
3325 expires = cfs_b->runtime_expires;
3326 raw_spin_unlock(&cfs_b->lock);
3327
3328 if (!runtime)
3329 return;
3330
3331 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3332
3333 raw_spin_lock(&cfs_b->lock);
3334 if (expires == cfs_b->runtime_expires)
3335 cfs_b->runtime = runtime;
3336 raw_spin_unlock(&cfs_b->lock);
3337}
3338
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003339/*
3340 * When a group wakes up we want to make sure that its quota is not already
3341 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3342 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3343 */
3344static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3345{
Paul Turner56f570e2011-11-07 20:26:33 -08003346 if (!cfs_bandwidth_used())
3347 return;
3348
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003349 /* an active group must be handled by the update_curr()->put() path */
3350 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3351 return;
3352
3353 /* ensure the group is not already throttled */
3354 if (cfs_rq_throttled(cfs_rq))
3355 return;
3356
3357 /* update runtime allocation */
3358 account_cfs_rq_runtime(cfs_rq, 0);
3359 if (cfs_rq->runtime_remaining <= 0)
3360 throttle_cfs_rq(cfs_rq);
3361}
3362
3363/* conditionally throttle active cfs_rq's from put_prev_entity() */
3364static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3365{
Paul Turner56f570e2011-11-07 20:26:33 -08003366 if (!cfs_bandwidth_used())
3367 return;
3368
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003369 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3370 return;
3371
3372 /*
3373 * it's possible for a throttled entity to be forced into a running
3374 * state (e.g. set_curr_task), in this case we're finished.
3375 */
3376 if (cfs_rq_throttled(cfs_rq))
3377 return;
3378
3379 throttle_cfs_rq(cfs_rq);
3380}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003381
Peter Zijlstra029632f2011-10-25 10:00:11 +02003382static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3383{
3384 struct cfs_bandwidth *cfs_b =
3385 container_of(timer, struct cfs_bandwidth, slack_timer);
3386 do_sched_cfs_slack_timer(cfs_b);
3387
3388 return HRTIMER_NORESTART;
3389}
3390
3391static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3392{
3393 struct cfs_bandwidth *cfs_b =
3394 container_of(timer, struct cfs_bandwidth, period_timer);
3395 ktime_t now;
3396 int overrun;
3397 int idle = 0;
3398
3399 for (;;) {
3400 now = hrtimer_cb_get_time(timer);
3401 overrun = hrtimer_forward(timer, now, cfs_b->period);
3402
3403 if (!overrun)
3404 break;
3405
3406 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3407 }
3408
3409 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3410}
3411
3412void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3413{
3414 raw_spin_lock_init(&cfs_b->lock);
3415 cfs_b->runtime = 0;
3416 cfs_b->quota = RUNTIME_INF;
3417 cfs_b->period = ns_to_ktime(default_cfs_period());
3418
3419 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3420 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3421 cfs_b->period_timer.function = sched_cfs_period_timer;
3422 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3423 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3424}
3425
3426static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3427{
3428 cfs_rq->runtime_enabled = 0;
3429 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3430}
3431
3432/* requires cfs_b->lock, may release to reprogram timer */
3433void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3434{
3435 /*
3436 * The timer may be active because we're trying to set a new bandwidth
3437 * period or because we're racing with the tear-down path
3438 * (timer_active==0 becomes visible before the hrtimer call-back
3439 * terminates). In either case we ensure that it's re-programmed
3440 */
3441 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3442 raw_spin_unlock(&cfs_b->lock);
3443 /* ensure cfs_b->lock is available while we wait */
3444 hrtimer_cancel(&cfs_b->period_timer);
3445
3446 raw_spin_lock(&cfs_b->lock);
3447 /* if someone else restarted the timer then we're done */
3448 if (cfs_b->timer_active)
3449 return;
3450 }
3451
3452 cfs_b->timer_active = 1;
3453 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3454}
3455
3456static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3457{
3458 hrtimer_cancel(&cfs_b->period_timer);
3459 hrtimer_cancel(&cfs_b->slack_timer);
3460}
3461
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003462static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003463{
3464 struct cfs_rq *cfs_rq;
3465
3466 for_each_leaf_cfs_rq(rq, cfs_rq) {
3467 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3468
3469 if (!cfs_rq->runtime_enabled)
3470 continue;
3471
3472 /*
3473 * clock_task is not advancing so we just need to make sure
3474 * there's some valid quota amount
3475 */
3476 cfs_rq->runtime_remaining = cfs_b->quota;
3477 if (cfs_rq_throttled(cfs_rq))
3478 unthrottle_cfs_rq(cfs_rq);
3479 }
3480}
3481
3482#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003483static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3484{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003485 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003486}
3487
3488static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3489 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003490static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3491static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003492static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003493
3494static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3495{
3496 return 0;
3497}
Paul Turner64660c82011-07-21 09:43:36 -07003498
3499static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3500{
3501 return 0;
3502}
3503
3504static inline int throttled_lb_pair(struct task_group *tg,
3505 int src_cpu, int dest_cpu)
3506{
3507 return 0;
3508}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003509
3510void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3511
3512#ifdef CONFIG_FAIR_GROUP_SCHED
3513static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003514#endif
3515
Peter Zijlstra029632f2011-10-25 10:00:11 +02003516static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3517{
3518 return NULL;
3519}
3520static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003521static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003522
3523#endif /* CONFIG_CFS_BANDWIDTH */
3524
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003525/**************************************************
3526 * CFS operations on tasks:
3527 */
3528
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003529#ifdef CONFIG_SCHED_HRTICK
3530static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3531{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003532 struct sched_entity *se = &p->se;
3533 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3534
3535 WARN_ON(task_rq(p) != rq);
3536
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003537 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003538 u64 slice = sched_slice(cfs_rq, se);
3539 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3540 s64 delta = slice - ran;
3541
3542 if (delta < 0) {
3543 if (rq->curr == p)
3544 resched_task(p);
3545 return;
3546 }
3547
3548 /*
3549 * Don't schedule slices shorter than 10000ns, that just
3550 * doesn't make sense. Rely on vruntime for fairness.
3551 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003552 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003553 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003554
Peter Zijlstra31656512008-07-18 18:01:23 +02003555 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003556 }
3557}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003558
3559/*
3560 * called from enqueue/dequeue and updates the hrtick when the
3561 * current task is from our class and nr_running is low enough
3562 * to matter.
3563 */
3564static void hrtick_update(struct rq *rq)
3565{
3566 struct task_struct *curr = rq->curr;
3567
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003568 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003569 return;
3570
3571 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3572 hrtick_start_fair(rq, curr);
3573}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303574#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003575static inline void
3576hrtick_start_fair(struct rq *rq, struct task_struct *p)
3577{
3578}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003579
3580static inline void hrtick_update(struct rq *rq)
3581{
3582}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003583#endif
3584
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003585/*
3586 * The enqueue_task method is called before nr_running is
3587 * increased. Here we update the fair scheduling stats and
3588 * then put the task into the rbtree:
3589 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003590static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003591enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003592{
3593 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003594 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003595
3596 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003597 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003598 break;
3599 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003600 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003601
3602 /*
3603 * end evaluation on encountering a throttled cfs_rq
3604 *
3605 * note: in the case of encountering a throttled cfs_rq we will
3606 * post the final h_nr_running increment below.
3607 */
3608 if (cfs_rq_throttled(cfs_rq))
3609 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003610 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003611
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003612 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003613 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003614
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003615 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003616 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003617 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003618
Paul Turner85dac902011-07-21 09:43:33 -07003619 if (cfs_rq_throttled(cfs_rq))
3620 break;
3621
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003622 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003623 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003624 }
3625
Ben Segall18bf2802012-10-04 12:51:20 +02003626 if (!se) {
3627 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003628 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003629 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003630 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003631}
3632
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003633static void set_next_buddy(struct sched_entity *se);
3634
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003635/*
3636 * The dequeue_task method is called before nr_running is
3637 * decreased. We remove the task from the rbtree and
3638 * update the fair scheduling stats:
3639 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003640static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003641{
3642 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003643 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003644 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003645
3646 for_each_sched_entity(se) {
3647 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003648 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003649
3650 /*
3651 * end evaluation on encountering a throttled cfs_rq
3652 *
3653 * note: in the case of encountering a throttled cfs_rq we will
3654 * post the final h_nr_running decrement below.
3655 */
3656 if (cfs_rq_throttled(cfs_rq))
3657 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003658 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003659
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003660 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003661 if (cfs_rq->load.weight) {
3662 /*
3663 * Bias pick_next to pick a task from this cfs_rq, as
3664 * p is sleeping when it is within its sched_slice.
3665 */
3666 if (task_sleep && parent_entity(se))
3667 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003668
3669 /* avoid re-evaluating load for this entity */
3670 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003671 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003672 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003673 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003674 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003675
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003676 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003677 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003678 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003679
Paul Turner85dac902011-07-21 09:43:33 -07003680 if (cfs_rq_throttled(cfs_rq))
3681 break;
3682
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003683 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003684 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003685 }
3686
Ben Segall18bf2802012-10-04 12:51:20 +02003687 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003688 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003689 update_rq_runnable_avg(rq, 1);
3690 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003691 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003692}
3693
Gregory Haskinse7693a32008-01-25 21:08:09 +01003694#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003695/* Used instead of source_load when we know the type == 0 */
3696static unsigned long weighted_cpuload(const int cpu)
3697{
Alex Shib92486c2013-06-20 10:18:50 +08003698 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003699}
3700
3701/*
3702 * Return a low guess at the load of a migration-source cpu weighted
3703 * according to the scheduling class and "nice" value.
3704 *
3705 * We want to under-estimate the load of migration sources, to
3706 * balance conservatively.
3707 */
3708static unsigned long source_load(int cpu, int type)
3709{
3710 struct rq *rq = cpu_rq(cpu);
3711 unsigned long total = weighted_cpuload(cpu);
3712
3713 if (type == 0 || !sched_feat(LB_BIAS))
3714 return total;
3715
3716 return min(rq->cpu_load[type-1], total);
3717}
3718
3719/*
3720 * Return a high guess at the load of a migration-target cpu weighted
3721 * according to the scheduling class and "nice" value.
3722 */
3723static unsigned long target_load(int cpu, int type)
3724{
3725 struct rq *rq = cpu_rq(cpu);
3726 unsigned long total = weighted_cpuload(cpu);
3727
3728 if (type == 0 || !sched_feat(LB_BIAS))
3729 return total;
3730
3731 return max(rq->cpu_load[type-1], total);
3732}
3733
3734static unsigned long power_of(int cpu)
3735{
3736 return cpu_rq(cpu)->cpu_power;
3737}
3738
3739static unsigned long cpu_avg_load_per_task(int cpu)
3740{
3741 struct rq *rq = cpu_rq(cpu);
3742 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003743 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003744
3745 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003746 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003747
3748 return 0;
3749}
3750
Michael Wang62470412013-07-04 12:55:51 +08003751static void record_wakee(struct task_struct *p)
3752{
3753 /*
3754 * Rough decay (wiping) for cost saving, don't worry
3755 * about the boundary, really active task won't care
3756 * about the loss.
3757 */
3758 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3759 current->wakee_flips = 0;
3760 current->wakee_flip_decay_ts = jiffies;
3761 }
3762
3763 if (current->last_wakee != p) {
3764 current->last_wakee = p;
3765 current->wakee_flips++;
3766 }
3767}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003768
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003769static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003770{
3771 struct sched_entity *se = &p->se;
3772 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003773 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003774
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003775#ifndef CONFIG_64BIT
3776 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003777
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003778 do {
3779 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3780 smp_rmb();
3781 min_vruntime = cfs_rq->min_vruntime;
3782 } while (min_vruntime != min_vruntime_copy);
3783#else
3784 min_vruntime = cfs_rq->min_vruntime;
3785#endif
3786
3787 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003788 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003789}
3790
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003791#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003792/*
3793 * effective_load() calculates the load change as seen from the root_task_group
3794 *
3795 * Adding load to a group doesn't make a group heavier, but can cause movement
3796 * of group shares between cpus. Assuming the shares were perfectly aligned one
3797 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003798 *
3799 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3800 * on this @cpu and results in a total addition (subtraction) of @wg to the
3801 * total group weight.
3802 *
3803 * Given a runqueue weight distribution (rw_i) we can compute a shares
3804 * distribution (s_i) using:
3805 *
3806 * s_i = rw_i / \Sum rw_j (1)
3807 *
3808 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3809 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3810 * shares distribution (s_i):
3811 *
3812 * rw_i = { 2, 4, 1, 0 }
3813 * s_i = { 2/7, 4/7, 1/7, 0 }
3814 *
3815 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3816 * task used to run on and the CPU the waker is running on), we need to
3817 * compute the effect of waking a task on either CPU and, in case of a sync
3818 * wakeup, compute the effect of the current task going to sleep.
