| Hitoshi Mitake | df8bc08 | 2008-10-29 14:00:50 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Intel X38 Memory Controller kernel module | 
 | 3 |  * Copyright (C) 2008 Cluster Computing, Inc. | 
 | 4 |  * | 
 | 5 |  * This file may be distributed under the terms of the | 
 | 6 |  * GNU General Public License. | 
 | 7 |  * | 
 | 8 |  * This file is based on i3200_edac.c | 
 | 9 |  * | 
 | 10 |  */ | 
 | 11 |  | 
 | 12 | #include <linux/module.h> | 
 | 13 | #include <linux/init.h> | 
 | 14 | #include <linux/pci.h> | 
 | 15 | #include <linux/pci_ids.h> | 
 | 16 | #include <linux/slab.h> | 
 | 17 | #include <linux/edac.h> | 
 | 18 | #include "edac_core.h" | 
 | 19 |  | 
 | 20 | #define X38_REVISION		"1.1" | 
 | 21 |  | 
 | 22 | #define EDAC_MOD_STR		"x38_edac" | 
 | 23 |  | 
 | 24 | #define PCI_DEVICE_ID_INTEL_X38_HB	0x29e0 | 
 | 25 |  | 
 | 26 | #define X38_RANKS		8 | 
 | 27 | #define X38_RANKS_PER_CHANNEL	4 | 
 | 28 | #define X38_CHANNELS		2 | 
 | 29 |  | 
 | 30 | /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */ | 
 | 31 |  | 
 | 32 | #define X38_MCHBAR_LOW	0x48	/* MCH Memory Mapped Register BAR */ | 
 | 33 | #define X38_MCHBAR_HIGH	0x4b | 
 | 34 | #define X38_MCHBAR_MASK	0xfffffc000ULL	/* bits 35:14 */ | 
 | 35 | #define X38_MMR_WINDOW_SIZE	16384 | 
 | 36 |  | 
 | 37 | #define X38_TOM	0xa0	/* Top of Memory (16b) | 
 | 38 | 				 * | 
 | 39 | 				 * 15:10 reserved | 
 | 40 | 				 *  9:0  total populated physical memory | 
 | 41 | 				 */ | 
 | 42 | #define X38_TOM_MASK	0x3ff	/* bits 9:0 */ | 
 | 43 | #define X38_TOM_SHIFT 26	/* 64MiB grain */ | 
 | 44 |  | 
 | 45 | #define X38_ERRSTS	0xc8	/* Error Status Register (16b) | 
 | 46 | 				 * | 
 | 47 | 				 * 15    reserved | 
 | 48 | 				 * 14    Isochronous TBWRR Run Behind FIFO Full | 
 | 49 | 				 *       (ITCV) | 
 | 50 | 				 * 13    Isochronous TBWRR Run Behind FIFO Put | 
 | 51 | 				 *       (ITSTV) | 
 | 52 | 				 * 12    reserved | 
 | 53 | 				 * 11    MCH Thermal Sensor Event | 
 | 54 | 				 *       for SMI/SCI/SERR (GTSE) | 
 | 55 | 				 * 10    reserved | 
 | 56 | 				 *  9    LOCK to non-DRAM Memory Flag (LCKF) | 
 | 57 | 				 *  8    reserved | 
 | 58 | 				 *  7    DRAM Throttle Flag (DTF) | 
 | 59 | 				 *  6:2  reserved | 
 | 60 | 				 *  1    Multi-bit DRAM ECC Error Flag (DMERR) | 
 | 61 | 				 *  0    Single-bit DRAM ECC Error Flag (DSERR) | 
 | 62 | 				 */ | 
 | 63 | #define X38_ERRSTS_UE		0x0002 | 
 | 64 | #define X38_ERRSTS_CE		0x0001 | 
 | 65 | #define X38_ERRSTS_BITS	(X38_ERRSTS_UE | X38_ERRSTS_CE) | 
 | 66 |  | 
 | 67 |  | 
 | 68 | /* Intel  MMIO register space - device 0 function 0 - MMR space */ | 
 | 69 |  | 
 | 70 | #define X38_C0DRB	0x200	/* Channel 0 DRAM Rank Boundary (16b x 4) | 
 | 71 | 				 * | 
 | 72 | 				 * 15:10 reserved | 
 | 73 | 				 *  9:0  Channel 0 DRAM Rank Boundary Address | 
 | 74 | 				 */ | 
 | 75 | #define X38_C1DRB	0x600	/* Channel 1 DRAM Rank Boundary (16b x 4) */ | 
 | 76 | #define X38_DRB_MASK	0x3ff	/* bits 9:0 */ | 
 | 77 | #define X38_DRB_SHIFT 26	/* 64MiB grain */ | 
 | 78 |  | 
