| Dmitry Kravkov | 9f6c925 | 2010-07-27 12:34:34 +0000 | [diff] [blame] | 1 | /* bnx2x_cmn.c: Broadcom Everest network driver. | 
 | 2 |  * | 
 | 3 |  * Copyright (c) 2007-2010 Broadcom Corporation | 
 | 4 |  * | 
 | 5 |  * This program is free software; you can redistribute it and/or modify | 
 | 6 |  * it under the terms of the GNU General Public License as published by | 
 | 7 |  * the Free Software Foundation. | 
 | 8 |  * | 
 | 9 |  * Maintained by: Eilon Greenstein <eilong@broadcom.com> | 
 | 10 |  * Written by: Eliezer Tamir | 
 | 11 |  * Based on code from Michael Chan's bnx2 driver | 
 | 12 |  * UDP CSUM errata workaround by Arik Gendelman | 
 | 13 |  * Slowpath and fastpath rework by Vladislav Zolotarov | 
 | 14 |  * Statistics and Link management by Yitchak Gertner | 
 | 15 |  * | 
 | 16 |  */ | 
 | 17 |  | 
 | 18 |  | 
 | 19 | #include <linux/etherdevice.h> | 
 | 20 | #include <linux/ip.h> | 
 | 21 | #include <linux/ipv6.h> | 
| Stephen Rothwell | 7f3e01f | 2010-07-28 22:20:34 -0700 | [diff] [blame] | 22 | #include <net/ip6_checksum.h> | 
| Dmitry Kravkov | 9f6c925 | 2010-07-27 12:34:34 +0000 | [diff] [blame] | 23 | #include "bnx2x_cmn.h" | 
 | 24 |  | 
 | 25 | #ifdef BCM_VLAN | 
 | 26 | #include <linux/if_vlan.h> | 
 | 27 | #endif | 
 | 28 |  | 
 | 29 | static int bnx2x_poll(struct napi_struct *napi, int budget); | 
 | 30 |  | 
 | 31 | /* free skb in the packet ring at pos idx | 
 | 32 |  * return idx of last bd freed | 
 | 33 |  */ | 
 | 34 | static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 35 | 			     u16 idx) | 
 | 36 | { | 
 | 37 | 	struct sw_tx_bd *tx_buf = &fp->tx_buf_ring[idx]; | 
 | 38 | 	struct eth_tx_start_bd *tx_start_bd; | 
 | 39 | 	struct eth_tx_bd *tx_data_bd; | 
 | 40 | 	struct sk_buff *skb = tx_buf->skb; | 
 | 41 | 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; | 
 | 42 | 	int nbd; | 
 | 43 |  | 
 | 44 | 	/* prefetch skb end pointer to speedup dev_kfree_skb() */ | 
 | 45 | 	prefetch(&skb->end); | 
 | 46 |  | 
 | 47 | 	DP(BNX2X_MSG_OFF, "pkt_idx %d  buff @(%p)->skb %p\n", | 
 | 48 | 	   idx, tx_buf, skb); | 
 | 49 |  | 
 | 50 | 	/* unmap first bd */ | 
 | 51 | 	DP(BNX2X_MSG_OFF, "free bd_idx %d\n", bd_idx); | 
 | 52 | 	tx_start_bd = &fp->tx_desc_ring[bd_idx].start_bd; | 
 | 53 | 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), | 
 | 54 | 			 BD_UNMAP_LEN(tx_start_bd), PCI_DMA_TODEVICE); | 
 | 55 |  | 
 | 56 | 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1; | 
 | 57 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 58 | 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { | 
 | 59 | 		BNX2X_ERR("BAD nbd!\n"); | 
 | 60 | 		bnx2x_panic(); | 
 | 61 | 	} | 
 | 62 | #endif | 
 | 63 | 	new_cons = nbd + tx_buf->first_bd; | 
 | 64 |  | 
 | 65 | 	/* Get the next bd */ | 
 | 66 | 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 | 67 |  | 
 | 68 | 	/* Skip a parse bd... */ | 
 | 69 | 	--nbd; | 
 | 70 | 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 | 71 |  | 
 | 72 | 	/* ...and the TSO split header bd since they have no mapping */ | 
 | 73 | 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { | 
 | 74 | 		--nbd; | 
 | 75 | 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 | 76 | 	} | 
 | 77 |  | 
 | 78 | 	/* now free frags */ | 
 | 79 | 	while (nbd > 0) { | 
 | 80 |  | 
 | 81 | 		DP(BNX2X_MSG_OFF, "free frag bd_idx %d\n", bd_idx); | 
 | 82 | 		tx_data_bd = &fp->tx_desc_ring[bd_idx].reg_bd; | 
 | 83 | 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), | 
 | 84 | 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); | 
 | 85 | 		if (--nbd) | 
 | 86 | 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 | 87 | 	} | 
 | 88 |  | 
 | 89 | 	/* release skb */ | 
 | 90 | 	WARN_ON(!skb); | 
 | 91 | 	dev_kfree_skb(skb); | 
 | 92 | 	tx_buf->first_bd = 0; | 
 | 93 | 	tx_buf->skb = NULL; | 
 | 94 |  | 
 | 95 | 	return new_cons; | 
 | 96 | } | 
 | 97 |  | 
 | 98 | int bnx2x_tx_int(struct bnx2x_fastpath *fp) | 
 | 99 | { | 
 | 100 | 	struct bnx2x *bp = fp->bp; | 
 | 101 | 	struct netdev_queue *txq; | 
 | 102 | 	u16 hw_cons, sw_cons, bd_cons = fp->tx_bd_cons; | 
 | 103 |  | 
 | 104 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 105 | 	if (unlikely(bp->panic)) | 
 | 106 | 		return -1; | 
 | 107 | #endif | 
 | 108 |  | 
 | 109 | 	txq = netdev_get_tx_queue(bp->dev, fp->index); | 
 | 110 | 	hw_cons = le16_to_cpu(*fp->tx_cons_sb); | 
 | 111 | 	sw_cons = fp->tx_pkt_cons; | 
 | 112 |  | 
 | 113 | 	while (sw_cons != hw_cons) { | 
 | 114 | 		u16 pkt_cons; | 
 | 115 |  | 
 | 116 | 		pkt_cons = TX_BD(sw_cons); | 
 | 117 |  | 
 | 118 | 		/* prefetch(bp->tx_buf_ring[pkt_cons].skb); */ | 
 | 119 |  | 
 | 120 | 		DP(NETIF_MSG_TX_DONE, "hw_cons %u  sw_cons %u  pkt_cons %u\n", | 
 | 121 | 		   hw_cons, sw_cons, pkt_cons); | 
 | 122 |  | 
 | 123 | /*		if (NEXT_TX_IDX(sw_cons) != hw_cons) { | 
 | 124 | 			rmb(); | 
 | 125 | 			prefetch(fp->tx_buf_ring[NEXT_TX_IDX(sw_cons)].skb); | 
 | 126 | 		} | 
 | 127 | */ | 
 | 128 | 		bd_cons = bnx2x_free_tx_pkt(bp, fp, pkt_cons); | 
 | 129 | 		sw_cons++; | 
 | 130 | 	} | 
 | 131 |  | 
 | 132 | 	fp->tx_pkt_cons = sw_cons; | 
 | 133 | 	fp->tx_bd_cons = bd_cons; | 
 | 134 |  | 
 | 135 | 	/* Need to make the tx_bd_cons update visible to start_xmit() | 
 | 136 | 	 * before checking for netif_tx_queue_stopped().  Without the | 
 | 137 | 	 * memory barrier, there is a small possibility that | 
 | 138 | 	 * start_xmit() will miss it and cause the queue to be stopped | 
 | 139 | 	 * forever. | 
 | 140 | 	 */ | 
 | 141 | 	smp_mb(); | 
 | 142 |  | 
 | 143 | 	/* TBD need a thresh? */ | 
 | 144 | 	if (unlikely(netif_tx_queue_stopped(txq))) { | 
 | 145 | 		/* Taking tx_lock() is needed to prevent reenabling the queue | 
 | 146 | 		 * while it's empty. This could have happen if rx_action() gets | 
 | 147 | 		 * suspended in bnx2x_tx_int() after the condition before | 
 | 148 | 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): | 
 | 149 | 		 * | 
 | 150 | 		 * stops the queue->sees fresh tx_bd_cons->releases the queue-> | 
 | 151 | 		 * sends some packets consuming the whole queue again-> | 
 | 152 | 		 * stops the queue | 
 | 153 | 		 */ | 
 | 154 |  | 
 | 155 | 		__netif_tx_lock(txq, smp_processor_id()); | 
 | 156 |  | 
 | 157 | 		if ((netif_tx_queue_stopped(txq)) && | 
 | 158 | 		    (bp->state == BNX2X_STATE_OPEN) && | 
 | 159 | 		    (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3)) | 
 | 160 | 			netif_tx_wake_queue(txq); | 
 | 161 |  | 
 | 162 | 		__netif_tx_unlock(txq); | 
 | 163 | 	} | 
 | 164 | 	return 0; | 
 | 165 | } | 
 | 166 |  | 
 | 167 | static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, | 
 | 168 | 					     u16 idx) | 
 | 169 | { | 
 | 170 | 	u16 last_max = fp->last_max_sge; | 
 | 171 |  | 
 | 172 | 	if (SUB_S16(idx, last_max) > 0) | 
 | 173 | 		fp->last_max_sge = idx; | 
 | 174 | } | 
 | 175 |  | 
 | 176 | static void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, | 
 | 177 | 				  struct eth_fast_path_rx_cqe *fp_cqe) | 
 | 178 | { | 
 | 179 | 	struct bnx2x *bp = fp->bp; | 
 | 180 | 	u16 sge_len = SGE_PAGE_ALIGN(le16_to_cpu(fp_cqe->pkt_len) - | 
 | 181 | 				     le16_to_cpu(fp_cqe->len_on_bd)) >> | 
 | 182 | 		      SGE_PAGE_SHIFT; | 
 | 183 | 	u16 last_max, last_elem, first_elem; | 
 | 184 | 	u16 delta = 0; | 
 | 185 | 	u16 i; | 
 | 186 |  | 
 | 187 | 	if (!sge_len) | 
 | 188 | 		return; | 
 | 189 |  | 
 | 190 | 	/* First mark all used pages */ | 
 | 191 | 	for (i = 0; i < sge_len; i++) | 
 | 192 | 		SGE_MASK_CLEAR_BIT(fp, RX_SGE(le16_to_cpu(fp_cqe->sgl[i]))); | 
 | 193 |  | 
 | 194 | 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", | 
 | 195 | 	   sge_len - 1, le16_to_cpu(fp_cqe->sgl[sge_len - 1])); | 
 | 196 |  | 
 | 197 | 	/* Here we assume that the last SGE index is the biggest */ | 
 | 198 | 	prefetch((void *)(fp->sge_mask)); | 
 | 199 | 	bnx2x_update_last_max_sge(fp, le16_to_cpu(fp_cqe->sgl[sge_len - 1])); | 
 | 200 |  | 
 | 201 | 	last_max = RX_SGE(fp->last_max_sge); | 
 | 202 | 	last_elem = last_max >> RX_SGE_MASK_ELEM_SHIFT; | 
 | 203 | 	first_elem = RX_SGE(fp->rx_sge_prod) >> RX_SGE_MASK_ELEM_SHIFT; | 
 | 204 |  | 
 | 205 | 	/* If ring is not full */ | 
 | 206 | 	if (last_elem + 1 != first_elem) | 
 | 207 | 		last_elem++; | 
 | 208 |  | 
 | 209 | 	/* Now update the prod */ | 
 | 210 | 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { | 
 | 211 | 		if (likely(fp->sge_mask[i])) | 
 | 212 | 			break; | 
 | 213 |  | 
 | 214 | 		fp->sge_mask[i] = RX_SGE_MASK_ELEM_ONE_MASK; | 
 | 215 | 		delta += RX_SGE_MASK_ELEM_SZ; | 
 | 216 | 	} | 
 | 217 |  | 
 | 218 | 	if (delta > 0) { | 
 | 219 | 		fp->rx_sge_prod += delta; | 
 | 220 | 		/* clear page-end entries */ | 
 | 221 | 		bnx2x_clear_sge_mask_next_elems(fp); | 
 | 222 | 	} | 
 | 223 |  | 
 | 224 | 	DP(NETIF_MSG_RX_STATUS, | 
 | 225 | 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n", | 
 | 226 | 	   fp->last_max_sge, fp->rx_sge_prod); | 
 | 227 | } | 
 | 228 |  | 
 | 229 | static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, | 
 | 230 | 			    struct sk_buff *skb, u16 cons, u16 prod) | 
 | 231 | { | 
 | 232 | 	struct bnx2x *bp = fp->bp; | 
 | 233 | 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; | 
 | 234 | 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; | 
 | 235 | 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; | 
 | 236 | 	dma_addr_t mapping; | 
 | 237 |  | 
 | 238 | 	/* move empty skb from pool to prod and map it */ | 
 | 239 | 	prod_rx_buf->skb = fp->tpa_pool[queue].skb; | 
 | 240 | 	mapping = dma_map_single(&bp->pdev->dev, fp->tpa_pool[queue].skb->data, | 
 | 241 | 				 bp->rx_buf_size, DMA_FROM_DEVICE); | 
 | 242 | 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping); | 
 | 243 |  | 
 | 244 | 	/* move partial skb from cons to pool (don't unmap yet) */ | 
 | 245 | 	fp->tpa_pool[queue] = *cons_rx_buf; | 
 | 246 |  | 
 | 247 | 	/* mark bin state as start - print error if current state != stop */ | 
 | 248 | 	if (fp->tpa_state[queue] != BNX2X_TPA_STOP) | 
 | 249 | 		BNX2X_ERR("start of bin not in stop [%d]\n", queue); | 
 | 250 |  | 
 | 251 | 	fp->tpa_state[queue] = BNX2X_TPA_START; | 
 | 252 |  | 
 | 253 | 	/* point prod_bd to new skb */ | 
 | 254 | 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 255 | 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 | 256 |  | 
 | 257 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 258 | 	fp->tpa_queue_used |= (1 << queue); | 
 | 259 | #ifdef _ASM_GENERIC_INT_L64_H | 
 | 260 | 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n", | 
 | 261 | #else | 
 | 262 | 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", | 
 | 263 | #endif | 
 | 264 | 	   fp->tpa_queue_used); | 
 | 265 | #endif | 
 | 266 | } | 
 | 267 |  | 
 | 268 | static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 269 | 			       struct sk_buff *skb, | 
 | 270 | 			       struct eth_fast_path_rx_cqe *fp_cqe, | 
 | 271 | 			       u16 cqe_idx) | 
 | 272 | { | 
 | 273 | 	struct sw_rx_page *rx_pg, old_rx_pg; | 