3819 *
3820 * So for a change of @wl to the local @cpu with an overall group weight change
3821 * of @wl we can compute the new shares distribution (s'_i) using:
3822 *
3823 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3824 *
3825 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3826 * differences in waking a task to CPU 0. The additional task changes the
3827 * weight and shares distributions like:
3828 *
3829 * rw'_i = { 3, 4, 1, 0 }
3830 * s'_i = { 3/8, 4/8, 1/8, 0 }
3831 *
3832 * We can then compute the difference in effective weight by using:
3833 *
3834 * dw_i = S * (s'_i - s_i) (3)
3835 *
3836 * Where 'S' is the group weight as seen by its parent.
3837 *
3838 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3839 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3840 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003841 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003842static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003843{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003844 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003845
Mel Gorman58d081b2013-10-07 11:29:10 +01003846 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003847 return wl;
3848
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003849 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003850 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003851
Paul Turner977dda72011-01-14 17:57:50 -08003852 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003853
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003854 /*
3855 * W = @wg + \Sum rw_j
3856 */
3857 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003858
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003859 /*
3860 * w = rw_i + @wl
3861 */
3862 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003863
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003864 /*
3865 * wl = S * s'_i; see (2)
3866 */
3867 if (W > 0 && w < W)
3868 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003869 else
3870 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003871
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003872 /*
3873 * Per the above, wl is the new se->load.weight value; since
3874 * those are clipped to [MIN_SHARES, ...) do so now. See
3875 * calc_cfs_shares().
3876 */
Paul Turner977dda72011-01-14 17:57:50 -08003877 if (wl < MIN_SHARES)
3878 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003879
3880 /*
3881 * wl = dw_i = S * (s'_i - s_i); see (3)
3882 */
Paul Turner977dda72011-01-14 17:57:50 -08003883 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003884
3885 /*
3886 * Recursively apply this logic to all parent groups to compute
3887 * the final effective load change on the root group. Since
3888 * only the @tg group gets extra weight, all parent groups can
3889 * only redistribute existing shares. @wl is the shift in shares
3890 * resulting from this level per the above.
3891 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003892 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003893 }
3894
3895 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003896}
3897#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003898
Mel Gorman58d081b2013-10-07 11:29:10 +01003899static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003900{
Peter Zijlstra83378262008-06-27 13:41:37 +02003901 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003902}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003903
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003904#endif
3905
Michael Wang62470412013-07-04 12:55:51 +08003906static int wake_wide(struct task_struct *p)
3907{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003908 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003909
3910 /*
3911 * Yeah, it's the switching-frequency, could means many wakee or
3912 * rapidly switch, use factor here will just help to automatically
3913 * adjust the loose-degree, so bigger node will lead to more pull.
3914 */
3915 if (p->wakee_flips > factor) {
3916 /*
3917 * wakee is somewhat hot, it needs certain amount of cpu
3918 * resource, so if waker is far more hot, prefer to leave
3919 * it alone.
3920 */
3921 if (current->wakee_flips > (factor * p->wakee_flips))
3922 return 1;
3923 }
3924
3925 return 0;
3926}
3927
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003928static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003929{
Paul Turnere37b6a72011-01-21 20:44:59 -08003930 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003931 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003932 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003933 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003934 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003935 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003936
Michael Wang62470412013-07-04 12:55:51 +08003937 /*
3938 * If we wake multiple tasks be careful to not bounce
3939 * ourselves around too much.
3940 */
3941 if (wake_wide(p))
3942 return 0;
3943
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003944 idx = sd->wake_idx;
3945 this_cpu = smp_processor_id();
3946 prev_cpu = task_cpu(p);
3947 load = source_load(prev_cpu, idx);
3948 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003949
3950 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003951 * If sync wakeup then subtract the (maximum possible)
3952 * effect of the currently running task from the load
3953 * of the current CPU:
3954 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003955 if (sync) {
3956 tg = task_group(current);
3957 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003958
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003959 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003960 load += effective_load(tg, prev_cpu, 0, -weight);
3961 }
3962
3963 tg = task_group(p);
3964 weight = p->se.load.weight;
3965
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003966 /*
3967 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003968 * due to the sync cause above having dropped this_load to 0, we'll
3969 * always have an imbalance, but there's really nothing you can do
3970 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003971 *
3972 * Otherwise check if either cpus are near enough in load to allow this
3973 * task to be woken on this_cpu.
3974 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003975 if (this_load > 0) {
3976 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003977
3978 this_eff_load = 100;
3979 this_eff_load *= power_of(prev_cpu);
3980 this_eff_load *= this_load +
3981 effective_load(tg, this_cpu, weight, weight);
3982
3983 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3984 prev_eff_load *= power_of(this_cpu);
3985 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3986
3987 balanced = this_eff_load <= prev_eff_load;
3988 } else
3989 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003990
3991 /*
3992 * If the currently running task will sleep within
3993 * a reasonable amount of time then attract this newly
3994 * woken task:
3995 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003996 if (sync && balanced)
3997 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003998
Lucas De Marchi41acab82010-03-10 23:37:45 -03003999 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004000 tl_per_task = cpu_avg_load_per_task(this_cpu);
4001
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004002 if (balanced ||
4003 (this_load <= load &&
4004 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004005 /*
4006 * This domain has SD_WAKE_AFFINE and
4007 * p is cache cold in this domain, and
4008 * there is no bad imbalance.
4009 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004010 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004011 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004012
4013 return 1;
4014 }
4015 return 0;
4016}
4017
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004018/*
4019 * find_idlest_group finds and returns the least busy CPU group within the
4020 * domain.
4021 */
4022static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004023find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004024 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004025{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004026 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004027 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004028 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004029
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004030 do {
4031 unsigned long load, avg_load;
4032 int local_group;
4033 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004034
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004035 /* Skip over this group if it has no CPUs allowed */
4036 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004037 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004038 continue;
4039
4040 local_group = cpumask_test_cpu(this_cpu,
4041 sched_group_cpus(group));
4042
4043 /* Tally up the load of all CPUs in the group */
4044 avg_load = 0;
4045
4046 for_each_cpu(i, sched_group_cpus(group)) {
4047 /* Bias balancing toward cpus of our domain */
4048 if (local_group)
4049 load = source_load(i, load_idx);
4050 else
4051 load = target_load(i, load_idx);
4052
4053 avg_load += load;
4054 }
4055
4056 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004057 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004058
4059 if (local_group) {
4060 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004061 } else if (avg_load < min_load) {
4062 min_load = avg_load;
4063 idlest = group;
4064 }
4065 } while (group = group->next, group != sd->groups);
4066
4067 if (!idlest || 100*this_load < imbalance*min_load)
4068 return NULL;
4069 return idlest;
4070}
4071
4072/*
4073 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4074 */
4075static int
4076find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4077{
4078 unsigned long load, min_load = ULONG_MAX;
4079 int idlest = -1;
4080 int i;
4081
4082 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004083 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004084 load = weighted_cpuload(i);
4085
4086 if (load < min_load || (load == min_load && i == this_cpu)) {
4087 min_load = load;
4088 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004089 }
4090 }
4091
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004092 return idlest;
4093}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004094
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004095/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004096 * Try and locate an idle CPU in the sched_domain.
4097 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004098static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004099{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004100 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004101 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004102 int i = task_cpu(p);
4103
4104 if (idle_cpu(target))
4105 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004106
4107 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004108 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004109 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004110 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4111 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004112
4113 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004114 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004115 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004116 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004117 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004118 sg = sd->groups;
4119 do {
4120 if (!cpumask_intersects(sched_group_cpus(sg),
4121 tsk_cpus_allowed(p)))
4122 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004123
Linus Torvalds37407ea2012-09-16 12:29:43 -07004124 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004125 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004126 goto next;
4127 }
4128
4129 target = cpumask_first_and(sched_group_cpus(sg),
4130 tsk_cpus_allowed(p));
4131 goto done;
4132next:
4133 sg = sg->next;
4134 } while (sg != sd->groups);
4135 }
4136done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004137 return target;
4138}
4139
4140/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004141 * sched_balance_self: balance the current task (running on cpu) in domains
4142 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4143 * SD_BALANCE_EXEC.
4144 *
4145 * Balance, ie. select the least loaded group.
4146 *
4147 * Returns the target CPU number, or the same CPU if no balancing is needed.
4148 *
4149 * preempt must be disabled.
4150 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004151static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004152select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004153{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004154 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004155 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004156 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004157 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004158 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004159
Peter Zijlstra29baa742012-04-23 12:11:21 +02004160 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004161 return prev_cpu;
4162
Peter Zijlstra0763a662009-09-14 19:37:39 +02004163 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004164 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004165 want_affine = 1;
4166 new_cpu = prev_cpu;
4167 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004168
Peter Zijlstradce840a2011-04-07 14:09:50 +02004169 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004170 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004171 if (!(tmp->flags & SD_LOAD_BALANCE))
4172 continue;
4173
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004174 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004175 * If both cpu and prev_cpu are part of this domain,
4176 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004177 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004178 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4179 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4180 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004181 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004182 }
4183
Alex Shif03542a2012-07-26 08:55:34 +08004184 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004185 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004186 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004187
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004188 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004189 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004190 prev_cpu = cpu;
4191
4192 new_cpu = select_idle_sibling(p, prev_cpu);
4193 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004194 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004195
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004196 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004197 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004198 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004199 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004200
Peter Zijlstra0763a662009-09-14 19:37:39 +02004201 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004202 sd = sd->child;
4203 continue;
4204 }
4205
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004206 if (sd_flag & SD_BALANCE_WAKE)
4207 load_idx = sd->wake_idx;
4208
4209 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004210 if (!group) {
4211 sd = sd->child;
4212 continue;
4213 }
4214
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004215 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004216 if (new_cpu == -1 || new_cpu == cpu) {
4217 /* Now try balancing at a lower domain level of cpu */
4218 sd = sd->child;
4219 continue;
4220 }
4221
4222 /* Now try balancing at a lower domain level of new_cpu */
4223 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004224 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004225 sd = NULL;
4226 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004227 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004228 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004229 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004230 sd = tmp;
4231 }
4232 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004233 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004234unlock:
4235 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004236
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004237 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004238}
Paul Turner0a74bef2012-10-04 13:18:30 +02004239
4240/*
4241 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4242 * cfs_rq_of(p) references at time of call are still valid and identify the
4243 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4244 * other assumptions, including the state of rq->lock, should be made.
4245 */
4246static void
4247migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4248{
Paul Turneraff3e492012-10-04 13:18:30 +02004249 struct sched_entity *se = &p->se;
4250 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4251
4252 /*
4253 * Load tracking: accumulate removed load so that it can be processed
4254 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4255 * to blocked load iff they have a positive decay-count. It can never
4256 * be negative here since on-rq tasks have decay-count == 0.
4257 */
4258 if (se->avg.decay_count) {
4259 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004260 atomic_long_add(se->avg.load_avg_contrib,
4261 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004262 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004263}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004264#endif /* CONFIG_SMP */
4265
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004266static unsigned long
4267wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004268{
4269 unsigned long gran = sysctl_sched_wakeup_granularity;
4270
4271 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004272 * Since its curr running now, convert the gran from real-time
4273 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004274 *
4275 * By using 'se' instead of 'curr' we penalize light tasks, so
4276 * they get preempted easier. That is, if 'se' < 'curr' then
4277 * the resulting gran will be larger, therefore penalizing the
4278 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4279 * be smaller, again penalizing the lighter task.
4280 *
4281 * This is especially important for buddies when the leftmost
4282 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004283 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004284 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004285}
4286
4287/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004288 * Should 'se' preempt 'curr'.
4289 *
4290 * |s1
4291 * |s2
4292 * |s3
4293 * g
4294 * |<--->|c
4295 *
4296 * w(c, s1) = -1
4297 * w(c, s2) = 0
4298 * w(c, s3) = 1
4299 *
4300 */
4301static int
4302wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4303{
4304 s64 gran, vdiff = curr->vruntime - se->vruntime;
4305
4306 if (vdiff <= 0)
4307 return -1;
4308
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004309 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004310 if (vdiff > gran)
4311 return 1;
4312
4313 return 0;
4314}
4315
Peter Zijlstra02479092008-11-04 21:25:10 +01004316static void set_last_buddy(struct sched_entity *se)
4317{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004318 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4319 return;
4320
4321 for_each_sched_entity(se)
4322 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004323}
4324
4325static void set_next_buddy(struct sched_entity *se)
4326{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004327 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4328 return;
4329
4330 for_each_sched_entity(se)
4331 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004332}
4333
Rik van Rielac53db52011-02-01 09:51:03 -05004334static void set_skip_buddy(struct sched_entity *se)
4335{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004336 for_each_sched_entity(se)
4337 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004338}
4339
Peter Zijlstra464b7522008-10-24 11:06:15 +02004340/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004341 * Preempt the current task with a newly woken task if needed:
4342 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004343static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004344{
4345 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004346 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004347 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004348 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004349 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004350
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004351 if (unlikely(se == pse))
4352 return;
4353
Paul Turner5238cdd2011-07-21 09:43:37 -07004354 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004355 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004356 * unconditionally check_prempt_curr() after an enqueue (which may have
4357 * lead to a throttle). This both saves work and prevents false
4358 * next-buddy nomination below.