 | 79 | #define X38_C0ECCERRLOG 0x280	/* Channel 0 ECC Error Log (64b) | 
 | 80 | 				 * | 
 | 81 | 				 * 63:48 Error Column Address (ERRCOL) | 
 | 82 | 				 * 47:32 Error Row Address (ERRROW) | 
 | 83 | 				 * 31:29 Error Bank Address (ERRBANK) | 
 | 84 | 				 * 28:27 Error Rank Address (ERRRANK) | 
 | 85 | 				 * 26:24 reserved | 
 | 86 | 				 * 23:16 Error Syndrome (ERRSYND) | 
 | 87 | 				 * 15: 2 reserved | 
 | 88 | 				 *    1  Multiple Bit Error Status (MERRSTS) | 
 | 89 | 				 *    0  Correctable Error Status (CERRSTS) | 
 | 90 | 				 */ | 
 | 91 | #define X38_C1ECCERRLOG 0x680	/* Channel 1 ECC Error Log (64b) */ | 
 | 92 | #define X38_ECCERRLOG_CE	0x1 | 
 | 93 | #define X38_ECCERRLOG_UE	0x2 | 
 | 94 | #define X38_ECCERRLOG_RANK_BITS	0x18000000 | 
 | 95 | #define X38_ECCERRLOG_SYNDROME_BITS	0xff0000 | 
 | 96 |  | 
 | 97 | #define X38_CAPID0 0xe0	/* see P.94 of spec for details */ | 
 | 98 |  | 
 | 99 | static int x38_channel_num; | 
 | 100 |  | 
 | 101 | static int how_many_channel(struct pci_dev *pdev) | 
 | 102 | { | 
 | 103 | 	unsigned char capid0_8b; /* 8th byte of CAPID0 */ | 
 | 104 |  | 
 | 105 | 	pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b); | 
 | 106 | 	if (capid0_8b & 0x20) {	/* check DCD: Dual Channel Disable */ | 
 | 107 | 		debugf0("In single channel mode.\n"); | 
 | 108 | 		x38_channel_num = 1; | 
 | 109 | 	} else { | 
 | 110 | 		debugf0("In dual channel mode.\n"); | 
 | 111 | 		x38_channel_num = 2; | 
 | 112 | 	} | 
 | 113 |  | 
 | 114 | 	return x38_channel_num; | 
 | 115 | } | 
 | 116 |  | 
 | 117 | static unsigned long eccerrlog_syndrome(u64 log) | 
 | 118 | { | 
 | 119 | 	return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16; | 
 | 120 | } | 
 | 121 |  | 
 | 122 | static int eccerrlog_row(int channel, u64 log) | 
 | 123 | { | 
 | 124 | 	return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) | | 
 | 125 | 		(channel * X38_RANKS_PER_CHANNEL); | 
 | 126 | } | 
 | 127 |  | 
 | 128 | enum x38_chips { | 
 | 129 | 	X38 = 0, | 
 | 130 | }; | 
 | 131 |  | 
 | 132 | struct x38_dev_info { | 
 | 133 | 	const char *ctl_name; | 
 | 134 | }; | 
 | 135 |  | 
 | 136 | struct x38_error_info { | 
 | 137 | 	u16 errsts; | 
 | 138 | 	u16 errsts2; | 
 | 139 | 	u64 eccerrlog[X38_CHANNELS]; | 
 | 140 | }; | 
 | 141 |  | 
 | 142 | static const struct x38_dev_info x38_devs[] = { | 
 | 143 | 	[X38] = { | 
 | 144 | 		.ctl_name = "x38"}, | 
 | 145 | }; | 
 | 146 |  | 
 | 147 | static struct pci_dev *mci_pdev; | 
 | 148 | static int x38_registered = 1; | 
 | 149 |  | 
 | 150 |  | 
 | 151 | static void x38_clear_error_info(struct mem_ctl_info *mci) | 
 | 152 | { | 
 | 153 | 	struct pci_dev *pdev; | 
 | 154 |  | 
 | 155 | 	pdev = to_pci_dev(mci->dev); | 
 | 156 |  | 
 | 157 | 	/* | 
 | 158 | 	 * Clear any error bits. | 
 | 159 | 	 * (Yes, we really clear bits by writing 1 to them.) | 
 | 160 | 	 */ | 
 | 161 | 	pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS, | 
 | 162 | 			 X38_ERRSTS_BITS); | 
 | 163 | } | 
 | 164 |  | 
 | 165 | static u64 x38_readq(const void __iomem *addr) | 
 | 166 | { | 