 | 274 | 	u16 len_on_bd = le16_to_cpu(fp_cqe->len_on_bd); | 
 | 275 | 	u32 i, frag_len, frag_size, pages; | 
 | 276 | 	int err; | 
 | 277 | 	int j; | 
 | 278 |  | 
 | 279 | 	frag_size = le16_to_cpu(fp_cqe->pkt_len) - len_on_bd; | 
 | 280 | 	pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; | 
 | 281 |  | 
 | 282 | 	/* This is needed in order to enable forwarding support */ | 
 | 283 | 	if (frag_size) | 
 | 284 | 		skb_shinfo(skb)->gso_size = min((u32)SGE_PAGE_SIZE, | 
 | 285 | 					       max(frag_size, (u32)len_on_bd)); | 
 | 286 |  | 
 | 287 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 288 | 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS)*SGE_PAGE_SIZE*PAGES_PER_SGE) { | 
 | 289 | 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", | 
 | 290 | 			  pages, cqe_idx); | 
 | 291 | 		BNX2X_ERR("fp_cqe->pkt_len = %d  fp_cqe->len_on_bd = %d\n", | 
 | 292 | 			  fp_cqe->pkt_len, len_on_bd); | 
 | 293 | 		bnx2x_panic(); | 
 | 294 | 		return -EINVAL; | 
 | 295 | 	} | 
 | 296 | #endif | 
 | 297 |  | 
 | 298 | 	/* Run through the SGL and compose the fragmented skb */ | 
 | 299 | 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { | 
 | 300 | 		u16 sge_idx = RX_SGE(le16_to_cpu(fp_cqe->sgl[j])); | 
 | 301 |  | 
 | 302 | 		/* FW gives the indices of the SGE as if the ring is an array | 
 | 303 | 		   (meaning that "next" element will consume 2 indices) */ | 
 | 304 | 		frag_len = min(frag_size, (u32)(SGE_PAGE_SIZE*PAGES_PER_SGE)); | 
 | 305 | 		rx_pg = &fp->rx_page_ring[sge_idx]; | 
 | 306 | 		old_rx_pg = *rx_pg; | 
 | 307 |  | 
 | 308 | 		/* If we fail to allocate a substitute page, we simply stop | 
 | 309 | 		   where we are and drop the whole packet */ | 
 | 310 | 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx); | 
 | 311 | 		if (unlikely(err)) { | 
 | 312 | 			fp->eth_q_stats.rx_skb_alloc_failed++; | 
 | 313 | 			return err; | 
 | 314 | 		} | 
 | 315 |  | 
 | 316 | 		/* Unmap the page as we r going to pass it to the stack */ | 
 | 317 | 		dma_unmap_page(&bp->pdev->dev, | 
 | 318 | 			       dma_unmap_addr(&old_rx_pg, mapping), | 
 | 319 | 			       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE); | 
 | 320 |  | 
 | 321 | 		/* Add one frag and update the appropriate fields in the skb */ | 
 | 322 | 		skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); | 
 | 323 |  | 
 | 324 | 		skb->data_len += frag_len; | 
 | 325 | 		skb->truesize += frag_len; | 
 | 326 | 		skb->len += frag_len; | 
 | 327 |  | 
 | 328 | 		frag_size -= frag_len; | 
 | 329 | 	} | 
 | 330 |  | 
 | 331 | 	return 0; | 
 | 332 | } | 
 | 333 |  | 
 | 334 | static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 335 | 			   u16 queue, int pad, int len, union eth_rx_cqe *cqe, | 
 | 336 | 			   u16 cqe_idx) | 
 | 337 | { | 
 | 338 | 	struct sw_rx_bd *rx_buf = &fp->tpa_pool[queue]; | 
 | 339 | 	struct sk_buff *skb = rx_buf->skb; | 
 | 340 | 	/* alloc new skb */ | 
 | 341 | 	struct sk_buff *new_skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size); | 
 | 342 |  | 
 | 343 | 	/* Unmap skb in the pool anyway, as we are going to change | 
 | 344 | 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation | 
 | 345 | 	   fails. */ | 
 | 346 | 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), | 
 | 347 | 			 bp->rx_buf_size, DMA_FROM_DEVICE); | 
 | 348 |  | 
 | 349 | 	if (likely(new_skb)) { | 
 | 350 | 		/* fix ip xsum and give it to the stack */ | 
 | 351 | 		/* (no need to map the new skb) */ | 
 | 352 | #ifdef BCM_VLAN | 
 | 353 | 		int is_vlan_cqe = | 
 | 354 | 			(le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) & | 
 | 355 | 			 PARSING_FLAGS_VLAN); | 
 | 356 | 		int is_not_hwaccel_vlan_cqe = | 
 | 357 | 			(is_vlan_cqe && (!(bp->flags & HW_VLAN_RX_FLAG))); | 
 | 358 | #endif | 
 | 359 |  | 
 | 360 | 		prefetch(skb); | 
 | 361 | 		prefetch(((char *)(skb)) + 128); | 
 | 362 |  | 
 | 363 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 364 | 		if (pad + len > bp->rx_buf_size) { | 
 | 365 | 			BNX2X_ERR("skb_put is about to fail...  " | 
 | 366 | 				  "pad %d  len %d  rx_buf_size %d\n", | 
 | 367 | 				  pad, len, bp->rx_buf_size); | 
 | 368 | 			bnx2x_panic(); | 
 | 369 | 			return; | 
 | 370 | 		} | 
 | 371 | #endif | 
 | 372 |  | 
 | 373 | 		skb_reserve(skb, pad); | 
 | 374 | 		skb_put(skb, len); | 
 | 375 |  | 
 | 376 | 		skb->protocol = eth_type_trans(skb, bp->dev); | 
 | 377 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 378 |  | 
 | 379 | 		{ | 
 | 380 | 			struct iphdr *iph; | 
 | 381 |  | 
 | 382 | 			iph = (struct iphdr *)skb->data; | 
 | 383 | #ifdef BCM_VLAN | 
 | 384 | 			/* If there is no Rx VLAN offloading - | 
 | 385 | 			   take VLAN tag into an account */ | 
 | 386 | 			if (unlikely(is_not_hwaccel_vlan_cqe)) | 
 | 387 | 				iph = (struct iphdr *)((u8 *)iph + VLAN_HLEN); | 
 | 388 | #endif | 
 | 389 | 			iph->check = 0; | 
 | 390 | 			iph->check = ip_fast_csum((u8 *)iph, iph->ihl); | 
 | 391 | 		} | 
 | 392 |  | 
 | 393 | 		if (!bnx2x_fill_frag_skb(bp, fp, skb, | 
 | 394 | 					 &cqe->fast_path_cqe, cqe_idx)) { | 
 | 395 | #ifdef BCM_VLAN | 
 | 396 | 			if ((bp->vlgrp != NULL) && is_vlan_cqe && | 
 | 397 | 			    (!is_not_hwaccel_vlan_cqe)) | 
 | 398 | 				vlan_gro_receive(&fp->napi, bp->vlgrp, | 
 | 399 | 						 le16_to_cpu(cqe->fast_path_cqe. | 
 | 400 | 							     vlan_tag), skb); | 
 | 401 | 			else | 
 | 402 | #endif | 
 | 403 | 				napi_gro_receive(&fp->napi, skb); | 
 | 404 | 		} else { | 
 | 405 | 			DP(NETIF_MSG_RX_STATUS, "Failed to allocate new pages" | 
 | 406 | 			   " - dropping packet!\n"); | 
 | 407 | 			dev_kfree_skb(skb); | 
 | 408 | 		} | 
 | 409 |  | 
 | 410 |  | 
 | 411 | 		/* put new skb in bin */ | 
 | 412 | 		fp->tpa_pool[queue].skb = new_skb; | 
 | 413 |  | 
 | 414 | 	} else { | 
 | 415 | 		/* else drop the packet and keep the buffer in the bin */ | 
 | 416 | 		DP(NETIF_MSG_RX_STATUS, | 
 | 417 | 		   "Failed to allocate new skb - dropping packet!\n"); | 
 | 418 | 		fp->eth_q_stats.rx_skb_alloc_failed++; | 
 | 419 | 	} | 
 | 420 |  | 
 | 421 | 	fp->tpa_state[queue] = BNX2X_TPA_STOP; | 
 | 422 | } | 
 | 423 |  | 
 | 424 | /* Set Toeplitz hash value in the skb using the value from the | 
 | 425 |  * CQE (calculated by HW). | 
 | 426 |  */ | 
 | 427 | static inline void bnx2x_set_skb_rxhash(struct bnx2x *bp, union eth_rx_cqe *cqe, | 
 | 428 | 					struct sk_buff *skb) | 
 | 429 | { | 
 | 430 | 	/* Set Toeplitz hash from CQE */ | 
 | 431 | 	if ((bp->dev->features & NETIF_F_RXHASH) && | 
 | 432 | 	    (cqe->fast_path_cqe.status_flags & | 
 | 433 | 	     ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) | 
 | 434 | 		skb->rxhash = | 
 | 435 | 		le32_to_cpu(cqe->fast_path_cqe.rss_hash_result); | 
 | 436 | } | 
 | 437 |  | 
 | 438 | int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) | 
 | 439 | { | 
 | 440 | 	struct bnx2x *bp = fp->bp; | 
 | 441 | 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; | 
 | 442 | 	u16 hw_comp_cons, sw_comp_cons, sw_comp_prod; | 
 | 443 | 	int rx_pkt = 0; | 
 | 444 |  | 
 | 445 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 446 | 	if (unlikely(bp->panic)) | 
 | 447 | 		return 0; | 
 | 448 | #endif | 
 | 449 |  | 
 | 450 | 	/* CQ "next element" is of the size of the regular element, | 
 | 451 | 	   that's why it's ok here */ | 
 | 452 | 	hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb); | 
 | 453 | 	if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT) | 
 | 454 | 		hw_comp_cons++; | 
 | 455 |  | 
 | 456 | 	bd_cons = fp->rx_bd_cons; | 
 | 457 | 	bd_prod = fp->rx_bd_prod; | 
 | 458 | 	bd_prod_fw = bd_prod; | 
 | 459 | 	sw_comp_cons = fp->rx_comp_cons; | 
 | 460 | 	sw_comp_prod = fp->rx_comp_prod; | 
 | 461 |  | 
 | 462 | 	/* Memory barrier necessary as speculative reads of the rx | 
 | 463 | 	 * buffer can be ahead of the index in the status block | 
 | 464 | 	 */ | 
 | 465 | 	rmb(); | 
 | 466 |  | 
 | 467 | 	DP(NETIF_MSG_RX_STATUS, | 
 | 468 | 	   "queue[%d]:  hw_comp_cons %u  sw_comp_cons %u\n", | 
 | 469 | 	   fp->index, hw_comp_cons, sw_comp_cons); | 
 | 470 |  | 
 | 471 | 	while (sw_comp_cons != hw_comp_cons) { | 
 | 472 | 		struct sw_rx_bd *rx_buf = NULL; | 
 | 473 | 		struct sk_buff *skb; | 
 | 474 | 		union eth_rx_cqe *cqe; | 
 | 475 | 		u8 cqe_fp_flags; | 
 | 476 | 		u16 len, pad; | 
 | 477 |  | 
 | 478 | 		comp_ring_cons = RCQ_BD(sw_comp_cons); | 
 | 479 | 		bd_prod = RX_BD(bd_prod); | 
 | 480 | 		bd_cons = RX_BD(bd_cons); | 
 | 481 |  | 
 | 482 | 		/* Prefetch the page containing the BD descriptor | 
 | 483 | 		   at producer's index. It will be needed when new skb is | 
 | 484 | 		   allocated */ | 
 | 485 | 		prefetch((void *)(PAGE_ALIGN((unsigned long) | 
 | 486 | 					     (&fp->rx_desc_ring[bd_prod])) - | 
 | 487 | 				  PAGE_SIZE + 1)); | 
 | 488 |  | 
 | 489 | 		cqe = &fp->rx_comp_ring[comp_ring_cons]; | 
 | 490 | 		cqe_fp_flags = cqe->fast_path_cqe.type_error_flags; | 
 | 491 |  | 
 | 492 | 		DP(NETIF_MSG_RX_STATUS, "CQE type %x  err %x  status %x" | 
 | 493 | 		   "  queue %x  vlan %x  len %u\n", CQE_TYPE(cqe_fp_flags), | 
 | 494 | 		   cqe_fp_flags, cqe->fast_path_cqe.status_flags, | 
 | 495 | 		   le32_to_cpu(cqe->fast_path_cqe.rss_hash_result), | 
 | 496 | 		   le16_to_cpu(cqe->fast_path_cqe.vlan_tag), | 
 | 497 | 		   le16_to_cpu(cqe->fast_path_cqe.pkt_len)); | 
 | 498 |  | 
 | 499 | 		/* is this a slowpath msg? */ | 
 | 500 | 		if (unlikely(CQE_TYPE(cqe_fp_flags))) { | 
 | 501 | 			bnx2x_sp_event(fp, cqe); | 
 | 502 | 			goto next_cqe; | 
 | 503 |  | 
 | 504 | 		/* this is an rx packet */ | 
 | 505 | 		} else { | 
 | 506 | 			rx_buf = &fp->rx_buf_ring[bd_cons]; | 
 | 507 | 			skb = rx_buf->skb; | 
 | 508 | 			prefetch(skb); | 
 | 509 | 			len = le16_to_cpu(cqe->fast_path_cqe.pkt_len); | 
 | 510 | 			pad = cqe->fast_path_cqe.placement_offset; | 
 | 511 |  | 
 | 512 | 			/* If CQE is marked both TPA_START and TPA_END | 
 | 513 | 			   it is a non-TPA CQE */ | 
 | 514 | 			if ((!fp->disable_tpa) && | 
 | 515 | 			    (TPA_TYPE(cqe_fp_flags) != | 
 | 516 | 					(TPA_TYPE_START | TPA_TYPE_END))) { | 
 | 517 | 				u16 queue = cqe->fast_path_cqe.queue_index; | 
 | 518 |  | 
 | 519 | 				if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_START) { | 
 | 520 | 					DP(NETIF_MSG_RX_STATUS, | 
 | 521 | 					   "calling tpa_start on queue %d\n", | 
 | 522 | 					   queue); | 
 | 523 |  | 
 | 524 | 					bnx2x_tpa_start(fp, queue, skb, | 
 | 525 | 							bd_cons, bd_prod); | 
 | 526 |  | 
 | 527 | 					/* Set Toeplitz hash for an LRO skb */ | 
 | 528 | 					bnx2x_set_skb_rxhash(bp, cqe, skb); | 
 | 529 |  | 
 | 530 | 					goto next_rx; | 
 | 531 | 				} | 
 | 532 |  | 
 | 533 | 				if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_END) { | 
 | 534 | 					DP(NETIF_MSG_RX_STATUS, | 
 | 535 | 					   "calling tpa_stop on queue %d\n", | 
 | 536 | 					   queue); | 
 | 537 |  | 
 | 538 | 					if (!BNX2X_RX_SUM_FIX(cqe)) | 
 | 539 | 						BNX2X_ERR("STOP on none TCP " | 
 | 540 | 							  "data\n"); | 
