| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | *   This program is free software; you can redistribute it and/or | 
|  | 5 | *   modify it under the terms of the GNU General Public License | 
|  | 6 | *   as published by the Free Software Foundation, version 2. | 
|  | 7 | * | 
|  | 8 | *   This program is distributed in the hope that it will be useful, but | 
|  | 9 | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 10 | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | 11 | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | 12 | *   more details. | 
|  | 13 | * | 
|  | 14 | * This file contains the functions and defines necessary to modify and use | 
|  | 15 | * the TILE page table tree. | 
|  | 16 | */ | 
|  | 17 |  | 
|  | 18 | #ifndef _ASM_TILE_PGTABLE_H | 
|  | 19 | #define _ASM_TILE_PGTABLE_H | 
|  | 20 |  | 
|  | 21 | #include <hv/hypervisor.h> | 
|  | 22 |  | 
|  | 23 | #ifndef __ASSEMBLY__ | 
|  | 24 |  | 
|  | 25 | #include <linux/bitops.h> | 
|  | 26 | #include <linux/threads.h> | 
|  | 27 | #include <linux/slab.h> | 
|  | 28 | #include <linux/list.h> | 
|  | 29 | #include <linux/spinlock.h> | 
|  | 30 | #include <asm/processor.h> | 
|  | 31 | #include <asm/fixmap.h> | 
|  | 32 | #include <asm/system.h> | 
|  | 33 |  | 
|  | 34 | struct mm_struct; | 
|  | 35 | struct vm_area_struct; | 
|  | 36 |  | 
|  | 37 | /* | 
|  | 38 | * ZERO_PAGE is a global shared page that is always zero: used | 
|  | 39 | * for zero-mapped memory areas etc.. | 
|  | 40 | */ | 
|  | 41 | extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; | 
|  | 42 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | 
|  | 43 |  | 
|  | 44 | extern pgd_t swapper_pg_dir[]; | 
|  | 45 | extern pgprot_t swapper_pgprot; | 
|  | 46 | extern struct kmem_cache *pgd_cache; | 
|  | 47 | extern spinlock_t pgd_lock; | 
|  | 48 | extern struct list_head pgd_list; | 
|  | 49 |  | 
|  | 50 | /* | 
|  | 51 | * The very last slots in the pgd_t are for addresses unusable by Linux | 
|  | 52 | * (pgd_addr_invalid() returns true).  So we use them for the list structure. | 
|  | 53 | * The x86 code we are modelled on uses the page->private/index fields | 
|  | 54 | * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since | 
|  | 55 | * our pgds are so much smaller than a page, it seems a waste to | 
|  | 56 | * spend a whole page on each pgd. | 
|  | 57 | */ | 
|  | 58 | #define PGD_LIST_OFFSET \ | 
|  | 59 | ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head)) | 
|  | 60 | #define pgd_to_list(pgd) \ | 
|  | 61 | ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET)) | 
|  | 62 | #define list_to_pgd(list) \ | 
|  | 63 | ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET)) | 
|  | 64 |  | 
|  | 65 | extern void pgtable_cache_init(void); | 
|  | 66 | extern void paging_init(void); | 
|  | 67 | extern void set_page_homes(void); | 
|  | 68 |  | 
|  | 69 | #define FIRST_USER_ADDRESS	0 | 
|  | 70 |  | 
|  | 71 | #define _PAGE_PRESENT           HV_PTE_PRESENT | 
|  | 72 | #define _PAGE_HUGE_PAGE         HV_PTE_PAGE | 
|  | 73 | #define _PAGE_READABLE          HV_PTE_READABLE | 
|  | 74 | #define _PAGE_WRITABLE          HV_PTE_WRITABLE | 
|  | 75 | #define _PAGE_EXECUTABLE        HV_PTE_EXECUTABLE | 
|  | 76 | #define _PAGE_ACCESSED          HV_PTE_ACCESSED | 
|  | 77 | #define _PAGE_DIRTY             HV_PTE_DIRTY | 
|  | 78 | #define _PAGE_GLOBAL            HV_PTE_GLOBAL | 
|  | 79 | #define _PAGE_USER              HV_PTE_USER | 
|  | 80 |  | 
|  | 81 | /* | 
