Jeremy Fitzhardinge | 15c8473 | 2007-07-17 18:37:05 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Xen time implementation. |
| 3 | * |
| 4 | * This is implemented in terms of a clocksource driver which uses |
| 5 | * the hypervisor clock as a nanosecond timebase, and a clockevent |
| 6 | * driver which uses the hypervisor's timer mechanism. |
| 7 | * |
| 8 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| 9 | */ |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/clocksource.h> |
| 13 | #include <linux/clockchips.h> |
| 14 | |
| 15 | #include <asm/xen/hypervisor.h> |
| 16 | #include <asm/xen/hypercall.h> |
| 17 | |
| 18 | #include <xen/events.h> |
| 19 | #include <xen/interface/xen.h> |
| 20 | #include <xen/interface/vcpu.h> |
| 21 | |
| 22 | #include "xen-ops.h" |
| 23 | |
| 24 | #define XEN_SHIFT 22 |
| 25 | |
| 26 | /* Xen may fire a timer up to this many ns early */ |
| 27 | #define TIMER_SLOP 100000 |
| 28 | |
| 29 | /* These are perodically updated in shared_info, and then copied here. */ |
| 30 | struct shadow_time_info { |
| 31 | u64 tsc_timestamp; /* TSC at last update of time vals. */ |
| 32 | u64 system_timestamp; /* Time, in nanosecs, since boot. */ |
| 33 | u32 tsc_to_nsec_mul; |
| 34 | int tsc_shift; |
| 35 | u32 version; |
| 36 | }; |
| 37 | |
| 38 | static DEFINE_PER_CPU(struct shadow_time_info, shadow_time); |
| 39 | |
| 40 | unsigned long xen_cpu_khz(void) |
| 41 | { |
| 42 | u64 cpu_khz = 1000000ULL << 32; |
| 43 | const struct vcpu_time_info *info = |
| 44 | &HYPERVISOR_shared_info->vcpu_info[0].time; |
| 45 | |
| 46 | do_div(cpu_khz, info->tsc_to_system_mul); |
| 47 | if (info->tsc_shift < 0) |
| 48 | cpu_khz <<= -info->tsc_shift; |
| 49 | else |
| 50 | cpu_khz >>= info->tsc_shift; |
| 51 | |
| 52 | return cpu_khz; |
| 53 | } |
| 54 | |
| 55 | /* |
| 56 | * Reads a consistent set of time-base values from Xen, into a shadow data |
| 57 | * area. |
| 58 | */ |
| 59 | static void get_time_values_from_xen(void) |
| 60 | { |
| 61 | struct vcpu_time_info *src; |
| 62 | struct shadow_time_info *dst; |
| 63 | |
| 64 | preempt_disable(); |
| 65 | |
| 66 | /* src is shared memory with the hypervisor, so we need to |
| 67 | make sure we get a consistent snapshot, even in the face of |
| 68 | being preempted. */ |
| 69 | src = &__get_cpu_var(xen_vcpu)->time; |
| 70 | dst = &__get_cpu_var(shadow_time); |
| 71 | |
| 72 | do { |
| 73 | dst->version = src->version; |
| 74 | rmb(); /* fetch version before data */ |
| 75 | dst->tsc_timestamp = src->tsc_timestamp; |
| 76 | dst->system_timestamp = src->system_time; |
| 77 | dst->tsc_to_nsec_mul = src->tsc_to_system_mul; |
| 78 | dst->tsc_shift = src->tsc_shift; |
| 79 | rmb(); /* test version after fetching data */ |
| 80 | } while ((src->version & 1) | (dst->version ^ src->version)); |
| 81 | |
| 82 | preempt_enable(); |
| 83 | } |
| 84 | |
| 85 | /* |
| 86 | * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, |
| 87 | * yielding a 64-bit result. |
| 88 | */ |
| 89 | static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift) |
| 90 | { |
| 91 | u64 product; |
| 92 | #ifdef __i386__ |
| 93 | u32 tmp1, tmp2; |
| 94 | #endif |
| 95 | |
| 96 | if (shift < 0) |
| 97 | delta >>= -shift; |
| 98 | else |
| 99 | delta <<= shift; |
| 100 | |
| 101 | #ifdef __i386__ |
| 102 | __asm__ ( |
| 103 | "mul %5 ; " |
| 104 | "mov %4,%%eax ; " |