 | 541 |  | 
 | 542 | 					/* This is a size of the linear data | 
 | 543 | 					   on this skb */ | 
 | 544 | 					len = le16_to_cpu(cqe->fast_path_cqe. | 
 | 545 | 								len_on_bd); | 
 | 546 | 					bnx2x_tpa_stop(bp, fp, queue, pad, | 
 | 547 | 						    len, cqe, comp_ring_cons); | 
 | 548 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 549 | 					if (bp->panic) | 
 | 550 | 						return 0; | 
 | 551 | #endif | 
 | 552 |  | 
 | 553 | 					bnx2x_update_sge_prod(fp, | 
 | 554 | 							&cqe->fast_path_cqe); | 
 | 555 | 					goto next_cqe; | 
 | 556 | 				} | 
 | 557 | 			} | 
 | 558 |  | 
 | 559 | 			dma_sync_single_for_device(&bp->pdev->dev, | 
 | 560 | 					dma_unmap_addr(rx_buf, mapping), | 
 | 561 | 						   pad + RX_COPY_THRESH, | 
 | 562 | 						   DMA_FROM_DEVICE); | 
 | 563 | 			prefetch(((char *)(skb)) + 128); | 
 | 564 |  | 
 | 565 | 			/* is this an error packet? */ | 
 | 566 | 			if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { | 
 | 567 | 				DP(NETIF_MSG_RX_ERR, | 
 | 568 | 				   "ERROR  flags %x  rx packet %u\n", | 
 | 569 | 				   cqe_fp_flags, sw_comp_cons); | 
 | 570 | 				fp->eth_q_stats.rx_err_discard_pkt++; | 
 | 571 | 				goto reuse_rx; | 
 | 572 | 			} | 
 | 573 |  | 
 | 574 | 			/* Since we don't have a jumbo ring | 
 | 575 | 			 * copy small packets if mtu > 1500 | 
 | 576 | 			 */ | 
 | 577 | 			if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && | 
 | 578 | 			    (len <= RX_COPY_THRESH)) { | 
 | 579 | 				struct sk_buff *new_skb; | 
 | 580 |  | 
 | 581 | 				new_skb = netdev_alloc_skb(bp->dev, | 
 | 582 | 							   len + pad); | 
 | 583 | 				if (new_skb == NULL) { | 
 | 584 | 					DP(NETIF_MSG_RX_ERR, | 
 | 585 | 					   "ERROR  packet dropped " | 
 | 586 | 					   "because of alloc failure\n"); | 
 | 587 | 					fp->eth_q_stats.rx_skb_alloc_failed++; | 
 | 588 | 					goto reuse_rx; | 
 | 589 | 				} | 
 | 590 |  | 
 | 591 | 				/* aligned copy */ | 
 | 592 | 				skb_copy_from_linear_data_offset(skb, pad, | 
 | 593 | 						    new_skb->data + pad, len); | 
 | 594 | 				skb_reserve(new_skb, pad); | 
 | 595 | 				skb_put(new_skb, len); | 
 | 596 |  | 
 | 597 | 				bnx2x_reuse_rx_skb(fp, skb, bd_cons, bd_prod); | 
 | 598 |  | 
 | 599 | 				skb = new_skb; | 
 | 600 |  | 
 | 601 | 			} else | 
 | 602 | 			if (likely(bnx2x_alloc_rx_skb(bp, fp, bd_prod) == 0)) { | 
 | 603 | 				dma_unmap_single(&bp->pdev->dev, | 
 | 604 | 					dma_unmap_addr(rx_buf, mapping), | 
 | 605 | 						 bp->rx_buf_size, | 
 | 606 | 						 DMA_FROM_DEVICE); | 
 | 607 | 				skb_reserve(skb, pad); | 
 | 608 | 				skb_put(skb, len); | 
 | 609 |  | 
 | 610 | 			} else { | 
 | 611 | 				DP(NETIF_MSG_RX_ERR, | 
 | 612 | 				   "ERROR  packet dropped because " | 
 | 613 | 				   "of alloc failure\n"); | 
 | 614 | 				fp->eth_q_stats.rx_skb_alloc_failed++; | 
 | 615 | reuse_rx: | 
 | 616 | 				bnx2x_reuse_rx_skb(fp, skb, bd_cons, bd_prod); | 
 | 617 | 				goto next_rx; | 
 | 618 | 			} | 
 | 619 |  | 
 | 620 | 			skb->protocol = eth_type_trans(skb, bp->dev); | 
 | 621 |  | 
 | 622 | 			/* Set Toeplitz hash for a none-LRO skb */ | 
 | 623 | 			bnx2x_set_skb_rxhash(bp, cqe, skb); | 
 | 624 |  | 
 | 625 | 			skb->ip_summed = CHECKSUM_NONE; | 
 | 626 | 			if (bp->rx_csum) { | 
 | 627 | 				if (likely(BNX2X_RX_CSUM_OK(cqe))) | 
 | 628 | 					skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 629 | 				else | 
 | 630 | 					fp->eth_q_stats.hw_csum_err++; | 
 | 631 | 			} | 
 | 632 | 		} | 
 | 633 |  | 
 | 634 | 		skb_record_rx_queue(skb, fp->index); | 
 | 635 |  | 
 | 636 | #ifdef BCM_VLAN | 
 | 637 | 		if ((bp->vlgrp != NULL) && (bp->flags & HW_VLAN_RX_FLAG) && | 
 | 638 | 		    (le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) & | 
 | 639 | 		     PARSING_FLAGS_VLAN)) | 
 | 640 | 			vlan_gro_receive(&fp->napi, bp->vlgrp, | 
 | 641 | 				le16_to_cpu(cqe->fast_path_cqe.vlan_tag), skb); | 
 | 642 | 		else | 
 | 643 | #endif | 
 | 644 | 			napi_gro_receive(&fp->napi, skb); | 
 | 645 |  | 
 | 646 |  | 
 | 647 | next_rx: | 
 | 648 | 		rx_buf->skb = NULL; | 
 | 649 |  | 
 | 650 | 		bd_cons = NEXT_RX_IDX(bd_cons); | 
 | 651 | 		bd_prod = NEXT_RX_IDX(bd_prod); | 
 | 652 | 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); | 
 | 653 | 		rx_pkt++; | 
 | 654 | next_cqe: | 
 | 655 | 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); | 
 | 656 | 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); | 
 | 657 |  | 
 | 658 | 		if (rx_pkt == budget) | 
 | 659 | 			break; | 
 | 660 | 	} /* while */ | 
 | 661 |  | 
 | 662 | 	fp->rx_bd_cons = bd_cons; | 
 | 663 | 	fp->rx_bd_prod = bd_prod_fw; | 
 | 664 | 	fp->rx_comp_cons = sw_comp_cons; | 
 | 665 | 	fp->rx_comp_prod = sw_comp_prod; | 
 | 666 |  | 
 | 667 | 	/* Update producers */ | 
 | 668 | 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, | 
 | 669 | 			     fp->rx_sge_prod); | 
 | 670 |  | 
 | 671 | 	fp->rx_pkt += rx_pkt; | 
 | 672 | 	fp->rx_calls++; | 
 | 673 |  | 
 | 674 | 	return rx_pkt; | 
 | 675 | } | 
 | 676 |  | 
 | 677 | static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) | 
 | 678 | { | 
 | 679 | 	struct bnx2x_fastpath *fp = fp_cookie; | 
 | 680 | 	struct bnx2x *bp = fp->bp; | 
 | 681 |  | 
 | 682 | 	/* Return here if interrupt is disabled */ | 
 | 683 | 	if (unlikely(atomic_read(&bp->intr_sem) != 0)) { | 
 | 684 | 		DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n"); | 
 | 685 | 		return IRQ_HANDLED; | 
 | 686 | 	} | 
 | 687 |  | 
 | 688 | 	DP(BNX2X_MSG_FP, "got an MSI-X interrupt on IDX:SB [%d:%d]\n", | 
 | 689 | 	   fp->index, fp->sb_id); | 
 | 690 | 	bnx2x_ack_sb(bp, fp->sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); | 
 | 691 |  | 
 | 692 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 693 | 	if (unlikely(bp->panic)) | 
 | 694 | 		return IRQ_HANDLED; | 
 | 695 | #endif | 
 | 696 |  | 
 | 697 | 	/* Handle Rx and Tx according to MSI-X vector */ | 
 | 698 | 	prefetch(fp->rx_cons_sb); | 
 | 699 | 	prefetch(fp->tx_cons_sb); | 
 | 700 | 	prefetch(&fp->status_blk->u_status_block.status_block_index); | 
 | 701 | 	prefetch(&fp->status_blk->c_status_block.status_block_index); | 
 | 702 | 	napi_schedule(&bnx2x_fp(bp, fp->index, napi)); | 
 | 703 |  | 
 | 704 | 	return IRQ_HANDLED; | 
 | 705 | } | 
 | 706 |  | 
 | 707 |  | 
 | 708 | /* HW Lock for shared dual port PHYs */ | 
 | 709 | void bnx2x_acquire_phy_lock(struct bnx2x *bp) | 
 | 710 | { | 
 | 711 | 	mutex_lock(&bp->port.phy_mutex); | 
 | 712 |  | 
 | 713 | 	if (bp->port.need_hw_lock) | 
 | 714 | 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); | 
 | 715 | } | 
 | 716 |  | 
 | 717 | void bnx2x_release_phy_lock(struct bnx2x *bp) | 
 | 718 | { | 
 | 719 | 	if (bp->port.need_hw_lock) | 
 | 720 | 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); | 
 | 721 |  | 
 | 722 | 	mutex_unlock(&bp->port.phy_mutex); | 
 | 723 | } | 
 | 724 |  | 
 | 725 | void bnx2x_link_report(struct bnx2x *bp) | 
 | 726 | { | 
 | 727 | 	if (bp->flags & MF_FUNC_DIS) { | 
 | 728 | 		netif_carrier_off(bp->dev); | 
 | 729 | 		netdev_err(bp->dev, "NIC Link is Down\n"); | 
 | 730 | 		return; | 
 | 731 | 	} | 
 | 732 |  | 
 | 733 | 	if (bp->link_vars.link_up) { | 
 | 734 | 		u16 line_speed; | 
 | 735 |  | 
 | 736 | 		if (bp->state == BNX2X_STATE_OPEN) | 
 | 737 | 			netif_carrier_on(bp->dev); | 
 | 738 | 		netdev_info(bp->dev, "NIC Link is Up, "); | 
 | 739 |  | 
 | 740 | 		line_speed = bp->link_vars.line_speed; | 
 | 741 | 		if (IS_E1HMF(bp)) { | 
 | 742 | 			u16 vn_max_rate; | 
 | 743 |  | 
 | 744 | 			vn_max_rate = | 
 | 745 | 				((bp->mf_config & FUNC_MF_CFG_MAX_BW_MASK) >> | 
 | 746 | 				 FUNC_MF_CFG_MAX_BW_SHIFT) * 100; | 
 | 747 | 			if (vn_max_rate < line_speed) | 
 | 748 | 				line_speed = vn_max_rate; | 
 | 749 | 		} | 
 | 750 | 		pr_cont("%d Mbps ", line_speed); | 
 | 751 |  | 
 | 752 | 		if (bp->link_vars.duplex == DUPLEX_FULL) | 
 | 753 | 			pr_cont("full duplex"); | 
 | 754 | 		else | 
 | 755 | 			pr_cont("half duplex"); | 
 | 756 |  | 
 | 757 | 		if (bp->link_vars.flow_ctrl != BNX2X_FLOW_CTRL_NONE) { | 
 | 758 | 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) { | 
 | 759 | 				pr_cont(", receive "); | 
 | 760 | 				if (bp->link_vars.flow_ctrl & | 
 | 761 | 				    BNX2X_FLOW_CTRL_TX) | 
 | 762 | 					pr_cont("& transmit "); | 
 | 763 | 			} else { | 
 | 764 | 				pr_cont(", transmit "); | 
 | 765 | 			} | 
 | 766 | 			pr_cont("flow control ON"); | 
 | 767 | 		} | 
 | 768 | 		pr_cont("\n"); | 
 | 769 |  | 
 | 770 | 	} else { /* link_down */ | 
 | 771 | 		netif_carrier_off(bp->dev); | 
 | 772 | 		netdev_err(bp->dev, "NIC Link is Down\n"); | 
 | 773 | 	} | 
 | 774 | } | 
 | 775 |  | 
 | 776 | void bnx2x_init_rx_rings(struct bnx2x *bp) | 
 | 777 | { | 
 | 778 | 	int func = BP_FUNC(bp); | 
 | 779 | 	int max_agg_queues = CHIP_IS_E1(bp) ? ETH_MAX_AGGREGATION_QUEUES_E1 : | 
 | 780 | 					      ETH_MAX_AGGREGATION_QUEUES_E1H; | 
 | 781 | 	u16 ring_prod, cqe_ring_prod; | 
 | 782 | 	int i, j; | 
 | 783 |  | 
 | 784 | 	bp->rx_buf_size = bp->dev->mtu + ETH_OVREHEAD + BNX2X_RX_ALIGN; | 
 | 785 | 	DP(NETIF_MSG_IFUP, | 
 | 786 | 	   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, bp->rx_buf_size); | 
 | 787 |  | 
 | 788 | 	if (bp->flags & TPA_ENABLE_FLAG) { | 
 | 789 |  | 
 | 790 | 		for_each_queue(bp, j) { | 
 | 791 | 			struct bnx2x_fastpath *fp = &bp->fp[j]; | 
 | 792 |  | 
 | 793 | 			for (i = 0; i < max_agg_queues; i++) { | 
 | 794 | 				fp->tpa_pool[i].skb = | 
 | 795 | 				   netdev_alloc_skb(bp->dev, bp->rx_buf_size); | 
 | 796 | 				if (!fp->tpa_pool[i].skb) { | 
 | 797 | 					BNX2X_ERR("Failed to allocate TPA " | 
 | 798 | 						  "skb pool for queue[%d] - " | 
 | 799 | 						  "disabling TPA on this " | 
 | 800 | 						  "queue!\n", j); | 
 | 801 | 					bnx2x_free_tpa_pool(bp, fp, i); | 
 | 802 | 					fp->disable_tpa = 1; | 
 | 803 | 					break; | 
 | 804 | 				} | 
 | 805 | 				dma_unmap_addr_set((struct sw_rx_bd *) | 
 | 806 | 							&bp->fp->tpa_pool[i], | 
 | 807 | 						   mapping, 0); | 
 | 808 | 				fp->tpa_state[i] = BNX2X_TPA_STOP; | 
 | 809 | 			} | 
 | 810 | 		} | 
 | 811 | 	} | 
 | 812 |  | 
 | 813 | 	for_each_queue(bp, j) { | 
 | 814 | 		struct bnx2x_fastpath *fp = &bp->fp[j]; | 
 | 815 |  | 
 | 816 | 		fp->rx_bd_cons = 0; | 
 | 817 | 		fp->rx_cons_sb = BNX2X_RX_SB_INDEX; | 
 | 818 | 		fp->rx_bd_cons_sb = BNX2X_RX_SB_BD_INDEX; | 
 | 819 |  | 
 | 820 | 		/* "next page" elements initialization */ | 
 | 821 | 		/* SGE ring */ | 
 | 822 | 		for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { | 
 | 823 | 			struct eth_rx_sge *sge; | 
 | 824 |  | 
 | 825 | 			sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; | 
 | 826 | 			sge->addr_hi = | 
 | 827 | 				cpu_to_le32(U64_HI(fp->rx_sge_mapping + | 
 | 828 | 					BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); | 
 | 829 | 			sge->addr_lo = | 
 | 830 | 				cpu_to_le32(U64_LO(fp->rx_sge_mapping + | 
 | 831 | 					BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); | 
 | 832 | 		} | 
 | 833 |  | 