|  | 82 | * All the "standard" bits.  Cache-control bits are managed elsewhere. | 
|  | 83 | * This is used to test for valid level-2 page table pointers by checking | 
|  | 84 | * all the bits, and to mask away the cache control bits for mprotect. | 
|  | 85 | */ | 
|  | 86 | #define _PAGE_ALL (\ | 
|  | 87 | _PAGE_PRESENT | \ | 
|  | 88 | _PAGE_HUGE_PAGE | \ | 
|  | 89 | _PAGE_READABLE | \ | 
|  | 90 | _PAGE_WRITABLE | \ | 
|  | 91 | _PAGE_EXECUTABLE | \ | 
|  | 92 | _PAGE_ACCESSED | \ | 
|  | 93 | _PAGE_DIRTY | \ | 
|  | 94 | _PAGE_GLOBAL | \ | 
|  | 95 | _PAGE_USER \ | 
|  | 96 | ) | 
|  | 97 |  | 
|  | 98 | #define PAGE_NONE \ | 
|  | 99 | __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) | 
|  | 100 | #define PAGE_SHARED \ | 
|  | 101 | __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ | 
|  | 102 | _PAGE_USER | _PAGE_ACCESSED) | 
|  | 103 |  | 
|  | 104 | #define PAGE_SHARED_EXEC \ | 
|  | 105 | __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ | 
|  | 106 | _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED) | 
|  | 107 | #define PAGE_COPY_NOEXEC \ | 
|  | 108 | __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) | 
|  | 109 | #define PAGE_COPY_EXEC \ | 
|  | 110 | __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ | 
|  | 111 | _PAGE_READABLE | _PAGE_EXECUTABLE) | 
|  | 112 | #define PAGE_COPY \ | 
|  | 113 | PAGE_COPY_NOEXEC | 
|  | 114 | #define PAGE_READONLY \ | 
|  | 115 | __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) | 
|  | 116 | #define PAGE_READONLY_EXEC \ | 
|  | 117 | __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ | 
|  | 118 | _PAGE_READABLE | _PAGE_EXECUTABLE) | 
|  | 119 |  | 
|  | 120 | #define _PAGE_KERNEL_RO \ | 
|  | 121 | (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED) | 
|  | 122 | #define _PAGE_KERNEL \ | 
|  | 123 | (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY) | 
|  | 124 | #define _PAGE_KERNEL_EXEC       (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE) | 
|  | 125 |  | 
|  | 126 | #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL) | 
|  | 127 | #define PAGE_KERNEL_RO		__pgprot(_PAGE_KERNEL_RO) | 
|  | 128 | #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL_EXEC) | 
|  | 129 |  | 
|  | 130 | #define page_to_kpgprot(p) PAGE_KERNEL | 
|  | 131 |  | 
|  | 132 | /* | 
|  | 133 | * We could tighten these up, but for now writable or executable | 
|  | 134 | * implies readable. | 
|  | 135 | */ | 
|  | 136 | #define __P000	PAGE_NONE | 
|  | 137 | #define __P001	PAGE_READONLY | 
|  | 138 | #define __P010	PAGE_COPY      /* this is write-only, which we won't support */ | 
|  | 139 | #define __P011	PAGE_COPY | 
|  | 140 | #define __P100	PAGE_READONLY_EXEC | 
|  | 141 | #define __P101	PAGE_READONLY_EXEC | 
|  | 142 | #define __P110	PAGE_COPY_EXEC | 
|  | 143 | #define __P111	PAGE_COPY_EXEC | 
|  | 144 |  | 
|  | 145 | #define __S000	PAGE_NONE | 
|  | 146 | #define __S001	PAGE_READONLY | 
|  | 147 | #define __S010	PAGE_SHARED | 
|  | 148 | #define __S011	PAGE_SHARED | 
|  | 149 | #define __S100	PAGE_READONLY_EXEC | 
|  | 150 | #define __S101	PAGE_READONLY_EXEC | 
|  | 151 | #define __S110	PAGE_SHARED_EXEC | 
|  | 152 | #define __S111	PAGE_SHARED_EXEC | 
|  | 153 |  | 
|  | 154 | /* | 
|  | 155 | * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT | 
|  | 156 | * and PAGE_HUGE_PAGE, which must be one and zero, respectively. | 
|  | 157 | * We set the ignored bits to zero. | 
|  | 158 | */ | 
|  | 159 | #define _PAGE_TABLE     _PAGE_PRESENT | 
|  | 160 |  | 