| 105 | "mov %%edx,%4 ; " |
| 106 | "mul %5 ; " |
| 107 | "xor %5,%5 ; " |
| 108 | "add %4,%%eax ; " |
| 109 | "adc %5,%%edx ; " |
| 110 | : "=A" (product), "=r" (tmp1), "=r" (tmp2) |
| 111 | : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) ); |
| 112 | #elif __x86_64__ |
| 113 | __asm__ ( |
| 114 | "mul %%rdx ; shrd $32,%%rdx,%%rax" |
| 115 | : "=a" (product) : "0" (delta), "d" ((u64)mul_frac) ); |
| 116 | #else |
| 117 | #error implement me! |
| 118 | #endif |
| 119 | |
| 120 | return product; |
| 121 | } |
| 122 | |
| 123 | static u64 get_nsec_offset(struct shadow_time_info *shadow) |
| 124 | { |
| 125 | u64 now, delta; |
| 126 | rdtscll(now); |
| 127 | delta = now - shadow->tsc_timestamp; |
| 128 | return scale_delta(delta, shadow->tsc_to_nsec_mul, shadow->tsc_shift); |
| 129 | } |
| 130 | |
| 131 | cycle_t xen_clocksource_read(void) |
| 132 | { |
| 133 | struct shadow_time_info *shadow = &get_cpu_var(shadow_time); |
| 134 | cycle_t ret; |
| 135 | |
| 136 | get_time_values_from_xen(); |
| 137 | |
| 138 | ret = shadow->system_timestamp + get_nsec_offset(shadow); |
| 139 | |
| 140 | put_cpu_var(shadow_time); |
| 141 | |
| 142 | return ret; |
| 143 | } |
| 144 | |
| 145 | static void xen_read_wallclock(struct timespec *ts) |
| 146 | { |
| 147 | const struct shared_info *s = HYPERVISOR_shared_info; |
| 148 | u32 version; |
| 149 | u64 delta; |
| 150 | struct timespec now; |
| 151 | |
| 152 | /* get wallclock at system boot */ |
| 153 | do { |
| 154 | version = s->wc_version; |
| 155 | rmb(); /* fetch version before time */ |
| 156 | now.tv_sec = s->wc_sec; |
| 157 | now.tv_nsec = s->wc_nsec; |
| 158 | rmb(); /* fetch time before checking version */ |
| 159 | } while ((s->wc_version & 1) | (version ^ s->wc_version)); |
| 160 | |
| 161 | delta = xen_clocksource_read(); /* time since system boot */ |
| 162 | delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec; |
| 163 | |
| 164 | now.tv_nsec = do_div(delta, NSEC_PER_SEC); |
| 165 | now.tv_sec = delta; |
| 166 | |
| 167 | set_normalized_timespec(ts, now.tv_sec, now.tv_nsec); |
| 168 | } |
| 169 | |
| 170 | unsigned long xen_get_wallclock(void) |
| 171 | { |
| 172 | struct timespec ts; |
| 173 | |
| 174 | xen_read_wallclock(&ts); |
| 175 | |
| 176 | return ts.tv_sec; |
| 177 | } |
| 178 | |
| 179 | int xen_set_wallclock(unsigned long now) |
| 180 | { |
| 181 | /* do nothing for domU */ |
| 182 | return -1; |
| 183 | } |
| 184 | |
| 185 | static struct clocksource xen_clocksource __read_mostly = { |
| 186 | .name = "xen", |
| 187 | .rating = 400, |
| 188 | .read = xen_clocksource_read, |
| 189 | .mask = ~0, |
| 190 | .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */ |
| 191 | .shift = XEN_SHIFT, |
| 192 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 193 | }; |
| 194 | |
| 195 | /* |
| 196 | Xen clockevent implementation |
| 197 | |
| 198 | Xen has two clockevent implementations: |
| 199 | |
| 200 | The old timer_op one works with all released versions of Xen prior |
| 201 | to version 3.0.4. This version of the hypervisor provides a |
| 202 | single-shot timer with nanosecond resolution. However, sharing the |
| 203 | same event channel is a 100Hz tick which is delivered while the |
| 204 | vcpu is running. We don't care about or use this tick, but it will |
| 205 | cause the core time code to think the timer fired too soon, and |
