| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/arch/alpha/kernel/time.c | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds | 
|  | 5 | * | 
|  | 6 | * This file contains the PC-specific time handling details: | 
|  | 7 | * reading the RTC at bootup, etc.. | 
|  | 8 | * 1994-07-02    Alan Modra | 
|  | 9 | *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime | 
|  | 10 | * 1995-03-26    Markus Kuhn | 
|  | 11 | *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 | 
|  | 12 | *      precision CMOS clock update | 
|  | 13 | * 1997-09-10	Updated NTP code according to technical memorandum Jan '96 | 
|  | 14 | *		"A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | 15 | * 1997-01-09    Adrian Sun | 
|  | 16 | *      use interval timer if CONFIG_RTC=y | 
|  | 17 | * 1997-10-29    John Bowman (bowman@math.ualberta.ca) | 
|  | 18 | *      fixed tick loss calculation in timer_interrupt | 
|  | 19 | *      (round system clock to nearest tick instead of truncating) | 
|  | 20 | *      fixed algorithm in time_init for getting time from CMOS clock | 
|  | 21 | * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net) | 
|  | 22 | *	fixed algorithm in do_gettimeofday() for calculating the precise time | 
|  | 23 | *	from processor cycle counter (now taking lost_ticks into account) | 
|  | 24 | * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de> | 
|  | 25 | * 	Fixed time_init to be aware of epoches != 1900. This prevents | 
|  | 26 | * 	booting up in 2048 for me;) Code is stolen from rtc.c. | 
|  | 27 | * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com> | 
|  | 28 | *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM | 
|  | 29 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 30 | #include <linux/errno.h> | 
|  | 31 | #include <linux/module.h> | 
|  | 32 | #include <linux/sched.h> | 
|  | 33 | #include <linux/kernel.h> | 
|  | 34 | #include <linux/param.h> | 
|  | 35 | #include <linux/string.h> | 
|  | 36 | #include <linux/mm.h> | 
|  | 37 | #include <linux/delay.h> | 
|  | 38 | #include <linux/ioport.h> | 
|  | 39 | #include <linux/irq.h> | 
|  | 40 | #include <linux/interrupt.h> | 
|  | 41 | #include <linux/init.h> | 
|  | 42 | #include <linux/bcd.h> | 
|  | 43 | #include <linux/profile.h> | 
|  | 44 |  | 
|  | 45 | #include <asm/uaccess.h> | 
|  | 46 | #include <asm/io.h> | 
|  | 47 | #include <asm/hwrpb.h> | 
|  | 48 | #include <asm/8253pit.h> | 
|  | 49 |  | 
|  | 50 | #include <linux/mc146818rtc.h> | 
|  | 51 | #include <linux/time.h> | 
|  | 52 | #include <linux/timex.h> | 
|  | 53 |  | 
|  | 54 | #include "proto.h" | 
|  | 55 | #include "irq_impl.h" | 
|  | 56 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 57 | extern unsigned long wall_jiffies;	/* kernel/timer.c */ | 
|  | 58 |  | 
|  | 59 | static int set_rtc_mmss(unsigned long); | 
|  | 60 |  | 
|  | 61 | DEFINE_SPINLOCK(rtc_lock); | 
|  | 62 |  | 
|  | 63 | #define TICK_SIZE (tick_nsec / 1000) | 
|  | 64 |  | 
|  | 65 | /* | 
|  | 66 | * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting | 
|  | 67 | * by 48 gives us 16 bits for HZ while keeping the accuracy good even | 
|  | 68 | * for large CPU clock rates. | 
|  | 69 | */ | 
|  | 70 | #define FIX_SHIFT	48 | 
|  | 71 |  | 
|  | 72 | /* lump static variables together for more efficient access: */ | 
|  | 73 | static struct { | 
|  | 74 | /* cycle counter last time it got invoked */ | 
|  | 75 | __u32 last_time; | 
|  | 76 | /* ticks/cycle * 2^48 */ | 
|  | 77 | unsigned long scaled_ticks_per_cycle; | 