 | 834 | 		bnx2x_init_sge_ring_bit_mask(fp); | 
 | 835 |  | 
 | 836 | 		/* RX BD ring */ | 
 | 837 | 		for (i = 1; i <= NUM_RX_RINGS; i++) { | 
 | 838 | 			struct eth_rx_bd *rx_bd; | 
 | 839 |  | 
 | 840 | 			rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2]; | 
 | 841 | 			rx_bd->addr_hi = | 
 | 842 | 				cpu_to_le32(U64_HI(fp->rx_desc_mapping + | 
 | 843 | 					    BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); | 
 | 844 | 			rx_bd->addr_lo = | 
 | 845 | 				cpu_to_le32(U64_LO(fp->rx_desc_mapping + | 
 | 846 | 					    BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); | 
 | 847 | 		} | 
 | 848 |  | 
 | 849 | 		/* CQ ring */ | 
 | 850 | 		for (i = 1; i <= NUM_RCQ_RINGS; i++) { | 
 | 851 | 			struct eth_rx_cqe_next_page *nextpg; | 
 | 852 |  | 
 | 853 | 			nextpg = (struct eth_rx_cqe_next_page *) | 
 | 854 | 				&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; | 
 | 855 | 			nextpg->addr_hi = | 
 | 856 | 				cpu_to_le32(U64_HI(fp->rx_comp_mapping + | 
 | 857 | 					   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); | 
 | 858 | 			nextpg->addr_lo = | 
 | 859 | 				cpu_to_le32(U64_LO(fp->rx_comp_mapping + | 
 | 860 | 					   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); | 
 | 861 | 		} | 
 | 862 |  | 
 | 863 | 		/* Allocate SGEs and initialize the ring elements */ | 
 | 864 | 		for (i = 0, ring_prod = 0; | 
 | 865 | 		     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { | 
 | 866 |  | 
 | 867 | 			if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) { | 
 | 868 | 				BNX2X_ERR("was only able to allocate " | 
 | 869 | 					  "%d rx sges\n", i); | 
 | 870 | 				BNX2X_ERR("disabling TPA for queue[%d]\n", j); | 
 | 871 | 				/* Cleanup already allocated elements */ | 
 | 872 | 				bnx2x_free_rx_sge_range(bp, fp, ring_prod); | 
 | 873 | 				bnx2x_free_tpa_pool(bp, fp, max_agg_queues); | 
 | 874 | 				fp->disable_tpa = 1; | 
 | 875 | 				ring_prod = 0; | 
 | 876 | 				break; | 
 | 877 | 			} | 
 | 878 | 			ring_prod = NEXT_SGE_IDX(ring_prod); | 
 | 879 | 		} | 
 | 880 | 		fp->rx_sge_prod = ring_prod; | 
 | 881 |  | 
 | 882 | 		/* Allocate BDs and initialize BD ring */ | 
 | 883 | 		fp->rx_comp_cons = 0; | 
 | 884 | 		cqe_ring_prod = ring_prod = 0; | 
 | 885 | 		for (i = 0; i < bp->rx_ring_size; i++) { | 
 | 886 | 			if (bnx2x_alloc_rx_skb(bp, fp, ring_prod) < 0) { | 
 | 887 | 				BNX2X_ERR("was only able to allocate " | 
 | 888 | 					  "%d rx skbs on queue[%d]\n", i, j); | 
 | 889 | 				fp->eth_q_stats.rx_skb_alloc_failed++; | 
 | 890 | 				break; | 
 | 891 | 			} | 
 | 892 | 			ring_prod = NEXT_RX_IDX(ring_prod); | 
 | 893 | 			cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); | 
 | 894 | 			WARN_ON(ring_prod <= i); | 
 | 895 | 		} | 
 | 896 |  | 
 | 897 | 		fp->rx_bd_prod = ring_prod; | 
 | 898 | 		/* must not have more available CQEs than BDs */ | 
 | 899 | 		fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, | 
 | 900 | 					 cqe_ring_prod); | 
 | 901 | 		fp->rx_pkt = fp->rx_calls = 0; | 
 | 902 |  | 
 | 903 | 		/* Warning! | 
 | 904 | 		 * this will generate an interrupt (to the TSTORM) | 
 | 905 | 		 * must only be done after chip is initialized | 
 | 906 | 		 */ | 
 | 907 | 		bnx2x_update_rx_prod(bp, fp, ring_prod, fp->rx_comp_prod, | 
 | 908 | 				     fp->rx_sge_prod); | 
 | 909 | 		if (j != 0) | 
 | 910 | 			continue; | 
 | 911 |  | 
 | 912 | 		REG_WR(bp, BAR_USTRORM_INTMEM + | 
 | 913 | 		       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), | 
 | 914 | 		       U64_LO(fp->rx_comp_mapping)); | 
 | 915 | 		REG_WR(bp, BAR_USTRORM_INTMEM + | 
 | 916 | 		       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, | 
 | 917 | 		       U64_HI(fp->rx_comp_mapping)); | 
 | 918 | 	} | 
 | 919 | } | 
 | 920 | static void bnx2x_free_tx_skbs(struct bnx2x *bp) | 
 | 921 | { | 
 | 922 | 	int i; | 
 | 923 |  | 
 | 924 | 	for_each_queue(bp, i) { | 
 | 925 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 | 926 |  | 
 | 927 | 		u16 bd_cons = fp->tx_bd_cons; | 
 | 928 | 		u16 sw_prod = fp->tx_pkt_prod; | 
 | 929 | 		u16 sw_cons = fp->tx_pkt_cons; | 
 | 930 |  | 
 | 931 | 		while (sw_cons != sw_prod) { | 
 | 932 | 			bd_cons = bnx2x_free_tx_pkt(bp, fp, TX_BD(sw_cons)); | 
 | 933 | 			sw_cons++; | 
 | 934 | 		} | 
 | 935 | 	} | 
 | 936 | } | 
 | 937 |  | 
 | 938 | static void bnx2x_free_rx_skbs(struct bnx2x *bp) | 
 | 939 | { | 
 | 940 | 	int i, j; | 
 | 941 |  | 
 | 942 | 	for_each_queue(bp, j) { | 
 | 943 | 		struct bnx2x_fastpath *fp = &bp->fp[j]; | 
 | 944 |  | 
 | 945 | 		for (i = 0; i < NUM_RX_BD; i++) { | 
 | 946 | 			struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; | 
 | 947 | 			struct sk_buff *skb = rx_buf->skb; | 
 | 948 |  | 
 | 949 | 			if (skb == NULL) | 
 | 950 | 				continue; | 
 | 951 |  | 
 | 952 | 			dma_unmap_single(&bp->pdev->dev, | 
 | 953 | 					 dma_unmap_addr(rx_buf, mapping), | 
 | 954 | 					 bp->rx_buf_size, DMA_FROM_DEVICE); | 
 | 955 |  | 
 | 956 | 			rx_buf->skb = NULL; | 
 | 957 | 			dev_kfree_skb(skb); | 
 | 958 | 		} | 
 | 959 | 		if (!fp->disable_tpa) | 
 | 960 | 			bnx2x_free_tpa_pool(bp, fp, CHIP_IS_E1(bp) ? | 
 | 961 | 					    ETH_MAX_AGGREGATION_QUEUES_E1 : | 
 | 962 | 					    ETH_MAX_AGGREGATION_QUEUES_E1H); | 
 | 963 | 	} | 
 | 964 | } | 
 | 965 |  | 
 | 966 | void bnx2x_free_skbs(struct bnx2x *bp) | 
 | 967 | { | 
 | 968 | 	bnx2x_free_tx_skbs(bp); | 
 | 969 | 	bnx2x_free_rx_skbs(bp); | 
 | 970 | } | 
 | 971 |  | 
 | 972 | static void bnx2x_free_msix_irqs(struct bnx2x *bp) | 
 | 973 | { | 
 | 974 | 	int i, offset = 1; | 
 | 975 |  | 
 | 976 | 	free_irq(bp->msix_table[0].vector, bp->dev); | 
 | 977 | 	DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", | 
 | 978 | 	   bp->msix_table[0].vector); | 
 | 979 |  | 
 | 980 | #ifdef BCM_CNIC | 
 | 981 | 	offset++; | 
 | 982 | #endif | 
 | 983 | 	for_each_queue(bp, i) { | 
 | 984 | 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq  " | 
 | 985 | 		   "state %x\n", i, bp->msix_table[i + offset].vector, | 
 | 986 | 		   bnx2x_fp(bp, i, state)); | 
 | 987 |  | 
 | 988 | 		free_irq(bp->msix_table[i + offset].vector, &bp->fp[i]); | 
 | 989 | 	} | 
 | 990 | } | 
 | 991 |  | 
 | 992 | void bnx2x_free_irq(struct bnx2x *bp, bool disable_only) | 
 | 993 | { | 
 | 994 | 	if (bp->flags & USING_MSIX_FLAG) { | 
 | 995 | 		if (!disable_only) | 
 | 996 | 			bnx2x_free_msix_irqs(bp); | 
 | 997 | 		pci_disable_msix(bp->pdev); | 
 | 998 | 		bp->flags &= ~USING_MSIX_FLAG; | 
 | 999 |  | 
 | 1000 | 	} else if (bp->flags & USING_MSI_FLAG) { | 
 | 1001 | 		if (!disable_only) | 
 | 1002 | 			free_irq(bp->pdev->irq, bp->dev); | 
 | 1003 | 		pci_disable_msi(bp->pdev); | 
 | 1004 | 		bp->flags &= ~USING_MSI_FLAG; | 
 | 1005 |  | 
 | 1006 | 	} else if (!disable_only) | 
 | 1007 | 		free_irq(bp->pdev->irq, bp->dev); | 
 | 1008 | } | 
 | 1009 |  | 
 | 1010 | static int bnx2x_enable_msix(struct bnx2x *bp) | 
 | 1011 | { | 
 | 1012 | 	int i, rc, offset = 1; | 
 | 1013 | 	int igu_vec = 0; | 
 | 1014 |  | 
 | 1015 | 	bp->msix_table[0].entry = igu_vec; | 
 | 1016 | 	DP(NETIF_MSG_IFUP, "msix_table[0].entry = %d (slowpath)\n", igu_vec); | 
 | 1017 |  | 
 | 1018 | #ifdef BCM_CNIC | 
 | 1019 | 	igu_vec = BP_L_ID(bp) + offset; | 
 | 1020 | 	bp->msix_table[1].entry = igu_vec; | 
 | 1021 | 	DP(NETIF_MSG_IFUP, "msix_table[1].entry = %d (CNIC)\n", igu_vec); | 
 | 1022 | 	offset++; | 
 | 1023 | #endif | 
 | 1024 | 	for_each_queue(bp, i) { | 
 | 1025 | 		igu_vec = BP_L_ID(bp) + offset + i; | 
 | 1026 | 		bp->msix_table[i + offset].entry = igu_vec; | 
 | 1027 | 		DP(NETIF_MSG_IFUP, "msix_table[%d].entry = %d " | 
 | 1028 | 		   "(fastpath #%u)\n", i + offset, igu_vec, i); | 
 | 1029 | 	} | 
 | 1030 |  | 
 | 1031 | 	rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], | 
 | 1032 | 			     BNX2X_NUM_QUEUES(bp) + offset); | 
 | 1033 |  | 
 | 1034 | 	/* | 
 | 1035 | 	 * reconfigure number of tx/rx queues according to available | 
 | 1036 | 	 * MSI-X vectors | 
 | 1037 | 	 */ | 
 | 1038 | 	if (rc >= BNX2X_MIN_MSIX_VEC_CNT) { | 
 | 1039 | 		/* vectors available for FP */ | 
 | 1040 | 		int fp_vec = rc - BNX2X_MSIX_VEC_FP_START; | 
 | 1041 |  | 
 | 1042 | 		DP(NETIF_MSG_IFUP, | 
 | 1043 | 		   "Trying to use less MSI-X vectors: %d\n", rc); | 
 | 1044 |  | 
 | 1045 | 		rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc); | 
 | 1046 |  | 
 | 1047 | 		if (rc) { | 
 | 1048 | 			DP(NETIF_MSG_IFUP, | 
 | 1049 | 			   "MSI-X is not attainable  rc %d\n", rc); | 
 | 1050 | 			return rc; | 
 | 1051 | 		} | 
 | 1052 |  | 
 | 1053 | 		bp->num_queues = min(bp->num_queues, fp_vec); | 
 | 1054 |  | 
 | 1055 | 		DP(NETIF_MSG_IFUP, "New queue configuration set: %d\n", | 
 | 1056 | 				  bp->num_queues); | 
 | 1057 | 	} else if (rc) { | 
 | 1058 | 		DP(NETIF_MSG_IFUP, "MSI-X is not attainable  rc %d\n", rc); | 
 | 1059 | 		return rc; | 
 | 1060 | 	} | 
 | 1061 |  | 
 | 1062 | 	bp->flags |= USING_MSIX_FLAG; | 
 | 1063 |  | 
 | 1064 | 	return 0; | 
 | 1065 | } | 
 | 1066 |  | 
 | 1067 | static int bnx2x_req_msix_irqs(struct bnx2x *bp) | 
 | 1068 | { | 
 | 1069 | 	int i, rc, offset = 1; | 
 | 1070 |  | 
 | 1071 | 	rc = request_irq(bp->msix_table[0].vector, bnx2x_msix_sp_int, 0, | 
 | 1072 | 			 bp->dev->name, bp->dev); | 
 | 1073 | 	if (rc) { | 
 | 1074 | 		BNX2X_ERR("request sp irq failed\n"); | 
 | 1075 | 		return -EBUSY; | 
 | 1076 | 	} | 
 | 1077 |  | 
 | 1078 | #ifdef BCM_CNIC | 
 | 1079 | 	offset++; | 
 | 1080 | #endif | 
 | 1081 | 	for_each_queue(bp, i) { | 
 | 1082 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 | 1083 | 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", | 
 | 1084 | 			 bp->dev->name, i); | 
 | 1085 |  | 
 | 1086 | 		rc = request_irq(bp->msix_table[i + offset].vector, | 
 | 1087 | 				 bnx2x_msix_fp_int, 0, fp->name, fp); | 
 | 1088 | 		if (rc) { | 
 | 1089 | 			BNX2X_ERR("request fp #%d irq failed  rc %d\n", i, rc); | 
 | 1090 | 			bnx2x_free_msix_irqs(bp); | 
 | 1091 | 			return -EBUSY; | 
 | 1092 | 		} | 
 | 1093 |  | 
 | 1094 | 		fp->state = BNX2X_FP_STATE_IRQ; | 
 | 1095 | 	} | 
 | 1096 |  | 
 | 1097 | 	i = BNX2X_NUM_QUEUES(bp); | 
 | 1098 | 	netdev_info(bp->dev, "using MSI-X  IRQs: sp %d  fp[%d] %d" | 
 | 1099 | 	       " ... fp[%d] %d\n", | 
 | 1100 | 	       bp->msix_table[0].vector, | 
 | 1101 | 	       0, bp->msix_table[offset].vector, | 
 | 1102 | 	       i - 1, bp->msix_table[offset + i - 1].vector); | 
 | 1103 |  | 
 | 1104 | 	return 0; | 
 | 1105 | } | 
 | 1106 |  | 
 | 1107 | static int bnx2x_enable_msi(struct bnx2x *bp) | 
 | 1108 | { | 
 | 1109 | 	int rc; | 
 | 1110 |  | 
 | 1111 | 	rc = pci_enable_msi(bp->pdev); | 
 | 1112 | 	if (rc) { | 
 | 1113 | 		DP(NETIF_MSG_IFUP, "MSI is not attainable\n"); | 
 | 1114 | 		return -1; | 
 | 1115 | 	} | 
 | 1116 | 	bp->flags |= USING_MSI_FLAG; | 
 | 1117 |  | 
 | 1118 | 	return 0; | 
 | 1119 | } | 
 | 1120 |  | 
 | 1121 | static int bnx2x_req_irq(struct bnx2x *bp) | 
 | 1122 | { | 
 | 1123 | 	unsigned long flags; | 
 | 1124 | 	int rc; | 
 | 1125 |  | 
