blob: 14b571968713c378ab3d37ca32ddef16d092534e [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
Peter Zijlstra391e43d2011-11-15 17:14:39 +01007#include "cpupri.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +02008
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020039 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020040
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
Mike Galbraith35cf4e52012-08-07 05:00:13 +020083extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +020084
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115#endif
116
117#ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122#endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131#ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133#endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136};
137
138#ifdef CONFIG_FAIR_GROUP_SCHED
139#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141/*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149#define MIN_SHARES (1UL << 1)
150#define MAX_SHARES (1UL << 18)
151#endif
152
153/* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156extern struct task_group root_task_group;
157
158typedef int (*tg_visitor)(struct task_group *, void *);
159
160extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163/*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
169static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170{
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172}
173
174extern int tg_nop(struct task_group *tg, void *data);
175
176extern void free_fair_sched_group(struct task_group *tg);
177extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189extern void free_rt_sched_group(struct task_group *tg);
190extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195#else /* CONFIG_CGROUP_SCHED */
196
197struct cfs_bandwidth { };
198
199#endif /* CONFIG_CGROUP_SCHED */
200
201/* CFS-related fields in a runqueue */
202struct cfs_rq {
203 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200204 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200205
206 u64 exec_clock;
207 u64 min_vruntime;
208#ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210#endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
Peter Zijlstra029632f2011-10-25 10:00:11 +0200215 /*
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
218 */
219 struct sched_entity *curr, *next, *last, *skip;
220
221#ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over;
223#endif
224
225#ifdef CONFIG_FAIR_GROUP_SCHED
226 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
227
228 /*
229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 * (like users, containers etc.)
232 *
233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 * list is used during load balance.
235 */
236 int on_list;
237 struct list_head leaf_cfs_rq_list;
238 struct task_group *tg; /* group that "owns" this runqueue */
239
240#ifdef CONFIG_SMP
241 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200242 * h_load = weight * f(tg)
243 *
244 * Where f(tg) is the recursive weight fraction assigned to
245 * this group.
246 */
247 unsigned long h_load;
248
249 /*
250 * Maintaining per-cpu shares distribution for group scheduling
251 *
252 * load_stamp is the last time we updated the load average
253 * load_last is the last time we updated the load average and saw load
254 * load_unacc_exec_time is currently unaccounted execution time
255 */
256 u64 load_avg;
257 u64 load_period;
258 u64 load_stamp, load_last, load_unacc_exec_time;
259
260 unsigned long load_contribution;
261#endif /* CONFIG_SMP */
262#ifdef CONFIG_CFS_BANDWIDTH
263 int runtime_enabled;
264 u64 runtime_expires;
265 s64 runtime_remaining;
266
267 u64 throttled_timestamp;
268 int throttled, throttle_count;
269 struct list_head throttled_list;
270#endif /* CONFIG_CFS_BANDWIDTH */
271#endif /* CONFIG_FAIR_GROUP_SCHED */
272};
273
274static inline int rt_bandwidth_enabled(void)
275{
276 return sysctl_sched_rt_runtime >= 0;
277}
278
279/* Real-Time classes' related field in a runqueue: */
280struct rt_rq {
281 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200282 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200283#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 struct {
285 int curr; /* highest queued rt task prio */
286#ifdef CONFIG_SMP
287 int next; /* next highest */
288#endif
289 } highest_prio;
290#endif
291#ifdef CONFIG_SMP
292 unsigned long rt_nr_migratory;
293 unsigned long rt_nr_total;
294 int overloaded;
295 struct plist_head pushable_tasks;
296#endif
297 int rt_throttled;
298 u64 rt_time;
299 u64 rt_runtime;
300 /* Nests inside the rq lock: */
301 raw_spinlock_t rt_runtime_lock;
302
303#ifdef CONFIG_RT_GROUP_SCHED
304 unsigned long rt_nr_boosted;
305
306 struct rq *rq;
307 struct list_head leaf_rt_rq_list;
308 struct task_group *tg;
309#endif
310};
311
312#ifdef CONFIG_SMP
313
314/*
315 * We add the notion of a root-domain which will be used to define per-domain
316 * variables. Each exclusive cpuset essentially defines an island domain by
317 * fully partitioning the member cpus from any other cpuset. Whenever a new
318 * exclusive cpuset is created, we also create and attach a new root-domain
319 * object.