|  | 78 | /* last time the CMOS clock got updated */ | 
|  | 79 | time_t last_rtc_update; | 
|  | 80 | /* partial unused tick */ | 
|  | 81 | unsigned long partial_tick; | 
|  | 82 | } state; | 
|  | 83 |  | 
|  | 84 | unsigned long est_cycle_freq; | 
|  | 85 |  | 
|  | 86 |  | 
|  | 87 | static inline __u32 rpcc(void) | 
|  | 88 | { | 
|  | 89 | __u32 result; | 
|  | 90 | asm volatile ("rpcc %0" : "=r"(result)); | 
|  | 91 | return result; | 
|  | 92 | } | 
|  | 93 |  | 
|  | 94 | /* | 
|  | 95 | * Scheduler clock - returns current time in nanosec units. | 
|  | 96 | * | 
|  | 97 | * Copied from ARM code for expediency... ;-} | 
|  | 98 | */ | 
|  | 99 | unsigned long long sched_clock(void) | 
|  | 100 | { | 
|  | 101 | return (unsigned long long)jiffies * (1000000000 / HZ); | 
|  | 102 | } | 
|  | 103 |  | 
|  | 104 |  | 
|  | 105 | /* | 
|  | 106 | * timer_interrupt() needs to keep up the real-time clock, | 
|  | 107 | * as well as call the "do_timer()" routine every clocktick | 
|  | 108 | */ | 
|  | 109 | irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs) | 
|  | 110 | { | 
|  | 111 | unsigned long delta; | 
|  | 112 | __u32 now; | 
|  | 113 | long nticks; | 
|  | 114 |  | 
|  | 115 | #ifndef CONFIG_SMP | 
|  | 116 | /* Not SMP, do kernel PC profiling here.  */ | 
|  | 117 | profile_tick(CPU_PROFILING, regs); | 
|  | 118 | #endif | 
|  | 119 |  | 
|  | 120 | write_seqlock(&xtime_lock); | 
|  | 121 |  | 
|  | 122 | /* | 
|  | 123 | * Calculate how many ticks have passed since the last update, | 
|  | 124 | * including any previous partial leftover.  Save any resulting | 
|  | 125 | * fraction for the next pass. | 
|  | 126 | */ | 
|  | 127 | now = rpcc(); | 
|  | 128 | delta = now - state.last_time; | 
|  | 129 | state.last_time = now; | 
|  | 130 | delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; | 
|  | 131 | state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); | 
|  | 132 | nticks = delta >> FIX_SHIFT; | 
|  | 133 |  | 
|  | 134 | while (nticks > 0) { | 
|  | 135 | do_timer(regs); | 
|  | 136 | #ifndef CONFIG_SMP | 
|  | 137 | update_process_times(user_mode(regs)); | 
|  | 138 | #endif | 
|  | 139 | nticks--; | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | /* | 
|  | 143 | * If we have an externally synchronized Linux clock, then update | 
|  | 144 | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | 
|  | 145 | * called as close as possible to 500 ms before the new second starts. | 
|  | 146 | */ | 
| john stultz | b149ee2 | 2005-09-06 15:17:46 -0700 | [diff] [blame] | 147 | if (ntp_synced() | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 148 | && xtime.tv_sec > state.last_rtc_update + 660 | 
|  | 149 | && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2 | 
|  | 150 | && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) { | 
|  | 151 | int tmp = set_rtc_mmss(xtime.tv_sec); | 
|  | 152 | state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0); | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | write_sequnlock(&xtime_lock); | 
|  | 156 | return IRQ_HANDLED; | 
|  | 157 | } | 
|  | 158 |  | 
|  | 159 | void | 
|  | 160 | common_init_rtc(void) | 
|  | 161 | { | 
|  | 162 | unsigned char x; | 
|  | 163 |  | 
|  | 164 | /* Reset periodic interrupt frequency.  */ | 
|  | 165 | x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; | 
|  | 166 | /* Test includes known working values on various platforms | 
|  | 167 | where 0x26 is wrong; we refuse to change those. */ | 