 | 1126 | 	if (bp->flags & USING_MSI_FLAG) | 
 | 1127 | 		flags = 0; | 
 | 1128 | 	else | 
 | 1129 | 		flags = IRQF_SHARED; | 
 | 1130 |  | 
 | 1131 | 	rc = request_irq(bp->pdev->irq, bnx2x_interrupt, flags, | 
 | 1132 | 			 bp->dev->name, bp->dev); | 
 | 1133 | 	if (!rc) | 
 | 1134 | 		bnx2x_fp(bp, 0, state) = BNX2X_FP_STATE_IRQ; | 
 | 1135 |  | 
 | 1136 | 	return rc; | 
 | 1137 | } | 
 | 1138 |  | 
 | 1139 | static void bnx2x_napi_enable(struct bnx2x *bp) | 
 | 1140 | { | 
 | 1141 | 	int i; | 
 | 1142 |  | 
 | 1143 | 	for_each_queue(bp, i) | 
 | 1144 | 		napi_enable(&bnx2x_fp(bp, i, napi)); | 
 | 1145 | } | 
 | 1146 |  | 
 | 1147 | static void bnx2x_napi_disable(struct bnx2x *bp) | 
 | 1148 | { | 
 | 1149 | 	int i; | 
 | 1150 |  | 
 | 1151 | 	for_each_queue(bp, i) | 
 | 1152 | 		napi_disable(&bnx2x_fp(bp, i, napi)); | 
 | 1153 | } | 
 | 1154 |  | 
 | 1155 | void bnx2x_netif_start(struct bnx2x *bp) | 
 | 1156 | { | 
 | 1157 | 	int intr_sem; | 
 | 1158 |  | 
 | 1159 | 	intr_sem = atomic_dec_and_test(&bp->intr_sem); | 
 | 1160 | 	smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */ | 
 | 1161 |  | 
 | 1162 | 	if (intr_sem) { | 
 | 1163 | 		if (netif_running(bp->dev)) { | 
 | 1164 | 			bnx2x_napi_enable(bp); | 
 | 1165 | 			bnx2x_int_enable(bp); | 
 | 1166 | 			if (bp->state == BNX2X_STATE_OPEN) | 
 | 1167 | 				netif_tx_wake_all_queues(bp->dev); | 
 | 1168 | 		} | 
 | 1169 | 	} | 
 | 1170 | } | 
 | 1171 |  | 
 | 1172 | void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) | 
 | 1173 | { | 
 | 1174 | 	bnx2x_int_disable_sync(bp, disable_hw); | 
 | 1175 | 	bnx2x_napi_disable(bp); | 
 | 1176 | 	netif_tx_disable(bp->dev); | 
 | 1177 | } | 
 | 1178 | static int bnx2x_set_num_queues(struct bnx2x *bp) | 
 | 1179 | { | 
 | 1180 | 	int rc = 0; | 
 | 1181 |  | 
 | 1182 | 	switch (bp->int_mode) { | 
 | 1183 | 	case INT_MODE_INTx: | 
 | 1184 | 	case INT_MODE_MSI: | 
 | 1185 | 		bp->num_queues = 1; | 
 | 1186 | 		DP(NETIF_MSG_IFUP, "set number of queues to 1\n"); | 
 | 1187 | 		break; | 
 | 1188 | 	default: | 
 | 1189 | 		/* Set number of queues according to bp->multi_mode value */ | 
 | 1190 | 		bnx2x_set_num_queues_msix(bp); | 
 | 1191 |  | 
 | 1192 | 		DP(NETIF_MSG_IFUP, "set number of queues to %d\n", | 
 | 1193 | 		   bp->num_queues); | 
 | 1194 |  | 
 | 1195 | 		/* if we can't use MSI-X we only need one fp, | 
 | 1196 | 		 * so try to enable MSI-X with the requested number of fp's | 
 | 1197 | 		 * and fallback to MSI or legacy INTx with one fp | 
 | 1198 | 		 */ | 
 | 1199 | 		rc = bnx2x_enable_msix(bp); | 
 | 1200 | 		if (rc) | 
 | 1201 | 			/* failed to enable MSI-X */ | 
 | 1202 | 			bp->num_queues = 1; | 
 | 1203 | 		break; | 
 | 1204 | 	} | 
 | 1205 | 	bp->dev->real_num_tx_queues = bp->num_queues; | 
 | 1206 | 	return rc; | 
 | 1207 | } | 
 | 1208 |  | 
 | 1209 | /* must be called with rtnl_lock */ | 
 | 1210 | int bnx2x_nic_load(struct bnx2x *bp, int load_mode) | 
 | 1211 | { | 
 | 1212 | 	u32 load_code; | 
 | 1213 | 	int i, rc; | 
 | 1214 |  | 
 | 1215 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 1216 | 	if (unlikely(bp->panic)) | 
 | 1217 | 		return -EPERM; | 
 | 1218 | #endif | 
 | 1219 |  | 
 | 1220 | 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; | 
 | 1221 |  | 
 | 1222 | 	rc = bnx2x_set_num_queues(bp); | 
 | 1223 |  | 
 | 1224 | 	if (bnx2x_alloc_mem(bp)) { | 
 | 1225 | 		bnx2x_free_irq(bp, true); | 
 | 1226 | 		return -ENOMEM; | 
 | 1227 | 	} | 
 | 1228 |  | 
 | 1229 | 	for_each_queue(bp, i) | 
 | 1230 | 		bnx2x_fp(bp, i, disable_tpa) = | 
 | 1231 | 					((bp->flags & TPA_ENABLE_FLAG) == 0); | 
 | 1232 |  | 
 | 1233 | 	for_each_queue(bp, i) | 
 | 1234 | 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), | 
 | 1235 | 			       bnx2x_poll, 128); | 
 | 1236 |  | 
 | 1237 | 	bnx2x_napi_enable(bp); | 
 | 1238 |  | 
 | 1239 | 	if (bp->flags & USING_MSIX_FLAG) { | 
 | 1240 | 		rc = bnx2x_req_msix_irqs(bp); | 
 | 1241 | 		if (rc) { | 
 | 1242 | 			bnx2x_free_irq(bp, true); | 
 | 1243 | 			goto load_error1; | 
 | 1244 | 		} | 
 | 1245 | 	} else { | 
 | 1246 | 		/* Fall to INTx if failed to enable MSI-X due to lack of | 
 | 1247 | 		   memory (in bnx2x_set_num_queues()) */ | 
 | 1248 | 		if ((rc != -ENOMEM) && (bp->int_mode != INT_MODE_INTx)) | 
 | 1249 | 			bnx2x_enable_msi(bp); | 
 | 1250 | 		bnx2x_ack_int(bp); | 
 | 1251 | 		rc = bnx2x_req_irq(bp); | 
 | 1252 | 		if (rc) { | 
 | 1253 | 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc); | 
 | 1254 | 			bnx2x_free_irq(bp, true); | 
 | 1255 | 			goto load_error1; | 
 | 1256 | 		} | 
 | 1257 | 		if (bp->flags & USING_MSI_FLAG) { | 
 | 1258 | 			bp->dev->irq = bp->pdev->irq; | 
 | 1259 | 			netdev_info(bp->dev, "using MSI  IRQ %d\n", | 
 | 1260 | 				    bp->pdev->irq); | 
 | 1261 | 		} | 
 | 1262 | 	} | 
 | 1263 |  | 
 | 1264 | 	/* Send LOAD_REQUEST command to MCP | 
 | 1265 | 	   Returns the type of LOAD command: | 
 | 1266 | 	   if it is the first port to be initialized | 
 | 1267 | 	   common blocks should be initialized, otherwise - not | 
 | 1268 | 	*/ | 
 | 1269 | 	if (!BP_NOMCP(bp)) { | 
 | 1270 | 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ); | 
 | 1271 | 		if (!load_code) { | 
 | 1272 | 			BNX2X_ERR("MCP response failure, aborting\n"); | 
 | 1273 | 			rc = -EBUSY; | 
 | 1274 | 			goto load_error2; | 
 | 1275 | 		} | 
 | 1276 | 		if (load_code == FW_MSG_CODE_DRV_LOAD_REFUSED) { | 
 | 1277 | 			rc = -EBUSY; /* other port in diagnostic mode */ | 
 | 1278 | 			goto load_error2; | 
 | 1279 | 		} | 
 | 1280 |  | 
 | 1281 | 	} else { | 
 | 1282 | 		int port = BP_PORT(bp); | 
 | 1283 |  | 
 | 1284 | 		DP(NETIF_MSG_IFUP, "NO MCP - load counts      %d, %d, %d\n", | 
 | 1285 | 		   load_count[0], load_count[1], load_count[2]); | 
 | 1286 | 		load_count[0]++; | 
 | 1287 | 		load_count[1 + port]++; | 
 | 1288 | 		DP(NETIF_MSG_IFUP, "NO MCP - new load counts  %d, %d, %d\n", | 
 | 1289 | 		   load_count[0], load_count[1], load_count[2]); | 
 | 1290 | 		if (load_count[0] == 1) | 
 | 1291 | 			load_code = FW_MSG_CODE_DRV_LOAD_COMMON; | 
 | 1292 | 		else if (load_count[1 + port] == 1) | 
 | 1293 | 			load_code = FW_MSG_CODE_DRV_LOAD_PORT; | 
 | 1294 | 		else | 
 | 1295 | 			load_code = FW_MSG_CODE_DRV_LOAD_FUNCTION; | 
 | 1296 | 	} | 
 | 1297 |  | 
 | 1298 | 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || | 
 | 1299 | 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) | 
 | 1300 | 		bp->port.pmf = 1; | 
 | 1301 | 	else | 
 | 1302 | 		bp->port.pmf = 0; | 
 | 1303 | 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); | 
 | 1304 |  | 
 | 1305 | 	/* Initialize HW */ | 
 | 1306 | 	rc = bnx2x_init_hw(bp, load_code); | 
 | 1307 | 	if (rc) { | 
 | 1308 | 		BNX2X_ERR("HW init failed, aborting\n"); | 
 | 1309 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE); | 
 | 1310 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP); | 
 | 1311 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE); | 
 | 1312 | 		goto load_error2; | 
 | 1313 | 	} | 
 | 1314 |  | 
 | 1315 | 	/* Setup NIC internals and enable interrupts */ | 
 | 1316 | 	bnx2x_nic_init(bp, load_code); | 
 | 1317 |  | 
 | 1318 | 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) && | 
 | 1319 | 	    (bp->common.shmem2_base)) | 
 | 1320 | 		SHMEM2_WR(bp, dcc_support, | 
 | 1321 | 			  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | | 
 | 1322 | 			   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); | 
 | 1323 |  | 
 | 1324 | 	/* Send LOAD_DONE command to MCP */ | 
 | 1325 | 	if (!BP_NOMCP(bp)) { | 
 | 1326 | 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE); | 
 | 1327 | 		if (!load_code) { | 
 | 1328 | 			BNX2X_ERR("MCP response failure, aborting\n"); | 
 | 1329 | 			rc = -EBUSY; | 
 | 1330 | 			goto load_error3; | 
 | 1331 | 		} | 
 | 1332 | 	} | 
 | 1333 |  | 
 | 1334 | 	bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; | 
 | 1335 |  | 
 | 1336 | 	rc = bnx2x_setup_leading(bp); | 
 | 1337 | 	if (rc) { | 
 | 1338 | 		BNX2X_ERR("Setup leading failed!\n"); | 
 | 1339 | #ifndef BNX2X_STOP_ON_ERROR | 
 | 1340 | 		goto load_error3; | 
 | 1341 | #else | 
 | 1342 | 		bp->panic = 1; | 
 | 1343 | 		return -EBUSY; | 
 | 1344 | #endif | 
 | 1345 | 	} | 
 | 1346 |  | 
 | 1347 | 	if (CHIP_IS_E1H(bp)) | 
 | 1348 | 		if (bp->mf_config & FUNC_MF_CFG_FUNC_DISABLED) { | 
 | 1349 | 			DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); | 
 | 1350 | 			bp->flags |= MF_FUNC_DIS; | 
 | 1351 | 		} | 
 | 1352 |  | 
 | 1353 | 	if (bp->state == BNX2X_STATE_OPEN) { | 
 | 1354 | #ifdef BCM_CNIC | 
 | 1355 | 		/* Enable Timer scan */ | 
 | 1356 | 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 1); | 
 | 1357 | #endif | 
 | 1358 | 		for_each_nondefault_queue(bp, i) { | 
 | 1359 | 			rc = bnx2x_setup_multi(bp, i); | 
 | 1360 | 			if (rc) | 
 | 1361 | #ifdef BCM_CNIC | 
 | 1362 | 				goto load_error4; | 
 | 1363 | #else | 
 | 1364 | 				goto load_error3; | 
 | 1365 | #endif | 
 | 1366 | 		} | 
 | 1367 |  | 
 | 1368 | 		if (CHIP_IS_E1(bp)) | 
 | 1369 | 			bnx2x_set_eth_mac_addr_e1(bp, 1); | 
 | 1370 | 		else | 
 | 1371 | 			bnx2x_set_eth_mac_addr_e1h(bp, 1); | 
 | 1372 | #ifdef BCM_CNIC | 
 | 1373 | 		/* Set iSCSI L2 MAC */ | 
 | 1374 | 		mutex_lock(&bp->cnic_mutex); | 
 | 1375 | 		if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD) { | 
 | 1376 | 			bnx2x_set_iscsi_eth_mac_addr(bp, 1); | 
 | 1377 | 			bp->cnic_flags |= BNX2X_CNIC_FLAG_MAC_SET; | 
 | 1378 | 			bnx2x_init_sb(bp, bp->cnic_sb, bp->cnic_sb_mapping, | 
 | 1379 | 				      CNIC_SB_ID(bp)); | 
 | 1380 | 		} | 
 | 1381 | 		mutex_unlock(&bp->cnic_mutex); | 
 | 1382 | #endif | 
 | 1383 | 	} | 
 | 1384 |  | 
 | 1385 | 	if (bp->port.pmf) | 
 | 1386 | 		bnx2x_initial_phy_init(bp, load_mode); | 
 | 1387 |  | 
 | 1388 | 	/* Start fast path */ | 
 | 1389 | 	switch (load_mode) { | 
 | 1390 | 	case LOAD_NORMAL: | 
 | 1391 | 		if (bp->state == BNX2X_STATE_OPEN) { | 
 | 1392 | 			/* Tx queue should be only reenabled */ | 
 | 1393 | 			netif_tx_wake_all_queues(bp->dev); | 
 | 1394 | 		} | 
 | 1395 | 		/* Initialize the receive filter. */ | 
 | 1396 | 		bnx2x_set_rx_mode(bp->dev); | 
 | 1397 | 		break; | 
 | 1398 |  | 
 | 1399 | 	case LOAD_OPEN: | 
 | 1400 | 		netif_tx_start_all_queues(bp->dev); | 
 | 1401 | 		if (bp->state != BNX2X_STATE_OPEN) | 
 | 1402 | 			netif_tx_disable(bp->dev); | 
 | 1403 | 		/* Initialize the receive filter. */ | 
 | 1404 | 		bnx2x_set_rx_mode(bp->dev); | 
 | 1405 | 		break; | 
 | 1406 |  | 
 | 1407 | 	case LOAD_DIAG: | 
 | 1408 | 		/* Initialize the receive filter. */ | 
 | 1409 | 		bnx2x_set_rx_mode(bp->dev); | 
 | 1410 | 		bp->state = BNX2X_STATE_DIAG; | 
 | 1411 | 		break; | 
 | 1412 |  | 
 | 1413 | 	default: | 
 | 1414 | 		break; | 
 | 1415 | 	} | 
 | 1416 |  | 
 | 1417 | 	if (!bp->port.pmf) | 
 | 1418 | 		bnx2x__link_status_update(bp); | 
 | 1419 |  | 
 | 1420 | 	/* start the timer */ | 
 | 1421 | 	mod_timer(&bp->timer, jiffies + bp->current_interval); | 
 | 1422 |  | 
 | 1423 | #ifdef BCM_CNIC | 