4359 */
4360 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4361 return;
4362
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004363 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004364 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004365 next_buddy_marked = 1;
4366 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004367
Bharata B Raoaec0a512008-08-28 14:42:49 +05304368 /*
4369 * We can come here with TIF_NEED_RESCHED already set from new task
4370 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004371 *
4372 * Note: this also catches the edge-case of curr being in a throttled
4373 * group (e.g. via set_curr_task), since update_curr() (in the
4374 * enqueue of curr) will have resulted in resched being set. This
4375 * prevents us from potentially nominating it as a false LAST_BUDDY
4376 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304377 */
4378 if (test_tsk_need_resched(curr))
4379 return;
4380
Darren Harta2f5c9a2011-02-22 13:04:33 -08004381 /* Idle tasks are by definition preempted by non-idle tasks. */
4382 if (unlikely(curr->policy == SCHED_IDLE) &&
4383 likely(p->policy != SCHED_IDLE))
4384 goto preempt;
4385
Ingo Molnar91c234b2007-10-15 17:00:18 +02004386 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004387 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4388 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004389 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004390 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004391 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004392
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004393 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004394 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004395 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004396 if (wakeup_preempt_entity(se, pse) == 1) {
4397 /*
4398 * Bias pick_next to pick the sched entity that is
4399 * triggering this preemption.
4400 */
4401 if (!next_buddy_marked)
4402 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004403 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004404 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004405
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004406 return;
4407
4408preempt:
4409 resched_task(curr);
4410 /*
4411 * Only set the backward buddy when the current task is still
4412 * on the rq. This can happen when a wakeup gets interleaved
4413 * with schedule on the ->pre_schedule() or idle_balance()
4414 * point, either of which can * drop the rq lock.
4415 *
4416 * Also, during early boot the idle thread is in the fair class,
4417 * for obvious reasons its a bad idea to schedule back to it.
4418 */
4419 if (unlikely(!se->on_rq || curr == rq->idle))
4420 return;
4421
4422 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4423 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004424}
4425
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004426static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004427{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004428 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004429 struct cfs_rq *cfs_rq = &rq->cfs;
4430 struct sched_entity *se;
4431
Tim Blechmann36ace272009-11-24 11:55:45 +01004432 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004433 return NULL;
4434
4435 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004436 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004437 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004438 cfs_rq = group_cfs_rq(se);
4439 } while (cfs_rq);
4440
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004441 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004442 if (hrtick_enabled(rq))
4443 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004444
4445 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004446}
4447
4448/*
4449 * Account for a descheduled task:
4450 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004451static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004452{
4453 struct sched_entity *se = &prev->se;
4454 struct cfs_rq *cfs_rq;
4455
4456 for_each_sched_entity(se) {
4457 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004458 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004459 }
4460}
4461
Rik van Rielac53db52011-02-01 09:51:03 -05004462/*
4463 * sched_yield() is very simple
4464 *
4465 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4466 */
4467static void yield_task_fair(struct rq *rq)
4468{
4469 struct task_struct *curr = rq->curr;
4470 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4471 struct sched_entity *se = &curr->se;
4472
4473 /*
4474 * Are we the only task in the tree?
4475 */
4476 if (unlikely(rq->nr_running == 1))
4477 return;
4478
4479 clear_buddies(cfs_rq, se);
4480
4481 if (curr->policy != SCHED_BATCH) {
4482 update_rq_clock(rq);
4483 /*
4484 * Update run-time statistics of the 'current'.
4485 */
4486 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004487 /*
4488 * Tell update_rq_clock() that we've just updated,
4489 * so we don't do microscopic update in schedule()
4490 * and double the fastpath cost.
4491 */
4492 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004493 }
4494
4495 set_skip_buddy(se);
4496}
4497
Mike Galbraithd95f4122011-02-01 09:50:51 -05004498static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4499{
4500 struct sched_entity *se = &p->se;
4501
Paul Turner5238cdd2011-07-21 09:43:37 -07004502 /* throttled hierarchies are not runnable */
4503 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004504 return false;
4505
4506 /* Tell the scheduler that we'd really like pse to run next. */
4507 set_next_buddy(se);
4508
Mike Galbraithd95f4122011-02-01 09:50:51 -05004509 yield_task_fair(rq);
4510
4511 return true;
4512}
4513
Peter Williams681f3e62007-10-24 18:23:51 +02004514#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004515/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004516 * Fair scheduling class load-balancing methods.
4517 *
4518 * BASICS
4519 *
4520 * The purpose of load-balancing is to achieve the same basic fairness the
4521 * per-cpu scheduler provides, namely provide a proportional amount of compute
4522 * time to each task. This is expressed in the following equation:
4523 *
4524 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4525 *
4526 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4527 * W_i,0 is defined as:
4528 *
4529 * W_i,0 = \Sum_j w_i,j (2)
4530 *
4531 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4532 * is derived from the nice value as per prio_to_weight[].
4533 *
4534 * The weight average is an exponential decay average of the instantaneous
4535 * weight:
4536 *
4537 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4538 *
4539 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4540 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4541 * can also include other factors [XXX].
4542 *
4543 * To achieve this balance we define a measure of imbalance which follows
4544 * directly from (1):
4545 *
4546 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4547 *
4548 * We them move tasks around to minimize the imbalance. In the continuous
4549 * function space it is obvious this converges, in the discrete case we get
4550 * a few fun cases generally called infeasible weight scenarios.
4551 *
4552 * [XXX expand on:
4553 * - infeasible weights;
4554 * - local vs global optima in the discrete case. ]
4555 *
4556 *
4557 * SCHED DOMAINS
4558 *
4559 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4560 * for all i,j solution, we create a tree of cpus that follows the hardware
4561 * topology where each level pairs two lower groups (or better). This results
4562 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4563 * tree to only the first of the previous level and we decrease the frequency
4564 * of load-balance at each level inv. proportional to the number of cpus in
4565 * the groups.
4566 *
4567 * This yields:
4568 *
4569 * log_2 n 1 n
4570 * \Sum { --- * --- * 2^i } = O(n) (5)
4571 * i = 0 2^i 2^i
4572 * `- size of each group
4573 * | | `- number of cpus doing load-balance
4574 * | `- freq
4575 * `- sum over all levels
4576 *
4577 * Coupled with a limit on how many tasks we can migrate every balance pass,
4578 * this makes (5) the runtime complexity of the balancer.
4579 *
4580 * An important property here is that each CPU is still (indirectly) connected
4581 * to every other cpu in at most O(log n) steps:
4582 *
4583 * The adjacency matrix of the resulting graph is given by:
4584 *
4585 * log_2 n
4586 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4587 * k = 0
4588 *
4589 * And you'll find that:
4590 *
4591 * A^(log_2 n)_i,j != 0 for all i,j (7)
4592 *
4593 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4594 * The task movement gives a factor of O(m), giving a convergence complexity
4595 * of:
4596 *
4597 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4598 *
4599 *
4600 * WORK CONSERVING
4601 *
4602 * In order to avoid CPUs going idle while there's still work to do, new idle
4603 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4604 * tree itself instead of relying on other CPUs to bring it work.
4605 *
4606 * This adds some complexity to both (5) and (8) but it reduces the total idle
4607 * time.
4608 *
4609 * [XXX more?]
4610 *
4611 *
4612 * CGROUPS
4613 *
4614 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4615 *
4616 * s_k,i
4617 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4618 * S_k
4619 *
4620 * Where
4621 *
4622 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4623 *
4624 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4625 *
4626 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4627 * property.
4628 *
4629 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4630 * rewrite all of this once again.]
4631 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004632
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004633static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4634
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004635enum fbq_type { regular, remote, all };
4636
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004637#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004638#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004639#define LBF_DST_PINNED 0x04
4640#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004641
4642struct lb_env {
4643 struct sched_domain *sd;
4644
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004645 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304646 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004647
4648 int dst_cpu;
4649 struct rq *dst_rq;
4650
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304651 struct cpumask *dst_grpmask;
4652 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004653 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004654 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004655 /* The set of CPUs under consideration for load-balancing */
4656 struct cpumask *cpus;
4657
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004658 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004659
4660 unsigned int loop;
4661 unsigned int loop_break;
4662 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004663
4664 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004665};
4666
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004667/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004668 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004669 * Both runqueues must be locked.
4670 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004671static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004672{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004673 deactivate_task(env->src_rq, p, 0);
4674 set_task_cpu(p, env->dst_cpu);
4675 activate_task(env->dst_rq, p, 0);
4676 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004677#ifdef CONFIG_NUMA_BALANCING
4678 if (p->numa_preferred_nid != -1) {
4679 int src_nid = cpu_to_node(env->src_cpu);
4680 int dst_nid = cpu_to_node(env->dst_cpu);
4681
4682 /*
4683 * If the load balancer has moved the task then limit
4684 * migrations from taking place in the short term in
4685 * case this is a short-lived migration.
4686 */
4687 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4688 p->numa_migrate_seq = 0;
4689 }
4690#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004691}
4692
4693/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004694 * Is this task likely cache-hot:
4695 */
4696static int
4697task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4698{
4699 s64 delta;
4700
4701 if (p->sched_class != &fair_sched_class)
4702 return 0;
4703
4704 if (unlikely(p->policy == SCHED_IDLE))
4705 return 0;
4706
4707 /*
4708 * Buddy candidates are cache hot:
4709 */
4710 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4711 (&p->se == cfs_rq_of(&p->se)->next ||
4712 &p->se == cfs_rq_of(&p->se)->last))
4713 return 1;
4714
4715 if (sysctl_sched_migration_cost == -1)
4716 return 1;
4717 if (sysctl_sched_migration_cost == 0)
4718 return 0;
4719
4720 delta = now - p->se.exec_start;
4721
4722 return delta < (s64)sysctl_sched_migration_cost;
4723}
4724
Mel Gorman3a7053b2013-10-07 11:29:00 +01004725#ifdef CONFIG_NUMA_BALANCING
4726/* Returns true if the destination node has incurred more faults */
4727static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4728{
4729 int src_nid, dst_nid;
4730
4731 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4732 !(env->sd->flags & SD_NUMA)) {
4733 return false;
4734 }
4735
4736 src_nid = cpu_to_node(env->src_cpu);
4737 dst_nid = cpu_to_node(env->dst_cpu);
4738
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004739 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004740 return false;
4741
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004742 /* Always encourage migration to the preferred node. */
4743 if (dst_nid == p->numa_preferred_nid)
4744 return true;
4745
Rik van Riel887c2902013-10-07 11:29:31 +01004746 /* If both task and group weight improve, this move is a winner. */
4747 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4748 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004749 return true;
4750
4751 return false;
4752}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004753
4754
4755static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4756{
4757 int src_nid, dst_nid;
4758
4759 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4760 return false;
4761
4762 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4763 return false;
4764
4765 src_nid = cpu_to_node(env->src_cpu);
4766 dst_nid = cpu_to_node(env->dst_cpu);
4767
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004768 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004769 return false;
4770
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004771 /* Migrating away from the preferred node is always bad. */
4772 if (src_nid == p->numa_preferred_nid)
4773 return true;
4774
Rik van Riel887c2902013-10-07 11:29:31 +01004775 /* If either task or group weight get worse, don't do it. */
4776 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4777 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004778 return true;
4779
4780 return false;
4781}
4782
Mel Gorman3a7053b2013-10-07 11:29:00 +01004783#else
4784static inline bool migrate_improves_locality(struct task_struct *p,
4785 struct lb_env *env)
4786{
4787 return false;
4788}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004789
4790static inline bool migrate_degrades_locality(struct task_struct *p,
4791 struct lb_env *env)
4792{
4793 return false;
4794}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004795#endif
4796
Peter Zijlstra029632f2011-10-25 10:00:11 +02004797/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004798 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4799 */
4800static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004801int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004802{
4803 int tsk_cache_hot = 0;
4804 /*
4805 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004806 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004807 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004808 * 3) running (obviously), or
4809 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004810 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004811 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4812 return 0;
4813
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004814 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004815 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304816
Lucas De Marchi41acab82010-03-10 23:37:45 -03004817 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304818
Peter Zijlstra62633222013-08-19 12:41:09 +02004819 env->flags |= LBF_SOME_PINNED;
4820
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304821 /*
4822 * Remember if this task can be migrated to any other cpu in
4823 * our sched_group. We may want to revisit it if we couldn't
4824 * meet load balance goals by pulling other tasks on src_cpu.