|  | 168 | if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { | 
|  | 169 | printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); | 
|  | 170 | CMOS_WRITE(0x26, RTC_FREQ_SELECT); | 
|  | 171 | } | 
|  | 172 |  | 
|  | 173 | /* Turn on periodic interrupts.  */ | 
|  | 174 | x = CMOS_READ(RTC_CONTROL); | 
|  | 175 | if (!(x & RTC_PIE)) { | 
|  | 176 | printk("Turning on RTC interrupts.\n"); | 
|  | 177 | x |= RTC_PIE; | 
|  | 178 | x &= ~(RTC_AIE | RTC_UIE); | 
|  | 179 | CMOS_WRITE(x, RTC_CONTROL); | 
|  | 180 | } | 
|  | 181 | (void) CMOS_READ(RTC_INTR_FLAGS); | 
|  | 182 |  | 
|  | 183 | outb(0x36, 0x43);	/* pit counter 0: system timer */ | 
|  | 184 | outb(0x00, 0x40); | 
|  | 185 | outb(0x00, 0x40); | 
|  | 186 |  | 
|  | 187 | outb(0xb6, 0x43);	/* pit counter 2: speaker */ | 
|  | 188 | outb(0x31, 0x42); | 
|  | 189 | outb(0x13, 0x42); | 
|  | 190 |  | 
|  | 191 | init_rtc_irq(); | 
|  | 192 | } | 
|  | 193 |  | 
|  | 194 |  | 
|  | 195 | /* Validate a computed cycle counter result against the known bounds for | 
|  | 196 | the given processor core.  There's too much brokenness in the way of | 
|  | 197 | timing hardware for any one method to work everywhere.  :-( | 
|  | 198 |  | 
|  | 199 | Return 0 if the result cannot be trusted, otherwise return the argument.  */ | 
|  | 200 |  | 
|  | 201 | static unsigned long __init | 
|  | 202 | validate_cc_value(unsigned long cc) | 
|  | 203 | { | 
|  | 204 | static struct bounds { | 
|  | 205 | unsigned int min, max; | 
|  | 206 | } cpu_hz[] __initdata = { | 
|  | 207 | [EV3_CPU]    = {   50000000,  200000000 },	/* guess */ | 
|  | 208 | [EV4_CPU]    = {  100000000,  300000000 }, | 
|  | 209 | [LCA4_CPU]   = {  100000000,  300000000 },	/* guess */ | 
|  | 210 | [EV45_CPU]   = {  200000000,  300000000 }, | 
|  | 211 | [EV5_CPU]    = {  250000000,  433000000 }, | 
|  | 212 | [EV56_CPU]   = {  333000000,  667000000 }, | 
|  | 213 | [PCA56_CPU]  = {  400000000,  600000000 },	/* guess */ | 
|  | 214 | [PCA57_CPU]  = {  500000000,  600000000 },	/* guess */ | 
|  | 215 | [EV6_CPU]    = {  466000000,  600000000 }, | 
|  | 216 | [EV67_CPU]   = {  600000000,  750000000 }, | 
|  | 217 | [EV68AL_CPU] = {  750000000,  940000000 }, | 
|  | 218 | [EV68CB_CPU] = { 1000000000, 1333333333 }, | 
|  | 219 | /* None of the following are shipping as of 2001-11-01.  */ | 
|  | 220 | [EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */ | 
|  | 221 | [EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */ | 
|  | 222 | [EV7_CPU]    = {  800000000, 1400000000 },	/* guess */ | 
|  | 223 | [EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */ | 
|  | 224 | }; | 
|  | 225 |  | 
|  | 226 | /* Allow for some drift in the crystal.  10MHz is more than enough.  */ | 
|  | 227 | const unsigned int deviation = 10000000; | 
|  | 228 |  | 
|  | 229 | struct percpu_struct *cpu; | 
|  | 230 | unsigned int index; | 
|  | 231 |  | 
|  | 232 | cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); | 
|  | 233 | index = cpu->type & 0xffffffff; | 
|  | 234 |  | 
|  | 235 | /* If index out of bounds, no way to validate.  */ | 
| Tobias Klauser | 25c8716 | 2006-07-30 03:03:23 -0700 | [diff] [blame] | 236 | if (index >= ARRAY_SIZE(cpu_hz)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 237 | return cc; | 
|  | 238 |  | 
|  | 239 | /* If index contains no data, no way to validate.  */ | 
|  | 240 | if (cpu_hz[index].max == 0) | 
|  | 241 | return cc; | 
|  | 242 |  | 
|  | 243 | if (cc < cpu_hz[index].min - deviation | 
|  | 244 | || cc > cpu_hz[index].max + deviation) | 