|  | 161 | /* Inherit the caching flags from the old protection bits. */ | 
|  | 162 | #define pgprot_modify(oldprot, newprot) \ | 
|  | 163 | (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val } | 
|  | 164 |  | 
|  | 165 | /* Just setting the PFN to zero suffices. */ | 
|  | 166 | #define pte_pgprot(x) hv_pte_set_pfn((x), 0) | 
|  | 167 |  | 
|  | 168 | /* | 
|  | 169 | * For PTEs and PDEs, we must clear the Present bit first when | 
|  | 170 | * clearing a page table entry, so clear the bottom half first and | 
|  | 171 | * enforce ordering with a barrier. | 
|  | 172 | */ | 
|  | 173 | static inline void __pte_clear(pte_t *ptep) | 
|  | 174 | { | 
|  | 175 | #ifdef __tilegx__ | 
|  | 176 | ptep->val = 0; | 
|  | 177 | #else | 
|  | 178 | u32 *tmp = (u32 *)ptep; | 
|  | 179 | tmp[0] = 0; | 
|  | 180 | barrier(); | 
|  | 181 | tmp[1] = 0; | 
|  | 182 | #endif | 
|  | 183 | } | 
|  | 184 | #define pte_clear(mm, addr, ptep) __pte_clear(ptep) | 
|  | 185 |  | 
|  | 186 | /* | 
|  | 187 | * The following only work if pte_present() is true. | 
|  | 188 | * Undefined behaviour if not.. | 
|  | 189 | */ | 
|  | 190 | #define pte_present hv_pte_get_present | 
|  | 191 | #define pte_user hv_pte_get_user | 
|  | 192 | #define pte_read hv_pte_get_readable | 
|  | 193 | #define pte_dirty hv_pte_get_dirty | 
|  | 194 | #define pte_young hv_pte_get_accessed | 
|  | 195 | #define pte_write hv_pte_get_writable | 
|  | 196 | #define pte_exec hv_pte_get_executable | 
|  | 197 | #define pte_huge hv_pte_get_page | 
|  | 198 | #define pte_rdprotect hv_pte_clear_readable | 
|  | 199 | #define pte_exprotect hv_pte_clear_executable | 
|  | 200 | #define pte_mkclean hv_pte_clear_dirty | 
|  | 201 | #define pte_mkold hv_pte_clear_accessed | 
|  | 202 | #define pte_wrprotect hv_pte_clear_writable | 
|  | 203 | #define pte_mksmall hv_pte_clear_page | 
|  | 204 | #define pte_mkread hv_pte_set_readable | 
|  | 205 | #define pte_mkexec hv_pte_set_executable | 
|  | 206 | #define pte_mkdirty hv_pte_set_dirty | 
|  | 207 | #define pte_mkyoung hv_pte_set_accessed | 
|  | 208 | #define pte_mkwrite hv_pte_set_writable | 
|  | 209 | #define pte_mkhuge hv_pte_set_page | 
|  | 210 |  | 
|  | 211 | #define pte_special(pte) 0 | 
|  | 212 | #define pte_mkspecial(pte) (pte) | 
|  | 213 |  | 
|  | 214 | /* | 
|  | 215 | * Use some spare bits in the PTE for user-caching tags. | 
|  | 216 | */ | 
|  | 217 | #define pte_set_forcecache hv_pte_set_client0 | 
|  | 218 | #define pte_get_forcecache hv_pte_get_client0 | 
|  | 219 | #define pte_clear_forcecache hv_pte_clear_client0 | 
|  | 220 | #define pte_set_anyhome hv_pte_set_client1 | 
|  | 221 | #define pte_get_anyhome hv_pte_get_client1 | 
|  | 222 | #define pte_clear_anyhome hv_pte_clear_client1 | 
|  | 223 |  | 
|  | 224 | /* | 
|  | 225 | * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved. | 
|  | 226 | */ | 
|  | 227 | #define pte_migrating hv_pte_get_migrating | 
|  | 228 | #define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x)) | 
|  | 229 | #define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x)) | 
|  | 230 |  | 
|  | 231 | #define pte_ERROR(e) \ | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 232 | pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e)) | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 233 | #define pgd_ERROR(e) \ | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 234 | pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e)) | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 235 |  | 
|  | 236 | /* | 