4825 *
4826 * Also avoid computing new_dst_cpu if we have already computed
4827 * one in current iteration.
4828 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004829 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304830 return 0;
4831
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004832 /* Prevent to re-select dst_cpu via env's cpus */
4833 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4834 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004835 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004836 env->new_dst_cpu = cpu;
4837 break;
4838 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304839 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004840
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004841 return 0;
4842 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304843
4844 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004845 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004846
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004847 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004848 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004849 return 0;
4850 }
4851
4852 /*
4853 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004854 * 1) destination numa is preferred
4855 * 2) task is cache cold, or
4856 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004857 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004858 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004859 if (!tsk_cache_hot)
4860 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004861
4862 if (migrate_improves_locality(p, env)) {
4863#ifdef CONFIG_SCHEDSTATS
4864 if (tsk_cache_hot) {
4865 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4866 schedstat_inc(p, se.statistics.nr_forced_migrations);
4867 }
4868#endif
4869 return 1;
4870 }
4871
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004872 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004873 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004874
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004875 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004876 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004877 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004878 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004879
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004880 return 1;
4881 }
4882
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004883 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4884 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004885}
4886
Peter Zijlstra897c3952009-12-17 17:45:42 +01004887/*
4888 * move_one_task tries to move exactly one task from busiest to this_rq, as
4889 * part of active balancing operations within "domain".
4890 * Returns 1 if successful and 0 otherwise.
4891 *
4892 * Called with both runqueues locked.
4893 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004894static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004895{
4896 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004897
Peter Zijlstra367456c2012-02-20 21:49:09 +01004898 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004899 if (!can_migrate_task(p, env))
4900 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004901
Peter Zijlstra367456c2012-02-20 21:49:09 +01004902 move_task(p, env);
4903 /*
4904 * Right now, this is only the second place move_task()
4905 * is called, so we can safely collect move_task()
4906 * stats here rather than inside move_task().
4907 */
4908 schedstat_inc(env->sd, lb_gained[env->idle]);
4909 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004910 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004911 return 0;
4912}
4913
Peter Zijlstraeb953082012-04-17 13:38:40 +02004914static const unsigned int sched_nr_migrate_break = 32;
4915
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004916/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004917 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004918 * this_rq, as part of a balancing operation within domain "sd".
4919 * Returns 1 if successful and 0 otherwise.
4920 *
4921 * Called with both runqueues locked.
4922 */
4923static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004924{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004925 struct list_head *tasks = &env->src_rq->cfs_tasks;
4926 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004927 unsigned long load;
4928 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004929
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004930 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004931 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004932
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004933 while (!list_empty(tasks)) {
4934 p = list_first_entry(tasks, struct task_struct, se.group_node);
4935
Peter Zijlstra367456c2012-02-20 21:49:09 +01004936 env->loop++;
4937 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004938 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004939 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004940
4941 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004942 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004943 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004944 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004945 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004946 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004947
Joonsoo Kimd3198082013-04-23 17:27:40 +09004948 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004949 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004950
Peter Zijlstra367456c2012-02-20 21:49:09 +01004951 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004952
Peter Zijlstraeb953082012-04-17 13:38:40 +02004953 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004954 goto next;
4955
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004956 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004957 goto next;
4958
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004959 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004960 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004961 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004962
4963#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004964 /*
4965 * NEWIDLE balancing is a source of latency, so preemptible
4966 * kernels will stop after the first task is pulled to minimize
4967 * the critical section.
4968 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004969 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004970 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004971#endif
4972
Peter Zijlstraee00e662009-12-17 17:25:20 +01004973 /*
4974 * We only want to steal up to the prescribed amount of
4975 * weighted load.
4976 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004977 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004978 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004979
Peter Zijlstra367456c2012-02-20 21:49:09 +01004980 continue;
4981next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004982 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004983 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004984
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004985 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004986 * Right now, this is one of only two places move_task() is called,
4987 * so we can safely collect move_task() stats here rather than
4988 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004989 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004990 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004991
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004992 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004993}
4994
Peter Zijlstra230059de2009-12-17 17:47:12 +01004995#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004996/*
4997 * update tg->load_weight by folding this cpu's load_avg
4998 */
Paul Turner48a16752012-10-04 13:18:31 +02004999static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005000{
Paul Turner48a16752012-10-04 13:18:31 +02005001 struct sched_entity *se = tg->se[cpu];
5002 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005003
Paul Turner48a16752012-10-04 13:18:31 +02005004 /* throttled entities do not contribute to load */
5005 if (throttled_hierarchy(cfs_rq))
5006 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005007
Paul Turneraff3e492012-10-04 13:18:30 +02005008 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005009
Paul Turner82958362012-10-04 13:18:31 +02005010 if (se) {
5011 update_entity_load_avg(se, 1);
5012 /*
5013 * We pivot on our runnable average having decayed to zero for
5014 * list removal. This generally implies that all our children
5015 * have also been removed (modulo rounding error or bandwidth
5016 * control); however, such cases are rare and we can fix these
5017 * at enqueue.
5018 *
5019 * TODO: fix up out-of-order children on enqueue.
5020 */
5021 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5022 list_del_leaf_cfs_rq(cfs_rq);
5023 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005024 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005025 update_rq_runnable_avg(rq, rq->nr_running);
5026 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005027}
5028
Paul Turner48a16752012-10-04 13:18:31 +02005029static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005030{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005031 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005032 struct cfs_rq *cfs_rq;
5033 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005034
Paul Turner48a16752012-10-04 13:18:31 +02005035 raw_spin_lock_irqsave(&rq->lock, flags);
5036 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005037 /*
5038 * Iterates the task_group tree in a bottom up fashion, see
5039 * list_add_leaf_cfs_rq() for details.
5040 */
Paul Turner64660c82011-07-21 09:43:36 -07005041 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005042 /*
5043 * Note: We may want to consider periodically releasing
5044 * rq->lock about these updates so that creating many task
5045 * groups does not result in continually extending hold time.
5046 */
5047 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005048 }
Paul Turner48a16752012-10-04 13:18:31 +02005049
5050 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005051}
5052
Peter Zijlstra9763b672011-07-13 13:09:25 +02005053/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005054 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005055 * This needs to be done in a top-down fashion because the load of a child
5056 * group is a fraction of its parents load.
5057 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005058static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005059{
Vladimir Davydov68520792013-07-15 17:49:19 +04005060 struct rq *rq = rq_of(cfs_rq);
5061 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005062 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005063 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005064
Vladimir Davydov68520792013-07-15 17:49:19 +04005065 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005066 return;
5067
Vladimir Davydov68520792013-07-15 17:49:19 +04005068 cfs_rq->h_load_next = NULL;
5069 for_each_sched_entity(se) {
5070 cfs_rq = cfs_rq_of(se);
5071 cfs_rq->h_load_next = se;
5072 if (cfs_rq->last_h_load_update == now)
5073 break;
5074 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005075
Vladimir Davydov68520792013-07-15 17:49:19 +04005076 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005077 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005078 cfs_rq->last_h_load_update = now;
5079 }
5080
5081 while ((se = cfs_rq->h_load_next) != NULL) {
5082 load = cfs_rq->h_load;
5083 load = div64_ul(load * se->avg.load_avg_contrib,
5084 cfs_rq->runnable_load_avg + 1);
5085 cfs_rq = group_cfs_rq(se);
5086 cfs_rq->h_load = load;
5087 cfs_rq->last_h_load_update = now;
5088 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005089}
5090
Peter Zijlstra367456c2012-02-20 21:49:09 +01005091static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005092{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005093 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005094
Vladimir Davydov68520792013-07-15 17:49:19 +04005095 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005096 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5097 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005098}
5099#else
Paul Turner48a16752012-10-04 13:18:31 +02005100static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005101{
5102}
5103
Peter Zijlstra367456c2012-02-20 21:49:09 +01005104static unsigned long task_h_load(struct task_struct *p)
5105{
Alex Shia003a252013-06-20 10:18:51 +08005106 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005107}
5108#endif
5109
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005110/********** Helpers for find_busiest_group ************************/
5111/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005112 * sg_lb_stats - stats of a sched_group required for load_balancing
5113 */
5114struct sg_lb_stats {
5115 unsigned long avg_load; /*Avg load across the CPUs of the group */
5116 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005117 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005118 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005119 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005120 unsigned int sum_nr_running; /* Nr tasks running in the group */
5121 unsigned int group_capacity;
5122 unsigned int idle_cpus;
5123 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005124 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005125 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005126#ifdef CONFIG_NUMA_BALANCING
5127 unsigned int nr_numa_running;
5128 unsigned int nr_preferred_running;
5129#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005130};
5131
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005132/*
5133 * sd_lb_stats - Structure to store the statistics of a sched_domain
5134 * during load balancing.
5135 */
5136struct sd_lb_stats {
5137 struct sched_group *busiest; /* Busiest group in this sd */
5138 struct sched_group *local; /* Local group in this sd */
5139 unsigned long total_load; /* Total load of all groups in sd */
5140 unsigned long total_pwr; /* Total power of all groups in sd */
5141 unsigned long avg_load; /* Average load across all groups in sd */
5142
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005143 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005144 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005145};
5146
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005147static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5148{
5149 /*
5150 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5151 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5152 * We must however clear busiest_stat::avg_load because
5153 * update_sd_pick_busiest() reads this before assignment.
5154 */
5155 *sds = (struct sd_lb_stats){
5156 .busiest = NULL,
5157 .local = NULL,
5158 .total_load = 0UL,
5159 .total_pwr = 0UL,
5160 .busiest_stat = {
5161 .avg_load = 0UL,
5162 },
5163 };
5164}
5165
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005166/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005167 * get_sd_load_idx - Obtain the load index for a given sched domain.
5168 * @sd: The sched_domain whose load_idx is to be obtained.
5169 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005170 *
5171 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005172 */
5173static inline int get_sd_load_idx(struct sched_domain *sd,
5174 enum cpu_idle_type idle)
5175{
5176 int load_idx;
5177
5178 switch (idle) {
5179 case CPU_NOT_IDLE:
5180 load_idx = sd->busy_idx;
5181 break;
5182
5183 case CPU_NEWLY_IDLE:
5184 load_idx = sd->newidle_idx;
5185 break;
5186 default:
5187 load_idx = sd->idle_idx;
5188 break;
5189 }
5190
5191 return load_idx;
5192}
5193
Li Zefan15f803c2013-03-05 16:07:11 +08005194static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005195{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005196 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005197}
5198
5199unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5200{
5201 return default_scale_freq_power(sd, cpu);
5202}
5203
Li Zefan15f803c2013-03-05 16:07:11 +08005204static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005205{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005206 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005207 unsigned long smt_gain = sd->smt_gain;
5208
5209 smt_gain /= weight;
5210
5211 return smt_gain;
5212}
5213
5214unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5215{
5216 return default_scale_smt_power(sd, cpu);
5217}
5218
Li Zefan15f803c2013-03-05 16:07:11 +08005219static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005220{
5221 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005222 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005223
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005224 /*
5225 * Since we're reading these variables without serialization make sure
5226 * we read them once before doing sanity checks on them.
5227 */
5228 age_stamp = ACCESS_ONCE(rq->age_stamp);
5229 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005230
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005231 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005232
5233 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005234 /* Ensures that power won't end up being negative */
5235 available = 0;
5236 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005237 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005238 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005239
Nikhil Rao1399fa72011-05-18 10:09:39 -07005240 if (unlikely((s64)total < SCHED_POWER_SCALE))
5241 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005242
Nikhil Rao1399fa72011-05-18 10:09:39 -07005243 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005244
5245 return div_u64(available, total);
5246}
5247
5248static void update_cpu_power(struct sched_domain *sd, int cpu)
5249{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005250 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005251 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005252 struct sched_group *sdg = sd->groups;
5253
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005254 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5255 if (sched_feat(ARCH_POWER))
5256 power *= arch_scale_smt_power(sd, cpu);
5257 else
5258 power *= default_scale_smt_power(sd, cpu);
5259
Nikhil Rao1399fa72011-05-18 10:09:39 -07005260 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005261 }
5262
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005263 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005264
5265 if (sched_feat(ARCH_POWER))
5266 power *= arch_scale_freq_power(sd, cpu);
5267 else
5268 power *= default_scale_freq_power(sd, cpu);
5269
Nikhil Rao1399fa72011-05-18 10:09:39 -07005270 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005271
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005272 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005273 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005274
5275 if (!power)
5276 power = 1;
5277
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005278 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005279 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005280}
5281
Peter Zijlstra029632f2011-10-25 10:00:11 +02005282void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005283{
5284 struct sched_domain *child = sd->child;
5285 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005286 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005287 unsigned long interval;
5288
5289 interval = msecs_to_jiffies(sd->balance_interval);
5290 interval = clamp(interval, 1UL, max_load_balance_interval);
5291 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005292
5293 if (!child) {
5294 update_cpu_power(sd, cpu);
5295 return;
5296 }
5297
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005298 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005299
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005300 if (child->flags & SD_OVERLAP) {
5301 /*
5302 * SD_OVERLAP domains cannot assume that child groups
5303 * span the current group.