|  | 245 | return 0; | 
|  | 246 |  | 
|  | 247 | return cc; | 
|  | 248 | } | 
|  | 249 |  | 
|  | 250 |  | 
|  | 251 | /* | 
|  | 252 | * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from | 
|  | 253 | * arch/i386/time.c. | 
|  | 254 | */ | 
|  | 255 |  | 
|  | 256 | #define CALIBRATE_LATCH	0xffff | 
|  | 257 | #define TIMEOUT_COUNT	0x100000 | 
|  | 258 |  | 
|  | 259 | static unsigned long __init | 
|  | 260 | calibrate_cc_with_pit(void) | 
|  | 261 | { | 
|  | 262 | int cc, count = 0; | 
|  | 263 |  | 
|  | 264 | /* Set the Gate high, disable speaker */ | 
|  | 265 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | 
|  | 266 |  | 
|  | 267 | /* | 
|  | 268 | * Now let's take care of CTC channel 2 | 
|  | 269 | * | 
|  | 270 | * Set the Gate high, program CTC channel 2 for mode 0, | 
|  | 271 | * (interrupt on terminal count mode), binary count, | 
|  | 272 | * load 5 * LATCH count, (LSB and MSB) to begin countdown. | 
|  | 273 | */ | 
|  | 274 | outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */ | 
|  | 275 | outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */ | 
|  | 276 | outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */ | 
|  | 277 |  | 
|  | 278 | cc = rpcc(); | 
|  | 279 | do { | 
|  | 280 | count++; | 
|  | 281 | } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); | 
|  | 282 | cc = rpcc() - cc; | 
|  | 283 |  | 
|  | 284 | /* Error: ECTCNEVERSET or ECPUTOOFAST.  */ | 
|  | 285 | if (count <= 1 || count == TIMEOUT_COUNT) | 
|  | 286 | return 0; | 
|  | 287 |  | 
|  | 288 | return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); | 
|  | 289 | } | 
|  | 290 |  | 
|  | 291 | /* The Linux interpretation of the CMOS clock register contents: | 
|  | 292 | When the Update-In-Progress (UIP) flag goes from 1 to 0, the | 
|  | 293 | RTC registers show the second which has precisely just started. | 
|  | 294 | Let's hope other operating systems interpret the RTC the same way.  */ | 
|  | 295 |  | 
|  | 296 | static unsigned long __init | 
|  | 297 | rpcc_after_update_in_progress(void) | 
|  | 298 | { | 
|  | 299 | do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); | 
|  | 300 | do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); | 
|  | 301 |  | 
|  | 302 | return rpcc(); | 
|  | 303 | } | 
|  | 304 |  | 
|  | 305 | void __init | 
|  | 306 | time_init(void) | 
|  | 307 | { | 
|  | 308 | unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch; | 
|  | 309 | unsigned long cycle_freq, tolerance; | 
|  | 310 | long diff; | 
|  | 311 |  | 
|  | 312 | /* Calibrate CPU clock -- attempt #1.  */ | 
|  | 313 | if (!est_cycle_freq) | 
|  | 314 | est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); | 
|  | 315 |  | 
| Matt Mackall | 4c2e6f6 | 2006-03-28 01:56:09 -0800 | [diff] [blame] | 316 | cc1 = rpcc(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 317 |  | 
|  | 318 | /* Calibrate CPU clock -- attempt #2.  */ | 
|  | 319 | if (!est_cycle_freq) { | 
| Matt Mackall | 4c2e6f6 | 2006-03-28 01:56:09 -0800 | [diff] [blame] | 320 | cc1 = rpcc_after_update_in_progress(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 321 | cc2 = rpcc_after_update_in_progress(); | 
|  | 322 | est_cycle_freq = validate_cc_value(cc2 - cc1); | 
|  | 323 | cc1 = cc2; | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | cycle_freq = hwrpb->cycle_freq; | 
|  | 327 | if (est_cycle_freq) { | 
|  | 328 | /* If the given value is within 250 PPM of what we calculated, | 
|  | 329 | accept it.  Otherwise, use what we found.  */ | 