320 *
321 */
322struct root_domain {
323 atomic_t refcount;
324 atomic_t rto_count;
325 struct rcu_head rcu;
326 cpumask_var_t span;
327 cpumask_var_t online;
328
329 /*
330 * The "RT overload" flag: it gets set if a CPU has more than
331 * one runnable RT task.
332 */
333 cpumask_var_t rto_mask;
334 struct cpupri cpupri;
335};
336
337extern struct root_domain def_root_domain;
338
339#endif /* CONFIG_SMP */
340
341/*
342 * This is the main, per-CPU runqueue data structure.
343 *
344 * Locking rule: those places that want to lock multiple runqueues
345 * (such as the load balancing or the thread migration code), lock
346 * acquire operations must be ordered by ascending &runqueue.
347 */
348struct rq {
349 /* runqueue lock: */
350 raw_spinlock_t lock;
351
352 /*
353 * nr_running and cpu_load should be in the same cacheline because
354 * remote CPUs use both these fields when doing load calculation.
355 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200356 unsigned int nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200357 #define CPU_LOAD_IDX_MAX 5
358 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 unsigned long last_load_update_tick;
360#ifdef CONFIG_NO_HZ
361 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800362 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200363#endif
364 int skip_clock_update;
365
366 /* capture load from *all* tasks on this cpu: */
367 struct load_weight load;
368 unsigned long nr_load_updates;
369 u64 nr_switches;
370
371 struct cfs_rq cfs;
372 struct rt_rq rt;
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375 /* list of leaf cfs_rq on this cpu: */
376 struct list_head leaf_cfs_rq_list;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200377#ifdef CONFIG_SMP
378 unsigned long h_load_throttle;
379#endif /* CONFIG_SMP */
380#endif /* CONFIG_FAIR_GROUP_SCHED */
381
Peter Zijlstra029632f2011-10-25 10:00:11 +0200382#ifdef CONFIG_RT_GROUP_SCHED
383 struct list_head leaf_rt_rq_list;
384#endif
385
386 /*
387 * This is part of a global counter where only the total sum
388 * over all CPUs matters. A task can increase this counter on
389 * one CPU and if it got migrated afterwards it may decrease
390 * it on another CPU. Always updated under the runqueue lock:
391 */
392 unsigned long nr_uninterruptible;
393
394 struct task_struct *curr, *idle, *stop;
395 unsigned long next_balance;
396 struct mm_struct *prev_mm;
397
398 u64 clock;
399 u64 clock_task;
400
401 atomic_t nr_iowait;
402
403#ifdef CONFIG_SMP
404 struct root_domain *rd;
405 struct sched_domain *sd;
406
407 unsigned long cpu_power;
408
409 unsigned char idle_balance;
410 /* For active balancing */
411 int post_schedule;
412 int active_balance;
413 int push_cpu;
414 struct cpu_stop_work active_balance_work;
415 /* cpu of this runqueue: */
416 int cpu;
417 int online;
418
Peter Zijlstra367456c2012-02-20 21:49:09 +0100419 struct list_head cfs_tasks;
420
Peter Zijlstra029632f2011-10-25 10:00:11 +0200421 u64 rt_avg;
422 u64 age_stamp;
423 u64 idle_stamp;
424 u64 avg_idle;
425#endif
426
427#ifdef CONFIG_IRQ_TIME_ACCOUNTING
428 u64 prev_irq_time;
429#endif
430#ifdef CONFIG_PARAVIRT
431 u64 prev_steal_time;
432#endif
433#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
434 u64 prev_steal_time_rq;
435#endif
436
437 /* calc_load related fields */
438 unsigned long calc_load_update;
439 long calc_load_active;
440
441#ifdef CONFIG_SCHED_HRTICK
442#ifdef CONFIG_SMP
443 int hrtick_csd_pending;
444 struct call_single_data hrtick_csd;
445#endif
446 struct hrtimer hrtick_timer;
447#endif
448
449#ifdef CONFIG_SCHEDSTATS
450 /* latency stats */
451 struct sched_info rq_sched_info;
452 unsigned long long rq_cpu_time;
453 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
454
455 /* sys_sched_yield() stats */
456 unsigned int yld_count;
457
458 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200459 unsigned int sched_count;
460 unsigned int sched_goidle;
461
462 /* try_to_wake_up() stats */
463 unsigned int ttwu_count;
464 unsigned int ttwu_local;
465#endif
466
467#ifdef CONFIG_SMP
468 struct llist_head wake_list;
469#endif
Ben Segall18bf2802012-10-04 12:51:20 +0200470
471 struct sched_avg avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200472};
473
474static inline int cpu_of(struct rq *rq)
475{
476#ifdef CONFIG_SMP
477 return rq->cpu;
478#else
479 return 0;
480#endif
481}
482
483DECLARE_PER_CPU(struct rq, runqueues);
484
Peter Zijlstra518cd622011-12-07 15:07:31 +0100485#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
486#define this_rq() (&__get_cpu_var(runqueues))
487#define task_rq(p) cpu_rq(task_cpu(p))
488#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
489#define raw_rq() (&__raw_get_cpu_var(runqueues))
490
491#ifdef CONFIG_SMP
492
Peter Zijlstra029632f2011-10-25 10:00:11 +0200493#define rcu_dereference_check_sched_domain(p) \
494 rcu_dereference_check((p), \
495 lockdep_is_held(&sched_domains_mutex))
496
497/*
498 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
499 * See detach_destroy_domains: synchronize_sched for details.