5304 */
5305
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005306 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5307 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5308
5309 power_orig += sg->sgp->power_orig;
5310 power += sg->sgp->power;
5311 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005312 } else {
5313 /*
5314 * !SD_OVERLAP domains can assume that child groups
5315 * span the current group.
5316 */
5317
5318 group = child->groups;
5319 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005320 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005321 power += group->sgp->power;
5322 group = group->next;
5323 } while (group != child->groups);
5324 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005325
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005326 sdg->sgp->power_orig = power_orig;
5327 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005328}
5329
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005330/*
5331 * Try and fix up capacity for tiny siblings, this is needed when
5332 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5333 * which on its own isn't powerful enough.
5334 *
5335 * See update_sd_pick_busiest() and check_asym_packing().
5336 */
5337static inline int
5338fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5339{
5340 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005341 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005342 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005343 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005344 return 0;
5345
5346 /*
5347 * If ~90% of the cpu_power is still there, we're good.
5348 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005349 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005350 return 1;
5351
5352 return 0;
5353}
5354
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005355/*
5356 * Group imbalance indicates (and tries to solve) the problem where balancing
5357 * groups is inadequate due to tsk_cpus_allowed() constraints.
5358 *
5359 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5360 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5361 * Something like:
5362 *
5363 * { 0 1 2 3 } { 4 5 6 7 }
5364 * * * * *
5365 *
5366 * If we were to balance group-wise we'd place two tasks in the first group and
5367 * two tasks in the second group. Clearly this is undesired as it will overload
5368 * cpu 3 and leave one of the cpus in the second group unused.
5369 *
5370 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005371 * by noticing the lower domain failed to reach balance and had difficulty
5372 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005373 *
5374 * When this is so detected; this group becomes a candidate for busiest; see
5375 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005376 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005377 * to create an effective group imbalance.
5378 *
5379 * This is a somewhat tricky proposition since the next run might not find the
5380 * group imbalance and decide the groups need to be balanced again. A most
5381 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005382 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005383
Peter Zijlstra62633222013-08-19 12:41:09 +02005384static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005385{
Peter Zijlstra62633222013-08-19 12:41:09 +02005386 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005387}
5388
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005389/*
5390 * Compute the group capacity.
5391 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005392 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5393 * first dividing out the smt factor and computing the actual number of cores
5394 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005395 */
5396static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5397{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005398 unsigned int capacity, smt, cpus;
5399 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005400
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005401 power = group->sgp->power;
5402 power_orig = group->sgp->power_orig;
5403 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005404
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005405 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5406 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5407 capacity = cpus / smt; /* cores */
5408
5409 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005410 if (!capacity)
5411 capacity = fix_small_capacity(env->sd, group);
5412
5413 return capacity;
5414}
5415
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005416/**
5417 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5418 * @env: The load balancing environment.
5419 * @group: sched_group whose statistics are to be updated.
5420 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5421 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005422 * @sgs: variable to hold the statistics for this group.
5423 */
5424static inline void update_sg_lb_stats(struct lb_env *env,
5425 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005426 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005427{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005428 unsigned long nr_running;
5429 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005430 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005431
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005432 memset(sgs, 0, sizeof(*sgs));
5433
Michael Wangb9403132012-07-12 16:10:13 +08005434 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005435 struct rq *rq = cpu_rq(i);
5436
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005437 nr_running = rq->nr_running;
5438
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005439 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005440 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005441 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005442 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005443 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005444
5445 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005446 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005447#ifdef CONFIG_NUMA_BALANCING
5448 sgs->nr_numa_running += rq->nr_numa_running;
5449 sgs->nr_preferred_running += rq->nr_preferred_running;
5450#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005451 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005452 if (idle_cpu(i))
5453 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005454 }
5455
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005456 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005457 sgs->group_power = group->sgp->power;
5458 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005459
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005460 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005461 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005462
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005463 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005464
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005465 sgs->group_imb = sg_imbalanced(group);
5466 sgs->group_capacity = sg_capacity(env, group);
5467
Nikhil Raofab47622010-10-15 13:12:29 -07005468 if (sgs->group_capacity > sgs->sum_nr_running)
5469 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005470}
5471
5472/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005473 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005474 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005475 * @sds: sched_domain statistics
5476 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005477 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005478 *
5479 * Determine if @sg is a busier group than the previously selected
5480 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005481 *
5482 * Return: %true if @sg is a busier group than the previously selected
5483 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005484 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005485static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005486 struct sd_lb_stats *sds,
5487 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005488 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005489{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005490 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005491 return false;
5492
5493 if (sgs->sum_nr_running > sgs->group_capacity)
5494 return true;
5495
5496 if (sgs->group_imb)
5497 return true;
5498
5499 /*
5500 * ASYM_PACKING needs to move all the work to the lowest
5501 * numbered CPUs in the group, therefore mark all groups
5502 * higher than ourself as busy.
5503 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005504 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5505 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005506 if (!sds->busiest)
5507 return true;
5508
5509 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5510 return true;
5511 }
5512
5513 return false;
5514}
5515
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005516#ifdef CONFIG_NUMA_BALANCING
5517static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5518{
5519 if (sgs->sum_nr_running > sgs->nr_numa_running)
5520 return regular;
5521 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5522 return remote;
5523 return all;
5524}
5525
5526static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5527{
5528 if (rq->nr_running > rq->nr_numa_running)
5529 return regular;
5530 if (rq->nr_running > rq->nr_preferred_running)
5531 return remote;
5532 return all;
5533}
5534#else
5535static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5536{
5537 return all;
5538}
5539
5540static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5541{
5542 return regular;
5543}
5544#endif /* CONFIG_NUMA_BALANCING */
5545
Michael Neuling532cb4c2010-06-08 14:57:02 +10005546/**
Hui Kang461819a2011-10-11 23:00:59 -04005547 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005548 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005549 * @balance: Should we balance.
5550 * @sds: variable to hold the statistics for this sched_domain.
5551 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005552static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005553{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005554 struct sched_domain *child = env->sd->child;
5555 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005556 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005557 int load_idx, prefer_sibling = 0;
5558
5559 if (child && child->flags & SD_PREFER_SIBLING)
5560 prefer_sibling = 1;
5561
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005562 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005563
5564 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005565 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005566 int local_group;
5567
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005568 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005569 if (local_group) {
5570 sds->local = sg;
5571 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005572
5573 if (env->idle != CPU_NEWLY_IDLE ||
5574 time_after_eq(jiffies, sg->sgp->next_update))
5575 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005576 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005577
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005578 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005579
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005580 if (local_group)
5581 goto next_group;
5582
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005583 /*
5584 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005585 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005586 * and move all the excess tasks away. We lower the capacity
5587 * of a group only if the local group has the capacity to fit
5588 * these excess tasks, i.e. nr_running < group_capacity. The
5589 * extra check prevents the case where you always pull from the
5590 * heaviest group when it is already under-utilized (possible
5591 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005592 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005593 if (prefer_sibling && sds->local &&
5594 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005595 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005596
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005597 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005598 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005599 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005600 }
5601
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005602next_group:
5603 /* Now, start updating sd_lb_stats */
5604 sds->total_load += sgs->group_load;
5605 sds->total_pwr += sgs->group_power;
5606
Michael Neuling532cb4c2010-06-08 14:57:02 +10005607 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005608 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005609
5610 if (env->sd->flags & SD_NUMA)
5611 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005612}
5613
Michael Neuling532cb4c2010-06-08 14:57:02 +10005614/**
5615 * check_asym_packing - Check to see if the group is packed into the
5616 * sched doman.
5617 *
5618 * This is primarily intended to used at the sibling level. Some
5619 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5620 * case of POWER7, it can move to lower SMT modes only when higher
5621 * threads are idle. When in lower SMT modes, the threads will
5622 * perform better since they share less core resources. Hence when we
5623 * have idle threads, we want them to be the higher ones.
5624 *
5625 * This packing function is run on idle threads. It checks to see if
5626 * the busiest CPU in this domain (core in the P7 case) has a higher
5627 * CPU number than the packing function is being run on. Here we are
5628 * assuming lower CPU number will be equivalent to lower a SMT thread
5629 * number.
5630 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005631 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005632 * this CPU. The amount of the imbalance is returned in *imbalance.
5633 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005634 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005635 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005636 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005637static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005638{
5639 int busiest_cpu;
5640
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005641 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005642 return 0;
5643
5644 if (!sds->busiest)
5645 return 0;
5646
5647 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005648 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005649 return 0;
5650
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005651 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005652 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5653 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005654
Michael Neuling532cb4c2010-06-08 14:57:02 +10005655 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005656}
5657
5658/**
5659 * fix_small_imbalance - Calculate the minor imbalance that exists
5660 * amongst the groups of a sched_domain, during
5661 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005662 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005663 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005664 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005665static inline
5666void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005667{
5668 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5669 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005670 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005671 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005672
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005673 local = &sds->local_stat;
5674 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005675
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005676 if (!local->sum_nr_running)
5677 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5678 else if (busiest->load_per_task > local->load_per_task)
5679 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005680
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005681 scaled_busy_load_per_task =
5682 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005683 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005684
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005685 if (busiest->avg_load + scaled_busy_load_per_task >=
5686 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005687 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005688 return;
5689 }
5690
5691 /*
5692 * OK, we don't have enough imbalance to justify moving tasks,
5693 * however we may be able to increase total CPU power used by
5694 * moving them.
5695 */
5696
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005697 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005698 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005699 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005700 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005701 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005702
5703 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005704 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005705 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005706 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005707 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005708 min(busiest->load_per_task,
5709 busiest->avg_load - tmp);
5710 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005711
5712 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005713 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005714 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005715 tmp = (busiest->avg_load * busiest->group_power) /
5716 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005717 } else {
5718 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005719 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005720 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005721 pwr_move += local->group_power *
5722 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005723 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005724
5725 /* Move if we gain throughput */
5726 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005727 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005728}
5729
5730/**
5731 * calculate_imbalance - Calculate the amount of imbalance present within the
5732 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005733 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005734 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005735 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005736static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005737{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005738 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005739 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005740
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005741 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005742 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005743
5744 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005745 /*
5746 * In the group_imb case we cannot rely on group-wide averages
5747 * to ensure cpu-load equilibrium, look at wider averages. XXX
5748 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005749 busiest->load_per_task =
5750 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005751 }
5752
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005753 /*
5754 * In the presence of smp nice balancing, certain scenarios can have
5755 * max load less than avg load(as we skip the groups at or below
5756 * its cpu_power, while calculating max_load..)
5757 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005758 if (busiest->avg_load <= sds->avg_load ||
5759 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005760 env->imbalance = 0;
5761 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005762 }
5763
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005764 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005765 /*
5766 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005767 * Except of course for the group_imb case, since then we might
5768 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005769 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005770 load_above_capacity =
5771 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005772
Nikhil Rao1399fa72011-05-18 10:09:39 -07005773 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005774 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005775 }
5776
5777 /*
5778 * We're trying to get all the cpus to the average_load, so we don't
5779 * want to push ourselves above the average load, nor do we wish to
5780 * reduce the max loaded cpu below the average load. At the same time,
5781 * we also don't want to reduce the group load below the group capacity
5782 * (so that we can implement power-savings policies etc). Thus we look
5783 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005784 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005785 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005786
5787 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005788 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005789 max_pull * busiest->group_power,
5790 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005791 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005792
5793 /*
5794 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005795 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005796 * a think about bumping its value to force at least one task to be
5797 * moved
5798 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005799 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005800 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005801}
Nikhil Raofab47622010-10-15 13:12:29 -07005802
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005803/******* find_busiest_group() helpers end here *********************/
5804
5805/**
5806 * find_busiest_group - Returns the busiest group within the sched_domain
5807 * if there is an imbalance. If there isn't an imbalance, and
5808 * the user has opted for power-savings, it returns a group whose
5809 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5810 * such a group exists.
5811 *
5812 * Also calculates the amount of weighted load which should be moved
5813 * to restore balance.
5814 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005815 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005816 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005817 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005818 * - If no imbalance and user has opted for power-savings balance,
5819 * return the least loaded group whose CPUs can be
5820 * put to idle by rebalancing its tasks onto our group.
5821 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005822static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005823{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005824 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005825 struct sd_lb_stats sds;
5826
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005827 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005828
5829 /*
5830 * Compute the various statistics relavent for load balancing at
5831 * this level.
