| Felipe Balbi | 550a737 | 2008-07-24 12:27:36 +0300 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2005-2006 by Texas Instruments | 
|  | 3 | * | 
|  | 4 | * This file implements a DMA  interface using TI's CPPI DMA. | 
|  | 5 | * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB. | 
|  | 6 | * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci. | 
|  | 7 | */ | 
|  | 8 |  | 
|  | 9 | #include <linux/usb.h> | 
|  | 10 |  | 
|  | 11 | #include "musb_core.h" | 
|  | 12 | #include "cppi_dma.h" | 
|  | 13 |  | 
|  | 14 |  | 
|  | 15 | /* CPPI DMA status 7-mar-2006: | 
|  | 16 | * | 
|  | 17 | * - See musb_{host,gadget}.c for more info | 
|  | 18 | * | 
|  | 19 | * - Correct RX DMA generally forces the engine into irq-per-packet mode, | 
|  | 20 | *   which can easily saturate the CPU under non-mass-storage loads. | 
|  | 21 | * | 
|  | 22 | * NOTES 24-aug-2006 (2.6.18-rc4): | 
|  | 23 | * | 
|  | 24 | * - peripheral RXDMA wedged in a test with packets of length 512/512/1. | 
|  | 25 | *   evidently after the 1 byte packet was received and acked, the queue | 
|  | 26 | *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003, | 
|  | 27 | *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401 | 
|  | 28 | *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx | 
|  | 29 | *   of its next (512 byte) packet.  IRQ issues? | 
|  | 30 | * | 
|  | 31 | * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will | 
|  | 32 | * evidently also directly update the RX and TX CSRs ... so audit all | 
|  | 33 | * host and peripheral side DMA code to avoid CSR access after DMA has | 
|  | 34 | * been started. | 
|  | 35 | */ | 
|  | 36 |  | 
|  | 37 | /* REVISIT now we can avoid preallocating these descriptors; or | 
|  | 38 | * more simply, switch to a global freelist not per-channel ones. | 
|  | 39 | * Note: at full speed, 64 descriptors == 4K bulk data. | 
|  | 40 | */ | 
|  | 41 | #define NUM_TXCHAN_BD       64 | 
|  | 42 | #define NUM_RXCHAN_BD       64 | 
|  | 43 |  | 
|  | 44 | static inline void cpu_drain_writebuffer(void) | 
|  | 45 | { | 
|  | 46 | wmb(); | 
|  | 47 | #ifdef	CONFIG_CPU_ARM926T | 
|  | 48 | /* REVISIT this "should not be needed", | 
|  | 49 | * but lack of it sure seemed to hurt ... | 
|  | 50 | */ | 
|  | 51 | asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n"); | 
|  | 52 | #endif | 
|  | 53 | } | 
|  | 54 |  | 
|  | 55 | static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c) | 
|  | 56 | { | 
|  | 57 | struct cppi_descriptor	*bd = c->freelist; | 
|  | 58 |  | 
|  | 59 | if (bd) | 
|  | 60 | c->freelist = bd->next; | 
|  | 61 | return bd; | 
|  | 62 | } | 
|  | 63 |  | 
|  | 64 | static inline void | 
|  | 65 | cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd) | 
|  | 66 | { | 
|  | 67 | if (!bd) | 
|  | 68 | return; | 
|  | 69 | bd->next = c->freelist; | 
|  | 70 | c->freelist = bd; | 
|  | 71 | } | 
|  | 72 |  | 
|  | 73 | /* | 
|  | 74 | *  Start DMA controller | 
|  | 75 | * | 
|  | 76 | *  Initialize the DMA controller as necessary. | 
|  | 77 | */ | 
|  | 78 |  | 
|  | 79 | /* zero out entire rx state RAM entry for the channel */ | 
|  | 80 | static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx) | 
|  | 81 | { | 
|  | 82 | musb_writel(&rx->rx_skipbytes, 0, 0); | 
|  | 83 | musb_writel(&rx->rx_head, 0, 0); | 
|  | 84 | musb_writel(&rx->rx_sop, 0, 0); | 
|  | 85 | musb_writel(&rx->rx_current, 0, 0); | 
|  | 86 | musb_writel(&rx->rx_buf_current, 0, 0); | 
|  | 87 | musb_writel(&rx->rx_len_len, 0, 0); | 
|  | 88 | musb_writel(&rx->rx_cnt_cnt, 0, 0); | 
|  | 89 | } | 
|  | 90 |  | 
|  | 91 | /* zero out entire tx state RAM entry for the channel */ | 
|  | 92 | static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr) | 
|  | 93 | { | 
|  | 94 | musb_writel(&tx->tx_head, 0, 0); | 
|  | 95 | musb_writel(&tx->tx_buf, 0, 0); | 
|  | 96 | musb_writel(&tx->tx_current, 0, 0); | 
|  | 97 | musb_writel(&tx->tx_buf_current, 0, 0); | 
|  | 98 | musb_writel(&tx->tx_info, 0, 0); | 
|  | 99 | musb_writel(&tx->tx_rem_len, 0, 0); | 
|  | 100 | /* musb_writel(&tx->tx_dummy, 0, 0); */ | 
|  | 101 | musb_writel(&tx->tx_complete, 0, ptr); | 
|  | 102 | } | 
|  | 103 |  | 
|  | 104 | static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c) | 
|  | 105 | { | 
|  | 106 | int	j; | 
|  | 107 |  | 
|  | 108 | /* initialize channel fields */ | 
|  | 109 | c->head = NULL; | 
|  | 110 | c->tail = NULL; | 
|  | 111 | c->last_processed = NULL; | 
|  | 112 | c->channel.status = MUSB_DMA_STATUS_UNKNOWN; | 
|  | 113 | c->controller = cppi; | 
|  | 114 | c->is_rndis = 0; | 
|  | 115 | c->freelist = NULL; | 
|  | 116 |  | 
|  | 117 | /* build the BD Free list for the channel */ | 
|  | 118 | for (j = 0; j < NUM_TXCHAN_BD + 1; j++) { | 
|  | 119 | struct cppi_descriptor	*bd; | 
|  | 120 | dma_addr_t		dma; | 
|  | 121 |  | 
|  | 122 | bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma); | 
|  | 123 | bd->dma = dma; | 
|  | 124 | cppi_bd_free(c, bd); | 
|  | 125 | } | 
|  | 126 | } | 
|  | 127 |  | 
|  | 128 | static int cppi_channel_abort(struct dma_channel *); | 
|  | 129 |  | 
|  | 130 | static void cppi_pool_free(struct cppi_channel *c) | 
|  | 131 | { | 
|  | 132 | struct cppi		*cppi = c->controller; | 
|  | 133 | struct cppi_descriptor	*bd; | 
|  | 134 |  | 
|  | 135 | (void) cppi_channel_abort(&c->channel); | 
|  | 136 | c->channel.status = MUSB_DMA_STATUS_UNKNOWN; | 
|  | 137 | c->controller = NULL; | 
|  | 138 |  | 
|  | 139 | /* free all its bds */ | 
|  | 140 | bd = c->last_processed; | 
|  | 141 | do { | 
|  | 142 | if (bd) | 
|  | 143 | dma_pool_free(cppi->pool, bd, bd->dma); | 
|  | 144 | bd = cppi_bd_alloc(c); | 
|  | 145 | } while (bd); | 
|  | 146 | c->last_processed = NULL; | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | static int __init cppi_controller_start(struct dma_controller *c) | 
|  | 150 | { | 
|  | 151 | struct cppi	*controller; | 
|  | 152 | void __iomem	*tibase; | 
|  | 153 | int		i; | 
|  | 154 |  | 
|  | 155 | controller = container_of(c, struct cppi, controller); | 
|  | 156 |  | 
|  | 157 | /* do whatever is necessary to start controller */ | 
|  | 158 | for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
|  | 159 | controller->tx[i].transmit = true; | 
|  | 160 | controller->tx[i].index = i; | 
|  | 161 | } | 
|  | 162 | for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { | 
|  | 163 | controller->rx[i].transmit = false; | 
|  | 164 | controller->rx[i].index = i; | 
|  | 165 | } | 
|  | 166 |  | 
|  | 167 | /* setup BD list on a per channel basis */ | 
|  | 168 | for (i = 0; i < ARRAY_SIZE(controller->tx); i++) | 
|  | 169 | cppi_pool_init(controller, controller->tx + i); | 
|  | 170 | for (i = 0; i < ARRAY_SIZE(controller->rx); i++) | 
|  | 171 | cppi_pool_init(controller, controller->rx + i); | 
|  | 172 |  | 
|  | 173 | tibase =  controller->tibase; | 
|  | 174 | INIT_LIST_HEAD(&controller->tx_complete); | 
|  | 175 |  | 
|  | 176 | /* initialise tx/rx channel head pointers to zero */ | 
|  | 177 | for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
|  | 178 | struct cppi_channel	*tx_ch = controller->tx + i; | 
|  | 179 | struct cppi_tx_stateram __iomem *tx; | 
|  | 180 |  | 
|  | 181 | INIT_LIST_HEAD(&tx_ch->tx_complete); | 
|  | 182 |  | 
|  | 183 | tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i); | 
|  | 184 | tx_ch->state_ram = tx; | 
|  | 185 | cppi_reset_tx(tx, 0); | 
|  | 186 | } | 
|  | 187 | for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { | 
|  | 188 | struct cppi_channel	*rx_ch = controller->rx + i; | 
|  | 189 | struct cppi_rx_stateram __iomem *rx; | 
|  | 190 |  | 
|  | 191 | INIT_LIST_HEAD(&rx_ch->tx_complete); | 
|  | 192 |  | 
|  | 193 | rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i); | 
|  | 194 | rx_ch->state_ram = rx; | 
|  | 195 | cppi_reset_rx(rx); | 
|  | 196 | } | 
|  | 197 |  | 
|  | 198 | /* enable individual cppi channels */ | 
|  | 199 | musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, | 