|  | 330 | tolerance = cycle_freq / 4000; | 
|  | 331 | diff = cycle_freq - est_cycle_freq; | 
|  | 332 | if (diff < 0) | 
|  | 333 | diff = -diff; | 
|  | 334 | if ((unsigned long)diff > tolerance) { | 
|  | 335 | cycle_freq = est_cycle_freq; | 
|  | 336 | printk("HWRPB cycle frequency bogus.  " | 
|  | 337 | "Estimated %lu Hz\n", cycle_freq); | 
|  | 338 | } else { | 
|  | 339 | est_cycle_freq = 0; | 
|  | 340 | } | 
|  | 341 | } else if (! validate_cc_value (cycle_freq)) { | 
|  | 342 | printk("HWRPB cycle frequency bogus, " | 
|  | 343 | "and unable to estimate a proper value!\n"); | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | /* From John Bowman <bowman@math.ualberta.ca>: allow the values | 
|  | 347 | to settle, as the Update-In-Progress bit going low isn't good | 
|  | 348 | enough on some hardware.  2ms is our guess; we haven't found | 
|  | 349 | bogomips yet, but this is close on a 500Mhz box.  */ | 
|  | 350 | __delay(1000000); | 
|  | 351 |  | 
|  | 352 | sec = CMOS_READ(RTC_SECONDS); | 
|  | 353 | min = CMOS_READ(RTC_MINUTES); | 
|  | 354 | hour = CMOS_READ(RTC_HOURS); | 
|  | 355 | day = CMOS_READ(RTC_DAY_OF_MONTH); | 
|  | 356 | mon = CMOS_READ(RTC_MONTH); | 
|  | 357 | year = CMOS_READ(RTC_YEAR); | 
|  | 358 |  | 
|  | 359 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | 360 | BCD_TO_BIN(sec); | 
|  | 361 | BCD_TO_BIN(min); | 
|  | 362 | BCD_TO_BIN(hour); | 
|  | 363 | BCD_TO_BIN(day); | 
|  | 364 | BCD_TO_BIN(mon); | 
|  | 365 | BCD_TO_BIN(year); | 
|  | 366 | } | 
|  | 367 |  | 
|  | 368 | /* PC-like is standard; used for year >= 70 */ | 
|  | 369 | epoch = 1900; | 
|  | 370 | if (year < 20) | 
|  | 371 | epoch = 2000; | 
|  | 372 | else if (year >= 20 && year < 48) | 
|  | 373 | /* NT epoch */ | 
|  | 374 | epoch = 1980; | 
|  | 375 | else if (year >= 48 && year < 70) | 
|  | 376 | /* Digital UNIX epoch */ | 
|  | 377 | epoch = 1952; | 
|  | 378 |  | 
|  | 379 | printk(KERN_INFO "Using epoch = %d\n", epoch); | 
|  | 380 |  | 
|  | 381 | if ((year += epoch) < 1970) | 
|  | 382 | year += 100; | 
|  | 383 |  | 
|  | 384 | xtime.tv_sec = mktime(year, mon, day, hour, min, sec); | 
|  | 385 | xtime.tv_nsec = 0; | 
|  | 386 |  | 
|  | 387 | wall_to_monotonic.tv_sec -= xtime.tv_sec; | 
|  | 388 | wall_to_monotonic.tv_nsec = 0; | 
|  | 389 |  | 
|  | 390 | if (HZ > (1<<16)) { | 
|  | 391 | extern void __you_loose (void); | 
|  | 392 | __you_loose(); | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | state.last_time = cc1; | 
|  | 396 | state.scaled_ticks_per_cycle | 
|  | 397 | = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; | 
|  | 398 | state.last_rtc_update = 0; | 
|  | 399 | state.partial_tick = 0L; | 
|  | 400 |  | 
|  | 401 | /* Startup the timer source. */ | 
|  | 402 | alpha_mv.init_rtc(); | 
|  | 403 | } | 
|  | 404 |  | 
|  | 405 | /* | 
|  | 406 | * Use the cycle counter to estimate an displacement from the last time | 
|  | 407 | * tick.  Unfortunately the Alpha designers made only the low 32-bits of | 
|  | 408 | * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz | 
|  | 409 | * part.  So we can't do the "find absolute time in terms of cycles" thing | 
|  | 410 | * that the other ports do. | 
|  | 411 | */ | 
|  | 412 | void | 
|  | 413 | do_gettimeofday(struct timeval *tv) | 
|  | 414 | { | 
|  | 415 | unsigned long flags; | 
|  | 416 | unsigned long sec, usec, lost, seq; | 
|  | 417 | unsigned long delta_cycles, delta_usec, partial_tick; | 
|  | 418 |  | 
|  | 419 | do { | 