5832 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005833 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005834 local = &sds.local_stat;
5835 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005836
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005837 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5838 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005839 return sds.busiest;
5840
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005841 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005842 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005843 goto out_balanced;
5844
Nikhil Rao1399fa72011-05-18 10:09:39 -07005845 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005846
Peter Zijlstra866ab432011-02-21 18:56:47 +01005847 /*
5848 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005849 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005850 * isn't true due to cpus_allowed constraints and the like.
5851 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005852 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005853 goto force_balance;
5854
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005855 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005856 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5857 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005858 goto force_balance;
5859
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005860 /*
5861 * If the local group is more busy than the selected busiest group
5862 * don't try and pull any tasks.
5863 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005864 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005865 goto out_balanced;
5866
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005867 /*
5868 * Don't pull any tasks if this group is already above the domain
5869 * average load.
5870 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005871 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005872 goto out_balanced;
5873
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005874 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005875 /*
5876 * This cpu is idle. If the busiest group load doesn't
5877 * have more tasks than the number of available cpu's and
5878 * there is no imbalance between this and busiest group
5879 * wrt to idle cpu's, it is balanced.
5880 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005881 if ((local->idle_cpus < busiest->idle_cpus) &&
5882 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005883 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005884 } else {
5885 /*
5886 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5887 * imbalance_pct to be conservative.
5888 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005889 if (100 * busiest->avg_load <=
5890 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005891 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005892 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005893
Nikhil Raofab47622010-10-15 13:12:29 -07005894force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005895 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005896 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005897 return sds.busiest;
5898
5899out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005900 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005901 return NULL;
5902}
5903
5904/*
5905 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5906 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005907static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005908 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005909{
5910 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005911 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005912 int i;
5913
Peter Zijlstra6906a402013-08-19 15:20:21 +02005914 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005915 unsigned long power, capacity, wl;
5916 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005917
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005918 rq = cpu_rq(i);
5919 rt = fbq_classify_rq(rq);
5920
5921 /*
5922 * We classify groups/runqueues into three groups:
5923 * - regular: there are !numa tasks
5924 * - remote: there are numa tasks that run on the 'wrong' node
5925 * - all: there is no distinction
5926 *
5927 * In order to avoid migrating ideally placed numa tasks,
5928 * ignore those when there's better options.
5929 *
5930 * If we ignore the actual busiest queue to migrate another
5931 * task, the next balance pass can still reduce the busiest
5932 * queue by moving tasks around inside the node.
5933 *
5934 * If we cannot move enough load due to this classification
5935 * the next pass will adjust the group classification and
5936 * allow migration of more tasks.
5937 *
5938 * Both cases only affect the total convergence complexity.
5939 */
5940 if (rt > env->fbq_type)
5941 continue;
5942
5943 power = power_of(i);
5944 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005945 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005946 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005947
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005948 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005949
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005950 /*
5951 * When comparing with imbalance, use weighted_cpuload()
5952 * which is not scaled with the cpu power.
5953 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005954 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005955 continue;
5956
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005957 /*
5958 * For the load comparisons with the other cpu's, consider
5959 * the weighted_cpuload() scaled with the cpu power, so that
5960 * the load can be moved away from the cpu that is potentially
5961 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005962 *
5963 * Thus we're looking for max(wl_i / power_i), crosswise
5964 * multiplication to rid ourselves of the division works out
5965 * to: wl_i * power_j > wl_j * power_i; where j is our
5966 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005967 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005968 if (wl * busiest_power > busiest_load * power) {
5969 busiest_load = wl;
5970 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005971 busiest = rq;
5972 }
5973 }
5974
5975 return busiest;
5976}
5977
5978/*
5979 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5980 * so long as it is large enough.
5981 */
5982#define MAX_PINNED_INTERVAL 512
5983
5984/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005985DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005986
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005987static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005988{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005989 struct sched_domain *sd = env->sd;
5990
5991 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005992
5993 /*
5994 * ASYM_PACKING needs to force migrate tasks from busy but
5995 * higher numbered CPUs in order to pack all tasks in the
5996 * lowest numbered CPUs.
5997 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005998 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005999 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006000 }
6001
6002 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6003}
6004
Tejun Heo969c7922010-05-06 18:49:21 +02006005static int active_load_balance_cpu_stop(void *data);
6006
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006007static int should_we_balance(struct lb_env *env)
6008{
6009 struct sched_group *sg = env->sd->groups;
6010 struct cpumask *sg_cpus, *sg_mask;
6011 int cpu, balance_cpu = -1;
6012
6013 /*
6014 * In the newly idle case, we will allow all the cpu's
6015 * to do the newly idle load balance.
6016 */
6017 if (env->idle == CPU_NEWLY_IDLE)
6018 return 1;
6019
6020 sg_cpus = sched_group_cpus(sg);
6021 sg_mask = sched_group_mask(sg);
6022 /* Try to find first idle cpu */
6023 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6024 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6025 continue;
6026
6027 balance_cpu = cpu;
6028 break;
6029 }
6030
6031 if (balance_cpu == -1)
6032 balance_cpu = group_balance_cpu(sg);
6033
6034 /*
6035 * First idle cpu or the first cpu(busiest) in this sched group
6036 * is eligible for doing load balancing at this and above domains.
6037 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006038 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006039}
6040
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006041/*
6042 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6043 * tasks if there is an imbalance.
6044 */
6045static int load_balance(int this_cpu, struct rq *this_rq,
6046 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006047 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006048{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306049 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006050 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006051 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006052 struct rq *busiest;
6053 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006054 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006055
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006056 struct lb_env env = {
6057 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006058 .dst_cpu = this_cpu,
6059 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306060 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006061 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006062 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08006063 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006064 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006065 };
6066
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006067 /*
6068 * For NEWLY_IDLE load_balancing, we don't need to consider
6069 * other cpus in our group
6070 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006071 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006072 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006073
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006074 cpumask_copy(cpus, cpu_active_mask);
6075
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006076 schedstat_inc(sd, lb_count[idle]);
6077
6078redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006079 if (!should_we_balance(&env)) {
6080 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006081 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006082 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006083
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006084 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006085 if (!group) {
6086 schedstat_inc(sd, lb_nobusyg[idle]);
6087 goto out_balanced;
6088 }
6089
Michael Wangb9403132012-07-12 16:10:13 +08006090 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006091 if (!busiest) {
6092 schedstat_inc(sd, lb_nobusyq[idle]);
6093 goto out_balanced;
6094 }
6095
Michael Wang78feefc2012-08-06 16:41:59 +08006096 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006097
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006098 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006099
6100 ld_moved = 0;
6101 if (busiest->nr_running > 1) {
6102 /*
6103 * Attempt to move tasks. If find_busiest_group has found
6104 * an imbalance but busiest->nr_running <= 1, the group is
6105 * still unbalanced. ld_moved simply stays zero, so it is
6106 * correctly treated as an imbalance.
6107 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006108 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006109 env.src_cpu = busiest->cpu;
6110 env.src_rq = busiest;
6111 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006112
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006113more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006114 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006115 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306116
6117 /*
6118 * cur_ld_moved - load moved in current iteration
6119 * ld_moved - cumulative load moved across iterations
6120 */
6121 cur_ld_moved = move_tasks(&env);
6122 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006123 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006124 local_irq_restore(flags);
6125
6126 /*
6127 * some other cpu did the load balance for us.
6128 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306129 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6130 resched_cpu(env.dst_cpu);
6131
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006132 if (env.flags & LBF_NEED_BREAK) {
6133 env.flags &= ~LBF_NEED_BREAK;
6134 goto more_balance;
6135 }
6136
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306137 /*
6138 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6139 * us and move them to an alternate dst_cpu in our sched_group
6140 * where they can run. The upper limit on how many times we
6141 * iterate on same src_cpu is dependent on number of cpus in our
6142 * sched_group.
6143 *
6144 * This changes load balance semantics a bit on who can move
6145 * load to a given_cpu. In addition to the given_cpu itself
6146 * (or a ilb_cpu acting on its behalf where given_cpu is
6147 * nohz-idle), we now have balance_cpu in a position to move
6148 * load to given_cpu. In rare situations, this may cause
6149 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6150 * _independently_ and at _same_ time to move some load to
6151 * given_cpu) causing exceess load to be moved to given_cpu.
6152 * This however should not happen so much in practice and
6153 * moreover subsequent load balance cycles should correct the
6154 * excess load moved.
6155 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006156 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306157
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006158 /* Prevent to re-select dst_cpu via env's cpus */
6159 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6160
Michael Wang78feefc2012-08-06 16:41:59 +08006161 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306162 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006163 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306164 env.loop = 0;
6165 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006166
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306167 /*
6168 * Go back to "more_balance" rather than "redo" since we
6169 * need to continue with same src_cpu.
6170 */
6171 goto more_balance;
6172 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006173
Peter Zijlstra62633222013-08-19 12:41:09 +02006174 /*
6175 * We failed to reach balance because of affinity.
6176 */
6177 if (sd_parent) {
6178 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6179
6180 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6181 *group_imbalance = 1;
6182 } else if (*group_imbalance)
6183 *group_imbalance = 0;
6184 }
6185
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006186 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006187 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006188 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306189 if (!cpumask_empty(cpus)) {
6190 env.loop = 0;
6191 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006192 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306193 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006194 goto out_balanced;
6195 }
6196 }
6197
6198 if (!ld_moved) {
6199 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006200 /*
6201 * Increment the failure counter only on periodic balance.
6202 * We do not want newidle balance, which can be very
6203 * frequent, pollute the failure counter causing
6204 * excessive cache_hot migrations and active balances.
6205 */
6206 if (idle != CPU_NEWLY_IDLE)
6207 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006208
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006209 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006210 raw_spin_lock_irqsave(&busiest->lock, flags);
6211
Tejun Heo969c7922010-05-06 18:49:21 +02006212 /* don't kick the active_load_balance_cpu_stop,
6213 * if the curr task on busiest cpu can't be
6214 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006215 */
6216 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006217 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006218 raw_spin_unlock_irqrestore(&busiest->lock,
6219 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006220 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006221 goto out_one_pinned;
6222 }
6223
Tejun Heo969c7922010-05-06 18:49:21 +02006224 /*
6225 * ->active_balance synchronizes accesses to
6226 * ->active_balance_work. Once set, it's cleared
6227 * only after active load balance is finished.
6228 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006229 if (!busiest->active_balance) {
6230 busiest->active_balance = 1;
6231 busiest->push_cpu = this_cpu;
6232 active_balance = 1;
6233 }
6234 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006235
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006236 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006237 stop_one_cpu_nowait(cpu_of(busiest),
6238 active_load_balance_cpu_stop, busiest,
6239 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006240 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006241
6242 /*
6243 * We've kicked active balancing, reset the failure
6244 * counter.
6245 */
6246 sd->nr_balance_failed = sd->cache_nice_tries+1;
6247 }
6248 } else
6249 sd->nr_balance_failed = 0;
6250
6251 if (likely(!active_balance)) {
6252 /* We were unbalanced, so reset the balancing interval */
6253 sd->balance_interval = sd->min_interval;
6254 } else {
6255 /*
6256 * If we've begun active balancing, start to back off. This
6257 * case may not be covered by the all_pinned logic if there
6258 * is only 1 task on the busy runqueue (because we don't call
6259 * move_tasks).
6260 */
6261 if (sd->balance_interval < sd->max_interval)
6262 sd->balance_interval *= 2;
6263 }
6264
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006265 goto out;
6266
6267out_balanced:
6268 schedstat_inc(sd, lb_balanced[idle]);
6269
6270 sd->nr_balance_failed = 0;
6271
6272out_one_pinned:
6273 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006274 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006275 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006276 (sd->balance_interval < sd->max_interval))
6277 sd->balance_interval *= 2;
6278
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006279 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006280out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006281 return ld_moved;
6282}
6283
6284/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006285 * idle_balance is called by schedule() if this_cpu is about to become
6286 * idle. Attempts to pull tasks from other CPUs.
6287 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006288void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006289{
6290 struct sched_domain *sd;
6291 int pulled_task = 0;
6292 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006293 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006294
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006295 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006296
6297 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6298 return;
6299
Peter Zijlstraf492e122009-12-23 15:29:42 +01006300 /*
6301 * Drop the rq->lock, but keep IRQ/preempt disabled.