|  | 200 | DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
|  | 201 | musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG, | 
|  | 202 | DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
|  | 203 |  | 
|  | 204 | /* enable tx/rx CPPI control */ | 
|  | 205 | musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); | 
|  | 206 | musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); | 
|  | 207 |  | 
|  | 208 | /* disable RNDIS mode, also host rx RNDIS autorequest */ | 
|  | 209 | musb_writel(tibase, DAVINCI_RNDIS_REG, 0); | 
|  | 210 | musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0); | 
|  | 211 |  | 
|  | 212 | return 0; | 
|  | 213 | } | 
|  | 214 |  | 
|  | 215 | /* | 
|  | 216 | *  Stop DMA controller | 
|  | 217 | * | 
|  | 218 | *  De-Init the DMA controller as necessary. | 
|  | 219 | */ | 
|  | 220 |  | 
|  | 221 | static int cppi_controller_stop(struct dma_controller *c) | 
|  | 222 | { | 
|  | 223 | struct cppi		*controller; | 
|  | 224 | void __iomem		*tibase; | 
|  | 225 | int			i; | 
|  | 226 |  | 
|  | 227 | controller = container_of(c, struct cppi, controller); | 
|  | 228 |  | 
|  | 229 | tibase = controller->tibase; | 
|  | 230 | /* DISABLE INDIVIDUAL CHANNEL Interrupts */ | 
|  | 231 | musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, | 
|  | 232 | DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
|  | 233 | musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG, | 
|  | 234 | DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
|  | 235 |  | 
|  | 236 | DBG(1, "Tearing down RX and TX Channels\n"); | 
|  | 237 | for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
|  | 238 | /* FIXME restructure of txdma to use bds like rxdma */ | 
|  | 239 | controller->tx[i].last_processed = NULL; | 
|  | 240 | cppi_pool_free(controller->tx + i); | 
|  | 241 | } | 
|  | 242 | for (i = 0; i < ARRAY_SIZE(controller->rx); i++) | 
|  | 243 | cppi_pool_free(controller->rx + i); | 
|  | 244 |  | 
|  | 245 | /* in Tx Case proper teardown is supported. We resort to disabling | 
|  | 246 | * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is | 
|  | 247 | * complete TX CPPI cannot be disabled. | 
|  | 248 | */ | 
|  | 249 | /*disable tx/rx cppi */ | 
|  | 250 | musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); | 
|  | 251 | musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); | 
|  | 252 |  | 
|  | 253 | return 0; | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 | /* While dma channel is allocated, we only want the core irqs active | 
|  | 257 | * for fault reports, otherwise we'd get irqs that we don't care about. | 
|  | 258 | * Except for TX irqs, where dma done != fifo empty and reusable ... | 
|  | 259 | * | 
|  | 260 | * NOTE: docs don't say either way, but irq masking **enables** irqs. | 
|  | 261 | * | 
|  | 262 | * REVISIT same issue applies to pure PIO usage too, and non-cppi dma... | 
|  | 263 | */ | 
|  | 264 | static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum) | 
|  | 265 | { | 
|  | 266 | musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8)); | 
|  | 267 | } | 
|  | 268 |  | 
|  | 269 | static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum) | 
|  | 270 | { | 
|  | 271 | musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8)); | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 |  | 
|  | 275 | /* | 
|  | 276 | * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to | 
|  | 277 | * each transfer direction of a non-control endpoint, so allocating | 
|  | 278 | * (and deallocating) is mostly a way to notice bad housekeeping on | 
|  | 279 | * the software side.  We assume the irqs are always active. | 
|  | 280 | */ | 
|  | 281 | static struct dma_channel * | 
|  | 282 | cppi_channel_allocate(struct dma_controller *c, | 
|  | 283 | struct musb_hw_ep *ep, u8 transmit) | 
|  | 284 | { | 
|  | 285 | struct cppi		*controller; | 
|  | 286 | u8			index; | 
|  | 287 | struct cppi_channel	*cppi_ch; | 
|  | 288 | void __iomem		*tibase; | 
|  | 289 |  | 
|  | 290 | controller = container_of(c, struct cppi, controller); | 
|  | 291 | tibase = controller->tibase; | 
|  | 292 |  | 
|  | 293 | /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */ | 
|  | 294 | index = ep->epnum - 1; | 
|  | 295 |  | 
|  | 296 | /* return the corresponding CPPI Channel Handle, and | 
|  | 297 | * probably disable the non-CPPI irq until we need it. | 
|  | 298 | */ | 
|  | 299 | if (transmit) { | 
|  | 300 | if (index >= ARRAY_SIZE(controller->tx)) { | 
|  | 301 | DBG(1, "no %cX%d CPPI channel\n", 'T', index); | 
|  | 302 | return NULL; | 
|  | 303 | } | 
|  | 304 | cppi_ch = controller->tx + index; | 
|  | 305 | } else { | 
|  | 306 | if (index >= ARRAY_SIZE(controller->rx)) { | 
|  | 307 | DBG(1, "no %cX%d CPPI channel\n", 'R', index); | 
|  | 308 | return NULL; | 
|  | 309 | } | 
|  | 310 | cppi_ch = controller->rx + index; | 
|  | 311 | core_rxirq_disable(tibase, ep->epnum); | 
|  | 312 | } | 
|  | 313 |  | 
|  | 314 | /* REVISIT make this an error later once the same driver code works | 
|  | 315 | * with the other DMA engine too | 
|  | 316 | */ | 
|  | 317 | if (cppi_ch->hw_ep) | 
|  | 318 | DBG(1, "re-allocating DMA%d %cX channel %p\n", | 
|  | 319 | index, transmit ? 'T' : 'R', cppi_ch); | 
|  | 320 | cppi_ch->hw_ep = ep; | 
|  | 321 | cppi_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
|  | 322 |  | 
|  | 323 | DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R'); | 
|  | 324 | return &cppi_ch->channel; | 
|  | 325 | } | 
|  | 326 |  | 
|  | 327 | /* Release a CPPI Channel.  */ | 
|  | 328 | static void cppi_channel_release(struct dma_channel *channel) | 
|  | 329 | { | 
|  | 330 | struct cppi_channel	*c; | 
|  | 331 | void __iomem		*tibase; | 
|  | 332 |  | 
|  | 333 | /* REVISIT:  for paranoia, check state and abort if needed... */ | 
|  | 334 |  | 
|  | 335 | c = container_of(channel, struct cppi_channel, channel); | 
|  | 336 | tibase = c->controller->tibase; | 
|  | 337 | if (!c->hw_ep) | 
|  | 338 | DBG(1, "releasing idle DMA channel %p\n", c); | 
|  | 339 | else if (!c->transmit) | 
|  | 340 | core_rxirq_enable(tibase, c->index + 1); | 
|  | 341 |  | 
|  | 342 | /* for now, leave its cppi IRQ enabled (we won't trigger it) */ | 
|  | 343 | c->hw_ep = NULL; | 
|  | 344 | channel->status = MUSB_DMA_STATUS_UNKNOWN; | 
|  | 345 | } | 
|  | 346 |  | 
|  | 347 | /* Context: controller irqlocked */ | 
|  | 348 | static void | 
|  | 349 | cppi_dump_rx(int level, struct cppi_channel *c, const char *tag) | 
|  | 350 | { | 
|  | 351 | void __iomem			*base = c->controller->mregs; | 
|  | 352 | struct cppi_rx_stateram __iomem	*rx = c->state_ram; | 
|  | 353 |  | 
|  | 354 | musb_ep_select(base, c->index + 1); | 
|  | 355 |  | 
|  | 356 | DBG(level, "RX DMA%d%s: %d left, csr %04x, " | 
|  | 357 | "%08x H%08x S%08x C%08x, " | 
|  | 358 | "B%08x L%08x %08x .. %08x" | 
|  | 359 | "\n", | 
|  | 360 | c->index, tag, | 
|  | 361 | musb_readl(c->controller->tibase, | 
|  | 362 | DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index), | 
|  | 363 | musb_readw(c->hw_ep->regs, MUSB_RXCSR), | 
|  | 364 |  | 
|  | 365 | musb_readl(&rx->rx_skipbytes, 0), | 
|  | 366 | musb_readl(&rx->rx_head, 0), | 
|  | 367 | musb_readl(&rx->rx_sop, 0), | 
|  | 368 | musb_readl(&rx->rx_current, 0), | 
|  | 369 |  | 
|  | 370 | musb_readl(&rx->rx_buf_current, 0), | 
|  | 371 | musb_readl(&rx->rx_len_len, 0), | 
|  | 372 | musb_readl(&rx->rx_cnt_cnt, 0), | 
|  | 373 | musb_readl(&rx->rx_complete, 0) | 
|  | 374 | ); | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | /* Context: controller irqlocked */ | 
|  | 378 | static void | 
|  | 379 | cppi_dump_tx(int level, struct cppi_channel *c, const char *tag) | 
|  | 380 | { | 
|  | 381 | void __iomem			*base = c->controller->mregs; | 
|  | 382 | struct cppi_tx_stateram __iomem	*tx = c->state_ram; | 
|  | 383 |  | 
|  | 384 | musb_ep_select(base, c->index + 1); | 
|  | 385 |  | 
|  | 386 | DBG(level, "TX DMA%d%s: csr %04x, " | 