500 *
501 * The domain tree of any CPU may only be accessed from within
502 * preempt-disabled sections.
503 */
504#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100505 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
506 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200507
Suresh Siddha77e81362011-11-17 11:08:23 -0800508#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
509
Peter Zijlstra518cd622011-12-07 15:07:31 +0100510/**
511 * highest_flag_domain - Return highest sched_domain containing flag.
512 * @cpu: The cpu whose highest level of sched domain is to
513 * be returned.
514 * @flag: The flag to check for the highest sched_domain
515 * for the given cpu.
516 *
517 * Returns the highest sched_domain of a cpu which contains the given flag.
518 */
519static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
520{
521 struct sched_domain *sd, *hsd = NULL;
522
523 for_each_domain(cpu, sd) {
524 if (!(sd->flags & flag))
525 break;
526 hsd = sd;
527 }
528
529 return hsd;
530}
531
532DECLARE_PER_CPU(struct sched_domain *, sd_llc);
533DECLARE_PER_CPU(int, sd_llc_id);
534
Peter Zijlstrac1174872012-05-31 14:47:33 +0200535extern int group_balance_cpu(struct sched_group *sg);
536
Peter Zijlstra518cd622011-12-07 15:07:31 +0100537#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200538
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100539#include "stats.h"
540#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200541
542#ifdef CONFIG_CGROUP_SCHED
543
544/*
545 * Return the group to which this tasks belongs.
546 *
Peter Zijlstra8323f262012-06-22 13:36:05 +0200547 * We cannot use task_subsys_state() and friends because the cgroup
548 * subsystem changes that value before the cgroup_subsys::attach() method
549 * is called, therefore we cannot pin it and might observe the wrong value.
550 *
551 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
552 * core changes this before calling sched_move_task().
553 *
554 * Instead we use a 'copy' which is updated from sched_move_task() while
555 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200556 */
557static inline struct task_group *task_group(struct task_struct *p)
558{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200559 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200560}
561
562/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
563static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
564{
565#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
566 struct task_group *tg = task_group(p);
567#endif
568
569#ifdef CONFIG_FAIR_GROUP_SCHED
570 p->se.cfs_rq = tg->cfs_rq[cpu];
571 p->se.parent = tg->se[cpu];
572#endif
573
574#ifdef CONFIG_RT_GROUP_SCHED
575 p->rt.rt_rq = tg->rt_rq[cpu];
576 p->rt.parent = tg->rt_se[cpu];
577#endif
578}
579
580#else /* CONFIG_CGROUP_SCHED */
581
582static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
583static inline struct task_group *task_group(struct task_struct *p)
584{
585 return NULL;
586}
587
588#endif /* CONFIG_CGROUP_SCHED */
589
590static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
591{
592 set_task_rq(p, cpu);
593#ifdef CONFIG_SMP
594 /*
595 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
596 * successfuly executed on another CPU. We must ensure that updates of
597 * per-task data have been completed by this moment.