|  | 237 | * set_pte_order() sets the given PTE and also sanity-checks the | 
|  | 238 | * requested PTE against the page homecaching.  Unspecified parts | 
|  | 239 | * of the PTE are filled in when it is written to memory, i.e. all | 
|  | 240 | * caching attributes if "!forcecache", or the home cpu if "anyhome". | 
|  | 241 | */ | 
|  | 242 | extern void set_pte_order(pte_t *ptep, pte_t pte, int order); | 
|  | 243 |  | 
|  | 244 | #define set_pte(ptep, pteval) set_pte_order(ptep, pteval, 0) | 
|  | 245 | #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) | 
|  | 246 | #define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval) | 
|  | 247 |  | 
|  | 248 | #define pte_page(x)		pfn_to_page(pte_pfn(x)) | 
|  | 249 |  | 
|  | 250 | static inline int pte_none(pte_t pte) | 
|  | 251 | { | 
|  | 252 | return !pte.val; | 
|  | 253 | } | 
|  | 254 |  | 
|  | 255 | static inline unsigned long pte_pfn(pte_t pte) | 
|  | 256 | { | 
|  | 257 | return hv_pte_get_pfn(pte); | 
|  | 258 | } | 
|  | 259 |  | 
|  | 260 | /* Set or get the remote cache cpu in a pgprot with remote caching. */ | 
|  | 261 | extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu); | 
|  | 262 | extern int get_remote_cache_cpu(pgprot_t prot); | 
|  | 263 |  | 
|  | 264 | static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) | 
|  | 265 | { | 
|  | 266 | return hv_pte_set_pfn(prot, pfn); | 
|  | 267 | } | 
|  | 268 |  | 
|  | 269 | /* Support for priority mappings. */ | 
|  | 270 | extern void start_mm_caching(struct mm_struct *mm); | 
|  | 271 | extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next); | 
|  | 272 |  | 
|  | 273 | /* | 
|  | 274 | * Support non-linear file mappings (see sys_remap_file_pages). | 
|  | 275 | * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the | 
|  | 276 | * file offset in the 32 high bits. | 
|  | 277 | */ | 
|  | 278 | #define _PAGE_FILE        HV_PTE_CLIENT1 | 
|  | 279 | #define PTE_FILE_MAX_BITS 32 | 
|  | 280 | #define pte_file(pte)     (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte)) | 
|  | 281 | #define pte_to_pgoff(pte) ((pte).val >> 32) | 
|  | 282 | #define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE }) | 
|  | 283 |  | 
|  | 284 | /* | 
|  | 285 | * Encode and de-code a swap entry (see <linux/swapops.h>). | 
|  | 286 | * We put the swap file type+offset in the 32 high bits; | 
|  | 287 | * I believe we can just leave the low bits clear. | 
|  | 288 | */ | 
|  | 289 | #define __swp_type(swp)		((swp).val & 0x1f) | 
|  | 290 | #define __swp_offset(swp)	((swp).val >> 5) | 
|  | 291 | #define __swp_entry(type, off)	((swp_entry_t) { (type) | ((off) << 5) }) | 
|  | 292 | #define __pte_to_swp_entry(pte)	((swp_entry_t) { (pte).val >> 32 }) | 
|  | 293 | #define __swp_entry_to_pte(swp)	((pte_t) { (((long long) ((swp).val)) << 32) }) | 
|  | 294 |  | 
|  | 295 | /* | 
|  | 296 | * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); | 
|  | 297 | * | 
|  | 298 | *  dst - pointer to pgd range anwhere on a pgd page | 
|  | 299 | *  src - "" | 
|  | 300 | *  count - the number of pgds to copy. | 
|  | 301 | * | 
|  | 302 | * dst and src can be on the same page, but the range must not overlap, | 
|  | 303 | * and must not cross a page boundary. | 
|  | 304 | */ | 
|  | 305 | static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) | 
|  | 306 | { | 
|  | 307 | memcpy(dst, src, count * sizeof(pgd_t)); | 
|  | 308 | } | 
|  | 309 |  | 
|  | 310 | /* | 
|  | 311 | * Conversion functions: convert a page and protection to a page entry, | 