|  | 387 | "H%08x S%08x C%08x %08x, " | 
|  | 388 | "F%08x L%08x .. %08x" | 
|  | 389 | "\n", | 
|  | 390 | c->index, tag, | 
|  | 391 | musb_readw(c->hw_ep->regs, MUSB_TXCSR), | 
|  | 392 |  | 
|  | 393 | musb_readl(&tx->tx_head, 0), | 
|  | 394 | musb_readl(&tx->tx_buf, 0), | 
|  | 395 | musb_readl(&tx->tx_current, 0), | 
|  | 396 | musb_readl(&tx->tx_buf_current, 0), | 
|  | 397 |  | 
|  | 398 | musb_readl(&tx->tx_info, 0), | 
|  | 399 | musb_readl(&tx->tx_rem_len, 0), | 
|  | 400 | /* dummy/unused word 6 */ | 
|  | 401 | musb_readl(&tx->tx_complete, 0) | 
|  | 402 | ); | 
|  | 403 | } | 
|  | 404 |  | 
|  | 405 | /* Context: controller irqlocked */ | 
|  | 406 | static inline void | 
|  | 407 | cppi_rndis_update(struct cppi_channel *c, int is_rx, | 
|  | 408 | void __iomem *tibase, int is_rndis) | 
|  | 409 | { | 
|  | 410 | /* we may need to change the rndis flag for this cppi channel */ | 
|  | 411 | if (c->is_rndis != is_rndis) { | 
|  | 412 | u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG); | 
|  | 413 | u32	temp = 1 << (c->index); | 
|  | 414 |  | 
|  | 415 | if (is_rx) | 
|  | 416 | temp <<= 16; | 
|  | 417 | if (is_rndis) | 
|  | 418 | value |= temp; | 
|  | 419 | else | 
|  | 420 | value &= ~temp; | 
|  | 421 | musb_writel(tibase, DAVINCI_RNDIS_REG, value); | 
|  | 422 | c->is_rndis = is_rndis; | 
|  | 423 | } | 
|  | 424 | } | 
|  | 425 |  | 
|  | 426 | static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd) | 
|  | 427 | { | 
|  | 428 | pr_debug("RXBD/%s %08x: " | 
|  | 429 | "nxt %08x buf %08x off.blen %08x opt.plen %08x\n", | 
|  | 430 | tag, bd->dma, | 
|  | 431 | bd->hw_next, bd->hw_bufp, bd->hw_off_len, | 
|  | 432 | bd->hw_options); | 
|  | 433 | } | 
|  | 434 |  | 
|  | 435 | static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx) | 
|  | 436 | { | 
|  | 437 | #if MUSB_DEBUG > 0 | 
|  | 438 | struct cppi_descriptor	*bd; | 
|  | 439 |  | 
|  | 440 | if (!_dbg_level(level)) | 
|  | 441 | return; | 
|  | 442 | cppi_dump_rx(level, rx, tag); | 
|  | 443 | if (rx->last_processed) | 
|  | 444 | cppi_dump_rxbd("last", rx->last_processed); | 
|  | 445 | for (bd = rx->head; bd; bd = bd->next) | 
|  | 446 | cppi_dump_rxbd("active", bd); | 
|  | 447 | #endif | 
|  | 448 | } | 
|  | 449 |  | 
|  | 450 |  | 
|  | 451 | /* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX; | 
|  | 452 | * so we won't ever use it (see "CPPI RX Woes" below). | 
|  | 453 | */ | 
|  | 454 | static inline int cppi_autoreq_update(struct cppi_channel *rx, | 
|  | 455 | void __iomem *tibase, int onepacket, unsigned n_bds) | 
|  | 456 | { | 
|  | 457 | u32	val; | 
|  | 458 |  | 
|  | 459 | #ifdef	RNDIS_RX_IS_USABLE | 
|  | 460 | u32	tmp; | 
|  | 461 | /* assert(is_host_active(musb)) */ | 
|  | 462 |  | 
|  | 463 | /* start from "AutoReq never" */ | 
|  | 464 | tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
|  | 465 | val = tmp & ~((0x3) << (rx->index * 2)); | 
|  | 466 |  | 
|  | 467 | /* HCD arranged reqpkt for packet #1.  we arrange int | 
|  | 468 | * for all but the last one, maybe in two segments. | 
|  | 469 | */ | 
|  | 470 | if (!onepacket) { | 
|  | 471 | #if 0 | 
|  | 472 | /* use two segments, autoreq "all" then the last "never" */ | 
|  | 473 | val |= ((0x3) << (rx->index * 2)); | 
|  | 474 | n_bds--; | 
|  | 475 | #else | 
|  | 476 | /* one segment, autoreq "all-but-last" */ | 
|  | 477 | val |= ((0x1) << (rx->index * 2)); | 
|  | 478 | #endif | 
|  | 479 | } | 
|  | 480 |  | 
|  | 481 | if (val != tmp) { | 
|  | 482 | int n = 100; | 
|  | 483 |  | 
|  | 484 | /* make sure that autoreq is updated before continuing */ | 
|  | 485 | musb_writel(tibase, DAVINCI_AUTOREQ_REG, val); | 
|  | 486 | do { | 
|  | 487 | tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
|  | 488 | if (tmp == val) | 
|  | 489 | break; | 
|  | 490 | cpu_relax(); | 
|  | 491 | } while (n-- > 0); | 
|  | 492 | } | 
|  | 493 | #endif | 
|  | 494 |  | 
|  | 495 | /* REQPKT is turned off after each segment */ | 
|  | 496 | if (n_bds && rx->channel.actual_len) { | 
|  | 497 | void __iomem	*regs = rx->hw_ep->regs; | 
|  | 498 |  | 
|  | 499 | val = musb_readw(regs, MUSB_RXCSR); | 
|  | 500 | if (!(val & MUSB_RXCSR_H_REQPKT)) { | 
|  | 501 | val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS; | 
|  | 502 | musb_writew(regs, MUSB_RXCSR, val); | 
|  | 503 | /* flush writebufer */ | 
|  | 504 | val = musb_readw(regs, MUSB_RXCSR); | 
|  | 505 | } | 
|  | 506 | } | 
|  | 507 | return n_bds; | 
|  | 508 | } | 
|  | 509 |  | 
|  | 510 |  | 
|  | 511 | /* Buffer enqueuing Logic: | 
|  | 512 | * | 
|  | 513 | *  - RX builds new queues each time, to help handle routine "early | 
|  | 514 | *    termination" cases (faults, including errors and short reads) | 
|  | 515 | *    more correctly. | 
|  | 516 | * | 
|  | 517 | *  - for now, TX reuses the same queue of BDs every time | 
|  | 518 | * | 
|  | 519 | * REVISIT long term, we want a normal dynamic model. | 
|  | 520 | * ... the goal will be to append to the | 
|  | 521 | * existing queue, processing completed "dma buffers" (segments) on the fly. | 
|  | 522 | * | 
|  | 523 | * Otherwise we force an IRQ latency between requests, which slows us a lot | 
|  | 524 | * (especially in "transparent" dma).  Unfortunately that model seems to be | 
|  | 525 | * inherent in the DMA model from the Mentor code, except in the rare case | 
|  | 526 | * of transfers big enough (~128+ KB) that we could append "middle" segments | 
|  | 527 | * in the TX paths.  (RX can't do this, see below.) | 
|  | 528 | * | 
|  | 529 | * That's true even in the CPPI- friendly iso case, where most urbs have | 
|  | 530 | * several small segments provided in a group and where the "packet at a time" | 
|  | 531 | * "transparent" DMA model is always correct, even on the RX side. | 
|  | 532 | */ | 
|  | 533 |  | 
|  | 534 | /* | 
|  | 535 | * CPPI TX: | 
|  | 536 | * ======== | 
|  | 537 | * TX is a lot more reasonable than RX; it doesn't need to run in | 
|  | 538 | * irq-per-packet mode very often.  RNDIS mode seems to behave too | 
|  | 539 | * (except how it handles the exactly-N-packets case).  Building a | 
|  | 540 | * txdma queue with multiple requests (urb or usb_request) looks | 
|  | 541 | * like it would work ... but fault handling would need much testing. | 
|  | 542 | * | 
|  | 543 | * The main issue with TX mode RNDIS relates to transfer lengths that | 
|  | 544 | * are an exact multiple of the packet length.  It appears that there's | 
|  | 545 | * a hiccup in that case (maybe the DMA completes before the ZLP gets | 
|  | 546 | * written?) boiling down to not being able to rely on CPPI writing any | 
|  | 547 | * terminating zero length packet before the next transfer is written. | 
|  | 548 | * So that's punted to PIO; better yet, gadget drivers can avoid it. | 
|  | 549 | * | 
|  | 550 | * Plus, there's allegedly an undocumented constraint that rndis transfer | 
|  | 551 | * length be a multiple of 64 bytes ... but the chip doesn't act that | 
|  | 552 | * way, and we really don't _want_ that behavior anyway. | 
|  | 553 | * | 
|  | 554 | * On TX, "transparent" mode works ... although experiments have shown | 
|  | 555 | * problems trying to use the SOP/EOP bits in different USB packets. | 
|  | 556 | * | 
|  | 557 | * REVISIT try to handle terminating zero length packets using CPPI | 
|  | 558 | * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet | 
|  | 559 | * links avoid that issue by forcing them to avoid zlps.) | 
|  | 560 | */ | 
|  | 561 | static void | 
|  | 562 | cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx) | 
|  | 563 | { | 
|  | 564 | unsigned		maxpacket = tx->maxpacket; | 
|  | 565 | dma_addr_t		addr = tx->buf_dma + tx->offset; | 
|  | 566 | size_t			length = tx->buf_len - tx->offset; | 
|  | 567 | struct cppi_descriptor	*bd; | 
|  | 568 | unsigned		n_bds; | 
|  | 569 | unsigned		i; | 
|  | 570 | struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram; | 
|  | 571 | int			rndis; | 
|  | 572 |  | 