598 */
599 smp_wmb();
600 task_thread_info(p)->cpu = cpu;
601#endif
602}
603
604/*
605 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
606 */
607#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100608# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200609# define const_debug __read_mostly
610#else
611# define const_debug const
612#endif
613
614extern const_debug unsigned int sysctl_sched_features;
615
616#define SCHED_FEAT(name, enabled) \
617 __SCHED_FEAT_##name ,
618
619enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100620#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200621 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200622};
623
624#undef SCHED_FEAT
625
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200626#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Ingo Molnarc5905af2012-02-24 08:31:31 +0100627static __always_inline bool static_branch__true(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200628{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100629 return static_key_true(key); /* Not out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200630}
631
Ingo Molnarc5905af2012-02-24 08:31:31 +0100632static __always_inline bool static_branch__false(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200633{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100634 return static_key_false(key); /* Out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200635}
636
637#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100638static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200639{ \
640 return static_branch__##enabled(key); \
641}
642
643#include "features.h"
644
645#undef SCHED_FEAT
646
Ingo Molnarc5905af2012-02-24 08:31:31 +0100647extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200648#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
649#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200650#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200651#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200652
653static inline u64 global_rt_period(void)
654{
655 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
656}
657
658static inline u64 global_rt_runtime(void)
659{
660 if (sysctl_sched_rt_runtime < 0)
661 return RUNTIME_INF;
662
663 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
664}
665
666
667
668static inline int task_current(struct rq *rq, struct task_struct *p)
669{
670 return rq->curr == p;
671}
672
673static inline int task_running(struct rq *rq, struct task_struct *p)
674{
675#ifdef CONFIG_SMP
676 return p->on_cpu;
677#else
678 return task_current(rq, p);
679#endif
680}
681
682
683#ifndef prepare_arch_switch
684# define prepare_arch_switch(next) do { } while (0)
685#endif
686#ifndef finish_arch_switch
687# define finish_arch_switch(prev) do { } while (0)
688#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000689#ifndef finish_arch_post_lock_switch
690# define finish_arch_post_lock_switch() do { } while (0)
691#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200692
693#ifndef __ARCH_WANT_UNLOCKED_CTXSW
694static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
695{
696#ifdef CONFIG_SMP
697 /*
698 * We can optimise this out completely for !SMP, because the
699 * SMP rebalancing from interrupt is the only thing that cares
700 * here.
701 */
702 next->on_cpu = 1;
703#endif
704}
705
706static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
707{
708#ifdef CONFIG_SMP
709 /*
710 * After ->on_cpu is cleared, the task can be moved to a different CPU.
711 * We must ensure this doesn't happen until the switch is completely
712 * finished.
713 */
714 smp_wmb();
715 prev->on_cpu = 0;
716#endif
717#ifdef CONFIG_DEBUG_SPINLOCK
718 /* this is a valid case when another task releases the spinlock */
719 rq->lock.owner = current;
720#endif
721 /*
722 * If we are tracking spinlock dependencies then we have to
723 * fix up the runqueue lock - which gets 'carried over' from
724 * prev into current:
725 */
726 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
727
728 raw_spin_unlock_irq(&rq->lock);
729}
730
731#else /* __ARCH_WANT_UNLOCKED_CTXSW */
732static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
733{
734#ifdef CONFIG_SMP
735 /*
736 * We can optimise this out completely for !SMP, because the
737 * SMP rebalancing from interrupt is the only thing that cares
738 * here.
739 */
740 next->on_cpu = 1;
741#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200742 raw_spin_unlock(&rq->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200743}
744
745static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
746{
747#ifdef CONFIG_SMP
748 /*
749 * After ->on_cpu is cleared, the task can be moved to a different CPU.
750 * We must ensure this doesn't happen until the switch is completely
751 * finished.
752 */
753 smp_wmb();
754 prev->on_cpu = 0;
755#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200756 local_irq_enable();
Peter Zijlstra029632f2011-10-25 10:00:11 +0200757}
758#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
759
760
761static inline void update_load_add(struct load_weight *lw, unsigned long inc)
762{
763 lw->weight += inc;
764 lw->inv_weight = 0;
765}
766
767static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
768{
769 lw->weight -= dec;
770 lw->inv_weight = 0;
771}
772
773static inline void update_load_set(struct load_weight *lw, unsigned long w)
774{
775 lw->weight = w;
776 lw->inv_weight = 0;
777}
778
779/*
780 * To aid in avoiding the subversion of "niceness" due to uneven distribution
781 * of tasks with abnormal "nice" values across CPUs the contribution that
782 * each task makes to its run queue's load is weighted according to its
783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
784 * scaled version of the new time slice allocation that they receive on time
785 * slice expiry etc.