|  | 312 | * and a page entry and page directory to the page they refer to. | 
|  | 313 | */ | 
|  | 314 |  | 
|  | 315 | #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot)) | 
|  | 316 |  | 
|  | 317 | /* | 
|  | 318 | * If we are doing an mprotect(), just accept the new vma->vm_page_prot | 
|  | 319 | * value and combine it with the PFN from the old PTE to get a new PTE. | 
|  | 320 | */ | 
|  | 321 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
|  | 322 | { | 
|  | 323 | return pfn_pte(hv_pte_get_pfn(pte), newprot); | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | /* | 
|  | 327 | * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] | 
|  | 328 | * | 
|  | 329 | * This macro returns the index of the entry in the pgd page which would | 
|  | 330 | * control the given virtual address. | 
|  | 331 | */ | 
|  | 332 | #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) | 
|  | 333 |  | 
|  | 334 | /* | 
|  | 335 | * pgd_offset() returns a (pgd_t *) | 
|  | 336 | * pgd_index() is used get the offset into the pgd page's array of pgd_t's. | 
|  | 337 | */ | 
|  | 338 | #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) | 
|  | 339 |  | 
|  | 340 | /* | 
|  | 341 | * A shortcut which implies the use of the kernel's pgd, instead | 
|  | 342 | * of a process's. | 
|  | 343 | */ | 
|  | 344 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | 
|  | 345 |  | 
|  | 346 | #if defined(CONFIG_HIGHPTE) | 
|  | 347 | extern pte_t *_pte_offset_map(pmd_t *, unsigned long address, enum km_type); | 
|  | 348 | #define pte_offset_map(dir, address) \ | 
|  | 349 | _pte_offset_map(dir, address, KM_PTE0) | 
|  | 350 | #define pte_offset_map_nested(dir, address) \ | 
|  | 351 | _pte_offset_map(dir, address, KM_PTE1) | 
|  | 352 | #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) | 
|  | 353 | #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) | 
|  | 354 | #else | 
|  | 355 | #define pte_offset_map(dir, address) pte_offset_kernel(dir, address) | 
|  | 356 | #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) | 
|  | 357 | #define pte_unmap(pte) do { } while (0) | 
|  | 358 | #define pte_unmap_nested(pte) do { } while (0) | 
|  | 359 | #endif | 
|  | 360 |  | 
|  | 361 | /* Clear a non-executable kernel PTE and flush it from the TLB. */ | 
|  | 362 | #define kpte_clear_flush(ptep, vaddr)		\ | 
|  | 363 | do {						\ | 
|  | 364 | pte_clear(&init_mm, (vaddr), (ptep));	\ | 
|  | 365 | local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \ | 
|  | 366 | } while (0) | 
|  | 367 |  | 
|  | 368 | /* | 
|  | 369 | * The kernel page tables contain what we need, and we flush when we | 
|  | 370 | * change specific page table entries. | 
|  | 371 | */ | 
|  | 372 | #define update_mmu_cache(vma, address, pte) do { } while (0) | 
|  | 373 |  | 
|  | 374 | #ifdef CONFIG_FLATMEM | 
|  | 375 | #define kern_addr_valid(addr)	(1) | 
|  | 376 | #endif /* CONFIG_FLATMEM */ | 
|  | 377 |  | 
|  | 378 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\ | 
|  | 379 | remap_pfn_range(vma, vaddr, pfn, size, prot) | 
|  | 380 |  | 
|  | 381 | extern void vmalloc_sync_all(void); | 
|  | 382 |  | 
|  | 383 | #endif /* !__ASSEMBLY__ */ | 
|  | 384 |  | 
|  | 385 | #ifdef __tilegx__ | 
|  | 386 | #include <asm/pgtable_64.h> | 
|  | 387 | #else | 
|  | 388 | #include <asm/pgtable_32.h> | 
|  | 389 | #endif | 
|  | 390 |  | 
|  | 391 | #ifndef __ASSEMBLY__ | 
|  | 392 |  | 
|  | 393 | static inline int pmd_none(pmd_t pmd) | 
|  | 394 | { | 
|  | 395 | /* | 