|  | 573 | /* TX can use the CPPI "rndis" mode, where we can probably fit this | 
|  | 574 | * transfer in one BD and one IRQ.  The only time we would NOT want | 
|  | 575 | * to use it is when hardware constraints prevent it, or if we'd | 
|  | 576 | * trigger the "send a ZLP?" confusion. | 
|  | 577 | */ | 
|  | 578 | rndis = (maxpacket & 0x3f) == 0 | 
|  | 579 | && length < 0xffff | 
|  | 580 | && (length % maxpacket) != 0; | 
|  | 581 |  | 
|  | 582 | if (rndis) { | 
|  | 583 | maxpacket = length; | 
|  | 584 | n_bds = 1; | 
|  | 585 | } else { | 
|  | 586 | n_bds = length / maxpacket; | 
|  | 587 | if (!length || (length % maxpacket)) | 
|  | 588 | n_bds++; | 
|  | 589 | n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD); | 
|  | 590 | length = min(n_bds * maxpacket, length); | 
|  | 591 | } | 
|  | 592 |  | 
|  | 593 | DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n", | 
|  | 594 | tx->index, | 
|  | 595 | maxpacket, | 
|  | 596 | rndis ? "rndis" : "transparent", | 
|  | 597 | n_bds, | 
|  | 598 | addr, length); | 
|  | 599 |  | 
|  | 600 | cppi_rndis_update(tx, 0, musb->ctrl_base, rndis); | 
|  | 601 |  | 
|  | 602 | /* assuming here that channel_program is called during | 
|  | 603 | * transfer initiation ... current code maintains state | 
|  | 604 | * for one outstanding request only (no queues, not even | 
|  | 605 | * the implicit ones of an iso urb). | 
|  | 606 | */ | 
|  | 607 |  | 
|  | 608 | bd = tx->freelist; | 
|  | 609 | tx->head = bd; | 
|  | 610 | tx->last_processed = NULL; | 
|  | 611 |  | 
|  | 612 | /* FIXME use BD pool like RX side does, and just queue | 
|  | 613 | * the minimum number for this request. | 
|  | 614 | */ | 
|  | 615 |  | 
|  | 616 | /* Prepare queue of BDs first, then hand it to hardware. | 
|  | 617 | * All BDs except maybe the last should be of full packet | 
|  | 618 | * size; for RNDIS there _is_ only that last packet. | 
|  | 619 | */ | 
|  | 620 | for (i = 0; i < n_bds; ) { | 
|  | 621 | if (++i < n_bds && bd->next) | 
|  | 622 | bd->hw_next = bd->next->dma; | 
|  | 623 | else | 
|  | 624 | bd->hw_next = 0; | 
|  | 625 |  | 
|  | 626 | bd->hw_bufp = tx->buf_dma + tx->offset; | 
|  | 627 |  | 
|  | 628 | /* FIXME set EOP only on the last packet, | 
|  | 629 | * SOP only on the first ... avoid IRQs | 
|  | 630 | */ | 
|  | 631 | if ((tx->offset + maxpacket) <= tx->buf_len) { | 
|  | 632 | tx->offset += maxpacket; | 
|  | 633 | bd->hw_off_len = maxpacket; | 
|  | 634 | bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET | 
|  | 635 | | CPPI_OWN_SET | maxpacket; | 
|  | 636 | } else { | 
|  | 637 | /* only this one may be a partial USB Packet */ | 
|  | 638 | u32		partial_len; | 
|  | 639 |  | 
|  | 640 | partial_len = tx->buf_len - tx->offset; | 
|  | 641 | tx->offset = tx->buf_len; | 
|  | 642 | bd->hw_off_len = partial_len; | 
|  | 643 |  | 
|  | 644 | bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET | 
|  | 645 | | CPPI_OWN_SET | partial_len; | 
|  | 646 | if (partial_len == 0) | 
|  | 647 | bd->hw_options |= CPPI_ZERO_SET; | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n", | 
|  | 651 | bd, bd->hw_next, bd->hw_bufp, | 
|  | 652 | bd->hw_off_len, bd->hw_options); | 
|  | 653 |  | 
|  | 654 | /* update the last BD enqueued to the list */ | 
|  | 655 | tx->tail = bd; | 
|  | 656 | bd = bd->next; | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | /* BDs live in DMA-coherent memory, but writes might be pending */ | 
|  | 660 | cpu_drain_writebuffer(); | 
|  | 661 |  | 
|  | 662 | /* Write to the HeadPtr in state RAM to trigger */ | 
|  | 663 | musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma); | 
|  | 664 |  | 
|  | 665 | cppi_dump_tx(5, tx, "/S"); | 
|  | 666 | } | 
|  | 667 |  | 
|  | 668 | /* | 
|  | 669 | * CPPI RX Woes: | 
|  | 670 | * ============= | 
|  | 671 | * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte | 
|  | 672 | * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back. | 
|  | 673 | * (Full speed transfers have similar scenarios.) | 
|  | 674 | * | 
|  | 675 | * The correct behavior for Linux is that (a) fills the buffer with 300 bytes, | 
|  | 676 | * and the next packet goes into a buffer that's queued later; while (b) fills | 
|  | 677 | * the buffer with 1024 bytes.  How to do that with CPPI? | 
|  | 678 | * | 
|  | 679 | * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but | 
|  | 680 | *   (b) loses **BADLY** because nothing (!) happens when that second packet | 
|  | 681 | *   fills the buffer, much less when a third one arrives.  (Which makes this | 
|  | 682 | *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination | 
|  | 683 | *   is optional, and it's fine if peripherals -- not hosts! -- pad messages | 
|  | 684 | *   out to end-of-buffer.  Standard PCI host controller DMA descriptors | 
|  | 685 | *   implement that mode by default ... which is no accident.) | 
|  | 686 | * | 
|  | 687 | * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have | 
|  | 688 | *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX | 
|  | 689 | *   ignores SOP/EOP markings and processes both of those BDs; so both packets | 
|  | 690 | *   are loaded into the buffer (with a 212 byte gap between them), and the next | 
|  | 691 | *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP | 
|  | 692 | *   are intended as outputs for RX queues, not inputs...) | 
|  | 693 | * | 
|  | 694 | * - A variant of "transparent" mode -- one BD at a time -- is the only way to | 
|  | 695 | *   reliably make both cases work, with software handling both cases correctly | 
|  | 696 | *   and at the significant penalty of needing an IRQ per packet.  (The lack of | 
|  | 697 | *   I/O overlap can be slightly ameliorated by enabling double buffering.) | 
|  | 698 | * | 
|  | 699 | * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could | 
|  | 700 | * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK | 
|  | 701 | * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors | 
|  | 702 | * with guaranteed driver level fault recovery and scrubbing out what's left | 
|  | 703 | * of that garbaged datastream. | 
|  | 704 | * | 
|  | 705 | * But there seems to be no way to identify the cases where CPPI RNDIS mode | 
|  | 706 | * is appropriate -- which do NOT include RNDIS host drivers, but do include | 
|  | 707 | * the CDC Ethernet driver! -- and the documentation is incomplete/wrong. | 
|  | 708 | * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic | 
|  | 709 | * that applies best on the peripheral side (and which could fail rudely). | 
|  | 710 | * | 
|  | 711 | * Leaving only "transparent" mode; we avoid multi-bd modes in almost all | 
|  | 712 | * cases other than mass storage class.  Otherwise we're correct but slow, | 
|  | 713 | * since CPPI penalizes our need for a "true RNDIS" default mode. | 
|  | 714 | */ | 
|  | 715 |  | 
|  | 716 |  | 
|  | 717 | /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY | 
|  | 718 | * | 
|  | 719 | * IFF | 
|  | 720 | *  (a)	peripheral mode ... since rndis peripherals could pad their | 
|  | 721 | *	writes to hosts, causing i/o failure; or we'd have to cope with | 
|  | 722 | *	a largely unknowable variety of host side protocol variants | 
|  | 723 | *  (b)	and short reads are NOT errors ... since full reads would | 
|  | 724 | *	cause those same i/o failures | 
|  | 725 | *  (c)	and read length is | 
|  | 726 | *	- less than 64KB (max per cppi descriptor) | 
|  | 727 | *	- not a multiple of 4096 (g_zero default, full reads typical) | 
|  | 728 | *	- N (>1) packets long, ditto (full reads not EXPECTED) | 
|  | 729 | * THEN | 
|  | 730 | *   try rx rndis mode | 
|  | 731 | * | 
|  | 732 | * Cost of heuristic failing:  RXDMA wedges at the end of transfers that | 
|  | 733 | * fill out the whole buffer.  Buggy host side usb network drivers could | 
|  | 734 | * trigger that, but "in the field" such bugs seem to be all but unknown. | 
|  | 735 | * | 
|  | 736 | * So this module parameter lets the heuristic be disabled.  When using | 