|  | 420 | seq = read_seqbegin_irqsave(&xtime_lock, flags); | 
|  | 421 |  | 
|  | 422 | delta_cycles = rpcc() - state.last_time; | 
|  | 423 | sec = xtime.tv_sec; | 
|  | 424 | usec = (xtime.tv_nsec / 1000); | 
|  | 425 | partial_tick = state.partial_tick; | 
|  | 426 | lost = jiffies - wall_jiffies; | 
|  | 427 |  | 
|  | 428 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | 
|  | 429 |  | 
|  | 430 | #ifdef CONFIG_SMP | 
|  | 431 | /* Until and unless we figure out how to get cpu cycle counters | 
|  | 432 | in sync and keep them there, we can't use the rpcc tricks.  */ | 
|  | 433 | delta_usec = lost * (1000000 / HZ); | 
|  | 434 | #else | 
|  | 435 | /* | 
|  | 436 | * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks) | 
|  | 437 | *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks) | 
|  | 438 | *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks) | 
|  | 439 | * | 
|  | 440 | * which, given a 600MHz cycle and a 1024Hz tick, has a | 
|  | 441 | * dynamic range of about 1.7e17, which is less than the | 
|  | 442 | * 1.8e19 in an unsigned long, so we are safe from overflow. | 
|  | 443 | * | 
|  | 444 | * Round, but with .5 up always, since .5 to even is harder | 
|  | 445 | * with no clear gain. | 
|  | 446 | */ | 
|  | 447 |  | 
|  | 448 | delta_usec = (delta_cycles * state.scaled_ticks_per_cycle | 
|  | 449 | + partial_tick | 
|  | 450 | + (lost << FIX_SHIFT)) * 15625; | 
|  | 451 | delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; | 
|  | 452 | #endif | 
|  | 453 |  | 
|  | 454 | usec += delta_usec; | 
|  | 455 | if (usec >= 1000000) { | 
|  | 456 | sec += 1; | 
|  | 457 | usec -= 1000000; | 
|  | 458 | } | 
|  | 459 |  | 
|  | 460 | tv->tv_sec = sec; | 
|  | 461 | tv->tv_usec = usec; | 
|  | 462 | } | 
|  | 463 |  | 
|  | 464 | EXPORT_SYMBOL(do_gettimeofday); | 
|  | 465 |  | 
|  | 466 | int | 
|  | 467 | do_settimeofday(struct timespec *tv) | 
|  | 468 | { | 
|  | 469 | time_t wtm_sec, sec = tv->tv_sec; | 
|  | 470 | long wtm_nsec, nsec = tv->tv_nsec; | 
|  | 471 | unsigned long delta_nsec; | 
|  | 472 |  | 
|  | 473 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
|  | 474 | return -EINVAL; | 
|  | 475 |  | 
|  | 476 | write_seqlock_irq(&xtime_lock); | 
|  | 477 |  | 
|  | 478 | /* The offset that is added into time in do_gettimeofday above | 
|  | 479 | must be subtracted out here to keep a coherent view of the | 
|  | 480 | time.  Without this, a full-tick error is possible.  */ | 
|  | 481 |  | 
|  | 482 | #ifdef CONFIG_SMP | 
|  | 483 | delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ); | 
|  | 484 | #else | 
|  | 485 | delta_nsec = rpcc() - state.last_time; | 
|  | 486 | delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle | 
|  | 487 | + state.partial_tick | 
|  | 488 | + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625; | 
|  | 489 | delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; | 
|  | 490 | delta_nsec *= 1000; | 
|  | 491 | #endif | 
|  | 492 |  | 
|  | 493 | nsec -= delta_nsec; | 
|  | 494 |  | 
|  | 495 | wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
|  | 496 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
|  | 497 |  | 
|  | 498 | set_normalized_timespec(&xtime, sec, nsec); | 
|  | 499 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
|  | 500 |  | 
| john stultz | b149ee2 | 2005-09-06 15:17:46 -0700 | [diff] [blame] | 501 | ntp_clear(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 502 |  | 
|  | 503 | write_sequnlock_irq(&xtime_lock); | 
|  | 504 | clock_was_set(); | 