786 */
787
788#define WEIGHT_IDLEPRIO 3
789#define WMULT_IDLEPRIO 1431655765
790
791/*
792 * Nice levels are multiplicative, with a gentle 10% change for every
793 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
794 * nice 1, it will get ~10% less CPU time than another CPU-bound task
795 * that remained on nice 0.
796 *
797 * The "10% effect" is relative and cumulative: from _any_ nice level,
798 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
799 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
800 * If a task goes up by ~10% and another task goes down by ~10% then
801 * the relative distance between them is ~25%.)
802 */
803static const int prio_to_weight[40] = {
804 /* -20 */ 88761, 71755, 56483, 46273, 36291,
805 /* -15 */ 29154, 23254, 18705, 14949, 11916,
806 /* -10 */ 9548, 7620, 6100, 4904, 3906,
807 /* -5 */ 3121, 2501, 1991, 1586, 1277,
808 /* 0 */ 1024, 820, 655, 526, 423,
809 /* 5 */ 335, 272, 215, 172, 137,
810 /* 10 */ 110, 87, 70, 56, 45,
811 /* 15 */ 36, 29, 23, 18, 15,
812};
813
814/*
815 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
816 *
817 * In cases where the weight does not change often, we can use the
818 * precalculated inverse to speed up arithmetics by turning divisions
819 * into multiplications:
820 */
821static const u32 prio_to_wmult[40] = {
822 /* -20 */ 48388, 59856, 76040, 92818, 118348,
823 /* -15 */ 147320, 184698, 229616, 287308, 360437,
824 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
825 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
826 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
827 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
828 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
829 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
830};
831
832/* Time spent by the tasks of the cpu accounting group executing in ... */
833enum cpuacct_stat_index {
834 CPUACCT_STAT_USER, /* ... user mode */
835 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
836
837 CPUACCT_STAT_NSTATS,
838};
839
840
841#define sched_class_highest (&stop_sched_class)
842#define for_each_class(class) \
843 for (class = sched_class_highest; class; class = class->next)
844
845extern const struct sched_class stop_sched_class;
846extern const struct sched_class rt_sched_class;
847extern const struct sched_class fair_sched_class;
848extern const struct sched_class idle_sched_class;
849
850
851#ifdef CONFIG_SMP
852
853extern void trigger_load_balance(struct rq *rq, int cpu);
854extern void idle_balance(int this_cpu, struct rq *this_rq);
855
856#else /* CONFIG_SMP */
857
858static inline void idle_balance(int cpu, struct rq *rq)
859{
860}
861
862#endif
863
864extern void sysrq_sched_debug_show(void);
865extern void sched_init_granularity(void);
866extern void update_max_interval(void);
867extern void update_group_power(struct sched_domain *sd, int cpu);
868extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
869extern void init_sched_rt_class(void);
870extern void init_sched_fair_class(void);
871
872extern void resched_task(struct task_struct *p);
873extern void resched_cpu(int cpu);
874
875extern struct rt_bandwidth def_rt_bandwidth;
876extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
877
Peter Zijlstra556061b2012-05-11 17:31:26 +0200878extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200879
880#ifdef CONFIG_CGROUP_CPUACCT
Glauber Costa54c707e2011-11-28 14:45:19 -0200881#include <linux/cgroup.h>
882/* track cpu usage of a group of tasks and its child groups */
883struct cpuacct {
884 struct cgroup_subsys_state css;
885 /* cpuusage holds pointer to a u64-type object on every cpu */
886 u64 __percpu *cpuusage;
887 struct kernel_cpustat __percpu *cpustat;
888};
889
Frederic Weisbecker73fbec62012-06-16 15:57:37 +0200890extern struct cgroup_subsys cpuacct_subsys;
891extern struct cpuacct root_cpuacct;
892
Glauber Costa54c707e2011-11-28 14:45:19 -0200893/* return cpu accounting group corresponding to this container */
894static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
895{
896 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
897 struct cpuacct, css);
898}
899
900/* return cpu accounting group to which this task belongs */
901static inline struct cpuacct *task_ca(struct task_struct *tsk)
902{
903 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
904 struct cpuacct, css);
905}
906
907static inline struct cpuacct *parent_ca(struct cpuacct *ca)
908{
909 if (!ca || !ca->css.cgroup->parent)
910 return NULL;
911 return cgroup_ca(ca->css.cgroup->parent);
912}
913
Peter Zijlstra029632f2011-10-25 10:00:11 +0200914extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200915#else