|  | 737 | * gadgetfs, the heuristic will probably need to be disabled. | 
|  | 738 | */ | 
|  | 739 | static int cppi_rx_rndis = 1; | 
|  | 740 |  | 
|  | 741 | module_param(cppi_rx_rndis, bool, 0); | 
|  | 742 | MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic"); | 
|  | 743 |  | 
|  | 744 |  | 
|  | 745 | /** | 
|  | 746 | * cppi_next_rx_segment - dma read for the next chunk of a buffer | 
|  | 747 | * @musb: the controller | 
|  | 748 | * @rx: dma channel | 
|  | 749 | * @onepacket: true unless caller treats short reads as errors, and | 
|  | 750 | *	performs fault recovery above usbcore. | 
|  | 751 | * Context: controller irqlocked | 
|  | 752 | * | 
|  | 753 | * See above notes about why we can't use multi-BD RX queues except in | 
|  | 754 | * rare cases (mass storage class), and can never use the hardware "rndis" | 
|  | 755 | * mode (since it's not a "true" RNDIS mode) with complete safety.. | 
|  | 756 | * | 
|  | 757 | * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in | 
|  | 758 | * code to recover from corrupted datastreams after each short transfer. | 
|  | 759 | */ | 
|  | 760 | static void | 
|  | 761 | cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket) | 
|  | 762 | { | 
|  | 763 | unsigned		maxpacket = rx->maxpacket; | 
|  | 764 | dma_addr_t		addr = rx->buf_dma + rx->offset; | 
|  | 765 | size_t			length = rx->buf_len - rx->offset; | 
|  | 766 | struct cppi_descriptor	*bd, *tail; | 
|  | 767 | unsigned		n_bds; | 
|  | 768 | unsigned		i; | 
|  | 769 | void __iomem		*tibase = musb->ctrl_base; | 
|  | 770 | int			is_rndis = 0; | 
|  | 771 | struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram; | 
|  | 772 |  | 
|  | 773 | if (onepacket) { | 
|  | 774 | /* almost every USB driver, host or peripheral side */ | 
|  | 775 | n_bds = 1; | 
|  | 776 |  | 
|  | 777 | /* maybe apply the heuristic above */ | 
|  | 778 | if (cppi_rx_rndis | 
|  | 779 | && is_peripheral_active(musb) | 
|  | 780 | && length > maxpacket | 
|  | 781 | && (length & ~0xffff) == 0 | 
|  | 782 | && (length & 0x0fff) != 0 | 
|  | 783 | && (length & (maxpacket - 1)) == 0) { | 
|  | 784 | maxpacket = length; | 
|  | 785 | is_rndis = 1; | 
|  | 786 | } | 
|  | 787 | } else { | 
|  | 788 | /* virtually nothing except mass storage class */ | 
|  | 789 | if (length > 0xffff) { | 
|  | 790 | n_bds = 0xffff / maxpacket; | 
|  | 791 | length = n_bds * maxpacket; | 
|  | 792 | } else { | 
|  | 793 | n_bds = length / maxpacket; | 
|  | 794 | if (length % maxpacket) | 
|  | 795 | n_bds++; | 
|  | 796 | } | 
|  | 797 | if (n_bds == 1) | 
|  | 798 | onepacket = 1; | 
|  | 799 | else | 
|  | 800 | n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD); | 
|  | 801 | } | 
|  | 802 |  | 
|  | 803 | /* In host mode, autorequest logic can generate some IN tokens; it's | 
|  | 804 | * tricky since we can't leave REQPKT set in RXCSR after the transfer | 
|  | 805 | * finishes. So:  multipacket transfers involve two or more segments. | 
|  | 806 | * And always at least two IRQs ... RNDIS mode is not an option. | 
|  | 807 | */ | 
|  | 808 | if (is_host_active(musb)) | 
|  | 809 | n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds); | 
|  | 810 |  | 
|  | 811 | cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis); | 
|  | 812 |  | 
|  | 813 | length = min(n_bds * maxpacket, length); | 
|  | 814 |  | 
|  | 815 | DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) " | 
|  | 816 | "dma 0x%x len %u %u/%u\n", | 
|  | 817 | rx->index, maxpacket, | 
|  | 818 | onepacket | 
|  | 819 | ? (is_rndis ? "rndis" : "onepacket") | 
|  | 820 | : "multipacket", | 
|  | 821 | n_bds, | 
|  | 822 | musb_readl(tibase, | 
|  | 823 | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
|  | 824 | & 0xffff, | 
|  | 825 | addr, length, rx->channel.actual_len, rx->buf_len); | 
|  | 826 |  | 
|  | 827 | /* only queue one segment at a time, since the hardware prevents | 
|  | 828 | * correct queue shutdown after unexpected short packets | 
|  | 829 | */ | 
|  | 830 | bd = cppi_bd_alloc(rx); | 
|  | 831 | rx->head = bd; | 
|  | 832 |  | 
|  | 833 | /* Build BDs for all packets in this segment */ | 
|  | 834 | for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) { | 
|  | 835 | u32	bd_len; | 
|  | 836 |  | 
|  | 837 | if (i) { | 
|  | 838 | bd = cppi_bd_alloc(rx); | 
|  | 839 | if (!bd) | 
|  | 840 | break; | 
|  | 841 | tail->next = bd; | 
|  | 842 | tail->hw_next = bd->dma; | 
|  | 843 | } | 
|  | 844 | bd->hw_next = 0; | 
|  | 845 |  | 
|  | 846 | /* all but the last packet will be maxpacket size */ | 
|  | 847 | if (maxpacket < length) | 
|  | 848 | bd_len = maxpacket; | 
|  | 849 | else | 
|  | 850 | bd_len = length; | 
|  | 851 |  | 
|  | 852 | bd->hw_bufp = addr; | 
|  | 853 | addr += bd_len; | 
|  | 854 | rx->offset += bd_len; | 
|  | 855 |  | 
|  | 856 | bd->hw_off_len = (0 /*offset*/ << 16) + bd_len; | 
|  | 857 | bd->buflen = bd_len; | 
|  | 858 |  | 
|  | 859 | bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0); | 
|  | 860 | length -= bd_len; | 
|  | 861 | } | 
|  | 862 |  | 
|  | 863 | /* we always expect at least one reusable BD! */ | 
|  | 864 | if (!tail) { | 
|  | 865 | WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds); | 
|  | 866 | return; | 
|  | 867 | } else if (i < n_bds) | 
|  | 868 | WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds); | 
|  | 869 |  | 
|  | 870 | tail->next = NULL; | 
|  | 871 | tail->hw_next = 0; | 
|  | 872 |  | 
|  | 873 | bd = rx->head; | 
|  | 874 | rx->tail = tail; | 
|  | 875 |  | 
|  | 876 | /* short reads and other faults should terminate this entire | 
|  | 877 | * dma segment.  we want one "dma packet" per dma segment, not | 
|  | 878 | * one per USB packet, terminating the whole queue at once... | 
|  | 879 | * NOTE that current hardware seems to ignore SOP and EOP. | 
|  | 880 | */ | 
|  | 881 | bd->hw_options |= CPPI_SOP_SET; | 
|  | 882 | tail->hw_options |= CPPI_EOP_SET; | 
|  | 883 |  | 
|  | 884 | if (debug >= 5) { | 
|  | 885 | struct cppi_descriptor	*d; | 
|  | 886 |  | 
|  | 887 | for (d = rx->head; d; d = d->next) | 
|  | 888 | cppi_dump_rxbd("S", d); | 
|  | 889 | } | 
|  | 890 |  | 
|  | 891 | /* in case the preceding transfer left some state... */ | 
|  | 892 | tail = rx->last_processed; | 
|  | 893 | if (tail) { | 
|  | 894 | tail->next = bd; | 
|  | 895 | tail->hw_next = bd->dma; | 
|  | 896 | } | 
|  | 897 |  | 
|  | 898 | core_rxirq_enable(tibase, rx->index + 1); | 
|  | 899 |  | 
|  | 900 | /* BDs live in DMA-coherent memory, but writes might be pending */ | 
|  | 901 | cpu_drain_writebuffer(); | 
|  | 902 |  | 
|  | 903 | /* REVISIT specs say to write this AFTER the BUFCNT register | 
|  | 904 | * below ... but that loses badly. | 
|  | 905 | */ | 
|  | 906 | musb_writel(&rx_ram->rx_head, 0, bd->dma); | 
|  | 907 |  | 
|  | 908 | /* bufferCount must be at least 3, and zeroes on completion | 
|  | 909 | * unless it underflows below zero, or stops at two, or keeps | 
|  | 910 | * growing ... grr. | 
|  | 911 | */ | 
|  | 912 | i = musb_readl(tibase, | 
|  | 913 | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
|  | 914 | & 0xffff; | 
|  | 915 |  | 
|  | 916 | if (!i) | 
|  | 917 | musb_writel(tibase, | 
|  | 918 | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
|  | 919 | n_bds + 2); | 
|  | 920 | else if (n_bds > (i - 3)) | 
|  | 921 | musb_writel(tibase, | 
|  | 922 | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
|  | 923 | n_bds - (i - 3)); | 
|  | 924 |  | 
|  | 925 | i = musb_readl(tibase, | 
|  | 926 | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
|  | 927 | & 0xffff; | 
|  | 928 | if (i < (2 + n_bds)) { | 
|  | 929 | DBG(2, "bufcnt%d underrun - %d (for %d)\n", | 
|  | 930 | rx->index, i, n_bds); | 
|  | 931 | musb_writel(tibase, | 
|  | 932 | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
|  | 933 | n_bds + 2); | 
|  | 934 | } | 
|  | 935 |  | 
|  | 936 | cppi_dump_rx(4, rx, "/S"); | 
|  | 937 | } | 
|  | 938 |  | 
|  | 939 | /** | 