6302 */
6303 raw_spin_unlock(&this_rq->lock);
6304
Paul Turner48a16752012-10-04 13:18:31 +02006305 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006306 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006307 for_each_domain(this_cpu, sd) {
6308 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006309 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006310 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006311
6312 if (!(sd->flags & SD_LOAD_BALANCE))
6313 continue;
6314
Jason Low9bd721c2013-09-13 11:26:52 -07006315 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6316 break;
6317
Peter Zijlstraf492e122009-12-23 15:29:42 +01006318 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006319 t0 = sched_clock_cpu(this_cpu);
6320
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006321 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006322 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006323 sd, CPU_NEWLY_IDLE,
6324 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006325
6326 domain_cost = sched_clock_cpu(this_cpu) - t0;
6327 if (domain_cost > sd->max_newidle_lb_cost)
6328 sd->max_newidle_lb_cost = domain_cost;
6329
6330 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006331 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006332
6333 interval = msecs_to_jiffies(sd->balance_interval);
6334 if (time_after(next_balance, sd->last_balance + interval))
6335 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006336 if (pulled_task) {
6337 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006338 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006339 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006340 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006341 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006342
6343 raw_spin_lock(&this_rq->lock);
6344
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006345 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6346 /*
6347 * We are going idle. next_balance may be set based on
6348 * a busy processor. So reset next_balance.
6349 */
6350 this_rq->next_balance = next_balance;
6351 }
Jason Low9bd721c2013-09-13 11:26:52 -07006352
6353 if (curr_cost > this_rq->max_idle_balance_cost)
6354 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006355}
6356
6357/*
Tejun Heo969c7922010-05-06 18:49:21 +02006358 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6359 * running tasks off the busiest CPU onto idle CPUs. It requires at
6360 * least 1 task to be running on each physical CPU where possible, and
6361 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006362 */
Tejun Heo969c7922010-05-06 18:49:21 +02006363static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006364{
Tejun Heo969c7922010-05-06 18:49:21 +02006365 struct rq *busiest_rq = data;
6366 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006367 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006368 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006369 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006370
6371 raw_spin_lock_irq(&busiest_rq->lock);
6372
6373 /* make sure the requested cpu hasn't gone down in the meantime */
6374 if (unlikely(busiest_cpu != smp_processor_id() ||
6375 !busiest_rq->active_balance))
6376 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006377
6378 /* Is there any task to move? */
6379 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006380 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006381
6382 /*
6383 * This condition is "impossible", if it occurs
6384 * we need to fix it. Originally reported by
6385 * Bjorn Helgaas on a 128-cpu setup.
6386 */
6387 BUG_ON(busiest_rq == target_rq);
6388
6389 /* move a task from busiest_rq to target_rq */
6390 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006391
6392 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006393 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006394 for_each_domain(target_cpu, sd) {
6395 if ((sd->flags & SD_LOAD_BALANCE) &&
6396 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6397 break;
6398 }
6399
6400 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006401 struct lb_env env = {
6402 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006403 .dst_cpu = target_cpu,
6404 .dst_rq = target_rq,
6405 .src_cpu = busiest_rq->cpu,
6406 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006407 .idle = CPU_IDLE,
6408 };
6409
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006410 schedstat_inc(sd, alb_count);
6411
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006412 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006413 schedstat_inc(sd, alb_pushed);
6414 else
6415 schedstat_inc(sd, alb_failed);
6416 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006417 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006418 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006419out_unlock:
6420 busiest_rq->active_balance = 0;
6421 raw_spin_unlock_irq(&busiest_rq->lock);
6422 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006423}
6424
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006425#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006426/*
6427 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006428 * - When one of the busy CPUs notice that there may be an idle rebalancing
6429 * needed, they will kick the idle load balancer, which then does idle
6430 * load balancing for all the idle CPUs.
6431 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006432static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006433 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006434 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006435 unsigned long next_balance; /* in jiffy units */
6436} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006437
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006438static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006439{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006440 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006441
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006442 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6443 return ilb;
6444
6445 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006446}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006447
6448/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006449 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6450 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6451 * CPU (if there is one).
6452 */
6453static void nohz_balancer_kick(int cpu)
6454{
6455 int ilb_cpu;
6456
6457 nohz.next_balance++;
6458
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006459 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006460
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006461 if (ilb_cpu >= nr_cpu_ids)
6462 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006463
Suresh Siddhacd490c52011-12-06 11:26:34 -08006464 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006465 return;
6466 /*
6467 * Use smp_send_reschedule() instead of resched_cpu().
6468 * This way we generate a sched IPI on the target cpu which
6469 * is idle. And the softirq performing nohz idle load balance
6470 * will be run before returning from the IPI.
6471 */
6472 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006473 return;
6474}
6475
Alex Shic1cc0172012-09-10 15:10:58 +08006476static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006477{
6478 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6479 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6480 atomic_dec(&nohz.nr_cpus);
6481 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6482 }
6483}
6484
Suresh Siddha69e1e812011-12-01 17:07:33 -08006485static inline void set_cpu_sd_state_busy(void)
6486{
6487 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006488
Suresh Siddha69e1e812011-12-01 17:07:33 -08006489 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006490 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006491
6492 if (!sd || !sd->nohz_idle)
6493 goto unlock;
6494 sd->nohz_idle = 0;
6495
6496 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006497 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006498unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006499 rcu_read_unlock();
6500}
6501
6502void set_cpu_sd_state_idle(void)
6503{
6504 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006505
Suresh Siddha69e1e812011-12-01 17:07:33 -08006506 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006507 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006508
6509 if (!sd || sd->nohz_idle)
6510 goto unlock;
6511 sd->nohz_idle = 1;
6512
6513 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006514 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006515unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006516 rcu_read_unlock();
6517}
6518
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006519/*
Alex Shic1cc0172012-09-10 15:10:58 +08006520 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006521 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006522 */
Alex Shic1cc0172012-09-10 15:10:58 +08006523void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006524{
Suresh Siddha71325962012-01-19 18:28:57 -08006525 /*
6526 * If this cpu is going down, then nothing needs to be done.
6527 */
6528 if (!cpu_active(cpu))
6529 return;
6530
Alex Shic1cc0172012-09-10 15:10:58 +08006531 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6532 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006533
Alex Shic1cc0172012-09-10 15:10:58 +08006534 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6535 atomic_inc(&nohz.nr_cpus);
6536 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006537}
Suresh Siddha71325962012-01-19 18:28:57 -08006538
Paul Gortmaker0db06282013-06-19 14:53:51 -04006539static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006540 unsigned long action, void *hcpu)
6541{
6542 switch (action & ~CPU_TASKS_FROZEN) {
6543 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006544 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006545 return NOTIFY_OK;
6546 default:
6547 return NOTIFY_DONE;
6548 }
6549}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006550#endif
6551
6552static DEFINE_SPINLOCK(balancing);
6553
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006554/*
6555 * Scale the max load_balance interval with the number of CPUs in the system.
6556 * This trades load-balance latency on larger machines for less cross talk.
6557 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006558void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006559{
6560 max_load_balance_interval = HZ*num_online_cpus()/10;
6561}
6562
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006563/*
6564 * It checks each scheduling domain to see if it is due to be balanced,
6565 * and initiates a balancing operation if so.
6566 *
Libinb9b08532013-04-01 19:14:01 +08006567 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006568 */
6569static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6570{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006571 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006572 struct rq *rq = cpu_rq(cpu);
6573 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006574 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006575 /* Earliest time when we have to do rebalance again */
6576 unsigned long next_balance = jiffies + 60*HZ;
6577 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006578 int need_serialize, need_decay = 0;
6579 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006580
Paul Turner48a16752012-10-04 13:18:31 +02006581 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006582
Peter Zijlstradce840a2011-04-07 14:09:50 +02006583 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006584 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006585 /*
6586 * Decay the newidle max times here because this is a regular
6587 * visit to all the domains. Decay ~1% per second.
6588 */
6589 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6590 sd->max_newidle_lb_cost =
6591 (sd->max_newidle_lb_cost * 253) / 256;
6592 sd->next_decay_max_lb_cost = jiffies + HZ;
6593 need_decay = 1;
6594 }
6595 max_cost += sd->max_newidle_lb_cost;
6596
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006597 if (!(sd->flags & SD_LOAD_BALANCE))
6598 continue;
6599
Jason Lowf48627e2013-09-13 11:26:53 -07006600 /*
6601 * Stop the load balance at this level. There is another
6602 * CPU in our sched group which is doing load balancing more
6603 * actively.
6604 */
6605 if (!continue_balancing) {
6606 if (need_decay)
6607 continue;
6608 break;
6609 }
6610
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006611 interval = sd->balance_interval;
6612 if (idle != CPU_IDLE)
6613 interval *= sd->busy_factor;
6614
6615 /* scale ms to jiffies */
6616 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006617 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006618
6619 need_serialize = sd->flags & SD_SERIALIZE;
6620
6621 if (need_serialize) {
6622 if (!spin_trylock(&balancing))
6623 goto out;
6624 }
6625
6626 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006627 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006628 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006629 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006630 * env->dst_cpu, so we can't know our idle
6631 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006632 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006633 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006634 }
6635 sd->last_balance = jiffies;
6636 }
6637 if (need_serialize)
6638 spin_unlock(&balancing);
6639out:
6640 if (time_after(next_balance, sd->last_balance + interval)) {
6641 next_balance = sd->last_balance + interval;
6642 update_next_balance = 1;
6643 }
Jason Lowf48627e2013-09-13 11:26:53 -07006644 }
6645 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006646 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006647 * Ensure the rq-wide value also decays but keep it at a
6648 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006649 */
Jason Lowf48627e2013-09-13 11:26:53 -07006650 rq->max_idle_balance_cost =
6651 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006652 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006653 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006654
6655 /*
6656 * next_balance will be updated only when there is a need.
6657 * When the cpu is attached to null domain for ex, it will not be
6658 * updated.
6659 */
6660 if (likely(update_next_balance))
6661 rq->next_balance = next_balance;
6662}
6663
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006664#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006665/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006666 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006667 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6668 */
6669static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6670{
6671 struct rq *this_rq = cpu_rq(this_cpu);
6672 struct rq *rq;
6673 int balance_cpu;
6674
Suresh Siddha1c792db2011-12-01 17:07:32 -08006675 if (idle != CPU_IDLE ||
6676 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6677 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006678
6679 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006680 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006681 continue;
6682
6683 /*
6684 * If this cpu gets work to do, stop the load balancing
6685 * work being done for other cpus. Next load
6686 * balancing owner will pick it up.
6687 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006688 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006689 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006690
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006691 rq = cpu_rq(balance_cpu);
6692
6693 raw_spin_lock_irq(&rq->lock);
6694 update_rq_clock(rq);
6695 update_idle_cpu_load(rq);
6696 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006697
6698 rebalance_domains(balance_cpu, CPU_IDLE);
6699
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006700 if (time_after(this_rq->next_balance, rq->next_balance))
6701 this_rq->next_balance = rq->next_balance;
6702 }
6703 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006704end:
6705 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006706}
6707
6708/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006709 * Current heuristic for kicking the idle load balancer in the presence
6710 * of an idle cpu is the system.
6711 * - This rq has more than one task.
6712 * - At any scheduler domain level, this cpu's scheduler group has multiple
6713 * busy cpu's exceeding the group's power.
6714 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6715 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006716 */
6717static inline int nohz_kick_needed(struct rq *rq, int cpu)
6718{
6719 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006720 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006721
Suresh Siddha1c792db2011-12-01 17:07:32 -08006722 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006723 return 0;
6724
Suresh Siddha1c792db2011-12-01 17:07:32 -08006725 /*
6726 * We may be recently in ticked or tickless idle mode. At the first
6727 * busy tick after returning from idle, we will update the busy stats.
6728 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006729 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006730 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006731
6732 /*
6733 * None are in tickless mode and hence no need for NOHZ idle load
6734 * balancing.
6735 */
6736 if (likely(!atomic_read(&nohz.nr_cpus)))
6737 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006738
6739 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006740 return 0;
6741
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006742 if (rq->nr_running >= 2)
6743 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006744
Peter Zijlstra067491b2011-12-07 14:32:08 +01006745 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006746 for_each_domain(cpu, sd) {
6747 struct sched_group *sg = sd->groups;
6748 struct sched_group_power *sgp = sg->sgp;
6749 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006750
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006751 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006752 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006753
6754 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6755 && (cpumask_first_and(nohz.idle_cpus_mask,
6756 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006757 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006758
6759 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6760 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006761 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006762 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006763 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006764
6765need_kick_unlock:
6766 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006767need_kick:
6768 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006769}
6770#else
6771static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6772#endif
6773
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006774/*
6775 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006776 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006777 */
6778static void run_rebalance_domains(struct softirq_action *h)
6779{
6780 int this_cpu = smp_processor_id();
6781 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006782 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006783 CPU_IDLE : CPU_NOT_IDLE;
6784
6785 rebalance_domains(this_cpu, idle);
6786
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006787 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006788 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006789 * balancing on behalf of the other idle cpus whose ticks are
6790 * stopped.