916static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200917#endif
918
Frederic Weisbecker73fbec62012-06-16 15:57:37 +0200919#ifdef CONFIG_PARAVIRT
920static inline u64 steal_ticks(u64 steal)
921{
922 if (unlikely(steal > NSEC_PER_SEC))
923 return div_u64(steal, TICK_NSEC);
924
925 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
926}
927#endif
928
Peter Zijlstra029632f2011-10-25 10:00:11 +0200929static inline void inc_nr_running(struct rq *rq)
930{
931 rq->nr_running++;
932}
933
934static inline void dec_nr_running(struct rq *rq)
935{
936 rq->nr_running--;
937}
938
939extern void update_rq_clock(struct rq *rq);
940
941extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
942extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
943
944extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
945
946extern const_debug unsigned int sysctl_sched_time_avg;
947extern const_debug unsigned int sysctl_sched_nr_migrate;
948extern const_debug unsigned int sysctl_sched_migration_cost;
949
950static inline u64 sched_avg_period(void)
951{
952 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
953}
954
Peter Zijlstra029632f2011-10-25 10:00:11 +0200955#ifdef CONFIG_SCHED_HRTICK
956
957/*
958 * Use hrtick when:
959 * - enabled by features
960 * - hrtimer is actually high res
961 */
962static inline int hrtick_enabled(struct rq *rq)
963{
964 if (!sched_feat(HRTICK))
965 return 0;
966 if (!cpu_active(cpu_of(rq)))
967 return 0;
968 return hrtimer_is_hres_active(&rq->hrtick_timer);
969}
970
971void hrtick_start(struct rq *rq, u64 delay);
972
Mike Galbraithb39e66e2011-11-22 15:20:07 +0100973#else
974
975static inline int hrtick_enabled(struct rq *rq)
976{
977 return 0;
978}
979
Peter Zijlstra029632f2011-10-25 10:00:11 +0200980#endif /* CONFIG_SCHED_HRTICK */
981
982#ifdef CONFIG_SMP
983extern void sched_avg_update(struct rq *rq);
984static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
985{
986 rq->rt_avg += rt_delta;
987 sched_avg_update(rq);
988}
989#else
990static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
991static inline void sched_avg_update(struct rq *rq) { }
992#endif
993
994extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
995
996#ifdef CONFIG_SMP
997#ifdef CONFIG_PREEMPT
998
999static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1000
1001/*
1002 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1003 * way at the expense of forcing extra atomic operations in all
1004 * invocations. This assures that the double_lock is acquired using the
1005 * same underlying policy as the spinlock_t on this architecture, which
1006 * reduces latency compared to the unfair variant below. However, it
1007 * also adds more overhead and therefore may reduce throughput.
1008 */
1009static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1010 __releases(this_rq->lock)
1011 __acquires(busiest->lock)
1012 __acquires(this_rq->lock)
1013{
1014 raw_spin_unlock(&this_rq->lock);
1015 double_rq_lock(this_rq, busiest);
1016
1017 return 1;
1018}
1019
1020#else
1021/*
1022 * Unfair double_lock_balance: Optimizes throughput at the expense of
1023 * latency by eliminating extra atomic operations when the locks are
1024 * already in proper order on entry. This favors lower cpu-ids and will
1025 * grant the double lock to lower cpus over higher ids under contention,
1026 * regardless of entry order into the function.
1027 */
1028static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1029 __releases(this_rq->lock)
1030 __acquires(busiest->lock)
1031 __acquires(this_rq->lock)
1032{
1033 int ret = 0;
1034
1035 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1036 if (busiest < this_rq) {
1037 raw_spin_unlock(&this_rq->lock);
1038 raw_spin_lock(&busiest->lock);
1039 raw_spin_lock_nested(&this_rq->lock,
1040 SINGLE_DEPTH_NESTING);
1041 ret = 1;
1042 } else
1043 raw_spin_lock_nested(&busiest->lock,
1044 SINGLE_DEPTH_NESTING);
1045 }
1046 return ret;
1047}
1048
1049#endif /* CONFIG_PREEMPT */
1050
1051/*
1052 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1053 */
1054static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1055{
1056 if (unlikely(!irqs_disabled())) {
1057 /* printk() doesn't work good under rq->lock */
1058 raw_spin_unlock(&this_rq->lock);
1059 BUG_ON(1);
1060 }
1061
1062 return _double_lock_balance(this_rq, busiest);
1063}
1064
1065static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1066 __releases(busiest->lock)
1067{
1068 raw_spin_unlock(&busiest->lock);
1069 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1070}
1071
1072/*
1073 * double_rq_lock - safely lock two runqueues
1074 *
1075 * Note this does not disable interrupts like task_rq_lock,
1076 * you need to do so manually before calling.