 | 167 | 	return readl(addr) | (((u64)readl(addr + 4)) << 32); | 
 | 168 | } | 
 | 169 |  | 
 | 170 | static void x38_get_and_clear_error_info(struct mem_ctl_info *mci, | 
 | 171 | 				 struct x38_error_info *info) | 
 | 172 | { | 
 | 173 | 	struct pci_dev *pdev; | 
 | 174 | 	void __iomem *window = mci->pvt_info; | 
 | 175 |  | 
 | 176 | 	pdev = to_pci_dev(mci->dev); | 
 | 177 |  | 
 | 178 | 	/* | 
 | 179 | 	 * This is a mess because there is no atomic way to read all the | 
 | 180 | 	 * registers at once and the registers can transition from CE being | 
 | 181 | 	 * overwritten by UE. | 
 | 182 | 	 */ | 
 | 183 | 	pci_read_config_word(pdev, X38_ERRSTS, &info->errsts); | 
 | 184 | 	if (!(info->errsts & X38_ERRSTS_BITS)) | 
 | 185 | 		return; | 
 | 186 |  | 
 | 187 | 	info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG); | 
 | 188 | 	if (x38_channel_num == 2) | 
 | 189 | 		info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG); | 
 | 190 |  | 
 | 191 | 	pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2); | 
 | 192 |  | 
 | 193 | 	/* | 
 | 194 | 	 * If the error is the same for both reads then the first set | 
 | 195 | 	 * of reads is valid.  If there is a change then there is a CE | 
 | 196 | 	 * with no info and the second set of reads is valid and | 
 | 197 | 	 * should be UE info. | 
 | 198 | 	 */ | 
 | 199 | 	if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { | 
 | 200 | 		info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG); | 
 | 201 | 		if (x38_channel_num == 2) | 
 | 202 | 			info->eccerrlog[1] = | 
 | 203 | 				x38_readq(window + X38_C1ECCERRLOG); | 
 | 204 | 	} | 
 | 205 |  | 
 | 206 | 	x38_clear_error_info(mci); | 
 | 207 | } | 
 | 208 |  | 
 | 209 | static void x38_process_error_info(struct mem_ctl_info *mci, | 
 | 210 | 				struct x38_error_info *info) | 
 | 211 | { | 
 | 212 | 	int channel; | 
 | 213 | 	u64 log; | 
 | 214 |  | 
 | 215 | 	if (!(info->errsts & X38_ERRSTS_BITS)) | 
 | 216 | 		return; | 
 | 217 |  | 
 | 218 | 	if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { | 
 | 219 | 		edac_mc_handle_ce_no_info(mci, "UE overwrote CE"); | 
 | 220 | 		info->errsts = info->errsts2; | 
 | 221 | 	} | 
 | 222 |  | 
 | 223 | 	for (channel = 0; channel < x38_channel_num; channel++) { | 
 | 224 | 		log = info->eccerrlog[channel]; | 
 | 225 | 		if (log & X38_ECCERRLOG_UE) { | 
 | 226 | 			edac_mc_handle_ue(mci, 0, 0, | 
 | 227 | 				eccerrlog_row(channel, log), "x38 UE"); | 
 | 228 | 		} else if (log & X38_ECCERRLOG_CE) { | 
 | 229 | 			edac_mc_handle_ce(mci, 0, 0, | 
 | 230 | 				eccerrlog_syndrome(log), | 
 | 231 | 				eccerrlog_row(channel, log), 0, "x38 CE"); | 
 | 232 | 		} | 
 | 233 | 	} | 
 | 234 | } | 
 | 235 |  | 
 | 236 | static void x38_check(struct mem_ctl_info *mci) | 
 | 237 | { | 
 | 238 | 	struct x38_error_info info; | 
 | 239 |  | 
 | 240 | 	debugf1("MC%d: %s()\n", mci->mc_idx, __func__); | 
 | 241 | 	x38_get_and_clear_error_info(mci, &info); | 
 | 242 | 	x38_process_error_info(mci, &info); | 
 | 243 | } | 
 | 244 |  | 
 | 245 |  | 
 | 246 | void __iomem *x38_map_mchbar(struct pci_dev *pdev) | 