|  | 396 | * Only check low word on 32-bit platforms, since it might be | 
|  | 397 | * out of sync with upper half. | 
|  | 398 | */ | 
|  | 399 | return (unsigned long)pmd_val(pmd) == 0; | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | static inline int pmd_present(pmd_t pmd) | 
|  | 403 | { | 
|  | 404 | return pmd_val(pmd) & _PAGE_PRESENT; | 
|  | 405 | } | 
|  | 406 |  | 
|  | 407 | static inline int pmd_bad(pmd_t pmd) | 
|  | 408 | { | 
|  | 409 | return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE); | 
|  | 410 | } | 
|  | 411 |  | 
|  | 412 | static inline unsigned long pages_to_mb(unsigned long npg) | 
|  | 413 | { | 
|  | 414 | return npg >> (20 - PAGE_SHIFT); | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | /* | 
|  | 418 | * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD] | 
|  | 419 | * | 
|  | 420 | * This function returns the index of the entry in the pmd which would | 
|  | 421 | * control the given virtual address. | 
|  | 422 | */ | 
|  | 423 | static inline unsigned long pmd_index(unsigned long address) | 
|  | 424 | { | 
|  | 425 | return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); | 
|  | 426 | } | 
|  | 427 |  | 
|  | 428 | /* | 
|  | 429 | * A given kernel pmd_t maps to a specific virtual address (either a | 
|  | 430 | * kernel huge page or a kernel pte_t table).  Since kernel pte_t | 
|  | 431 | * tables can be aligned at sub-page granularity, this function can | 
|  | 432 | * return non-page-aligned pointers, despite its name. | 
|  | 433 | */ | 
|  | 434 | static inline unsigned long pmd_page_vaddr(pmd_t pmd) | 
|  | 435 | { | 
|  | 436 | phys_addr_t pa = | 
|  | 437 | (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN; | 
|  | 438 | return (unsigned long)__va(pa); | 
|  | 439 | } | 
|  | 440 |  | 
|  | 441 | /* | 
|  | 442 | * A pmd_t points to the base of a huge page or to a pte_t array. | 
|  | 443 | * If a pte_t array, since we can have multiple per page, we don't | 
|  | 444 | * have a one-to-one mapping of pmd_t's to pages.  However, this is | 
|  | 445 | * OK for pte_lockptr(), since we just end up with potentially one | 
|  | 446 | * lock being used for several pte_t arrays. | 
|  | 447 | */ | 
|  | 448 | #define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd))) | 
|  | 449 |  | 
|  | 450 | /* | 
|  | 451 | * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] | 
|  | 452 | * | 
|  | 453 | * This macro returns the index of the entry in the pte page which would | 
|  | 454 | * control the given virtual address. | 
|  | 455 | */ | 
|  | 456 | static inline unsigned long pte_index(unsigned long address) | 
|  | 457 | { | 
|  | 458 | return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | 
|  | 459 | } | 
|  | 460 |  | 
|  | 461 | static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) | 
|  | 462 | { | 
|  | 463 | return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | static inline int pmd_huge_page(pmd_t pmd) | 
|  | 467 | { | 
|  | 468 | return pmd_val(pmd) & _PAGE_HUGE_PAGE; | 
|  | 469 | } | 
|  | 470 |  | 
|  | 471 | #include <asm-generic/pgtable.h> | 
|  | 472 |  | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 473 | /* Support /proc/NN/pgtable API. */ | 
|  | 474 | struct seq_file; | 
|  | 475 | int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm, | 
|  | 476 | unsigned long vaddr, pte_t *ptep, void **datap); | 
|  | 477 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 478 | #endif /* !__ASSEMBLY__ */ | 
|  | 479 |  | 
|  | 480 | #endif /* _ASM_TILE_PGTABLE_H */ |