|  | 940 | * cppi_channel_program - program channel for data transfer | 
|  | 941 | * @ch: the channel | 
|  | 942 | * @maxpacket: max packet size | 
|  | 943 | * @mode: For RX, 1 unless the usb protocol driver promised to treat | 
|  | 944 | *	all short reads as errors and kick in high level fault recovery. | 
|  | 945 | *	For TX, ignored because of RNDIS mode races/glitches. | 
|  | 946 | * @dma_addr: dma address of buffer | 
|  | 947 | * @len: length of buffer | 
|  | 948 | * Context: controller irqlocked | 
|  | 949 | */ | 
|  | 950 | static int cppi_channel_program(struct dma_channel *ch, | 
|  | 951 | u16 maxpacket, u8 mode, | 
|  | 952 | dma_addr_t dma_addr, u32 len) | 
|  | 953 | { | 
|  | 954 | struct cppi_channel	*cppi_ch; | 
|  | 955 | struct cppi		*controller; | 
|  | 956 | struct musb		*musb; | 
|  | 957 |  | 
|  | 958 | cppi_ch = container_of(ch, struct cppi_channel, channel); | 
|  | 959 | controller = cppi_ch->controller; | 
|  | 960 | musb = controller->musb; | 
|  | 961 |  | 
|  | 962 | switch (ch->status) { | 
|  | 963 | case MUSB_DMA_STATUS_BUS_ABORT: | 
|  | 964 | case MUSB_DMA_STATUS_CORE_ABORT: | 
|  | 965 | /* fault irq handler should have handled cleanup */ | 
|  | 966 | WARNING("%cX DMA%d not cleaned up after abort!\n", | 
|  | 967 | cppi_ch->transmit ? 'T' : 'R', | 
|  | 968 | cppi_ch->index); | 
|  | 969 | /* WARN_ON(1); */ | 
|  | 970 | break; | 
|  | 971 | case MUSB_DMA_STATUS_BUSY: | 
|  | 972 | WARNING("program active channel?  %cX DMA%d\n", | 
|  | 973 | cppi_ch->transmit ? 'T' : 'R', | 
|  | 974 | cppi_ch->index); | 
|  | 975 | /* WARN_ON(1); */ | 
|  | 976 | break; | 
|  | 977 | case MUSB_DMA_STATUS_UNKNOWN: | 
|  | 978 | DBG(1, "%cX DMA%d not allocated!\n", | 
|  | 979 | cppi_ch->transmit ? 'T' : 'R', | 
|  | 980 | cppi_ch->index); | 
|  | 981 | /* FALLTHROUGH */ | 
|  | 982 | case MUSB_DMA_STATUS_FREE: | 
|  | 983 | break; | 
|  | 984 | } | 
|  | 985 |  | 
|  | 986 | ch->status = MUSB_DMA_STATUS_BUSY; | 
|  | 987 |  | 
|  | 988 | /* set transfer parameters, then queue up its first segment */ | 
|  | 989 | cppi_ch->buf_dma = dma_addr; | 
|  | 990 | cppi_ch->offset = 0; | 
|  | 991 | cppi_ch->maxpacket = maxpacket; | 
|  | 992 | cppi_ch->buf_len = len; | 
|  | 993 |  | 
|  | 994 | /* TX channel? or RX? */ | 
|  | 995 | if (cppi_ch->transmit) | 
|  | 996 | cppi_next_tx_segment(musb, cppi_ch); | 
|  | 997 | else | 
|  | 998 | cppi_next_rx_segment(musb, cppi_ch, mode); | 
|  | 999 |  | 
|  | 1000 | return true; | 
|  | 1001 | } | 
|  | 1002 |  | 
|  | 1003 | static bool cppi_rx_scan(struct cppi *cppi, unsigned ch) | 
|  | 1004 | { | 
|  | 1005 | struct cppi_channel		*rx = &cppi->rx[ch]; | 
|  | 1006 | struct cppi_rx_stateram __iomem	*state = rx->state_ram; | 
|  | 1007 | struct cppi_descriptor		*bd; | 
|  | 1008 | struct cppi_descriptor		*last = rx->last_processed; | 
|  | 1009 | bool				completed = false; | 
|  | 1010 | bool				acked = false; | 
|  | 1011 | int				i; | 
|  | 1012 | dma_addr_t			safe2ack; | 
|  | 1013 | void __iomem			*regs = rx->hw_ep->regs; | 
|  | 1014 |  | 
|  | 1015 | cppi_dump_rx(6, rx, "/K"); | 
|  | 1016 |  | 
|  | 1017 | bd = last ? last->next : rx->head; | 
|  | 1018 | if (!bd) | 
|  | 1019 | return false; | 
|  | 1020 |  | 
|  | 1021 | /* run through all completed BDs */ | 
|  | 1022 | for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0); | 
|  | 1023 | (safe2ack || completed) && bd && i < NUM_RXCHAN_BD; | 
|  | 1024 | i++, bd = bd->next) { | 
|  | 1025 | u16	len; | 
|  | 1026 |  | 
|  | 1027 | /* catch latest BD writes from CPPI */ | 
|  | 1028 | rmb(); | 
|  | 1029 | if (!completed && (bd->hw_options & CPPI_OWN_SET)) | 
|  | 1030 | break; | 
|  | 1031 |  | 
|  | 1032 | DBG(5, "C/RXBD %08x: nxt %08x buf %08x " | 
|  | 1033 | "off.len %08x opt.len %08x (%d)\n", | 
|  | 1034 | bd->dma, bd->hw_next, bd->hw_bufp, | 
|  | 1035 | bd->hw_off_len, bd->hw_options, | 
|  | 1036 | rx->channel.actual_len); | 
|  | 1037 |  | 
|  | 1038 | /* actual packet received length */ | 
|  | 1039 | if ((bd->hw_options & CPPI_SOP_SET) && !completed) | 
|  | 1040 | len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK; | 
|  | 1041 | else | 
|  | 1042 | len = 0; | 
|  | 1043 |  | 
|  | 1044 | if (bd->hw_options & CPPI_EOQ_MASK) | 
|  | 1045 | completed = true; | 
|  | 1046 |  | 
|  | 1047 | if (!completed && len < bd->buflen) { | 
|  | 1048 | /* NOTE:  when we get a short packet, RXCSR_H_REQPKT | 
|  | 1049 | * must have been cleared, and no more DMA packets may | 
|  | 1050 | * active be in the queue... TI docs didn't say, but | 
|  | 1051 | * CPPI ignores those BDs even though OWN is still set. | 
|  | 1052 | */ | 
|  | 1053 | completed = true; | 
|  | 1054 | DBG(3, "rx short %d/%d (%d)\n", | 
|  | 1055 | len, bd->buflen, | 
|  | 1056 | rx->channel.actual_len); | 
|  | 1057 | } | 
|  | 1058 |  | 
|  | 1059 | /* If we got here, we expect to ack at least one BD; meanwhile | 
|  | 1060 | * CPPI may completing other BDs while we scan this list... | 
|  | 1061 | * | 
|  | 1062 | * RACE: we can notice OWN cleared before CPPI raises the | 
|  | 1063 | * matching irq by writing that BD as the completion pointer. | 
|  | 1064 | * In such cases, stop scanning and wait for the irq, avoiding | 
|  | 1065 | * lost acks and states where BD ownership is unclear. | 
|  | 1066 | */ | 
|  | 1067 | if (bd->dma == safe2ack) { | 
|  | 1068 | musb_writel(&state->rx_complete, 0, safe2ack); | 
|  | 1069 | safe2ack = musb_readl(&state->rx_complete, 0); | 
|  | 1070 | acked = true; | 
|  | 1071 | if (bd->dma == safe2ack) | 
|  | 1072 | safe2ack = 0; | 
|  | 1073 | } | 
|  | 1074 |  | 
|  | 1075 | rx->channel.actual_len += len; | 
|  | 1076 |  | 
|  | 1077 | cppi_bd_free(rx, last); | 
|  | 1078 | last = bd; | 
|  | 1079 |  | 
|  | 1080 | /* stop scanning on end-of-segment */ | 
|  | 1081 | if (bd->hw_next == 0) | 
|  | 1082 | completed = true; | 
|  | 1083 | } | 
|  | 1084 | rx->last_processed = last; | 
|  | 1085 |  | 
|  | 1086 | /* dma abort, lost ack, or ... */ | 
|  | 1087 | if (!acked && last) { | 
|  | 1088 | int	csr; | 
|  | 1089 |  | 
|  | 1090 | if (safe2ack == 0 || safe2ack == rx->last_processed->dma) | 
|  | 1091 | musb_writel(&state->rx_complete, 0, safe2ack); | 
|  | 1092 | if (safe2ack == 0) { | 
|  | 1093 | cppi_bd_free(rx, last); | 
|  | 1094 | rx->last_processed = NULL; | 
|  | 1095 |  | 
|  | 1096 | /* if we land here on the host side, H_REQPKT will | 
|  | 1097 | * be clear and we need to restart the queue... | 
|  | 1098 | */ | 
|  | 1099 | WARN_ON(rx->head); | 
|  | 1100 | } | 
|  | 1101 | musb_ep_select(cppi->mregs, rx->index + 1); | 
|  | 1102 | csr = musb_readw(regs, MUSB_RXCSR); | 
|  | 1103 | if (csr & MUSB_RXCSR_DMAENAB) { | 
|  | 1104 | DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n", | 
|  | 1105 | rx->index, | 
|  | 1106 | rx->head, rx->tail, | 
|  | 1107 | rx->last_processed | 
|  | 1108 | ? rx->last_processed->dma | 
|  | 1109 | : 0, | 
|  | 1110 | completed ? ", completed" : "", | 
|  | 1111 | csr); | 
|  | 1112 | cppi_dump_rxq(4, "/what?", rx); | 
|  | 1113 | } | 
|  | 1114 | } | 
|  | 1115 | if (!completed) { | 
|  | 1116 | int	csr; | 
|  | 1117 |  | 
|  | 1118 | rx->head = bd; | 
|  | 1119 |  | 
|  | 1120 | /* REVISIT seems like "autoreq all but EOP" doesn't... | 
|  | 1121 | * setting it here "should" be racey, but seems to work | 
|  | 1122 | */ | 
|  | 1123 | csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); | 
|  | 1124 | if (is_host_active(cppi->musb) | 
|  | 1125 | && bd | 
|  | 1126 | && !(csr & MUSB_RXCSR_H_REQPKT)) { | 
|  | 1127 | csr |= MUSB_RXCSR_H_REQPKT; | 
|  | 1128 | musb_writew(regs, MUSB_RXCSR, | 
|  | 1129 | MUSB_RXCSR_H_WZC_BITS | csr); | 
|  | 1130 | csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); | 
|  | 1131 | } | 
|  | 1132 | } else { | 
|  | 1133 | rx->head = NULL; | 
|  | 1134 | rx->tail = NULL; | 
|  | 1135 | } | 
|  | 1136 |  | 
|  | 1137 | cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned"); | 
|  | 1138 | return completed; | 
|  | 1139 | } | 