| 206 | will end up resetting it each time. It could be filtered, but |
| 207 | doing so has complications when the ktime clocksource is not yet |
| 208 | the xen clocksource (ie, at boot time). |
| 209 | |
| 210 | The new vcpu_op-based timer interface allows the tick timer period |
| 211 | to be changed or turned off. The tick timer is not useful as a |
| 212 | periodic timer because events are only delivered to running vcpus. |
| 213 | The one-shot timer can report when a timeout is in the past, so |
| 214 | set_next_event is capable of returning -ETIME when appropriate. |
| 215 | This interface is used when available. |
| 216 | */ |
| 217 | |
| 218 | |
| 219 | /* |
| 220 | Get a hypervisor absolute time. In theory we could maintain an |
| 221 | offset between the kernel's time and the hypervisor's time, and |
| 222 | apply that to a kernel's absolute timeout. Unfortunately the |
| 223 | hypervisor and kernel times can drift even if the kernel is using |
| 224 | the Xen clocksource, because ntp can warp the kernel's clocksource. |
| 225 | */ |
| 226 | static s64 get_abs_timeout(unsigned long delta) |
| 227 | { |
| 228 | return xen_clocksource_read() + delta; |
| 229 | } |
| 230 | |
| 231 | static void xen_timerop_set_mode(enum clock_event_mode mode, |
| 232 | struct clock_event_device *evt) |
| 233 | { |
| 234 | switch (mode) { |
| 235 | case CLOCK_EVT_MODE_PERIODIC: |
| 236 | /* unsupported */ |
| 237 | WARN_ON(1); |
| 238 | break; |
| 239 | |
| 240 | case CLOCK_EVT_MODE_ONESHOT: |
| 241 | break; |
| 242 | |
| 243 | case CLOCK_EVT_MODE_UNUSED: |
| 244 | case CLOCK_EVT_MODE_SHUTDOWN: |
| 245 | HYPERVISOR_set_timer_op(0); /* cancel timeout */ |
| 246 | break; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | static int xen_timerop_set_next_event(unsigned long delta, |
| 251 | struct clock_event_device *evt) |
| 252 | { |
| 253 | WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); |
| 254 | |
| 255 | if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) |
| 256 | BUG(); |
| 257 | |
| 258 | /* We may have missed the deadline, but there's no real way of |
| 259 | knowing for sure. If the event was in the past, then we'll |
| 260 | get an immediate interrupt. */ |
| 261 | |
| 262 | return 0; |
| 263 | } |
| 264 | |
| 265 | static const struct clock_event_device xen_timerop_clockevent = { |
| 266 | .name = "xen", |
| 267 | .features = CLOCK_EVT_FEAT_ONESHOT, |
| 268 | |
| 269 | .max_delta_ns = 0xffffffff, |
| 270 | .min_delta_ns = TIMER_SLOP, |
| 271 | |
| 272 | .mult = 1, |
| 273 | .shift = 0, |
| 274 | .rating = 500, |
| 275 | |
| 276 | .set_mode = xen_timerop_set_mode, |
| 277 | .set_next_event = xen_timerop_set_next_event, |
| 278 | }; |
| 279 | |
| 280 | |
| 281 | |
| 282 | static void xen_vcpuop_set_mode(enum clock_event_mode mode, |
| 283 | struct clock_event_device *evt) |
| 284 | { |
| 285 | int cpu = smp_processor_id(); |
| 286 | |
| 287 | switch (mode) { |
| 288 | case CLOCK_EVT_MODE_PERIODIC: |
| 289 | WARN_ON(1); /* unsupported */ |
| 290 | break; |
| 291 | |
| 292 | case CLOCK_EVT_MODE_ONESHOT: |
| 293 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) |
| 294 | BUG(); |
| 295 | break; |
| 296 | |
| 297 | case CLOCK_EVT_MODE_UNUSED: |
| 298 | case CLOCK_EVT_MODE_SHUTDOWN: |
| 299 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || |
| 300 | HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) |