 | 1424 | 	bnx2x_setup_cnic_irq_info(bp); | 
 | 1425 | 	if (bp->state == BNX2X_STATE_OPEN) | 
 | 1426 | 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); | 
 | 1427 | #endif | 
 | 1428 | 	bnx2x_inc_load_cnt(bp); | 
 | 1429 |  | 
 | 1430 | 	return 0; | 
 | 1431 |  | 
 | 1432 | #ifdef BCM_CNIC | 
 | 1433 | load_error4: | 
 | 1434 | 	/* Disable Timer scan */ | 
 | 1435 | 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 0); | 
 | 1436 | #endif | 
 | 1437 | load_error3: | 
 | 1438 | 	bnx2x_int_disable_sync(bp, 1); | 
 | 1439 | 	if (!BP_NOMCP(bp)) { | 
 | 1440 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP); | 
 | 1441 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE); | 
 | 1442 | 	} | 
 | 1443 | 	bp->port.pmf = 0; | 
 | 1444 | 	/* Free SKBs, SGEs, TPA pool and driver internals */ | 
 | 1445 | 	bnx2x_free_skbs(bp); | 
 | 1446 | 	for_each_queue(bp, i) | 
 | 1447 | 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | 
 | 1448 | load_error2: | 
 | 1449 | 	/* Release IRQs */ | 
 | 1450 | 	bnx2x_free_irq(bp, false); | 
 | 1451 | load_error1: | 
 | 1452 | 	bnx2x_napi_disable(bp); | 
 | 1453 | 	for_each_queue(bp, i) | 
 | 1454 | 		netif_napi_del(&bnx2x_fp(bp, i, napi)); | 
 | 1455 | 	bnx2x_free_mem(bp); | 
 | 1456 |  | 
 | 1457 | 	return rc; | 
 | 1458 | } | 
 | 1459 |  | 
 | 1460 | /* must be called with rtnl_lock */ | 
 | 1461 | int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode) | 
 | 1462 | { | 
 | 1463 | 	int i; | 
 | 1464 |  | 
 | 1465 | 	if (bp->state == BNX2X_STATE_CLOSED) { | 
 | 1466 | 		/* Interface has been removed - nothing to recover */ | 
 | 1467 | 		bp->recovery_state = BNX2X_RECOVERY_DONE; | 
 | 1468 | 		bp->is_leader = 0; | 
 | 1469 | 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESERVED_08); | 
 | 1470 | 		smp_wmb(); | 
 | 1471 |  | 
 | 1472 | 		return -EINVAL; | 
 | 1473 | 	} | 
 | 1474 |  | 
 | 1475 | #ifdef BCM_CNIC | 
 | 1476 | 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); | 
 | 1477 | #endif | 
 | 1478 | 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; | 
 | 1479 |  | 
 | 1480 | 	/* Set "drop all" */ | 
 | 1481 | 	bp->rx_mode = BNX2X_RX_MODE_NONE; | 
 | 1482 | 	bnx2x_set_storm_rx_mode(bp); | 
 | 1483 |  | 
 | 1484 | 	/* Disable HW interrupts, NAPI and Tx */ | 
 | 1485 | 	bnx2x_netif_stop(bp, 1); | 
 | 1486 | 	netif_carrier_off(bp->dev); | 
 | 1487 |  | 
 | 1488 | 	del_timer_sync(&bp->timer); | 
 | 1489 | 	SHMEM_WR(bp, func_mb[BP_FUNC(bp)].drv_pulse_mb, | 
 | 1490 | 		 (DRV_PULSE_ALWAYS_ALIVE | bp->fw_drv_pulse_wr_seq)); | 
 | 1491 | 	bnx2x_stats_handle(bp, STATS_EVENT_STOP); | 
 | 1492 |  | 
 | 1493 | 	/* Release IRQs */ | 
 | 1494 | 	bnx2x_free_irq(bp, false); | 
 | 1495 |  | 
 | 1496 | 	/* Cleanup the chip if needed */ | 
 | 1497 | 	if (unload_mode != UNLOAD_RECOVERY) | 
 | 1498 | 		bnx2x_chip_cleanup(bp, unload_mode); | 
 | 1499 |  | 
 | 1500 | 	bp->port.pmf = 0; | 
 | 1501 |  | 
 | 1502 | 	/* Free SKBs, SGEs, TPA pool and driver internals */ | 
 | 1503 | 	bnx2x_free_skbs(bp); | 
 | 1504 | 	for_each_queue(bp, i) | 
 | 1505 | 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | 
 | 1506 | 	for_each_queue(bp, i) | 
 | 1507 | 		netif_napi_del(&bnx2x_fp(bp, i, napi)); | 
 | 1508 | 	bnx2x_free_mem(bp); | 
 | 1509 |  | 
 | 1510 | 	bp->state = BNX2X_STATE_CLOSED; | 
 | 1511 |  | 
 | 1512 | 	/* The last driver must disable a "close the gate" if there is no | 
 | 1513 | 	 * parity attention or "process kill" pending. | 
 | 1514 | 	 */ | 
 | 1515 | 	if ((!bnx2x_dec_load_cnt(bp)) && (!bnx2x_chk_parity_attn(bp)) && | 
 | 1516 | 	    bnx2x_reset_is_done(bp)) | 
 | 1517 | 		bnx2x_disable_close_the_gate(bp); | 
 | 1518 |  | 
 | 1519 | 	/* Reset MCP mail box sequence if there is on going recovery */ | 
 | 1520 | 	if (unload_mode == UNLOAD_RECOVERY) | 
 | 1521 | 		bp->fw_seq = 0; | 
 | 1522 |  | 
 | 1523 | 	return 0; | 
 | 1524 | } | 
 | 1525 | int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) | 
 | 1526 | { | 
 | 1527 | 	u16 pmcsr; | 
 | 1528 |  | 
 | 1529 | 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); | 
 | 1530 |  | 
 | 1531 | 	switch (state) { | 
 | 1532 | 	case PCI_D0: | 
 | 1533 | 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, | 
 | 1534 | 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | | 
 | 1535 | 				       PCI_PM_CTRL_PME_STATUS)); | 
 | 1536 |  | 
 | 1537 | 		if (pmcsr & PCI_PM_CTRL_STATE_MASK) | 
 | 1538 | 			/* delay required during transition out of D3hot */ | 
 | 1539 | 			msleep(20); | 
 | 1540 | 		break; | 
 | 1541 |  | 
 | 1542 | 	case PCI_D3hot: | 
 | 1543 | 		/* If there are other clients above don't | 
 | 1544 | 		   shut down the power */ | 
 | 1545 | 		if (atomic_read(&bp->pdev->enable_cnt) != 1) | 
 | 1546 | 			return 0; | 
 | 1547 | 		/* Don't shut down the power for emulation and FPGA */ | 
 | 1548 | 		if (CHIP_REV_IS_SLOW(bp)) | 
 | 1549 | 			return 0; | 
 | 1550 |  | 
 | 1551 | 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
 | 1552 | 		pmcsr |= 3; | 
 | 1553 |  | 
 | 1554 | 		if (bp->wol) | 
 | 1555 | 			pmcsr |= PCI_PM_CTRL_PME_ENABLE; | 
 | 1556 |  | 
 | 1557 | 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, | 
 | 1558 | 				      pmcsr); | 
 | 1559 |  | 
 | 1560 | 		/* No more memory access after this point until | 
 | 1561 | 		* device is brought back to D0. | 
 | 1562 | 		*/ | 
 | 1563 | 		break; | 
 | 1564 |  | 
 | 1565 | 	default: | 
 | 1566 | 		return -EINVAL; | 
 | 1567 | 	} | 
 | 1568 | 	return 0; | 
 | 1569 | } | 
 | 1570 |  | 
 | 1571 |  | 
 | 1572 |  | 
 | 1573 | /* | 
 | 1574 |  * net_device service functions | 
 | 1575 |  */ | 
 | 1576 |  | 
 | 1577 | static int bnx2x_poll(struct napi_struct *napi, int budget) | 
 | 1578 | { | 
 | 1579 | 	int work_done = 0; | 
 | 1580 | 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, | 
 | 1581 | 						 napi); | 
 | 1582 | 	struct bnx2x *bp = fp->bp; | 
 | 1583 |  | 
 | 1584 | 	while (1) { | 
 | 1585 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 1586 | 		if (unlikely(bp->panic)) { | 
 | 1587 | 			napi_complete(napi); | 
 | 1588 | 			return 0; | 
 | 1589 | 		} | 
 | 1590 | #endif | 
 | 1591 |  | 
 | 1592 | 		if (bnx2x_has_tx_work(fp)) | 
 | 1593 | 			bnx2x_tx_int(fp); | 
 | 1594 |  | 
 | 1595 | 		if (bnx2x_has_rx_work(fp)) { | 
 | 1596 | 			work_done += bnx2x_rx_int(fp, budget - work_done); | 
 | 1597 |  | 
 | 1598 | 			/* must not complete if we consumed full budget */ | 
 | 1599 | 			if (work_done >= budget) | 
 | 1600 | 				break; | 
 | 1601 | 		} | 
 | 1602 |  | 
 | 1603 | 		/* Fall out from the NAPI loop if needed */ | 
 | 1604 | 		if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | 
 | 1605 | 			bnx2x_update_fpsb_idx(fp); | 
 | 1606 | 		/* bnx2x_has_rx_work() reads the status block, thus we need | 
 | 1607 | 		 * to ensure that status block indices have been actually read | 
 | 1608 | 		 * (bnx2x_update_fpsb_idx) prior to this check | 
 | 1609 | 		 * (bnx2x_has_rx_work) so that we won't write the "newer" | 
 | 1610 | 		 * value of the status block to IGU (if there was a DMA right | 
 | 1611 | 		 * after bnx2x_has_rx_work and if there is no rmb, the memory | 
 | 1612 | 		 * reading (bnx2x_update_fpsb_idx) may be postponed to right | 
 | 1613 | 		 * before bnx2x_ack_sb). In this case there will never be | 
 | 1614 | 		 * another interrupt until there is another update of the | 
 | 1615 | 		 * status block, while there is still unhandled work. | 
 | 1616 | 		 */ | 
 | 1617 | 			rmb(); | 
 | 1618 |  | 
 | 1619 | 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | 
 | 1620 | 				napi_complete(napi); | 
 | 1621 | 				/* Re-enable interrupts */ | 
 | 1622 | 				bnx2x_ack_sb(bp, fp->sb_id, CSTORM_ID, | 
 | 1623 | 					     le16_to_cpu(fp->fp_c_idx), | 
 | 1624 | 					     IGU_INT_NOP, 1); | 
 | 1625 | 				bnx2x_ack_sb(bp, fp->sb_id, USTORM_ID, | 
 | 1626 | 					     le16_to_cpu(fp->fp_u_idx), | 
 | 1627 | 					     IGU_INT_ENABLE, 1); | 
 | 1628 | 				break; | 
 | 1629 | 			} | 
 | 1630 | 		} | 
 | 1631 | 	} | 
 | 1632 |  | 
 | 1633 | 	return work_done; | 
 | 1634 | } | 
 | 1635 |  | 
 | 1636 |  | 
 | 1637 | /* we split the first BD into headers and data BDs | 
 | 1638 |  * to ease the pain of our fellow microcode engineers | 
 | 1639 |  * we use one mapping for both BDs | 
 | 1640 |  * So far this has only been observed to happen | 
 | 1641 |  * in Other Operating Systems(TM) | 
 | 1642 |  */ | 
 | 1643 | static noinline u16 bnx2x_tx_split(struct bnx2x *bp, | 
 | 1644 | 				   struct bnx2x_fastpath *fp, | 
 | 1645 | 				   struct sw_tx_bd *tx_buf, | 
 | 1646 | 				   struct eth_tx_start_bd **tx_bd, u16 hlen, | 
 | 1647 | 				   u16 bd_prod, int nbd) | 
 | 1648 | { | 
 | 1649 | 	struct eth_tx_start_bd *h_tx_bd = *tx_bd; | 
 | 1650 | 	struct eth_tx_bd *d_tx_bd; | 
 | 1651 | 	dma_addr_t mapping; | 
 | 1652 | 	int old_len = le16_to_cpu(h_tx_bd->nbytes); | 
 | 1653 |  | 
 | 1654 | 	/* first fix first BD */ | 
 | 1655 | 	h_tx_bd->nbd = cpu_to_le16(nbd); | 
 | 1656 | 	h_tx_bd->nbytes = cpu_to_le16(hlen); | 
 | 1657 |  | 
 | 1658 | 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d " | 
 | 1659 | 	   "(%x:%x) nbd %d\n", h_tx_bd->nbytes, h_tx_bd->addr_hi, | 
 | 1660 | 	   h_tx_bd->addr_lo, h_tx_bd->nbd); | 
 | 1661 |  | 
 | 1662 | 	/* now get a new data BD | 
 | 1663 | 	 * (after the pbd) and fill it */ | 
 | 1664 | 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 | 1665 | 	d_tx_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | 
 | 1666 |  | 
 | 1667 | 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), | 
 | 1668 | 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen; | 
 | 1669 |  | 
 | 1670 | 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 1671 | 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 | 1672 | 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); | 
 | 1673 |  | 
 | 1674 | 	/* this marks the BD as one that has no individual mapping */ | 
 | 1675 | 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD; | 
 | 1676 |  | 
 | 1677 | 	DP(NETIF_MSG_TX_QUEUED, | 
 | 1678 | 	   "TSO split data size is %d (%x:%x)\n", | 
 | 1679 | 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); | 
 | 1680 |  | 
 | 1681 | 	/* update tx_bd */ | 
 | 1682 | 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd; | 
 | 1683 |  | 
 | 1684 | 	return bd_prod; | 
 | 1685 | } | 
 | 1686 |  | 
 | 1687 | static inline u16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) | 
 | 1688 | { | 
 | 1689 | 	if (fix > 0) | 
 | 1690 | 		csum = (u16) ~csum_fold(csum_sub(csum, | 
 | 1691 | 				csum_partial(t_header - fix, fix, 0))); | 
 | 1692 |  | 
 | 1693 | 	else if (fix < 0) | 
 | 1694 | 		csum = (u16) ~csum_fold(csum_add(csum, | 
 | 1695 | 				csum_partial(t_header, -fix, 0))); | 
 | 1696 |  | 
 | 1697 | 	return swab16(csum); | 
 | 1698 | } | 
 | 1699 |  | 
 | 1700 | static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) | 
 | 1701 | { | 
 | 1702 | 	u32 rc; | 
 | 1703 |  | 
 | 1704 | 	if (skb->ip_summed != CHECKSUM_PARTIAL) | 
 | 1705 | 		rc = XMIT_PLAIN; | 