|  | 1140 |  | 
|  | 1141 | void cppi_completion(struct musb *musb, u32 rx, u32 tx) | 
|  | 1142 | { | 
|  | 1143 | void __iomem		*tibase; | 
|  | 1144 | int			i, index; | 
|  | 1145 | struct cppi		*cppi; | 
|  | 1146 | struct musb_hw_ep	*hw_ep = NULL; | 
|  | 1147 |  | 
|  | 1148 | cppi = container_of(musb->dma_controller, struct cppi, controller); | 
|  | 1149 |  | 
|  | 1150 | tibase = musb->ctrl_base; | 
|  | 1151 |  | 
|  | 1152 | /* process TX channels */ | 
|  | 1153 | for (index = 0; tx; tx = tx >> 1, index++) { | 
|  | 1154 | struct cppi_channel		*tx_ch; | 
|  | 1155 | struct cppi_tx_stateram __iomem	*tx_ram; | 
|  | 1156 | bool				completed = false; | 
|  | 1157 | struct cppi_descriptor		*bd; | 
|  | 1158 |  | 
|  | 1159 | if (!(tx & 1)) | 
|  | 1160 | continue; | 
|  | 1161 |  | 
|  | 1162 | tx_ch = cppi->tx + index; | 
|  | 1163 | tx_ram = tx_ch->state_ram; | 
|  | 1164 |  | 
|  | 1165 | /* FIXME  need a cppi_tx_scan() routine, which | 
|  | 1166 | * can also be called from abort code | 
|  | 1167 | */ | 
|  | 1168 |  | 
|  | 1169 | cppi_dump_tx(5, tx_ch, "/E"); | 
|  | 1170 |  | 
|  | 1171 | bd = tx_ch->head; | 
|  | 1172 |  | 
|  | 1173 | if (NULL == bd) { | 
|  | 1174 | DBG(1, "null BD\n"); | 
|  | 1175 | continue; | 
|  | 1176 | } | 
|  | 1177 |  | 
|  | 1178 | /* run through all completed BDs */ | 
|  | 1179 | for (i = 0; !completed && bd && i < NUM_TXCHAN_BD; | 
|  | 1180 | i++, bd = bd->next) { | 
|  | 1181 | u16	len; | 
|  | 1182 |  | 
|  | 1183 | /* catch latest BD writes from CPPI */ | 
|  | 1184 | rmb(); | 
|  | 1185 | if (bd->hw_options & CPPI_OWN_SET) | 
|  | 1186 | break; | 
|  | 1187 |  | 
|  | 1188 | DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n", | 
|  | 1189 | bd, bd->hw_next, bd->hw_bufp, | 
|  | 1190 | bd->hw_off_len, bd->hw_options); | 
|  | 1191 |  | 
|  | 1192 | len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK; | 
|  | 1193 | tx_ch->channel.actual_len += len; | 
|  | 1194 |  | 
|  | 1195 | tx_ch->last_processed = bd; | 
|  | 1196 |  | 
|  | 1197 | /* write completion register to acknowledge | 
|  | 1198 | * processing of completed BDs, and possibly | 
|  | 1199 | * release the IRQ; EOQ might not be set ... | 
|  | 1200 | * | 
|  | 1201 | * REVISIT use the same ack strategy as rx | 
|  | 1202 | * | 
|  | 1203 | * REVISIT have observed bit 18 set; huh?? | 
|  | 1204 | */ | 
|  | 1205 | /* if ((bd->hw_options & CPPI_EOQ_MASK)) */ | 
|  | 1206 | musb_writel(&tx_ram->tx_complete, 0, bd->dma); | 
|  | 1207 |  | 
|  | 1208 | /* stop scanning on end-of-segment */ | 
|  | 1209 | if (bd->hw_next == 0) | 
|  | 1210 | completed = true; | 
|  | 1211 | } | 
|  | 1212 |  | 
|  | 1213 | /* on end of segment, maybe go to next one */ | 
|  | 1214 | if (completed) { | 
|  | 1215 | /* cppi_dump_tx(4, tx_ch, "/complete"); */ | 
|  | 1216 |  | 
|  | 1217 | /* transfer more, or report completion */ | 
|  | 1218 | if (tx_ch->offset >= tx_ch->buf_len) { | 
|  | 1219 | tx_ch->head = NULL; | 
|  | 1220 | tx_ch->tail = NULL; | 
|  | 1221 | tx_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
|  | 1222 |  | 
|  | 1223 | hw_ep = tx_ch->hw_ep; | 
|  | 1224 |  | 
|  | 1225 | /* Peripheral role never repurposes the | 
|  | 1226 | * endpoint, so immediate completion is | 
|  | 1227 | * safe.  Host role waits for the fifo | 
|  | 1228 | * to empty (TXPKTRDY irq) before going | 
|  | 1229 | * to the next queued bulk transfer. | 
|  | 1230 | */ | 
|  | 1231 | if (is_host_active(cppi->musb)) { | 
|  | 1232 | #if 0 | 
|  | 1233 | /* WORKAROUND because we may | 
|  | 1234 | * not always get TXKPTRDY ... | 
|  | 1235 | */ | 
|  | 1236 | int	csr; | 
|  | 1237 |  | 
|  | 1238 | csr = musb_readw(hw_ep->regs, | 
|  | 1239 | MUSB_TXCSR); | 
|  | 1240 | if (csr & MUSB_TXCSR_TXPKTRDY) | 
|  | 1241 | #endif | 
|  | 1242 | completed = false; | 
|  | 1243 | } | 
|  | 1244 | if (completed) | 
|  | 1245 | musb_dma_completion(musb, index + 1, 1); | 
|  | 1246 |  | 
|  | 1247 | } else { | 
|  | 1248 | /* Bigger transfer than we could fit in | 
|  | 1249 | * that first batch of descriptors... | 
|  | 1250 | */ | 
|  | 1251 | cppi_next_tx_segment(musb, tx_ch); | 
|  | 1252 | } | 
|  | 1253 | } else | 
|  | 1254 | tx_ch->head = bd; | 
|  | 1255 | } | 
|  | 1256 |  | 
|  | 1257 | /* Start processing the RX block */ | 
|  | 1258 | for (index = 0; rx; rx = rx >> 1, index++) { | 
|  | 1259 |  | 
|  | 1260 | if (rx & 1) { | 
|  | 1261 | struct cppi_channel		*rx_ch; | 
|  | 1262 |  | 
|  | 1263 | rx_ch = cppi->rx + index; | 
|  | 1264 |  | 
|  | 1265 | /* let incomplete dma segments finish */ | 
|  | 1266 | if (!cppi_rx_scan(cppi, index)) | 
|  | 1267 | continue; | 
|  | 1268 |  | 
|  | 1269 | /* start another dma segment if needed */ | 
|  | 1270 | if (rx_ch->channel.actual_len != rx_ch->buf_len | 
|  | 1271 | && rx_ch->channel.actual_len | 
|  | 1272 | == rx_ch->offset) { | 
|  | 1273 | cppi_next_rx_segment(musb, rx_ch, 1); | 
|  | 1274 | continue; | 
|  | 1275 | } | 
|  | 1276 |  | 
|  | 1277 | /* all segments completed! */ | 
|  | 1278 | rx_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
|  | 1279 |  | 
|  | 1280 | hw_ep = rx_ch->hw_ep; | 
|  | 1281 |  | 
|  | 1282 | core_rxirq_disable(tibase, index + 1); | 
|  | 1283 | musb_dma_completion(musb, index + 1, 0); | 
|  | 1284 | } | 
|  | 1285 | } | 
|  | 1286 |  | 
|  | 1287 | /* write to CPPI EOI register to re-enable interrupts */ | 
|  | 1288 | musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0); | 
|  | 1289 | } | 
|  | 1290 |  | 
|  | 1291 | /* Instantiate a software object representing a DMA controller. */ | 
|  | 1292 | struct dma_controller *__init | 
|  | 1293 | dma_controller_create(struct musb *musb, void __iomem *mregs) | 
|  | 1294 | { | 
|  | 1295 | struct cppi		*controller; | 
|  | 1296 |  | 
|  | 1297 | controller = kzalloc(sizeof *controller, GFP_KERNEL); | 
|  | 1298 | if (!controller) | 
|  | 1299 | return NULL; | 
|  | 1300 |  | 
|  | 1301 | controller->mregs = mregs; | 
|  | 1302 | controller->tibase = mregs - DAVINCI_BASE_OFFSET; | 
|  | 1303 |  | 
|  | 1304 | controller->musb = musb; | 
|  | 1305 | controller->controller.start = cppi_controller_start; | 
|  | 1306 | controller->controller.stop = cppi_controller_stop; | 
|  | 1307 | controller->controller.channel_alloc = cppi_channel_allocate; | 
|  | 1308 | controller->controller.channel_release = cppi_channel_release; | 
|  | 1309 | controller->controller.channel_program = cppi_channel_program; | 
|  | 1310 | controller->controller.channel_abort = cppi_channel_abort; | 
|  | 1311 |  | 
|  | 1312 | /* NOTE: allocating from on-chip SRAM would give the least | 
|  | 1313 | * contention for memory access, if that ever matters here. | 
|  | 1314 | */ | 
|  | 1315 |  | 
|  | 1316 | /* setup BufferPool */ | 
|  | 1317 | controller->pool = dma_pool_create("cppi", | 
|  | 1318 | controller->musb->controller, | 
|  | 1319 | sizeof(struct cppi_descriptor), | 
|  | 1320 | CPPI_DESCRIPTOR_ALIGN, 0); | 
|  | 1321 | if (!controller->pool) { | 
|  | 1322 | kfree(controller); | 
|  | 1323 | return NULL; | 
|  | 1324 | } | 
|  | 1325 |  | 
|  | 1326 | return &controller->controller; | 
|  | 1327 | } | 
|  | 1328 |  | 
|  | 1329 | /* | 
|  | 1330 | *  Destroy a previously-instantiated DMA controller. | 
|  | 1331 | */ | 
|  | 1332 | void dma_controller_destroy(struct dma_controller *c) | 
|  | 1333 | { | 
|  | 1334 | struct cppi	*cppi; | 
|  | 1335 |  | 
|  | 1336 | cppi = container_of(c, struct cppi, controller); | 
|  | 1337 |  | 
|  | 1338 | /* assert:  caller stopped the controller first */ | 
|  | 1339 | dma_pool_destroy(cppi->pool); | 
|  | 1340 |  | 
|  | 1341 | kfree(cppi); | 
|  | 1342 | } | 
|  | 1343 |  | 
|  | 1344 | /* | 
|  | 1345 | * Context: controller irqlocked, endpoint selected | 
|  | 1346 | */ | 
|  | 1347 | static int cppi_channel_abort(struct dma_channel *channel) | 
|  | 1348 | { | 
|  | 1349 | struct cppi_channel	*cppi_ch; | 
|  | 1350 | struct cppi		*controller; | 
|  | 1351 | void __iomem		*mbase; | 
|  | 1352 | void __iomem		*tibase; | 