 | 247 | { | 
 | 248 | 	union { | 
 | 249 | 		u64 mchbar; | 
 | 250 | 		struct { | 
 | 251 | 			u32 mchbar_low; | 
 | 252 | 			u32 mchbar_high; | 
 | 253 | 		}; | 
 | 254 | 	} u; | 
 | 255 | 	void __iomem *window; | 
 | 256 |  | 
 | 257 | 	pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low); | 
 | 258 | 	pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1); | 
 | 259 | 	pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high); | 
 | 260 | 	u.mchbar &= X38_MCHBAR_MASK; | 
 | 261 |  | 
 | 262 | 	if (u.mchbar != (resource_size_t)u.mchbar) { | 
 | 263 | 		printk(KERN_ERR | 
 | 264 | 			"x38: mmio space beyond accessible range (0x%llx)\n", | 
 | 265 | 			(unsigned long long)u.mchbar); | 
 | 266 | 		return NULL; | 
 | 267 | 	} | 
 | 268 |  | 
 | 269 | 	window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE); | 
 | 270 | 	if (!window) | 
 | 271 | 		printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n", | 
 | 272 | 			(unsigned long long)u.mchbar); | 
 | 273 |  | 
 | 274 | 	return window; | 
 | 275 | } | 
 | 276 |  | 
 | 277 |  | 
 | 278 | static void x38_get_drbs(void __iomem *window, | 
 | 279 | 			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) | 
 | 280 | { | 
 | 281 | 	int i; | 
 | 282 |  | 
 | 283 | 	for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) { | 
 | 284 | 		drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK; | 
 | 285 | 		drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK; | 
 | 286 | 	} | 
 | 287 | } | 
 | 288 |  | 
 | 289 | static bool x38_is_stacked(struct pci_dev *pdev, | 
 | 290 | 			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) | 
 | 291 | { | 
 | 292 | 	u16 tom; | 
 | 293 |  | 
 | 294 | 	pci_read_config_word(pdev, X38_TOM, &tom); | 
 | 295 | 	tom &= X38_TOM_MASK; | 
 | 296 |  | 
 | 297 | 	return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom; | 
 | 298 | } | 
 | 299 |  | 
 | 300 | static unsigned long drb_to_nr_pages( | 
 | 301 | 			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL], | 
 | 302 | 			bool stacked, int channel, int rank) | 
 | 303 | { | 
 | 304 | 	int n; | 
 | 305 |  | 
 | 306 | 	n = drbs[channel][rank]; | 
 | 307 | 	if (rank > 0) | 
 | 308 | 		n -= drbs[channel][rank - 1]; | 
 | 309 | 	if (stacked && (channel == 1) && drbs[channel][rank] == | 
 | 310 | 				drbs[channel][X38_RANKS_PER_CHANNEL - 1]) { | 
 | 311 | 		n -= drbs[0][X38_RANKS_PER_CHANNEL - 1]; | 
 | 312 | 	} | 
 | 313 |  | 
 | 314 | 	n <<= (X38_DRB_SHIFT - PAGE_SHIFT); | 
 | 315 | 	return n; | 
 | 316 | } | 
 | 317 |  | 
 | 318 | static int x38_probe1(struct pci_dev *pdev, int dev_idx) | 
 | 319 | { | 
 | 320 | 	int rc; | 
 | 321 | 	int i; | 
 | 322 | 	struct mem_ctl_info *mci = NULL; | 
 | 323 | 	unsigned long last_page; | 
 | 324 | 	u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]; | 
 | 325 | 	bool stacked; | 
 | 326 | 	void __iomem *window; | 
 | 327 |  | 
 | 328 | 	debugf0("MC: %s()\n", __func__); | 
 | 329 |  | 
 | 330 | 	window = x38_map_mchbar(pdev); | 
 | 331 | 	if (!window) | 
 | 332 | 		return -ENODEV; | 
 | 333 |  | 