 | 1706 |  | 
 | 1707 | 	else { | 
 | 1708 | 		if (skb->protocol == htons(ETH_P_IPV6)) { | 
 | 1709 | 			rc = XMIT_CSUM_V6; | 
 | 1710 | 			if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | 
 | 1711 | 				rc |= XMIT_CSUM_TCP; | 
 | 1712 |  | 
 | 1713 | 		} else { | 
 | 1714 | 			rc = XMIT_CSUM_V4; | 
 | 1715 | 			if (ip_hdr(skb)->protocol == IPPROTO_TCP) | 
 | 1716 | 				rc |= XMIT_CSUM_TCP; | 
 | 1717 | 		} | 
 | 1718 | 	} | 
 | 1719 |  | 
 | 1720 | 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) | 
 | 1721 | 		rc |= (XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP); | 
 | 1722 |  | 
 | 1723 | 	else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) | 
 | 1724 | 		rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6); | 
 | 1725 |  | 
 | 1726 | 	return rc; | 
 | 1727 | } | 
 | 1728 |  | 
 | 1729 | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) | 
 | 1730 | /* check if packet requires linearization (packet is too fragmented) | 
 | 1731 |    no need to check fragmentation if page size > 8K (there will be no | 
 | 1732 |    violation to FW restrictions) */ | 
 | 1733 | static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, | 
 | 1734 | 			     u32 xmit_type) | 
 | 1735 | { | 
 | 1736 | 	int to_copy = 0; | 
 | 1737 | 	int hlen = 0; | 
 | 1738 | 	int first_bd_sz = 0; | 
 | 1739 |  | 
 | 1740 | 	/* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ | 
 | 1741 | 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { | 
 | 1742 |  | 
 | 1743 | 		if (xmit_type & XMIT_GSO) { | 
 | 1744 | 			unsigned short lso_mss = skb_shinfo(skb)->gso_size; | 
 | 1745 | 			/* Check if LSO packet needs to be copied: | 
 | 1746 | 			   3 = 1 (for headers BD) + 2 (for PBD and last BD) */ | 
 | 1747 | 			int wnd_size = MAX_FETCH_BD - 3; | 
 | 1748 | 			/* Number of windows to check */ | 
 | 1749 | 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; | 
 | 1750 | 			int wnd_idx = 0; | 
 | 1751 | 			int frag_idx = 0; | 
 | 1752 | 			u32 wnd_sum = 0; | 
 | 1753 |  | 
 | 1754 | 			/* Headers length */ | 
 | 1755 | 			hlen = (int)(skb_transport_header(skb) - skb->data) + | 
 | 1756 | 				tcp_hdrlen(skb); | 
 | 1757 |  | 
 | 1758 | 			/* Amount of data (w/o headers) on linear part of SKB*/ | 
 | 1759 | 			first_bd_sz = skb_headlen(skb) - hlen; | 
 | 1760 |  | 
 | 1761 | 			wnd_sum  = first_bd_sz; | 
 | 1762 |  | 
 | 1763 | 			/* Calculate the first sum - it's special */ | 
 | 1764 | 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) | 
 | 1765 | 				wnd_sum += | 
 | 1766 | 					skb_shinfo(skb)->frags[frag_idx].size; | 
 | 1767 |  | 
 | 1768 | 			/* If there was data on linear skb data - check it */ | 
 | 1769 | 			if (first_bd_sz > 0) { | 
 | 1770 | 				if (unlikely(wnd_sum < lso_mss)) { | 
 | 1771 | 					to_copy = 1; | 
 | 1772 | 					goto exit_lbl; | 
 | 1773 | 				} | 
 | 1774 |  | 
 | 1775 | 				wnd_sum -= first_bd_sz; | 
 | 1776 | 			} | 
 | 1777 |  | 
 | 1778 | 			/* Others are easier: run through the frag list and | 
 | 1779 | 			   check all windows */ | 
 | 1780 | 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { | 
 | 1781 | 				wnd_sum += | 
 | 1782 | 			  skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1].size; | 
 | 1783 |  | 
 | 1784 | 				if (unlikely(wnd_sum < lso_mss)) { | 
 | 1785 | 					to_copy = 1; | 
 | 1786 | 					break; | 
 | 1787 | 				} | 
 | 1788 | 				wnd_sum -= | 
 | 1789 | 					skb_shinfo(skb)->frags[wnd_idx].size; | 
 | 1790 | 			} | 
 | 1791 | 		} else { | 
 | 1792 | 			/* in non-LSO too fragmented packet should always | 
 | 1793 | 			   be linearized */ | 
 | 1794 | 			to_copy = 1; | 
 | 1795 | 		} | 
 | 1796 | 	} | 
 | 1797 |  | 
 | 1798 | exit_lbl: | 
 | 1799 | 	if (unlikely(to_copy)) | 
 | 1800 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 1801 | 		   "Linearization IS REQUIRED for %s packet. " | 
 | 1802 | 		   "num_frags %d  hlen %d  first_bd_sz %d\n", | 
 | 1803 | 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", | 
 | 1804 | 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); | 
 | 1805 |  | 
 | 1806 | 	return to_copy; | 
 | 1807 | } | 
 | 1808 | #endif | 
 | 1809 |  | 
 | 1810 | /* called with netif_tx_lock | 
 | 1811 |  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call | 
 | 1812 |  * netif_wake_queue() | 
 | 1813 |  */ | 
 | 1814 | netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | 1815 | { | 
 | 1816 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 1817 | 	struct bnx2x_fastpath *fp; | 
 | 1818 | 	struct netdev_queue *txq; | 
 | 1819 | 	struct sw_tx_bd *tx_buf; | 
 | 1820 | 	struct eth_tx_start_bd *tx_start_bd; | 
 | 1821 | 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; | 
 | 1822 | 	struct eth_tx_parse_bd *pbd = NULL; | 
 | 1823 | 	u16 pkt_prod, bd_prod; | 
 | 1824 | 	int nbd, fp_index; | 
 | 1825 | 	dma_addr_t mapping; | 
 | 1826 | 	u32 xmit_type = bnx2x_xmit_type(bp, skb); | 
 | 1827 | 	int i; | 
 | 1828 | 	u8 hlen = 0; | 
 | 1829 | 	__le16 pkt_size = 0; | 
 | 1830 | 	struct ethhdr *eth; | 
 | 1831 | 	u8 mac_type = UNICAST_ADDRESS; | 
 | 1832 |  | 
 | 1833 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 1834 | 	if (unlikely(bp->panic)) | 
 | 1835 | 		return NETDEV_TX_BUSY; | 
 | 1836 | #endif | 
 | 1837 |  | 
 | 1838 | 	fp_index = skb_get_queue_mapping(skb); | 
 | 1839 | 	txq = netdev_get_tx_queue(dev, fp_index); | 
 | 1840 |  | 
 | 1841 | 	fp = &bp->fp[fp_index]; | 
 | 1842 |  | 
 | 1843 | 	if (unlikely(bnx2x_tx_avail(fp) < (skb_shinfo(skb)->nr_frags + 3))) { | 
 | 1844 | 		fp->eth_q_stats.driver_xoff++; | 
 | 1845 | 		netif_tx_stop_queue(txq); | 
 | 1846 | 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); | 
 | 1847 | 		return NETDEV_TX_BUSY; | 
 | 1848 | 	} | 
 | 1849 |  | 
 | 1850 | 	DP(NETIF_MSG_TX_QUEUED, "SKB: summed %x  protocol %x  protocol(%x,%x)" | 
 | 1851 | 	   "  gso type %x  xmit_type %x\n", | 
 | 1852 | 	   skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, | 
 | 1853 | 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type); | 
 | 1854 |  | 
 | 1855 | 	eth = (struct ethhdr *)skb->data; | 
 | 1856 |  | 
 | 1857 | 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/ | 
 | 1858 | 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) { | 
 | 1859 | 		if (is_broadcast_ether_addr(eth->h_dest)) | 
 | 1860 | 			mac_type = BROADCAST_ADDRESS; | 
 | 1861 | 		else | 
 | 1862 | 			mac_type = MULTICAST_ADDRESS; | 
 | 1863 | 	} | 
 | 1864 |  | 
 | 1865 | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) | 
 | 1866 | 	/* First, check if we need to linearize the skb (due to FW | 
 | 1867 | 	   restrictions). No need to check fragmentation if page size > 8K | 
 | 1868 | 	   (there will be no violation to FW restrictions) */ | 
 | 1869 | 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { | 
 | 1870 | 		/* Statistics of linearization */ | 
 | 1871 | 		bp->lin_cnt++; | 
 | 1872 | 		if (skb_linearize(skb) != 0) { | 
 | 1873 | 			DP(NETIF_MSG_TX_QUEUED, "SKB linearization failed - " | 
 | 1874 | 			   "silently dropping this SKB\n"); | 
 | 1875 | 			dev_kfree_skb_any(skb); | 
 | 1876 | 			return NETDEV_TX_OK; | 
 | 1877 | 		} | 
 | 1878 | 	} | 
 | 1879 | #endif | 
 | 1880 |  | 
 | 1881 | 	/* | 
 | 1882 | 	Please read carefully. First we use one BD which we mark as start, | 
 | 1883 | 	then we have a parsing info BD (used for TSO or xsum), | 
 | 1884 | 	and only then we have the rest of the TSO BDs. | 
 | 1885 | 	(don't forget to mark the last one as last, | 
 | 1886 | 	and to unmap only AFTER you write to the BD ...) | 
 | 1887 | 	And above all, all pdb sizes are in words - NOT DWORDS! | 
 | 1888 | 	*/ | 
 | 1889 |  | 
 | 1890 | 	pkt_prod = fp->tx_pkt_prod++; | 
 | 1891 | 	bd_prod = TX_BD(fp->tx_bd_prod); | 
 | 1892 |  | 
 | 1893 | 	/* get a tx_buf and first BD */ | 
 | 1894 | 	tx_buf = &fp->tx_buf_ring[TX_BD(pkt_prod)]; | 
 | 1895 | 	tx_start_bd = &fp->tx_desc_ring[bd_prod].start_bd; | 
 | 1896 |  | 
 | 1897 | 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; | 
 | 1898 | 	tx_start_bd->general_data =  (mac_type << | 
 | 1899 | 					ETH_TX_START_BD_ETH_ADDR_TYPE_SHIFT); | 
 | 1900 | 	/* header nbd */ | 
 | 1901 | 	tx_start_bd->general_data |= (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); | 
 | 1902 |  | 
 | 1903 | 	/* remember the first BD of the packet */ | 
 | 1904 | 	tx_buf->first_bd = fp->tx_bd_prod; | 
 | 1905 | 	tx_buf->skb = skb; | 
 | 1906 | 	tx_buf->flags = 0; | 
 | 1907 |  | 
 | 1908 | 	DP(NETIF_MSG_TX_QUEUED, | 
 | 1909 | 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n", | 
 | 1910 | 	   pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); | 
 | 1911 |  | 
 | 1912 | #ifdef BCM_VLAN | 
 | 1913 | 	if ((bp->vlgrp != NULL) && vlan_tx_tag_present(skb) && | 
 | 1914 | 	    (bp->flags & HW_VLAN_TX_FLAG)) { | 
 | 1915 | 		tx_start_bd->vlan = cpu_to_le16(vlan_tx_tag_get(skb)); | 
 | 1916 | 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_VLAN_TAG; | 
 | 1917 | 	} else | 
 | 1918 | #endif | 
 | 1919 | 		tx_start_bd->vlan = cpu_to_le16(pkt_prod); | 
 | 1920 |  | 
 | 1921 | 	/* turn on parsing and get a BD */ | 
 | 1922 | 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 | 1923 | 	pbd = &fp->tx_desc_ring[bd_prod].parse_bd; | 
 | 1924 |  | 
 | 1925 | 	memset(pbd, 0, sizeof(struct eth_tx_parse_bd)); | 
 | 1926 |  | 
 | 1927 | 	if (xmit_type & XMIT_CSUM) { | 
 | 1928 | 		hlen = (skb_network_header(skb) - skb->data) / 2; | 
 | 1929 |  | 
 | 1930 | 		/* for now NS flag is not used in Linux */ | 
 | 1931 | 		pbd->global_data = | 
 | 1932 | 			(hlen | ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << | 
 | 1933 | 				 ETH_TX_PARSE_BD_LLC_SNAP_EN_SHIFT)); | 
 | 1934 |  | 
 | 1935 | 		pbd->ip_hlen = (skb_transport_header(skb) - | 
 | 1936 | 				skb_network_header(skb)) / 2; | 
 | 1937 |  | 
 | 1938 | 		hlen += pbd->ip_hlen + tcp_hdrlen(skb) / 2; | 
 | 1939 |  | 
 | 1940 | 		pbd->total_hlen = cpu_to_le16(hlen); | 
 | 1941 | 		hlen = hlen*2; | 
 | 1942 |  | 
 | 1943 | 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; | 
 | 1944 |  | 
 | 1945 | 		if (xmit_type & XMIT_CSUM_V4) | 
 | 1946 | 			tx_start_bd->bd_flags.as_bitfield |= | 
 | 1947 | 						ETH_TX_BD_FLAGS_IP_CSUM; | 
 | 1948 | 		else | 
 | 1949 | 			tx_start_bd->bd_flags.as_bitfield |= | 
 | 1950 | 						ETH_TX_BD_FLAGS_IPV6; | 
 | 1951 |  | 
 | 1952 | 		if (xmit_type & XMIT_CSUM_TCP) { | 
 | 1953 | 			pbd->tcp_pseudo_csum = swab16(tcp_hdr(skb)->check); | 
 | 1954 |  | 
 | 1955 | 		} else { | 
 | 1956 | 			s8 fix = SKB_CS_OFF(skb); /* signed! */ | 
 | 1957 |  | 
 | 1958 | 			pbd->global_data |= ETH_TX_PARSE_BD_UDP_CS_FLG; | 
 | 1959 |  | 
 | 1960 | 			DP(NETIF_MSG_TX_QUEUED, | 
 | 1961 | 			   "hlen %d  fix %d  csum before fix %x\n", | 
 | 1962 | 			   le16_to_cpu(pbd->total_hlen), fix, SKB_CS(skb)); | 
 | 1963 |  | 
 | 1964 | 			/* HW bug: fixup the CSUM */ | 
 | 1965 | 			pbd->tcp_pseudo_csum = | 
 | 1966 | 				bnx2x_csum_fix(skb_transport_header(skb), | 
 | 1967 | 					       SKB_CS(skb), fix); | 
 | 1968 |  | 