|  | 1353 | void __iomem		*regs; | 
|  | 1354 | u32			value; | 
|  | 1355 | struct cppi_descriptor	*queue; | 
|  | 1356 |  | 
|  | 1357 | cppi_ch = container_of(channel, struct cppi_channel, channel); | 
|  | 1358 |  | 
|  | 1359 | controller = cppi_ch->controller; | 
|  | 1360 |  | 
|  | 1361 | switch (channel->status) { | 
|  | 1362 | case MUSB_DMA_STATUS_BUS_ABORT: | 
|  | 1363 | case MUSB_DMA_STATUS_CORE_ABORT: | 
|  | 1364 | /* from RX or TX fault irq handler */ | 
|  | 1365 | case MUSB_DMA_STATUS_BUSY: | 
|  | 1366 | /* the hardware needs shutting down */ | 
|  | 1367 | regs = cppi_ch->hw_ep->regs; | 
|  | 1368 | break; | 
|  | 1369 | case MUSB_DMA_STATUS_UNKNOWN: | 
|  | 1370 | case MUSB_DMA_STATUS_FREE: | 
|  | 1371 | return 0; | 
|  | 1372 | default: | 
|  | 1373 | return -EINVAL; | 
|  | 1374 | } | 
|  | 1375 |  | 
|  | 1376 | if (!cppi_ch->transmit && cppi_ch->head) | 
|  | 1377 | cppi_dump_rxq(3, "/abort", cppi_ch); | 
|  | 1378 |  | 
|  | 1379 | mbase = controller->mregs; | 
|  | 1380 | tibase = controller->tibase; | 
|  | 1381 |  | 
|  | 1382 | queue = cppi_ch->head; | 
|  | 1383 | cppi_ch->head = NULL; | 
|  | 1384 | cppi_ch->tail = NULL; | 
|  | 1385 |  | 
|  | 1386 | /* REVISIT should rely on caller having done this, | 
|  | 1387 | * and caller should rely on us not changing it. | 
|  | 1388 | * peripheral code is safe ... check host too. | 
|  | 1389 | */ | 
|  | 1390 | musb_ep_select(mbase, cppi_ch->index + 1); | 
|  | 1391 |  | 
|  | 1392 | if (cppi_ch->transmit) { | 
|  | 1393 | struct cppi_tx_stateram __iomem *tx_ram; | 
|  | 1394 | int			enabled; | 
|  | 1395 |  | 
|  | 1396 | /* mask interrupts raised to signal teardown complete.  */ | 
|  | 1397 | enabled = musb_readl(tibase, DAVINCI_TXCPPI_INTENAB_REG) | 
|  | 1398 | & (1 << cppi_ch->index); | 
|  | 1399 | if (enabled) | 
|  | 1400 | musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, | 
|  | 1401 | (1 << cppi_ch->index)); | 
|  | 1402 |  | 
|  | 1403 | /* REVISIT put timeouts on these controller handshakes */ | 
|  | 1404 |  | 
|  | 1405 | cppi_dump_tx(6, cppi_ch, " (teardown)"); | 
|  | 1406 |  | 
|  | 1407 | /* teardown DMA engine then usb core */ | 
|  | 1408 | do { | 
|  | 1409 | value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG); | 
|  | 1410 | } while (!(value & CPPI_TEAR_READY)); | 
|  | 1411 | musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index); | 
|  | 1412 |  | 
|  | 1413 | tx_ram = cppi_ch->state_ram; | 
|  | 1414 | do { | 
|  | 1415 | value = musb_readl(&tx_ram->tx_complete, 0); | 
|  | 1416 | } while (0xFFFFFFFC != value); | 
|  | 1417 | musb_writel(&tx_ram->tx_complete, 0, 0xFFFFFFFC); | 
|  | 1418 |  | 
|  | 1419 | /* FIXME clean up the transfer state ... here? | 
|  | 1420 | * the completion routine should get called with | 
|  | 1421 | * an appropriate status code. | 
|  | 1422 | */ | 
|  | 1423 |  | 
|  | 1424 | value = musb_readw(regs, MUSB_TXCSR); | 
|  | 1425 | value &= ~MUSB_TXCSR_DMAENAB; | 
|  | 1426 | value |= MUSB_TXCSR_FLUSHFIFO; | 
|  | 1427 | musb_writew(regs, MUSB_TXCSR, value); | 
|  | 1428 | musb_writew(regs, MUSB_TXCSR, value); | 
|  | 1429 |  | 
|  | 1430 | /* re-enable interrupt */ | 
|  | 1431 | if (enabled) | 
|  | 1432 | musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, | 
|  | 1433 | (1 << cppi_ch->index)); | 
|  | 1434 |  | 
|  | 1435 | /* While we scrub the TX state RAM, ensure that we clean | 
|  | 1436 | * up any interrupt that's currently asserted: | 
|  | 1437 | * 1. Write to completion Ptr value 0x1(bit 0 set) | 
|  | 1438 | *    (write back mode) | 
|  | 1439 | * 2. Write to completion Ptr value 0x0(bit 0 cleared) | 
|  | 1440 | *    (compare mode) | 
|  | 1441 | * Value written is compared(for bits 31:2) and when | 
|  | 1442 | * equal, interrupt is deasserted. | 
|  | 1443 | */ | 
|  | 1444 | cppi_reset_tx(tx_ram, 1); | 
|  | 1445 | musb_writel(&tx_ram->tx_complete, 0, 0); | 
|  | 1446 |  | 
|  | 1447 | cppi_dump_tx(5, cppi_ch, " (done teardown)"); | 
|  | 1448 |  | 
|  | 1449 | /* REVISIT tx side _should_ clean up the same way | 
|  | 1450 | * as the RX side ... this does no cleanup at all! | 
|  | 1451 | */ | 
|  | 1452 |  | 
|  | 1453 | } else /* RX */ { | 
|  | 1454 | u16			csr; | 
|  | 1455 |  | 
|  | 1456 | /* NOTE: docs don't guarantee any of this works ...  we | 
|  | 1457 | * expect that if the usb core stops telling the cppi core | 
|  | 1458 | * to pull more data from it, then it'll be safe to flush | 
|  | 1459 | * current RX DMA state iff any pending fifo transfer is done. | 
|  | 1460 | */ | 
|  | 1461 |  | 
|  | 1462 | core_rxirq_disable(tibase, cppi_ch->index + 1); | 
|  | 1463 |  | 
|  | 1464 | /* for host, ensure ReqPkt is never set again */ | 
|  | 1465 | if (is_host_active(cppi_ch->controller->musb)) { | 
|  | 1466 | value = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
|  | 1467 | value &= ~((0x3) << (cppi_ch->index * 2)); | 
|  | 1468 | musb_writel(tibase, DAVINCI_AUTOREQ_REG, value); | 
|  | 1469 | } | 
|  | 1470 |  | 
|  | 1471 | csr = musb_readw(regs, MUSB_RXCSR); | 
|  | 1472 |  | 
|  | 1473 | /* for host, clear (just) ReqPkt at end of current packet(s) */ | 
|  | 1474 | if (is_host_active(cppi_ch->controller->musb)) { | 
|  | 1475 | csr |= MUSB_RXCSR_H_WZC_BITS; | 
|  | 1476 | csr &= ~MUSB_RXCSR_H_REQPKT; | 
|  | 1477 | } else | 
|  | 1478 | csr |= MUSB_RXCSR_P_WZC_BITS; | 
|  | 1479 |  | 
|  | 1480 | /* clear dma enable */ | 
|  | 1481 | csr &= ~(MUSB_RXCSR_DMAENAB); | 
|  | 1482 | musb_writew(regs, MUSB_RXCSR, csr); | 
|  | 1483 | csr = musb_readw(regs, MUSB_RXCSR); | 
|  | 1484 |  | 
|  | 1485 | /* Quiesce: wait for current dma to finish (if not cleanup). | 
|  | 1486 | * We can't use bit zero of stateram->rx_sop, since that | 
|  | 1487 | * refers to an entire "DMA packet" not just emptying the | 
|  | 1488 | * current fifo.  Most segments need multiple usb packets. | 
|  | 1489 | */ | 
|  | 1490 | if (channel->status == MUSB_DMA_STATUS_BUSY) | 
|  | 1491 | udelay(50); | 
|  | 1492 |  | 
|  | 1493 | /* scan the current list, reporting any data that was | 
|  | 1494 | * transferred and acking any IRQ | 
|  | 1495 | */ | 
|  | 1496 | cppi_rx_scan(controller, cppi_ch->index); | 
|  | 1497 |  | 
|  | 1498 | /* clobber the existing state once it's idle | 
|  | 1499 | * | 
|  | 1500 | * NOTE:  arguably, we should also wait for all the other | 
|  | 1501 | * RX channels to quiesce (how??) and then temporarily | 
|  | 1502 | * disable RXCPPI_CTRL_REG ... but it seems that we can | 
|  | 1503 | * rely on the controller restarting from state ram, with | 
|  | 1504 | * only RXCPPI_BUFCNT state being bogus.  BUFCNT will | 
|  | 1505 | * correct itself after the next DMA transfer though. | 
|  | 1506 | * | 
|  | 1507 | * REVISIT does using rndis mode change that? | 
|  | 1508 | */ | 
|  | 1509 | cppi_reset_rx(cppi_ch->state_ram); | 
|  | 1510 |  | 
|  | 1511 | /* next DMA request _should_ load cppi head ptr */ | 
|  | 1512 |  | 
|  | 1513 | /* ... we don't "free" that list, only mutate it in place.  */ | 
|  | 1514 | cppi_dump_rx(5, cppi_ch, " (done abort)"); | 
|  | 1515 |  | 
|  | 1516 | /* clean up previously pending bds */ | 
|  | 1517 | cppi_bd_free(cppi_ch, cppi_ch->last_processed); | 
|  | 1518 | cppi_ch->last_processed = NULL; | 
|  | 1519 |  | 
|  | 1520 | while (queue) { | 
|  | 1521 | struct cppi_descriptor	*tmp = queue->next; | 
|  | 1522 |  | 
|  | 1523 | cppi_bd_free(cppi_ch, queue); | 
|  | 1524 | queue = tmp; | 
|  | 1525 | } | 
|  | 1526 | } | 
|  | 1527 |  | 
|  | 1528 | channel->status = MUSB_DMA_STATUS_FREE; | 
|  | 1529 | cppi_ch->buf_dma = 0; | 
|  | 1530 | cppi_ch->offset = 0; | 
|  | 1531 | cppi_ch->buf_len = 0; | 
|  | 1532 | cppi_ch->maxpacket = 0; | 
|  | 1533 | return 0; | 
|  | 1534 | } | 
|  | 1535 |  | 
|  | 1536 | /* TBD Queries: | 
|  | 1537 | * | 
|  | 1538 | * Power Management ... probably turn off cppi during suspend, restart; | 
|  | 1539 | * check state ram?  Clocking is presumably shared with usb core. | 
|  | 1540 | */ |