| 301 | BUG(); |
| 302 | break; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | static int xen_vcpuop_set_next_event(unsigned long delta, |
| 307 | struct clock_event_device *evt) |
| 308 | { |
| 309 | int cpu = smp_processor_id(); |
| 310 | struct vcpu_set_singleshot_timer single; |
| 311 | int ret; |
| 312 | |
| 313 | WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); |
| 314 | |
| 315 | single.timeout_abs_ns = get_abs_timeout(delta); |
| 316 | single.flags = VCPU_SSHOTTMR_future; |
| 317 | |
| 318 | ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); |
| 319 | |
| 320 | BUG_ON(ret != 0 && ret != -ETIME); |
| 321 | |
| 322 | return ret; |
| 323 | } |
| 324 | |
| 325 | static const struct clock_event_device xen_vcpuop_clockevent = { |
| 326 | .name = "xen", |
| 327 | .features = CLOCK_EVT_FEAT_ONESHOT, |
| 328 | |
| 329 | .max_delta_ns = 0xffffffff, |
| 330 | .min_delta_ns = TIMER_SLOP, |
| 331 | |
| 332 | .mult = 1, |
| 333 | .shift = 0, |
| 334 | .rating = 500, |
| 335 | |
| 336 | .set_mode = xen_vcpuop_set_mode, |
| 337 | .set_next_event = xen_vcpuop_set_next_event, |
| 338 | }; |
| 339 | |
| 340 | static const struct clock_event_device *xen_clockevent = |
| 341 | &xen_timerop_clockevent; |
| 342 | static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); |
| 343 | |
| 344 | static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) |
| 345 | { |
| 346 | struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); |
| 347 | irqreturn_t ret; |
| 348 | |
| 349 | ret = IRQ_NONE; |
| 350 | if (evt->event_handler) { |
| 351 | evt->event_handler(evt); |
| 352 | ret = IRQ_HANDLED; |
| 353 | } |
| 354 | |
| 355 | return ret; |
| 356 | } |
| 357 | |
| 358 | static void xen_setup_timer(int cpu) |
| 359 | { |
| 360 | const char *name; |
| 361 | struct clock_event_device *evt; |
| 362 | int irq; |
| 363 | |
| 364 | printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); |
| 365 | |
| 366 | name = kasprintf(GFP_KERNEL, "timer%d", cpu); |
| 367 | if (!name) |
| 368 | name = "<timer kasprintf failed>"; |
| 369 | |
| 370 | irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, |
| 371 | IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, |
| 372 | name, NULL); |
| 373 | |
| 374 | evt = &get_cpu_var(xen_clock_events); |
| 375 | memcpy(evt, xen_clockevent, sizeof(*evt)); |
| 376 | |
| 377 | evt->cpumask = cpumask_of_cpu(cpu); |
| 378 | evt->irq = irq; |
| 379 | clockevents_register_device(evt); |
| 380 | |
| 381 | put_cpu_var(xen_clock_events); |
| 382 | } |
| 383 | |
| 384 | __init void xen_time_init(void) |
| 385 | { |
| 386 | int cpu = smp_processor_id(); |
| 387 | |
| 388 | get_time_values_from_xen(); |
| 389 | |
| 390 | clocksource_register(&xen_clocksource); |
| 391 | |
| 392 | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { |
| 393 | /* Successfully turned off 100hz tick, so we have the |
| 394 | vcpuop-based timer interface */ |
| 395 | printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); |
| 396 | xen_clockevent = &xen_vcpuop_clockevent; |
| 397 | } |
| 398 | |
| 399 | /* Set initial system time with full resolution */ |
| 400 | xen_read_wallclock(&xtime); |
| 401 | set_normalized_timespec(&wall_to_monotonic, |
| 402 | -xtime.tv_sec, -xtime.tv_nsec); |
| 403 | |
| 404 | tsc_disable = 0; |
| 405 | |
| 406 | xen_setup_timer(cpu); |
| 407 | } |