1077 */
1078static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1079 __acquires(rq1->lock)
1080 __acquires(rq2->lock)
1081{
1082 BUG_ON(!irqs_disabled());
1083 if (rq1 == rq2) {
1084 raw_spin_lock(&rq1->lock);
1085 __acquire(rq2->lock); /* Fake it out ;) */
1086 } else {
1087 if (rq1 < rq2) {
1088 raw_spin_lock(&rq1->lock);
1089 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1090 } else {
1091 raw_spin_lock(&rq2->lock);
1092 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1093 }
1094 }
1095}
1096
1097/*
1098 * double_rq_unlock - safely unlock two runqueues
1099 *
1100 * Note this does not restore interrupts like task_rq_unlock,
1101 * you need to do so manually after calling.
1102 */
1103static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1104 __releases(rq1->lock)
1105 __releases(rq2->lock)
1106{
1107 raw_spin_unlock(&rq1->lock);
1108 if (rq1 != rq2)
1109 raw_spin_unlock(&rq2->lock);
1110 else
1111 __release(rq2->lock);
1112}
1113
1114#else /* CONFIG_SMP */
1115
1116/*
1117 * double_rq_lock - safely lock two runqueues
1118 *
1119 * Note this does not disable interrupts like task_rq_lock,
1120 * you need to do so manually before calling.
1121 */
1122static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1123 __acquires(rq1->lock)
1124 __acquires(rq2->lock)
1125{
1126 BUG_ON(!irqs_disabled());
1127 BUG_ON(rq1 != rq2);
1128 raw_spin_lock(&rq1->lock);
1129 __acquire(rq2->lock); /* Fake it out ;) */
1130}
1131
1132/*
1133 * double_rq_unlock - safely unlock two runqueues
1134 *
1135 * Note this does not restore interrupts like task_rq_unlock,
1136 * you need to do so manually after calling.
1137 */
1138static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1139 __releases(rq1->lock)
1140 __releases(rq2->lock)
1141{
1142 BUG_ON(rq1 != rq2);
1143 raw_spin_unlock(&rq1->lock);
1144 __release(rq2->lock);
1145}
1146
1147#endif
1148
1149extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1150extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1151extern void print_cfs_stats(struct seq_file *m, int cpu);
1152extern void print_rt_stats(struct seq_file *m, int cpu);
1153
1154extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1155extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001156
1157extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001158
1159#ifdef CONFIG_NO_HZ
1160enum rq_nohz_flag_bits {
1161 NOHZ_TICK_STOPPED,
1162 NOHZ_BALANCE_KICK,
Suresh Siddha69e1e812011-12-01 17:07:33 -08001163 NOHZ_IDLE,
Suresh Siddha1c792db2011-12-01 17:07:32 -08001164};
1165
1166#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1167#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001168
1169#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1170
1171DECLARE_PER_CPU(u64, cpu_hardirq_time);
1172DECLARE_PER_CPU(u64, cpu_softirq_time);
1173
1174#ifndef CONFIG_64BIT
1175DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1176
1177static inline void irq_time_write_begin(void)
1178{
1179 __this_cpu_inc(irq_time_seq.sequence);
1180 smp_wmb();
1181}
1182
1183static inline void irq_time_write_end(void)
1184{
1185 smp_wmb();
1186 __this_cpu_inc(irq_time_seq.sequence);
1187}
1188
1189static inline u64 irq_time_read(int cpu)
1190{
1191 u64 irq_time;
1192 unsigned seq;
1193
1194 do {
1195 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1196 irq_time = per_cpu(cpu_softirq_time, cpu) +
1197 per_cpu(cpu_hardirq_time, cpu);
1198 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1199
1200 return irq_time;
1201}
1202#else /* CONFIG_64BIT */
1203static inline void irq_time_write_begin(void)
1204{
1205}
1206
1207static inline void irq_time_write_end(void)
1208{
1209}
1210
1211static inline u64 irq_time_read(int cpu)
1212{
1213 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1214}
1215#endif /* CONFIG_64BIT */
1216#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1217