6791 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006792 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006793}
6794
6795static inline int on_null_domain(int cpu)
6796{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006797 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006798}
6799
6800/*
6801 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006802 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006803void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006804{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006805 /* Don't need to rebalance while attached to NULL domain */
6806 if (time_after_eq(jiffies, rq->next_balance) &&
6807 likely(!on_null_domain(cpu)))
6808 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006809#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006810 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006811 nohz_balancer_kick(cpu);
6812#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006813}
6814
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006815static void rq_online_fair(struct rq *rq)
6816{
6817 update_sysctl();
6818}
6819
6820static void rq_offline_fair(struct rq *rq)
6821{
6822 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006823
6824 /* Ensure any throttled groups are reachable by pick_next_task */
6825 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006826}
6827
Dhaval Giani55e12e52008-06-24 23:39:43 +05306828#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006829
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006830/*
6831 * scheduler tick hitting a task of our scheduling class:
6832 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006833static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006834{
6835 struct cfs_rq *cfs_rq;
6836 struct sched_entity *se = &curr->se;
6837
6838 for_each_sched_entity(se) {
6839 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006840 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006841 }
Ben Segall18bf2802012-10-04 12:51:20 +02006842
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006843 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006844 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006845
Ben Segall18bf2802012-10-04 12:51:20 +02006846 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006847}
6848
6849/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006850 * called on fork with the child task as argument from the parent's context
6851 * - child not yet on the tasklist
6852 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006853 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006854static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006855{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006856 struct cfs_rq *cfs_rq;
6857 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006858 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006859 struct rq *rq = this_rq();
6860 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006861
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006862 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006863
Peter Zijlstra861d0342010-08-19 13:31:43 +02006864 update_rq_clock(rq);
6865
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006866 cfs_rq = task_cfs_rq(current);
6867 curr = cfs_rq->curr;
6868
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006869 /*
6870 * Not only the cpu but also the task_group of the parent might have
6871 * been changed after parent->se.parent,cfs_rq were copied to
6872 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6873 * of child point to valid ones.
6874 */
6875 rcu_read_lock();
6876 __set_task_cpu(p, this_cpu);
6877 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006878
Ting Yang7109c442007-08-28 12:53:24 +02006879 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006880
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006881 if (curr)
6882 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006883 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006884
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006885 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006886 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006887 * Upon rescheduling, sched_class::put_prev_task() will place
6888 * 'current' within the tree based on its new key value.
6889 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006890 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306891 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006892 }
6893
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006894 se->vruntime -= cfs_rq->min_vruntime;
6895
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006896 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006897}
6898
Steven Rostedtcb469842008-01-25 21:08:22 +01006899/*
6900 * Priority of the task has changed. Check to see if we preempt
6901 * the current task.
6902 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006903static void
6904prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006905{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006906 if (!p->se.on_rq)
6907 return;
6908
Steven Rostedtcb469842008-01-25 21:08:22 +01006909 /*
6910 * Reschedule if we are currently running on this runqueue and
6911 * our priority decreased, or if we are not currently running on
6912 * this runqueue and our priority is higher than the current's
6913 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006914 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006915 if (p->prio > oldprio)
6916 resched_task(rq->curr);
6917 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006918 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006919}
6920
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006921static void switched_from_fair(struct rq *rq, struct task_struct *p)
6922{
6923 struct sched_entity *se = &p->se;
6924 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6925
6926 /*
6927 * Ensure the task's vruntime is normalized, so that when its
6928 * switched back to the fair class the enqueue_entity(.flags=0) will
6929 * do the right thing.
6930 *
6931 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6932 * have normalized the vruntime, if it was !on_rq, then only when
6933 * the task is sleeping will it still have non-normalized vruntime.
6934 */
6935 if (!se->on_rq && p->state != TASK_RUNNING) {
6936 /*
6937 * Fix up our vruntime so that the current sleep doesn't
6938 * cause 'unlimited' sleep bonus.
6939 */
6940 place_entity(cfs_rq, se, 0);
6941 se->vruntime -= cfs_rq->min_vruntime;
6942 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006943
Alex Shi141965c2013-06-26 13:05:39 +08006944#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006945 /*
6946 * Remove our load from contribution when we leave sched_fair
6947 * and ensure we don't carry in an old decay_count if we
6948 * switch back.
6949 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006950 if (se->avg.decay_count) {
6951 __synchronize_entity_decay(se);
6952 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006953 }
6954#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006955}
6956
Steven Rostedtcb469842008-01-25 21:08:22 +01006957/*
6958 * We switched to the sched_fair class.
6959 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006960static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006961{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006962 if (!p->se.on_rq)
6963 return;
6964
Steven Rostedtcb469842008-01-25 21:08:22 +01006965 /*
6966 * We were most likely switched from sched_rt, so
6967 * kick off the schedule if running, otherwise just see
6968 * if we can still preempt the current task.
6969 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006970 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006971 resched_task(rq->curr);
6972 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006973 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006974}
6975
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006976/* Account for a task changing its policy or group.
6977 *
6978 * This routine is mostly called to set cfs_rq->curr field when a task
6979 * migrates between groups/classes.
6980 */
6981static void set_curr_task_fair(struct rq *rq)
6982{
6983 struct sched_entity *se = &rq->curr->se;
6984
Paul Turnerec12cb72011-07-21 09:43:30 -07006985 for_each_sched_entity(se) {
6986 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6987
6988 set_next_entity(cfs_rq, se);
6989 /* ensure bandwidth has been allocated on our new cfs_rq */
6990 account_cfs_rq_runtime(cfs_rq, 0);
6991 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006992}
6993
Peter Zijlstra029632f2011-10-25 10:00:11 +02006994void init_cfs_rq(struct cfs_rq *cfs_rq)
6995{
6996 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006997 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6998#ifndef CONFIG_64BIT
6999 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7000#endif
Alex Shi141965c2013-06-26 13:05:39 +08007001#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007002 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007003 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007004#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007005}
7006
Peter Zijlstra810b3812008-02-29 15:21:01 -05007007#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007008static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007009{
Paul Turneraff3e492012-10-04 13:18:30 +02007010 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007011 /*
7012 * If the task was not on the rq at the time of this cgroup movement
7013 * it must have been asleep, sleeping tasks keep their ->vruntime
7014 * absolute on their old rq until wakeup (needed for the fair sleeper
7015 * bonus in place_entity()).
7016 *
7017 * If it was on the rq, we've just 'preempted' it, which does convert
7018 * ->vruntime to a relative base.
7019 *
7020 * Make sure both cases convert their relative position when migrating
7021 * to another cgroup's rq. This does somewhat interfere with the
7022 * fair sleeper stuff for the first placement, but who cares.
7023 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007024 /*
7025 * When !on_rq, vruntime of the task has usually NOT been normalized.
7026 * But there are some cases where it has already been normalized:
7027 *
7028 * - Moving a forked child which is waiting for being woken up by
7029 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007030 * - Moving a task which has been woken up by try_to_wake_up() and
7031 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007032 *
7033 * To prevent boost or penalty in the new cfs_rq caused by delta
7034 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7035 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007036 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007037 on_rq = 1;
7038
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007039 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007040 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7041 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007042 if (!on_rq) {
7043 cfs_rq = cfs_rq_of(&p->se);
7044 p->se.vruntime += cfs_rq->min_vruntime;
7045#ifdef CONFIG_SMP
7046 /*
7047 * migrate_task_rq_fair() will have removed our previous
7048 * contribution, but we must synchronize for ongoing future
7049 * decay.
7050 */
7051 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7052 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7053#endif
7054 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007055}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007056
7057void free_fair_sched_group(struct task_group *tg)
7058{
7059 int i;
7060
7061 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7062
7063 for_each_possible_cpu(i) {
7064 if (tg->cfs_rq)
7065 kfree(tg->cfs_rq[i]);
7066 if (tg->se)
7067 kfree(tg->se[i]);
7068 }
7069
7070 kfree(tg->cfs_rq);
7071 kfree(tg->se);
7072}
7073
7074int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7075{
7076 struct cfs_rq *cfs_rq;
7077 struct sched_entity *se;
7078 int i;
7079
7080 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7081 if (!tg->cfs_rq)
7082 goto err;
7083 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7084 if (!tg->se)
7085 goto err;
7086
7087 tg->shares = NICE_0_LOAD;
7088
7089 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7090
7091 for_each_possible_cpu(i) {
7092 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7093 GFP_KERNEL, cpu_to_node(i));
7094 if (!cfs_rq)
7095 goto err;
7096
7097 se = kzalloc_node(sizeof(struct sched_entity),
7098 GFP_KERNEL, cpu_to_node(i));
7099 if (!se)
7100 goto err_free_rq;
7101
7102 init_cfs_rq(cfs_rq);
7103 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7104 }
7105
7106 return 1;
7107
7108err_free_rq:
7109 kfree(cfs_rq);
7110err:
7111 return 0;
7112}
7113
7114void unregister_fair_sched_group(struct task_group *tg, int cpu)
7115{
7116 struct rq *rq = cpu_rq(cpu);
7117 unsigned long flags;
7118
7119 /*
7120 * Only empty task groups can be destroyed; so we can speculatively
7121 * check on_list without danger of it being re-added.
7122 */
7123 if (!tg->cfs_rq[cpu]->on_list)
7124 return;
7125
7126 raw_spin_lock_irqsave(&rq->lock, flags);
7127 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7128 raw_spin_unlock_irqrestore(&rq->lock, flags);
7129}
7130
7131void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7132 struct sched_entity *se, int cpu,
7133 struct sched_entity *parent)
7134{
7135 struct rq *rq = cpu_rq(cpu);
7136
7137 cfs_rq->tg = tg;
7138 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007139 init_cfs_rq_runtime(cfs_rq);
7140
7141 tg->cfs_rq[cpu] = cfs_rq;
7142 tg->se[cpu] = se;
7143
7144 /* se could be NULL for root_task_group */
7145 if (!se)
7146 return;
7147
7148 if (!parent)
7149 se->cfs_rq = &rq->cfs;
7150 else
7151 se->cfs_rq = parent->my_q;
7152
7153 se->my_q = cfs_rq;
7154 update_load_set(&se->load, 0);
7155 se->parent = parent;
7156}
7157
7158static DEFINE_MUTEX(shares_mutex);
7159
7160int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7161{
7162 int i;
7163 unsigned long flags;
7164
7165 /*
7166 * We can't change the weight of the root cgroup.
7167 */
7168 if (!tg->se[0])
7169 return -EINVAL;
7170
7171 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7172
7173 mutex_lock(&shares_mutex);
7174 if (tg->shares == shares)
7175 goto done;
7176
7177 tg->shares = shares;
7178 for_each_possible_cpu(i) {
7179 struct rq *rq = cpu_rq(i);
7180 struct sched_entity *se;
7181
7182 se = tg->se[i];
7183 /* Propagate contribution to hierarchy */
7184 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007185
7186 /* Possible calls to update_curr() need rq clock */
7187 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007188 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007189 update_cfs_shares(group_cfs_rq(se));
7190 raw_spin_unlock_irqrestore(&rq->lock, flags);
7191 }
7192
7193done:
7194 mutex_unlock(&shares_mutex);
7195 return 0;
7196}
7197#else /* CONFIG_FAIR_GROUP_SCHED */
7198
7199void free_fair_sched_group(struct task_group *tg) { }
7200
7201int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7202{
7203 return 1;
7204}
7205
7206void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7207
7208#endif /* CONFIG_FAIR_GROUP_SCHED */
7209
Peter Zijlstra810b3812008-02-29 15:21:01 -05007210
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007211static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007212{
7213 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007214 unsigned int rr_interval = 0;
7215
7216 /*
7217 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7218 * idle runqueue:
7219 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007220 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007221 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007222
7223 return rr_interval;
7224}
7225
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007226/*
7227 * All the scheduling class methods:
7228 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007229const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007230 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007231 .enqueue_task = enqueue_task_fair,
7232 .dequeue_task = dequeue_task_fair,
7233 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007234 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007235
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007236 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007237
7238 .pick_next_task = pick_next_task_fair,
7239 .put_prev_task = put_prev_task_fair,
7240
Peter Williams681f3e62007-10-24 18:23:51 +02007241#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007242 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007243 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007244
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007245 .rq_online = rq_online_fair,
7246 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007247
7248 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007249#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007250
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007251 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007252 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007253 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007254
7255 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007256 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007257 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007258
Peter Williams0d721ce2009-09-21 01:31:53 +00007259 .get_rr_interval = get_rr_interval_fair,
7260
Peter Zijlstra810b3812008-02-29 15:21:01 -05007261#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007262 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007263#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007264};
7265
7266#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007267void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007268{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007269 struct cfs_rq *cfs_rq;
7270
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007271 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007272 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007273 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007274 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007275}
7276#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007277
7278__init void init_sched_fair_class(void)
7279{
7280#ifdef CONFIG_SMP
7281 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7282
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007283#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007284 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007285 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007286 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007287#endif
7288#endif /* SMP */
7289
7290}