 | 334 | 	x38_get_drbs(window, drbs); | 
 | 335 |  | 
 | 336 | 	how_many_channel(pdev); | 
 | 337 |  | 
 | 338 | 	/* FIXME: unconventional pvt_info usage */ | 
 | 339 | 	mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0); | 
 | 340 | 	if (!mci) | 
 | 341 | 		return -ENOMEM; | 
 | 342 |  | 
 | 343 | 	debugf3("MC: %s(): init mci\n", __func__); | 
 | 344 |  | 
 | 345 | 	mci->dev = &pdev->dev; | 
 | 346 | 	mci->mtype_cap = MEM_FLAG_DDR2; | 
 | 347 |  | 
 | 348 | 	mci->edac_ctl_cap = EDAC_FLAG_SECDED; | 
 | 349 | 	mci->edac_cap = EDAC_FLAG_SECDED; | 
 | 350 |  | 
 | 351 | 	mci->mod_name = EDAC_MOD_STR; | 
 | 352 | 	mci->mod_ver = X38_REVISION; | 
 | 353 | 	mci->ctl_name = x38_devs[dev_idx].ctl_name; | 
 | 354 | 	mci->dev_name = pci_name(pdev); | 
 | 355 | 	mci->edac_check = x38_check; | 
 | 356 | 	mci->ctl_page_to_phys = NULL; | 
 | 357 | 	mci->pvt_info = window; | 
 | 358 |  | 
 | 359 | 	stacked = x38_is_stacked(pdev, drbs); | 
 | 360 |  | 
 | 361 | 	/* | 
 | 362 | 	 * The dram rank boundary (DRB) reg values are boundary addresses | 
 | 363 | 	 * for each DRAM rank with a granularity of 64MB.  DRB regs are | 
 | 364 | 	 * cumulative; the last one will contain the total memory | 
 | 365 | 	 * contained in all ranks. | 
 | 366 | 	 */ | 
 | 367 | 	last_page = -1UL; | 
 | 368 | 	for (i = 0; i < mci->nr_csrows; i++) { | 
 | 369 | 		unsigned long nr_pages; | 
 | 370 | 		struct csrow_info *csrow = &mci->csrows[i]; | 
 | 371 |  | 
 | 372 | 		nr_pages = drb_to_nr_pages(drbs, stacked, | 
 | 373 | 			i / X38_RANKS_PER_CHANNEL, | 
 | 374 | 			i % X38_RANKS_PER_CHANNEL); | 
 | 375 |  | 
 | 376 | 		if (nr_pages == 0) { | 
 | 377 | 			csrow->mtype = MEM_EMPTY; | 
 | 378 | 			continue; | 
 | 379 | 		} | 
 | 380 |  | 
 | 381 | 		csrow->first_page = last_page + 1; | 
 | 382 | 		last_page += nr_pages; | 
 | 383 | 		csrow->last_page = last_page; | 
 | 384 | 		csrow->nr_pages = nr_pages; | 
 | 385 |  | 
 | 386 | 		csrow->grain = nr_pages << PAGE_SHIFT; | 
 | 387 | 		csrow->mtype = MEM_DDR2; | 
 | 388 | 		csrow->dtype = DEV_UNKNOWN; | 
 | 389 | 		csrow->edac_mode = EDAC_UNKNOWN; | 
 | 390 | 	} | 
 | 391 |  | 
 | 392 | 	x38_clear_error_info(mci); | 
 | 393 |  | 
 | 394 | 	rc = -ENODEV; | 
 | 395 | 	if (edac_mc_add_mc(mci)) { | 
 | 396 | 		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__); | 
 | 397 | 		goto fail; | 
 | 398 | 	} | 
 | 399 |  | 
 | 400 | 	/* get this far and it's successful */ | 
 | 401 | 	debugf3("MC: %s(): success\n", __func__); | 
 | 402 | 	return 0; | 
 | 403 |  | 
 | 404 | fail: | 
 | 405 | 	iounmap(window); | 
 | 406 | 	if (mci) | 
 | 407 | 		edac_mc_free(mci); | 
 | 408 |  | 
 | 409 | 	return rc; | 
 | 410 | } | 
 | 411 |  | 
 | 412 | static int __devinit x38_init_one(struct pci_dev *pdev, | 
 | 413 | 				const struct pci_device_id *ent) | 
 | 414 | { | 
 | 415 | 	int rc; | 
 | 416 |  | 
 | 417 | 	debugf0("MC: %s()\n", __func__); | 
 | 418 |  | 
 | 419 | 	if (pci_enable_device(pdev) < 0) | 
 | 420 | 		return -EIO; | 
 | 421 |  | 
 | 422 | 	rc = x38_probe1(pdev, ent->driver_data); | 
 | 423 | 	if (!mci_pdev) | 