 | 1969 | 			DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", | 
 | 1970 | 			   pbd->tcp_pseudo_csum); | 
 | 1971 | 		} | 
 | 1972 | 	} | 
 | 1973 |  | 
 | 1974 | 	mapping = dma_map_single(&bp->pdev->dev, skb->data, | 
 | 1975 | 				 skb_headlen(skb), DMA_TO_DEVICE); | 
 | 1976 |  | 
 | 1977 | 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 1978 | 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 | 1979 | 	nbd = skb_shinfo(skb)->nr_frags + 2; /* start_bd + pbd + frags */ | 
 | 1980 | 	tx_start_bd->nbd = cpu_to_le16(nbd); | 
 | 1981 | 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); | 
 | 1982 | 	pkt_size = tx_start_bd->nbytes; | 
 | 1983 |  | 
 | 1984 | 	DP(NETIF_MSG_TX_QUEUED, "first bd @%p  addr (%x:%x)  nbd %d" | 
 | 1985 | 	   "  nbytes %d  flags %x  vlan %x\n", | 
 | 1986 | 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, | 
 | 1987 | 	   le16_to_cpu(tx_start_bd->nbd), le16_to_cpu(tx_start_bd->nbytes), | 
 | 1988 | 	   tx_start_bd->bd_flags.as_bitfield, le16_to_cpu(tx_start_bd->vlan)); | 
 | 1989 |  | 
 | 1990 | 	if (xmit_type & XMIT_GSO) { | 
 | 1991 |  | 
 | 1992 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 1993 | 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n", | 
 | 1994 | 		   skb->len, hlen, skb_headlen(skb), | 
 | 1995 | 		   skb_shinfo(skb)->gso_size); | 
 | 1996 |  | 
 | 1997 | 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; | 
 | 1998 |  | 
 | 1999 | 		if (unlikely(skb_headlen(skb) > hlen)) | 
 | 2000 | 			bd_prod = bnx2x_tx_split(bp, fp, tx_buf, &tx_start_bd, | 
 | 2001 | 						 hlen, bd_prod, ++nbd); | 
 | 2002 |  | 
 | 2003 | 		pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); | 
 | 2004 | 		pbd->tcp_send_seq = swab32(tcp_hdr(skb)->seq); | 
 | 2005 | 		pbd->tcp_flags = pbd_tcp_flags(skb); | 
 | 2006 |  | 
 | 2007 | 		if (xmit_type & XMIT_GSO_V4) { | 
 | 2008 | 			pbd->ip_id = swab16(ip_hdr(skb)->id); | 
 | 2009 | 			pbd->tcp_pseudo_csum = | 
 | 2010 | 				swab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, | 
 | 2011 | 							  ip_hdr(skb)->daddr, | 
 | 2012 | 							  0, IPPROTO_TCP, 0)); | 
 | 2013 |  | 
 | 2014 | 		} else | 
 | 2015 | 			pbd->tcp_pseudo_csum = | 
 | 2016 | 				swab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
 | 2017 | 							&ipv6_hdr(skb)->daddr, | 
 | 2018 | 							0, IPPROTO_TCP, 0)); | 
 | 2019 |  | 
 | 2020 | 		pbd->global_data |= ETH_TX_PARSE_BD_PSEUDO_CS_WITHOUT_LEN; | 
 | 2021 | 	} | 
 | 2022 | 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd; | 
 | 2023 |  | 
 | 2024 | 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
 | 2025 | 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
 | 2026 |  | 
 | 2027 | 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 | 2028 | 		tx_data_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | 
 | 2029 | 		if (total_pkt_bd == NULL) | 
 | 2030 | 			total_pkt_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | 
 | 2031 |  | 
 | 2032 | 		mapping = dma_map_page(&bp->pdev->dev, frag->page, | 
 | 2033 | 				       frag->page_offset, | 
 | 2034 | 				       frag->size, DMA_TO_DEVICE); | 
 | 2035 |  | 
 | 2036 | 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 2037 | 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 | 2038 | 		tx_data_bd->nbytes = cpu_to_le16(frag->size); | 
 | 2039 | 		le16_add_cpu(&pkt_size, frag->size); | 
 | 2040 |  | 
 | 2041 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 2042 | 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n", | 
 | 2043 | 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, | 
 | 2044 | 		   le16_to_cpu(tx_data_bd->nbytes)); | 
 | 2045 | 	} | 
 | 2046 |  | 
 | 2047 | 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); | 
 | 2048 |  | 
 | 2049 | 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 | 2050 |  | 
 | 2051 | 	/* now send a tx doorbell, counting the next BD | 
 | 2052 | 	 * if the packet contains or ends with it | 
 | 2053 | 	 */ | 
 | 2054 | 	if (TX_BD_POFF(bd_prod) < nbd) | 
 | 2055 | 		nbd++; | 
 | 2056 |  | 
 | 2057 | 	if (total_pkt_bd != NULL) | 
 | 2058 | 		total_pkt_bd->total_pkt_bytes = pkt_size; | 
 | 2059 |  | 
 | 2060 | 	if (pbd) | 
 | 2061 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 2062 | 		   "PBD @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u" | 
 | 2063 | 		   "  tcp_flags %x  xsum %x  seq %u  hlen %u\n", | 
 | 2064 | 		   pbd, pbd->global_data, pbd->ip_hlen, pbd->ip_id, | 
 | 2065 | 		   pbd->lso_mss, pbd->tcp_flags, pbd->tcp_pseudo_csum, | 
 | 2066 | 		   pbd->tcp_send_seq, le16_to_cpu(pbd->total_hlen)); | 
 | 2067 |  | 
 | 2068 | 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod); | 
 | 2069 |  | 
 | 2070 | 	/* | 
 | 2071 | 	 * Make sure that the BD data is updated before updating the producer | 
 | 2072 | 	 * since FW might read the BD right after the producer is updated. | 
 | 2073 | 	 * This is only applicable for weak-ordered memory model archs such | 
 | 2074 | 	 * as IA-64. The following barrier is also mandatory since FW will | 
 | 2075 | 	 * assumes packets must have BDs. | 
 | 2076 | 	 */ | 
 | 2077 | 	wmb(); | 
 | 2078 |  | 
 | 2079 | 	fp->tx_db.data.prod += nbd; | 
 | 2080 | 	barrier(); | 
 | 2081 | 	DOORBELL(bp, fp->index, fp->tx_db.raw); | 
 | 2082 |  | 
 | 2083 | 	mmiowb(); | 
 | 2084 |  | 
 | 2085 | 	fp->tx_bd_prod += nbd; | 
 | 2086 |  | 
 | 2087 | 	if (unlikely(bnx2x_tx_avail(fp) < MAX_SKB_FRAGS + 3)) { | 
 | 2088 | 		netif_tx_stop_queue(txq); | 
 | 2089 |  | 
 | 2090 | 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep | 
 | 2091 | 		 * ordering of set_bit() in netif_tx_stop_queue() and read of | 
 | 2092 | 		 * fp->bd_tx_cons */ | 
 | 2093 | 		smp_mb(); | 
 | 2094 |  | 
 | 2095 | 		fp->eth_q_stats.driver_xoff++; | 
 | 2096 | 		if (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3) | 
 | 2097 | 			netif_tx_wake_queue(txq); | 
 | 2098 | 	} | 
 | 2099 | 	fp->tx_pkt++; | 
 | 2100 |  | 
 | 2101 | 	return NETDEV_TX_OK; | 
 | 2102 | } | 
 | 2103 | /* called with rtnl_lock */ | 
 | 2104 | int bnx2x_change_mac_addr(struct net_device *dev, void *p) | 
 | 2105 | { | 
 | 2106 | 	struct sockaddr *addr = p; | 
 | 2107 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 2108 |  | 
 | 2109 | 	if (!is_valid_ether_addr((u8 *)(addr->sa_data))) | 
 | 2110 | 		return -EINVAL; | 
 | 2111 |  | 
 | 2112 | 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
 | 2113 | 	if (netif_running(dev)) { | 
 | 2114 | 		if (CHIP_IS_E1(bp)) | 
 | 2115 | 			bnx2x_set_eth_mac_addr_e1(bp, 1); | 
 | 2116 | 		else | 
 | 2117 | 			bnx2x_set_eth_mac_addr_e1h(bp, 1); | 
 | 2118 | 	} | 
 | 2119 |  | 
 | 2120 | 	return 0; | 
 | 2121 | } | 
 | 2122 |  | 
 | 2123 | /* called with rtnl_lock */ | 
 | 2124 | int bnx2x_change_mtu(struct net_device *dev, int new_mtu) | 
 | 2125 | { | 
 | 2126 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 2127 | 	int rc = 0; | 
 | 2128 |  | 
 | 2129 | 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | 
 | 2130 | 		printk(KERN_ERR "Handling parity error recovery. Try again later\n"); | 
 | 2131 | 		return -EAGAIN; | 
 | 2132 | 	} | 
 | 2133 |  | 
 | 2134 | 	if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || | 
 | 2135 | 	    ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) | 
 | 2136 | 		return -EINVAL; | 
 | 2137 |  | 
 | 2138 | 	/* This does not race with packet allocation | 
 | 2139 | 	 * because the actual alloc size is | 
 | 2140 | 	 * only updated as part of load | 
 | 2141 | 	 */ | 
 | 2142 | 	dev->mtu = new_mtu; | 
 | 2143 |  | 
 | 2144 | 	if (netif_running(dev)) { | 
 | 2145 | 		bnx2x_nic_unload(bp, UNLOAD_NORMAL); | 
 | 2146 | 		rc = bnx2x_nic_load(bp, LOAD_NORMAL); | 
 | 2147 | 	} | 
 | 2148 |  | 
 | 2149 | 	return rc; | 
 | 2150 | } | 
 | 2151 |  | 
 | 2152 | void bnx2x_tx_timeout(struct net_device *dev) | 
 | 2153 | { | 
 | 2154 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 2155 |  | 
 | 2156 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 2157 | 	if (!bp->panic) | 
 | 2158 | 		bnx2x_panic(); | 
 | 2159 | #endif | 
 | 2160 | 	/* This allows the netif to be shutdown gracefully before resetting */ | 
 | 2161 | 	schedule_delayed_work(&bp->reset_task, 0); | 
 | 2162 | } | 
 | 2163 |  | 
 | 2164 | #ifdef BCM_VLAN | 
 | 2165 | /* called with rtnl_lock */ | 
 | 2166 | void bnx2x_vlan_rx_register(struct net_device *dev, | 
 | 2167 | 				   struct vlan_group *vlgrp) | 
 | 2168 | { | 
 | 2169 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 2170 |  | 
 | 2171 | 	bp->vlgrp = vlgrp; | 
 | 2172 |  | 
 | 2173 | 	/* Set flags according to the required capabilities */ | 
 | 2174 | 	bp->flags &= ~(HW_VLAN_RX_FLAG | HW_VLAN_TX_FLAG); | 
 | 2175 |  | 
 | 2176 | 	if (dev->features & NETIF_F_HW_VLAN_TX) | 
 | 2177 | 		bp->flags |= HW_VLAN_TX_FLAG; | 
 | 2178 |  | 
 | 2179 | 	if (dev->features & NETIF_F_HW_VLAN_RX) | 
 | 2180 | 		bp->flags |= HW_VLAN_RX_FLAG; | 
 | 2181 |  | 
 | 2182 | 	if (netif_running(dev)) | 
 | 2183 | 		bnx2x_set_client_config(bp); | 
 | 2184 | } | 
 | 2185 |  | 
 | 2186 | #endif | 
 | 2187 | int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) | 
 | 2188 | { | 
 | 2189 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 2190 | 	struct bnx2x *bp; | 
 | 2191 |  | 
 | 2192 | 	if (!dev) { | 
 | 2193 | 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | 
 | 2194 | 		return -ENODEV; | 
 | 2195 | 	} | 
 | 2196 | 	bp = netdev_priv(dev); | 
 | 2197 |  | 
 | 2198 | 	rtnl_lock(); | 
 | 2199 |  | 
 | 2200 | 	pci_save_state(pdev); | 
 | 2201 |  | 
 | 2202 | 	if (!netif_running(dev)) { | 
 | 2203 | 		rtnl_unlock(); | 
 | 2204 | 		return 0; | 
 | 2205 | 	} | 
 | 2206 |  | 
 | 2207 | 	netif_device_detach(dev); | 
 | 2208 |  | 
 | 2209 | 	bnx2x_nic_unload(bp, UNLOAD_CLOSE); | 
 | 2210 |  | 
 | 2211 | 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); | 
 | 2212 |  | 
 | 2213 | 	rtnl_unlock(); | 
 | 2214 |  | 
 | 2215 | 	return 0; | 
 | 2216 | } | 
 | 2217 |  | 
 | 2218 | int bnx2x_resume(struct pci_dev *pdev) | 
 | 2219 | { | 
 | 2220 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 2221 | 	struct bnx2x *bp; | 
 | 2222 | 	int rc; | 
 | 2223 |  | 
 | 2224 | 	if (!dev) { | 
 | 2225 | 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | 
 | 2226 | 		return -ENODEV; | 
 | 2227 | 	} | 
 | 2228 | 	bp = netdev_priv(dev); | 
 | 2229 |  | 
 | 2230 | 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | 
 | 2231 | 		printk(KERN_ERR "Handling parity error recovery. Try again later\n"); | 
 | 2232 | 		return -EAGAIN; | 
 | 2233 | 	} | 
 | 2234 |  | 
 | 2235 | 	rtnl_lock(); | 
 | 2236 |  | 
 | 2237 | 	pci_restore_state(pdev); | 
 | 2238 |  | 
 | 2239 | 	if (!netif_running(dev)) { | 
 | 2240 | 		rtnl_unlock(); | 
 | 2241 | 		return 0; | 
 | 2242 | 	} | 
 | 2243 |  | 
 | 2244 | 	bnx2x_set_power_state(bp, PCI_D0); | 
 | 2245 | 	netif_device_attach(dev); | 
 | 2246 |  | 
 | 2247 | 	rc = bnx2x_nic_load(bp, LOAD_OPEN); | 
 | 2248 |  | 
 | 2249 | 	rtnl_unlock(); | 
 | 2250 |  | 
 | 2251 | 	return rc; | 
 | 2252 | } |