|  | 505 | return 0; | 
|  | 506 | } | 
|  | 507 |  | 
|  | 508 | EXPORT_SYMBOL(do_settimeofday); | 
|  | 509 |  | 
|  | 510 |  | 
|  | 511 | /* | 
|  | 512 | * In order to set the CMOS clock precisely, set_rtc_mmss has to be | 
|  | 513 | * called 500 ms after the second nowtime has started, because when | 
|  | 514 | * nowtime is written into the registers of the CMOS clock, it will | 
|  | 515 | * jump to the next second precisely 500 ms later. Check the Motorola | 
|  | 516 | * MC146818A or Dallas DS12887 data sheet for details. | 
|  | 517 | * | 
|  | 518 | * BUG: This routine does not handle hour overflow properly; it just | 
|  | 519 | *      sets the minutes. Usually you won't notice until after reboot! | 
|  | 520 | */ | 
|  | 521 |  | 
|  | 522 |  | 
|  | 523 | static int | 
|  | 524 | set_rtc_mmss(unsigned long nowtime) | 
|  | 525 | { | 
|  | 526 | int retval = 0; | 
|  | 527 | int real_seconds, real_minutes, cmos_minutes; | 
|  | 528 | unsigned char save_control, save_freq_select; | 
|  | 529 |  | 
|  | 530 | /* irq are locally disabled here */ | 
|  | 531 | spin_lock(&rtc_lock); | 
|  | 532 | /* Tell the clock it's being set */ | 
|  | 533 | save_control = CMOS_READ(RTC_CONTROL); | 
|  | 534 | CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); | 
|  | 535 |  | 
|  | 536 | /* Stop and reset prescaler */ | 
|  | 537 | save_freq_select = CMOS_READ(RTC_FREQ_SELECT); | 
|  | 538 | CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); | 
|  | 539 |  | 
|  | 540 | cmos_minutes = CMOS_READ(RTC_MINUTES); | 
|  | 541 | if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | 
|  | 542 | BCD_TO_BIN(cmos_minutes); | 
|  | 543 |  | 
|  | 544 | /* | 
|  | 545 | * since we're only adjusting minutes and seconds, | 
|  | 546 | * don't interfere with hour overflow. This avoids | 
|  | 547 | * messing with unknown time zones but requires your | 
|  | 548 | * RTC not to be off by more than 15 minutes | 
|  | 549 | */ | 
|  | 550 | real_seconds = nowtime % 60; | 
|  | 551 | real_minutes = nowtime / 60; | 
|  | 552 | if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { | 
|  | 553 | /* correct for half hour time zone */ | 
|  | 554 | real_minutes += 30; | 
|  | 555 | } | 
|  | 556 | real_minutes %= 60; | 
|  | 557 |  | 
|  | 558 | if (abs(real_minutes - cmos_minutes) < 30) { | 
|  | 559 | if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | 560 | BIN_TO_BCD(real_seconds); | 
|  | 561 | BIN_TO_BCD(real_minutes); | 
|  | 562 | } | 
|  | 563 | CMOS_WRITE(real_seconds,RTC_SECONDS); | 
|  | 564 | CMOS_WRITE(real_minutes,RTC_MINUTES); | 
|  | 565 | } else { | 
|  | 566 | printk(KERN_WARNING | 
|  | 567 | "set_rtc_mmss: can't update from %d to %d\n", | 
|  | 568 | cmos_minutes, real_minutes); | 
|  | 569 | retval = -1; | 
|  | 570 | } | 
|  | 571 |  | 
|  | 572 | /* The following flags have to be released exactly in this order, | 
|  | 573 | * otherwise the DS12887 (popular MC146818A clone with integrated | 
|  | 574 | * battery and quartz) will not reset the oscillator and will not | 
|  | 575 | * update precisely 500 ms later. You won't find this mentioned in | 
|  | 576 | * the Dallas Semiconductor data sheets, but who believes data | 
|  | 577 | * sheets anyway ...                           -- Markus Kuhn | 
|  | 578 | */ | 
|  | 579 | CMOS_WRITE(save_control, RTC_CONTROL); | 
|  | 580 | CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); | 
|  | 581 | spin_unlock(&rtc_lock); | 
|  | 582 |  | 
|  | 583 | return retval; | 
|  | 584 | } |