 | 424 | 		mci_pdev = pci_dev_get(pdev); | 
 | 425 |  | 
 | 426 | 	return rc; | 
 | 427 | } | 
 | 428 |  | 
 | 429 | static void __devexit x38_remove_one(struct pci_dev *pdev) | 
 | 430 | { | 
 | 431 | 	struct mem_ctl_info *mci; | 
 | 432 |  | 
 | 433 | 	debugf0("%s()\n", __func__); | 
 | 434 |  | 
 | 435 | 	mci = edac_mc_del_mc(&pdev->dev); | 
 | 436 | 	if (!mci) | 
 | 437 | 		return; | 
 | 438 |  | 
 | 439 | 	iounmap(mci->pvt_info); | 
 | 440 |  | 
 | 441 | 	edac_mc_free(mci); | 
 | 442 | } | 
 | 443 |  | 
 | 444 | static const struct pci_device_id x38_pci_tbl[] __devinitdata = { | 
 | 445 | 	{ | 
 | 446 | 	 PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, | 
 | 447 | 	 X38}, | 
 | 448 | 	{ | 
 | 449 | 	 0, | 
 | 450 | 	 }			/* 0 terminated list. */ | 
 | 451 | }; | 
 | 452 |  | 
 | 453 | MODULE_DEVICE_TABLE(pci, x38_pci_tbl); | 
 | 454 |  | 
 | 455 | static struct pci_driver x38_driver = { | 
 | 456 | 	.name = EDAC_MOD_STR, | 
 | 457 | 	.probe = x38_init_one, | 
 | 458 | 	.remove = __devexit_p(x38_remove_one), | 
 | 459 | 	.id_table = x38_pci_tbl, | 
 | 460 | }; | 
 | 461 |  | 
 | 462 | static int __init x38_init(void) | 
 | 463 | { | 
 | 464 | 	int pci_rc; | 
 | 465 |  | 
 | 466 | 	debugf3("MC: %s()\n", __func__); | 
 | 467 |  | 
 | 468 | 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
 | 469 | 	opstate_init(); | 
 | 470 |  | 
 | 471 | 	pci_rc = pci_register_driver(&x38_driver); | 
 | 472 | 	if (pci_rc < 0) | 
 | 473 | 		goto fail0; | 
 | 474 |  | 
 | 475 | 	if (!mci_pdev) { | 
 | 476 | 		x38_registered = 0; | 
 | 477 | 		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
 | 478 | 					PCI_DEVICE_ID_INTEL_X38_HB, NULL); | 
 | 479 | 		if (!mci_pdev) { | 
 | 480 | 			debugf0("x38 pci_get_device fail\n"); | 
 | 481 | 			pci_rc = -ENODEV; | 
 | 482 | 			goto fail1; | 
 | 483 | 		} | 
 | 484 |  | 
 | 485 | 		pci_rc = x38_init_one(mci_pdev, x38_pci_tbl); | 
 | 486 | 		if (pci_rc < 0) { | 
 | 487 | 			debugf0("x38 init fail\n"); | 
 | 488 | 			pci_rc = -ENODEV; | 
 | 489 | 			goto fail1; | 
 | 490 | 		} | 
 | 491 | 	} | 
 | 492 |  | 
 | 493 | 	return 0; | 
 | 494 |  | 
 | 495 | fail1: | 
 | 496 | 	pci_unregister_driver(&x38_driver); | 
 | 497 |  | 
 | 498 | fail0: | 
 | 499 | 	if (mci_pdev) | 
 | 500 | 		pci_dev_put(mci_pdev); | 
 | 501 |  | 
 | 502 | 	return pci_rc; | 
 | 503 | } | 
 | 504 |  | 
 | 505 | static void __exit x38_exit(void) | 
 | 506 | { | 
 | 507 | 	debugf3("MC: %s()\n", __func__); | 
 | 508 |  | 
 | 509 | 	pci_unregister_driver(&x38_driver); | 
 | 510 | 	if (!x38_registered) { | 
 | 511 | 		x38_remove_one(mci_pdev); | 
 | 512 | 		pci_dev_put(mci_pdev); | 
 | 513 | 	} | 
 | 514 | } | 
 | 515 |  | 
 | 516 | module_init(x38_init); | 
 | 517 | module_exit(x38_exit); | 
 | 518 |  | 
 | 519 | MODULE_LICENSE("GPL"); | 
 | 520 | MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake"); | 
 | 521 | MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers"); | 
 | 522 |  | 
 | 523 | module_param(edac_op_state, int, 0444); | 
 | 524 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |