| Felipe Balbi | 550a737 | 2008-07-24 12:27:36 +0300 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (C) 2005-2006 by Texas Instruments | 
 | 3 |  * | 
 | 4 |  * This file implements a DMA  interface using TI's CPPI DMA. | 
 | 5 |  * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB. | 
 | 6 |  * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci. | 
 | 7 |  */ | 
 | 8 |  | 
 | 9 | #include <linux/usb.h> | 
 | 10 |  | 
 | 11 | #include "musb_core.h" | 
 | 12 | #include "cppi_dma.h" | 
 | 13 |  | 
 | 14 |  | 
 | 15 | /* CPPI DMA status 7-mar-2006: | 
 | 16 |  * | 
 | 17 |  * - See musb_{host,gadget}.c for more info | 
 | 18 |  * | 
 | 19 |  * - Correct RX DMA generally forces the engine into irq-per-packet mode, | 
 | 20 |  *   which can easily saturate the CPU under non-mass-storage loads. | 
 | 21 |  * | 
 | 22 |  * NOTES 24-aug-2006 (2.6.18-rc4): | 
 | 23 |  * | 
 | 24 |  * - peripheral RXDMA wedged in a test with packets of length 512/512/1. | 
 | 25 |  *   evidently after the 1 byte packet was received and acked, the queue | 
 | 26 |  *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003, | 
 | 27 |  *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401 | 
 | 28 |  *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx | 
 | 29 |  *   of its next (512 byte) packet.  IRQ issues? | 
 | 30 |  * | 
 | 31 |  * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will | 
 | 32 |  * evidently also directly update the RX and TX CSRs ... so audit all | 
 | 33 |  * host and peripheral side DMA code to avoid CSR access after DMA has | 
 | 34 |  * been started. | 
 | 35 |  */ | 
 | 36 |  | 
 | 37 | /* REVISIT now we can avoid preallocating these descriptors; or | 
 | 38 |  * more simply, switch to a global freelist not per-channel ones. | 
 | 39 |  * Note: at full speed, 64 descriptors == 4K bulk data. | 
 | 40 |  */ | 
 | 41 | #define NUM_TXCHAN_BD       64 | 
 | 42 | #define NUM_RXCHAN_BD       64 | 
 | 43 |  | 
 | 44 | static inline void cpu_drain_writebuffer(void) | 
 | 45 | { | 
 | 46 | 	wmb(); | 
 | 47 | #ifdef	CONFIG_CPU_ARM926T | 
 | 48 | 	/* REVISIT this "should not be needed", | 
 | 49 | 	 * but lack of it sure seemed to hurt ... | 
 | 50 | 	 */ | 
 | 51 | 	asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n"); | 
 | 52 | #endif | 
 | 53 | } | 
 | 54 |  | 
 | 55 | static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c) | 
 | 56 | { | 
 | 57 | 	struct cppi_descriptor	*bd = c->freelist; | 
 | 58 |  | 
 | 59 | 	if (bd) | 
 | 60 | 		c->freelist = bd->next; | 
 | 61 | 	return bd; | 
 | 62 | } | 
 | 63 |  | 
 | 64 | static inline void | 
 | 65 | cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd) | 
 | 66 | { | 
 | 67 | 	if (!bd) | 
 | 68 | 		return; | 
 | 69 | 	bd->next = c->freelist; | 
 | 70 | 	c->freelist = bd; | 
 | 71 | } | 
 | 72 |  | 
 | 73 | /* | 
 | 74 |  *  Start DMA controller | 
 | 75 |  * | 
 | 76 |  *  Initialize the DMA controller as necessary. | 
 | 77 |  */ | 
 | 78 |  | 
 | 79 | /* zero out entire rx state RAM entry for the channel */ | 
 | 80 | static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx) | 
 | 81 | { | 
 | 82 | 	musb_writel(&rx->rx_skipbytes, 0, 0); | 
 | 83 | 	musb_writel(&rx->rx_head, 0, 0); | 
 | 84 | 	musb_writel(&rx->rx_sop, 0, 0); | 
 | 85 | 	musb_writel(&rx->rx_current, 0, 0); | 
 | 86 | 	musb_writel(&rx->rx_buf_current, 0, 0); | 
 | 87 | 	musb_writel(&rx->rx_len_len, 0, 0); | 
 | 88 | 	musb_writel(&rx->rx_cnt_cnt, 0, 0); | 
 | 89 | } | 
 | 90 |  | 
 | 91 | /* zero out entire tx state RAM entry for the channel */ | 
 | 92 | static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr) | 
 | 93 | { | 
 | 94 | 	musb_writel(&tx->tx_head, 0, 0); | 
 | 95 | 	musb_writel(&tx->tx_buf, 0, 0); | 
 | 96 | 	musb_writel(&tx->tx_current, 0, 0); | 
 | 97 | 	musb_writel(&tx->tx_buf_current, 0, 0); | 
 | 98 | 	musb_writel(&tx->tx_info, 0, 0); | 
 | 99 | 	musb_writel(&tx->tx_rem_len, 0, 0); | 
 | 100 | 	/* musb_writel(&tx->tx_dummy, 0, 0); */ | 
 | 101 | 	musb_writel(&tx->tx_complete, 0, ptr); | 
 | 102 | } | 
 | 103 |  | 
 | 104 | static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c) | 
 | 105 | { | 
 | 106 | 	int	j; | 
 | 107 |  | 
 | 108 | 	/* initialize channel fields */ | 
 | 109 | 	c->head = NULL; | 
 | 110 | 	c->tail = NULL; | 
 | 111 | 	c->last_processed = NULL; | 
 | 112 | 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN; | 
 | 113 | 	c->controller = cppi; | 
 | 114 | 	c->is_rndis = 0; | 
 | 115 | 	c->freelist = NULL; | 
 | 116 |  | 
 | 117 | 	/* build the BD Free list for the channel */ | 
 | 118 | 	for (j = 0; j < NUM_TXCHAN_BD + 1; j++) { | 
 | 119 | 		struct cppi_descriptor	*bd; | 
 | 120 | 		dma_addr_t		dma; | 
 | 121 |  | 
 | 122 | 		bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma); | 
 | 123 | 		bd->dma = dma; | 
 | 124 | 		cppi_bd_free(c, bd); | 
 | 125 | 	} | 
 | 126 | } | 
 | 127 |  | 
 | 128 | static int cppi_channel_abort(struct dma_channel *); | 
 | 129 |  | 
 | 130 | static void cppi_pool_free(struct cppi_channel *c) | 
 | 131 | { | 
 | 132 | 	struct cppi		*cppi = c->controller; | 
 | 133 | 	struct cppi_descriptor	*bd; | 
 | 134 |  | 
 | 135 | 	(void) cppi_channel_abort(&c->channel); | 
 | 136 | 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN; | 
 | 137 | 	c->controller = NULL; | 
 | 138 |  | 
 | 139 | 	/* free all its bds */ | 
 | 140 | 	bd = c->last_processed; | 
 | 141 | 	do { | 
 | 142 | 		if (bd) | 
 | 143 | 			dma_pool_free(cppi->pool, bd, bd->dma); | 
 | 144 | 		bd = cppi_bd_alloc(c); | 
 | 145 | 	} while (bd); | 
 | 146 | 	c->last_processed = NULL; | 
 | 147 | } | 
 | 148 |  | 
 | 149 | static int __init cppi_controller_start(struct dma_controller *c) | 
 | 150 | { | 
 | 151 | 	struct cppi	*controller; | 
 | 152 | 	void __iomem	*tibase; | 
 | 153 | 	int		i; | 
 | 154 |  | 
 | 155 | 	controller = container_of(c, struct cppi, controller); | 
 | 156 |  | 
 | 157 | 	/* do whatever is necessary to start controller */ | 
 | 158 | 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
 | 159 | 		controller->tx[i].transmit = true; | 
 | 160 | 		controller->tx[i].index = i; | 
 | 161 | 	} | 
 | 162 | 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { | 
 | 163 | 		controller->rx[i].transmit = false; | 
 | 164 | 		controller->rx[i].index = i; | 
 | 165 | 	} | 
 | 166 |  | 
 | 167 | 	/* setup BD list on a per channel basis */ | 
 | 168 | 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) | 
 | 169 | 		cppi_pool_init(controller, controller->tx + i); | 
 | 170 | 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) | 
 | 171 | 		cppi_pool_init(controller, controller->rx + i); | 
 | 172 |  | 
 | 173 | 	tibase =  controller->tibase; | 
 | 174 | 	INIT_LIST_HEAD(&controller->tx_complete); | 
 | 175 |  | 
 | 176 | 	/* initialise tx/rx channel head pointers to zero */ | 
 | 177 | 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
 | 178 | 		struct cppi_channel	*tx_ch = controller->tx + i; | 
 | 179 | 		struct cppi_tx_stateram __iomem *tx; | 
 | 180 |  | 
 | 181 | 		INIT_LIST_HEAD(&tx_ch->tx_complete); | 
 | 182 |  | 
 | 183 | 		tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i); | 
 | 184 | 		tx_ch->state_ram = tx; | 
 | 185 | 		cppi_reset_tx(tx, 0); | 
 | 186 | 	} | 
 | 187 | 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { | 
 | 188 | 		struct cppi_channel	*rx_ch = controller->rx + i; | 
 | 189 | 		struct cppi_rx_stateram __iomem *rx; | 
 | 190 |  | 
 | 191 | 		INIT_LIST_HEAD(&rx_ch->tx_complete); | 
 | 192 |  | 
 | 193 | 		rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i); | 
 | 194 | 		rx_ch->state_ram = rx; | 
 | 195 | 		cppi_reset_rx(rx); | 
 | 196 | 	} | 
 | 197 |  | 
 | 198 | 	/* enable individual cppi channels */ | 
 | 199 | 	musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, | 
 | 200 | 			DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
 | 201 | 	musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG, | 
 | 202 | 			DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
 | 203 |  | 
 | 204 | 	/* enable tx/rx CPPI control */ | 
 | 205 | 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); | 
 | 206 | 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); | 
 | 207 |  | 
 | 208 | 	/* disable RNDIS mode, also host rx RNDIS autorequest */ | 
 | 209 | 	musb_writel(tibase, DAVINCI_RNDIS_REG, 0); | 
 | 210 | 	musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0); | 
 | 211 |  | 
 | 212 | 	return 0; | 
 | 213 | } | 
 | 214 |  | 
 | 215 | /* | 
 | 216 |  *  Stop DMA controller | 
 | 217 |  * | 
 | 218 |  *  De-Init the DMA controller as necessary. | 
 | 219 |  */ | 
 | 220 |  | 
 | 221 | static int cppi_controller_stop(struct dma_controller *c) | 
 | 222 | { | 
 | 223 | 	struct cppi		*controller; | 
 | 224 | 	void __iomem		*tibase; | 
 | 225 | 	int			i; | 
 | 226 |  | 
 | 227 | 	controller = container_of(c, struct cppi, controller); | 
 | 228 |  | 
 | 229 | 	tibase = controller->tibase; | 
 | 230 | 	/* DISABLE INDIVIDUAL CHANNEL Interrupts */ | 
 | 231 | 	musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, | 
 | 232 | 			DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
 | 233 | 	musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG, | 
 | 234 | 			DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
 | 235 |  | 
 | 236 | 	DBG(1, "Tearing down RX and TX Channels\n"); | 
 | 237 | 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
 | 238 | 		/* FIXME restructure of txdma to use bds like rxdma */ | 
 | 239 | 		controller->tx[i].last_processed = NULL; | 
 | 240 | 		cppi_pool_free(controller->tx + i); | 
 | 241 | 	} | 
 | 242 | 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) | 
 | 243 | 		cppi_pool_free(controller->rx + i); | 
 | 244 |  | 
 | 245 | 	/* in Tx Case proper teardown is supported. We resort to disabling | 
 | 246 | 	 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is | 
 | 247 | 	 * complete TX CPPI cannot be disabled. | 
 | 248 | 	 */ | 
 | 249 | 	/*disable tx/rx cppi */ | 
 | 250 | 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); | 
 | 251 | 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); | 
 | 252 |  | 
 | 253 | 	return 0; | 
 | 254 | } | 
 | 255 |  | 
 | 256 | /* While dma channel is allocated, we only want the core irqs active | 
 | 257 |  * for fault reports, otherwise we'd get irqs that we don't care about. | 
 | 258 |  * Except for TX irqs, where dma done != fifo empty and reusable ... | 
 | 259 |  * | 
 | 260 |  * NOTE: docs don't say either way, but irq masking **enables** irqs. | 
 | 261 |  * | 
 | 262 |  * REVISIT same issue applies to pure PIO usage too, and non-cppi dma... | 
 | 263 |  */ | 
 | 264 | static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum) | 
 | 265 | { | 
 | 266 | 	musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8)); | 
 | 267 | } | 
 | 268 |  | 
 | 269 | static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum) | 
 | 270 | { | 
 | 271 | 	musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8)); | 
 | 272 | } | 
 | 273 |  | 
 | 274 |  | 
 | 275 | /* | 
 | 276 |  * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to | 
 | 277 |  * each transfer direction of a non-control endpoint, so allocating | 
 | 278 |  * (and deallocating) is mostly a way to notice bad housekeeping on | 
 | 279 |  * the software side.  We assume the irqs are always active. | 
 | 280 |  */ | 
 | 281 | static struct dma_channel * | 
 | 282 | cppi_channel_allocate(struct dma_controller *c, | 
 | 283 | 		struct musb_hw_ep *ep, u8 transmit) | 
 | 284 | { | 
 | 285 | 	struct cppi		*controller; | 
 | 286 | 	u8			index; | 
 | 287 | 	struct cppi_channel	*cppi_ch; | 
 | 288 | 	void __iomem		*tibase; | 
 | 289 |  | 
 | 290 | 	controller = container_of(c, struct cppi, controller); | 
 | 291 | 	tibase = controller->tibase; | 
 | 292 |  | 
 | 293 | 	/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */ | 
 | 294 | 	index = ep->epnum - 1; | 
 | 295 |  | 
 | 296 | 	/* return the corresponding CPPI Channel Handle, and | 
 | 297 | 	 * probably disable the non-CPPI irq until we need it. | 
 | 298 | 	 */ | 
 | 299 | 	if (transmit) { | 
 | 300 | 		if (index >= ARRAY_SIZE(controller->tx)) { | 
 | 301 | 			DBG(1, "no %cX%d CPPI channel\n", 'T', index); | 
 | 302 | 			return NULL; | 
 | 303 | 		} | 
 | 304 | 		cppi_ch = controller->tx + index; | 
 | 305 | 	} else { | 
 | 306 | 		if (index >= ARRAY_SIZE(controller->rx)) { | 
 | 307 | 			DBG(1, "no %cX%d CPPI channel\n", 'R', index); | 
 | 308 | 			return NULL; | 
 | 309 | 		} | 
 | 310 | 		cppi_ch = controller->rx + index; | 
 | 311 | 		core_rxirq_disable(tibase, ep->epnum); | 
 | 312 | 	} | 
 | 313 |  | 
 | 314 | 	/* REVISIT make this an error later once the same driver code works | 
 | 315 | 	 * with the other DMA engine too | 
 | 316 | 	 */ | 
 | 317 | 	if (cppi_ch->hw_ep) | 
 | 318 | 		DBG(1, "re-allocating DMA%d %cX channel %p\n", | 
 | 319 | 				index, transmit ? 'T' : 'R', cppi_ch); | 
 | 320 | 	cppi_ch->hw_ep = ep; | 
 | 321 | 	cppi_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
 | 322 |  | 
 | 323 | 	DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R'); | 
 | 324 | 	return &cppi_ch->channel; | 
 | 325 | } | 
 | 326 |  | 
 | 327 | /* Release a CPPI Channel.  */ | 
 | 328 | static void cppi_channel_release(struct dma_channel *channel) | 
 | 329 | { | 
 | 330 | 	struct cppi_channel	*c; | 
 | 331 | 	void __iomem		*tibase; | 
 | 332 |  | 
 | 333 | 	/* REVISIT:  for paranoia, check state and abort if needed... */ | 
 | 334 |  | 
 | 335 | 	c = container_of(channel, struct cppi_channel, channel); | 
 | 336 | 	tibase = c->controller->tibase; | 
 | 337 | 	if (!c->hw_ep) | 
 | 338 | 		DBG(1, "releasing idle DMA channel %p\n", c); | 
 | 339 | 	else if (!c->transmit) | 
 | 340 | 		core_rxirq_enable(tibase, c->index + 1); | 
 | 341 |  | 
 | 342 | 	/* for now, leave its cppi IRQ enabled (we won't trigger it) */ | 
 | 343 | 	c->hw_ep = NULL; | 
 | 344 | 	channel->status = MUSB_DMA_STATUS_UNKNOWN; | 
 | 345 | } | 
 | 346 |  | 
 | 347 | /* Context: controller irqlocked */ | 
 | 348 | static void | 
 | 349 | cppi_dump_rx(int level, struct cppi_channel *c, const char *tag) | 
 | 350 | { | 
 | 351 | 	void __iomem			*base = c->controller->mregs; | 
 | 352 | 	struct cppi_rx_stateram __iomem	*rx = c->state_ram; | 
 | 353 |  | 
 | 354 | 	musb_ep_select(base, c->index + 1); | 
 | 355 |  | 
 | 356 | 	DBG(level, "RX DMA%d%s: %d left, csr %04x, " | 
 | 357 | 			"%08x H%08x S%08x C%08x, " | 
 | 358 | 			"B%08x L%08x %08x .. %08x" | 
 | 359 | 			"\n", | 
 | 360 | 		c->index, tag, | 
 | 361 | 		musb_readl(c->controller->tibase, | 
 | 362 | 			DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index), | 
 | 363 | 		musb_readw(c->hw_ep->regs, MUSB_RXCSR), | 
 | 364 |  | 
 | 365 | 		musb_readl(&rx->rx_skipbytes, 0), | 
 | 366 | 		musb_readl(&rx->rx_head, 0), | 
 | 367 | 		musb_readl(&rx->rx_sop, 0), | 
 | 368 | 		musb_readl(&rx->rx_current, 0), | 
 | 369 |  | 
 | 370 | 		musb_readl(&rx->rx_buf_current, 0), | 
 | 371 | 		musb_readl(&rx->rx_len_len, 0), | 
 | 372 | 		musb_readl(&rx->rx_cnt_cnt, 0), | 
 | 373 | 		musb_readl(&rx->rx_complete, 0) | 
 | 374 | 		); | 
 | 375 | } | 
 | 376 |  | 
 | 377 | /* Context: controller irqlocked */ | 
 | 378 | static void | 
 | 379 | cppi_dump_tx(int level, struct cppi_channel *c, const char *tag) | 
 | 380 | { | 
 | 381 | 	void __iomem			*base = c->controller->mregs; | 
 | 382 | 	struct cppi_tx_stateram __iomem	*tx = c->state_ram; | 
 | 383 |  | 
 | 384 | 	musb_ep_select(base, c->index + 1); | 
 | 385 |  | 
 | 386 | 	DBG(level, "TX DMA%d%s: csr %04x, " | 
 | 387 | 			"H%08x S%08x C%08x %08x, " | 
 | 388 | 			"F%08x L%08x .. %08x" | 
 | 389 | 			"\n", | 
 | 390 | 		c->index, tag, | 
 | 391 | 		musb_readw(c->hw_ep->regs, MUSB_TXCSR), | 
 | 392 |  | 
 | 393 | 		musb_readl(&tx->tx_head, 0), | 
 | 394 | 		musb_readl(&tx->tx_buf, 0), | 
 | 395 | 		musb_readl(&tx->tx_current, 0), | 
 | 396 | 		musb_readl(&tx->tx_buf_current, 0), | 
 | 397 |  | 
 | 398 | 		musb_readl(&tx->tx_info, 0), | 
 | 399 | 		musb_readl(&tx->tx_rem_len, 0), | 
 | 400 | 		/* dummy/unused word 6 */ | 
 | 401 | 		musb_readl(&tx->tx_complete, 0) | 
 | 402 | 		); | 
 | 403 | } | 
 | 404 |  | 
 | 405 | /* Context: controller irqlocked */ | 
 | 406 | static inline void | 
 | 407 | cppi_rndis_update(struct cppi_channel *c, int is_rx, | 
 | 408 | 		void __iomem *tibase, int is_rndis) | 
 | 409 | { | 
 | 410 | 	/* we may need to change the rndis flag for this cppi channel */ | 
 | 411 | 	if (c->is_rndis != is_rndis) { | 
 | 412 | 		u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG); | 
 | 413 | 		u32	temp = 1 << (c->index); | 
 | 414 |  | 
 | 415 | 		if (is_rx) | 
 | 416 | 			temp <<= 16; | 
 | 417 | 		if (is_rndis) | 
 | 418 | 			value |= temp; | 
 | 419 | 		else | 
 | 420 | 			value &= ~temp; | 
 | 421 | 		musb_writel(tibase, DAVINCI_RNDIS_REG, value); | 
 | 422 | 		c->is_rndis = is_rndis; | 
 | 423 | 	} | 
 | 424 | } | 
 | 425 |  | 
 | 426 | static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd) | 
 | 427 | { | 
 | 428 | 	pr_debug("RXBD/%s %08x: " | 
 | 429 | 			"nxt %08x buf %08x off.blen %08x opt.plen %08x\n", | 
 | 430 | 			tag, bd->dma, | 
 | 431 | 			bd->hw_next, bd->hw_bufp, bd->hw_off_len, | 
 | 432 | 			bd->hw_options); | 
 | 433 | } | 
 | 434 |  | 
 | 435 | static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx) | 
 | 436 | { | 
 | 437 | #if MUSB_DEBUG > 0 | 
 | 438 | 	struct cppi_descriptor	*bd; | 
 | 439 |  | 
 | 440 | 	if (!_dbg_level(level)) | 
 | 441 | 		return; | 
 | 442 | 	cppi_dump_rx(level, rx, tag); | 
 | 443 | 	if (rx->last_processed) | 
 | 444 | 		cppi_dump_rxbd("last", rx->last_processed); | 
 | 445 | 	for (bd = rx->head; bd; bd = bd->next) | 
 | 446 | 		cppi_dump_rxbd("active", bd); | 
 | 447 | #endif | 
 | 448 | } | 
 | 449 |  | 
 | 450 |  | 
 | 451 | /* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX; | 
 | 452 |  * so we won't ever use it (see "CPPI RX Woes" below). | 
 | 453 |  */ | 
 | 454 | static inline int cppi_autoreq_update(struct cppi_channel *rx, | 
 | 455 | 		void __iomem *tibase, int onepacket, unsigned n_bds) | 
 | 456 | { | 
 | 457 | 	u32	val; | 
 | 458 |  | 
 | 459 | #ifdef	RNDIS_RX_IS_USABLE | 
 | 460 | 	u32	tmp; | 
 | 461 | 	/* assert(is_host_active(musb)) */ | 
 | 462 |  | 
 | 463 | 	/* start from "AutoReq never" */ | 
 | 464 | 	tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
 | 465 | 	val = tmp & ~((0x3) << (rx->index * 2)); | 
 | 466 |  | 
 | 467 | 	/* HCD arranged reqpkt for packet #1.  we arrange int | 
 | 468 | 	 * for all but the last one, maybe in two segments. | 
 | 469 | 	 */ | 
 | 470 | 	if (!onepacket) { | 
 | 471 | #if 0 | 
 | 472 | 		/* use two segments, autoreq "all" then the last "never" */ | 
 | 473 | 		val |= ((0x3) << (rx->index * 2)); | 
 | 474 | 		n_bds--; | 
 | 475 | #else | 
 | 476 | 		/* one segment, autoreq "all-but-last" */ | 
 | 477 | 		val |= ((0x1) << (rx->index * 2)); | 
 | 478 | #endif | 
 | 479 | 	} | 
 | 480 |  | 
 | 481 | 	if (val != tmp) { | 
 | 482 | 		int n = 100; | 
 | 483 |  | 
 | 484 | 		/* make sure that autoreq is updated before continuing */ | 
 | 485 | 		musb_writel(tibase, DAVINCI_AUTOREQ_REG, val); | 
 | 486 | 		do { | 
 | 487 | 			tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
 | 488 | 			if (tmp == val) | 
 | 489 | 				break; | 
 | 490 | 			cpu_relax(); | 
 | 491 | 		} while (n-- > 0); | 
 | 492 | 	} | 
 | 493 | #endif | 
 | 494 |  | 
 | 495 | 	/* REQPKT is turned off after each segment */ | 
 | 496 | 	if (n_bds && rx->channel.actual_len) { | 
 | 497 | 		void __iomem	*regs = rx->hw_ep->regs; | 
 | 498 |  | 
 | 499 | 		val = musb_readw(regs, MUSB_RXCSR); | 
 | 500 | 		if (!(val & MUSB_RXCSR_H_REQPKT)) { | 
 | 501 | 			val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS; | 
 | 502 | 			musb_writew(regs, MUSB_RXCSR, val); | 
 | 503 | 			/* flush writebufer */ | 
 | 504 | 			val = musb_readw(regs, MUSB_RXCSR); | 
 | 505 | 		} | 
 | 506 | 	} | 
 | 507 | 	return n_bds; | 
 | 508 | } | 
 | 509 |  | 
 | 510 |  | 
 | 511 | /* Buffer enqueuing Logic: | 
 | 512 |  * | 
 | 513 |  *  - RX builds new queues each time, to help handle routine "early | 
 | 514 |  *    termination" cases (faults, including errors and short reads) | 
 | 515 |  *    more correctly. | 
 | 516 |  * | 
 | 517 |  *  - for now, TX reuses the same queue of BDs every time | 
 | 518 |  * | 
 | 519 |  * REVISIT long term, we want a normal dynamic model. | 
 | 520 |  * ... the goal will be to append to the | 
 | 521 |  * existing queue, processing completed "dma buffers" (segments) on the fly. | 
 | 522 |  * | 
 | 523 |  * Otherwise we force an IRQ latency between requests, which slows us a lot | 
 | 524 |  * (especially in "transparent" dma).  Unfortunately that model seems to be | 
 | 525 |  * inherent in the DMA model from the Mentor code, except in the rare case | 
 | 526 |  * of transfers big enough (~128+ KB) that we could append "middle" segments | 
 | 527 |  * in the TX paths.  (RX can't do this, see below.) | 
 | 528 |  * | 
 | 529 |  * That's true even in the CPPI- friendly iso case, where most urbs have | 
 | 530 |  * several small segments provided in a group and where the "packet at a time" | 
 | 531 |  * "transparent" DMA model is always correct, even on the RX side. | 
 | 532 |  */ | 
 | 533 |  | 
 | 534 | /* | 
 | 535 |  * CPPI TX: | 
 | 536 |  * ======== | 
 | 537 |  * TX is a lot more reasonable than RX; it doesn't need to run in | 
 | 538 |  * irq-per-packet mode very often.  RNDIS mode seems to behave too | 
 | 539 |  * (except how it handles the exactly-N-packets case).  Building a | 
 | 540 |  * txdma queue with multiple requests (urb or usb_request) looks | 
 | 541 |  * like it would work ... but fault handling would need much testing. | 
 | 542 |  * | 
 | 543 |  * The main issue with TX mode RNDIS relates to transfer lengths that | 
 | 544 |  * are an exact multiple of the packet length.  It appears that there's | 
 | 545 |  * a hiccup in that case (maybe the DMA completes before the ZLP gets | 
 | 546 |  * written?) boiling down to not being able to rely on CPPI writing any | 
 | 547 |  * terminating zero length packet before the next transfer is written. | 
 | 548 |  * So that's punted to PIO; better yet, gadget drivers can avoid it. | 
 | 549 |  * | 
 | 550 |  * Plus, there's allegedly an undocumented constraint that rndis transfer | 
 | 551 |  * length be a multiple of 64 bytes ... but the chip doesn't act that | 
 | 552 |  * way, and we really don't _want_ that behavior anyway. | 
 | 553 |  * | 
 | 554 |  * On TX, "transparent" mode works ... although experiments have shown | 
 | 555 |  * problems trying to use the SOP/EOP bits in different USB packets. | 
 | 556 |  * | 
 | 557 |  * REVISIT try to handle terminating zero length packets using CPPI | 
 | 558 |  * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet | 
 | 559 |  * links avoid that issue by forcing them to avoid zlps.) | 
 | 560 |  */ | 
 | 561 | static void | 
 | 562 | cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx) | 
 | 563 | { | 
 | 564 | 	unsigned		maxpacket = tx->maxpacket; | 
 | 565 | 	dma_addr_t		addr = tx->buf_dma + tx->offset; | 
 | 566 | 	size_t			length = tx->buf_len - tx->offset; | 
 | 567 | 	struct cppi_descriptor	*bd; | 
 | 568 | 	unsigned		n_bds; | 
 | 569 | 	unsigned		i; | 
 | 570 | 	struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram; | 
 | 571 | 	int			rndis; | 
 | 572 |  | 
 | 573 | 	/* TX can use the CPPI "rndis" mode, where we can probably fit this | 
 | 574 | 	 * transfer in one BD and one IRQ.  The only time we would NOT want | 
 | 575 | 	 * to use it is when hardware constraints prevent it, or if we'd | 
 | 576 | 	 * trigger the "send a ZLP?" confusion. | 
 | 577 | 	 */ | 
 | 578 | 	rndis = (maxpacket & 0x3f) == 0 | 
 | 579 | 		&& length < 0xffff | 
 | 580 | 		&& (length % maxpacket) != 0; | 
 | 581 |  | 
 | 582 | 	if (rndis) { | 
 | 583 | 		maxpacket = length; | 
 | 584 | 		n_bds = 1; | 
 | 585 | 	} else { | 
 | 586 | 		n_bds = length / maxpacket; | 
 | 587 | 		if (!length || (length % maxpacket)) | 
 | 588 | 			n_bds++; | 
 | 589 | 		n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD); | 
 | 590 | 		length = min(n_bds * maxpacket, length); | 
 | 591 | 	} | 
 | 592 |  | 
 | 593 | 	DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n", | 
 | 594 | 			tx->index, | 
 | 595 | 			maxpacket, | 
 | 596 | 			rndis ? "rndis" : "transparent", | 
 | 597 | 			n_bds, | 
 | 598 | 			addr, length); | 
 | 599 |  | 
 | 600 | 	cppi_rndis_update(tx, 0, musb->ctrl_base, rndis); | 
 | 601 |  | 
 | 602 | 	/* assuming here that channel_program is called during | 
 | 603 | 	 * transfer initiation ... current code maintains state | 
 | 604 | 	 * for one outstanding request only (no queues, not even | 
 | 605 | 	 * the implicit ones of an iso urb). | 
 | 606 | 	 */ | 
 | 607 |  | 
 | 608 | 	bd = tx->freelist; | 
 | 609 | 	tx->head = bd; | 
 | 610 | 	tx->last_processed = NULL; | 
 | 611 |  | 
 | 612 | 	/* FIXME use BD pool like RX side does, and just queue | 
 | 613 | 	 * the minimum number for this request. | 
 | 614 | 	 */ | 
 | 615 |  | 
 | 616 | 	/* Prepare queue of BDs first, then hand it to hardware. | 
 | 617 | 	 * All BDs except maybe the last should be of full packet | 
 | 618 | 	 * size; for RNDIS there _is_ only that last packet. | 
 | 619 | 	 */ | 
 | 620 | 	for (i = 0; i < n_bds; ) { | 
 | 621 | 		if (++i < n_bds && bd->next) | 
 | 622 | 			bd->hw_next = bd->next->dma; | 
 | 623 | 		else | 
 | 624 | 			bd->hw_next = 0; | 
 | 625 |  | 
 | 626 | 		bd->hw_bufp = tx->buf_dma + tx->offset; | 
 | 627 |  | 
 | 628 | 		/* FIXME set EOP only on the last packet, | 
 | 629 | 		 * SOP only on the first ... avoid IRQs | 
 | 630 | 		 */ | 
 | 631 | 		if ((tx->offset + maxpacket) <= tx->buf_len) { | 
 | 632 | 			tx->offset += maxpacket; | 
 | 633 | 			bd->hw_off_len = maxpacket; | 
 | 634 | 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET | 
 | 635 | 				| CPPI_OWN_SET | maxpacket; | 
 | 636 | 		} else { | 
 | 637 | 			/* only this one may be a partial USB Packet */ | 
 | 638 | 			u32		partial_len; | 
 | 639 |  | 
 | 640 | 			partial_len = tx->buf_len - tx->offset; | 
 | 641 | 			tx->offset = tx->buf_len; | 
 | 642 | 			bd->hw_off_len = partial_len; | 
 | 643 |  | 
 | 644 | 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET | 
 | 645 | 				| CPPI_OWN_SET | partial_len; | 
 | 646 | 			if (partial_len == 0) | 
 | 647 | 				bd->hw_options |= CPPI_ZERO_SET; | 
 | 648 | 		} | 
 | 649 |  | 
 | 650 | 		DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n", | 
 | 651 | 				bd, bd->hw_next, bd->hw_bufp, | 
 | 652 | 				bd->hw_off_len, bd->hw_options); | 
 | 653 |  | 
 | 654 | 		/* update the last BD enqueued to the list */ | 
 | 655 | 		tx->tail = bd; | 
 | 656 | 		bd = bd->next; | 
 | 657 | 	} | 
 | 658 |  | 
 | 659 | 	/* BDs live in DMA-coherent memory, but writes might be pending */ | 
 | 660 | 	cpu_drain_writebuffer(); | 
 | 661 |  | 
 | 662 | 	/* Write to the HeadPtr in state RAM to trigger */ | 
 | 663 | 	musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma); | 
 | 664 |  | 
 | 665 | 	cppi_dump_tx(5, tx, "/S"); | 
 | 666 | } | 
 | 667 |  | 
 | 668 | /* | 
 | 669 |  * CPPI RX Woes: | 
 | 670 |  * ============= | 
 | 671 |  * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte | 
 | 672 |  * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back. | 
 | 673 |  * (Full speed transfers have similar scenarios.) | 
 | 674 |  * | 
 | 675 |  * The correct behavior for Linux is that (a) fills the buffer with 300 bytes, | 
 | 676 |  * and the next packet goes into a buffer that's queued later; while (b) fills | 
 | 677 |  * the buffer with 1024 bytes.  How to do that with CPPI? | 
 | 678 |  * | 
 | 679 |  * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but | 
 | 680 |  *   (b) loses **BADLY** because nothing (!) happens when that second packet | 
 | 681 |  *   fills the buffer, much less when a third one arrives.  (Which makes this | 
 | 682 |  *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination | 
 | 683 |  *   is optional, and it's fine if peripherals -- not hosts! -- pad messages | 
 | 684 |  *   out to end-of-buffer.  Standard PCI host controller DMA descriptors | 
 | 685 |  *   implement that mode by default ... which is no accident.) | 
 | 686 |  * | 
 | 687 |  * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have | 
 | 688 |  *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX | 
 | 689 |  *   ignores SOP/EOP markings and processes both of those BDs; so both packets | 
 | 690 |  *   are loaded into the buffer (with a 212 byte gap between them), and the next | 
 | 691 |  *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP | 
 | 692 |  *   are intended as outputs for RX queues, not inputs...) | 
 | 693 |  * | 
 | 694 |  * - A variant of "transparent" mode -- one BD at a time -- is the only way to | 
 | 695 |  *   reliably make both cases work, with software handling both cases correctly | 
 | 696 |  *   and at the significant penalty of needing an IRQ per packet.  (The lack of | 
 | 697 |  *   I/O overlap can be slightly ameliorated by enabling double buffering.) | 
 | 698 |  * | 
 | 699 |  * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could | 
 | 700 |  * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK | 
 | 701 |  * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors | 
 | 702 |  * with guaranteed driver level fault recovery and scrubbing out what's left | 
 | 703 |  * of that garbaged datastream. | 
 | 704 |  * | 
 | 705 |  * But there seems to be no way to identify the cases where CPPI RNDIS mode | 
 | 706 |  * is appropriate -- which do NOT include RNDIS host drivers, but do include | 
 | 707 |  * the CDC Ethernet driver! -- and the documentation is incomplete/wrong. | 
 | 708 |  * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic | 
 | 709 |  * that applies best on the peripheral side (and which could fail rudely). | 
 | 710 |  * | 
 | 711 |  * Leaving only "transparent" mode; we avoid multi-bd modes in almost all | 
 | 712 |  * cases other than mass storage class.  Otherwise we're correct but slow, | 
 | 713 |  * since CPPI penalizes our need for a "true RNDIS" default mode. | 
 | 714 |  */ | 
 | 715 |  | 
 | 716 |  | 
 | 717 | /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY | 
 | 718 |  * | 
 | 719 |  * IFF | 
 | 720 |  *  (a)	peripheral mode ... since rndis peripherals could pad their | 
 | 721 |  *	writes to hosts, causing i/o failure; or we'd have to cope with | 
 | 722 |  *	a largely unknowable variety of host side protocol variants | 
 | 723 |  *  (b)	and short reads are NOT errors ... since full reads would | 
 | 724 |  *	cause those same i/o failures | 
 | 725 |  *  (c)	and read length is | 
 | 726 |  *	- less than 64KB (max per cppi descriptor) | 
 | 727 |  *	- not a multiple of 4096 (g_zero default, full reads typical) | 
 | 728 |  *	- N (>1) packets long, ditto (full reads not EXPECTED) | 
 | 729 |  * THEN | 
 | 730 |  *   try rx rndis mode | 
 | 731 |  * | 
 | 732 |  * Cost of heuristic failing:  RXDMA wedges at the end of transfers that | 
 | 733 |  * fill out the whole buffer.  Buggy host side usb network drivers could | 
 | 734 |  * trigger that, but "in the field" such bugs seem to be all but unknown. | 
 | 735 |  * | 
 | 736 |  * So this module parameter lets the heuristic be disabled.  When using | 
 | 737 |  * gadgetfs, the heuristic will probably need to be disabled. | 
 | 738 |  */ | 
 | 739 | static int cppi_rx_rndis = 1; | 
 | 740 |  | 
 | 741 | module_param(cppi_rx_rndis, bool, 0); | 
 | 742 | MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic"); | 
 | 743 |  | 
 | 744 |  | 
 | 745 | /** | 
 | 746 |  * cppi_next_rx_segment - dma read for the next chunk of a buffer | 
 | 747 |  * @musb: the controller | 
 | 748 |  * @rx: dma channel | 
 | 749 |  * @onepacket: true unless caller treats short reads as errors, and | 
 | 750 |  *	performs fault recovery above usbcore. | 
 | 751 |  * Context: controller irqlocked | 
 | 752 |  * | 
 | 753 |  * See above notes about why we can't use multi-BD RX queues except in | 
 | 754 |  * rare cases (mass storage class), and can never use the hardware "rndis" | 
 | 755 |  * mode (since it's not a "true" RNDIS mode) with complete safety.. | 
 | 756 |  * | 
 | 757 |  * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in | 
 | 758 |  * code to recover from corrupted datastreams after each short transfer. | 
 | 759 |  */ | 
 | 760 | static void | 
 | 761 | cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket) | 
 | 762 | { | 
 | 763 | 	unsigned		maxpacket = rx->maxpacket; | 
 | 764 | 	dma_addr_t		addr = rx->buf_dma + rx->offset; | 
 | 765 | 	size_t			length = rx->buf_len - rx->offset; | 
 | 766 | 	struct cppi_descriptor	*bd, *tail; | 
 | 767 | 	unsigned		n_bds; | 
 | 768 | 	unsigned		i; | 
 | 769 | 	void __iomem		*tibase = musb->ctrl_base; | 
 | 770 | 	int			is_rndis = 0; | 
 | 771 | 	struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram; | 
 | 772 |  | 
 | 773 | 	if (onepacket) { | 
 | 774 | 		/* almost every USB driver, host or peripheral side */ | 
 | 775 | 		n_bds = 1; | 
 | 776 |  | 
 | 777 | 		/* maybe apply the heuristic above */ | 
 | 778 | 		if (cppi_rx_rndis | 
 | 779 | 				&& is_peripheral_active(musb) | 
 | 780 | 				&& length > maxpacket | 
 | 781 | 				&& (length & ~0xffff) == 0 | 
 | 782 | 				&& (length & 0x0fff) != 0 | 
 | 783 | 				&& (length & (maxpacket - 1)) == 0) { | 
 | 784 | 			maxpacket = length; | 
 | 785 | 			is_rndis = 1; | 
 | 786 | 		} | 
 | 787 | 	} else { | 
 | 788 | 		/* virtually nothing except mass storage class */ | 
 | 789 | 		if (length > 0xffff) { | 
 | 790 | 			n_bds = 0xffff / maxpacket; | 
 | 791 | 			length = n_bds * maxpacket; | 
 | 792 | 		} else { | 
 | 793 | 			n_bds = length / maxpacket; | 
 | 794 | 			if (length % maxpacket) | 
 | 795 | 				n_bds++; | 
 | 796 | 		} | 
 | 797 | 		if (n_bds == 1) | 
 | 798 | 			onepacket = 1; | 
 | 799 | 		else | 
 | 800 | 			n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD); | 
 | 801 | 	} | 
 | 802 |  | 
 | 803 | 	/* In host mode, autorequest logic can generate some IN tokens; it's | 
 | 804 | 	 * tricky since we can't leave REQPKT set in RXCSR after the transfer | 
 | 805 | 	 * finishes. So:  multipacket transfers involve two or more segments. | 
 | 806 | 	 * And always at least two IRQs ... RNDIS mode is not an option. | 
 | 807 | 	 */ | 
 | 808 | 	if (is_host_active(musb)) | 
 | 809 | 		n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds); | 
 | 810 |  | 
 | 811 | 	cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis); | 
 | 812 |  | 
 | 813 | 	length = min(n_bds * maxpacket, length); | 
 | 814 |  | 
 | 815 | 	DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) " | 
 | 816 | 			"dma 0x%x len %u %u/%u\n", | 
 | 817 | 			rx->index, maxpacket, | 
 | 818 | 			onepacket | 
 | 819 | 				? (is_rndis ? "rndis" : "onepacket") | 
 | 820 | 				: "multipacket", | 
 | 821 | 			n_bds, | 
 | 822 | 			musb_readl(tibase, | 
 | 823 | 				DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
 | 824 | 					& 0xffff, | 
 | 825 | 			addr, length, rx->channel.actual_len, rx->buf_len); | 
 | 826 |  | 
 | 827 | 	/* only queue one segment at a time, since the hardware prevents | 
 | 828 | 	 * correct queue shutdown after unexpected short packets | 
 | 829 | 	 */ | 
 | 830 | 	bd = cppi_bd_alloc(rx); | 
 | 831 | 	rx->head = bd; | 
 | 832 |  | 
 | 833 | 	/* Build BDs for all packets in this segment */ | 
 | 834 | 	for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) { | 
 | 835 | 		u32	bd_len; | 
 | 836 |  | 
 | 837 | 		if (i) { | 
 | 838 | 			bd = cppi_bd_alloc(rx); | 
 | 839 | 			if (!bd) | 
 | 840 | 				break; | 
 | 841 | 			tail->next = bd; | 
 | 842 | 			tail->hw_next = bd->dma; | 
 | 843 | 		} | 
 | 844 | 		bd->hw_next = 0; | 
 | 845 |  | 
 | 846 | 		/* all but the last packet will be maxpacket size */ | 
 | 847 | 		if (maxpacket < length) | 
 | 848 | 			bd_len = maxpacket; | 
 | 849 | 		else | 
 | 850 | 			bd_len = length; | 
 | 851 |  | 
 | 852 | 		bd->hw_bufp = addr; | 
 | 853 | 		addr += bd_len; | 
 | 854 | 		rx->offset += bd_len; | 
 | 855 |  | 
 | 856 | 		bd->hw_off_len = (0 /*offset*/ << 16) + bd_len; | 
 | 857 | 		bd->buflen = bd_len; | 
 | 858 |  | 
 | 859 | 		bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0); | 
 | 860 | 		length -= bd_len; | 
 | 861 | 	} | 
 | 862 |  | 
 | 863 | 	/* we always expect at least one reusable BD! */ | 
 | 864 | 	if (!tail) { | 
 | 865 | 		WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds); | 
 | 866 | 		return; | 
 | 867 | 	} else if (i < n_bds) | 
 | 868 | 		WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds); | 
 | 869 |  | 
 | 870 | 	tail->next = NULL; | 
 | 871 | 	tail->hw_next = 0; | 
 | 872 |  | 
 | 873 | 	bd = rx->head; | 
 | 874 | 	rx->tail = tail; | 
 | 875 |  | 
 | 876 | 	/* short reads and other faults should terminate this entire | 
 | 877 | 	 * dma segment.  we want one "dma packet" per dma segment, not | 
 | 878 | 	 * one per USB packet, terminating the whole queue at once... | 
 | 879 | 	 * NOTE that current hardware seems to ignore SOP and EOP. | 
 | 880 | 	 */ | 
 | 881 | 	bd->hw_options |= CPPI_SOP_SET; | 
 | 882 | 	tail->hw_options |= CPPI_EOP_SET; | 
 | 883 |  | 
 | 884 | 	if (debug >= 5) { | 
 | 885 | 		struct cppi_descriptor	*d; | 
 | 886 |  | 
 | 887 | 		for (d = rx->head; d; d = d->next) | 
 | 888 | 			cppi_dump_rxbd("S", d); | 
 | 889 | 	} | 
 | 890 |  | 
 | 891 | 	/* in case the preceding transfer left some state... */ | 
 | 892 | 	tail = rx->last_processed; | 
 | 893 | 	if (tail) { | 
 | 894 | 		tail->next = bd; | 
 | 895 | 		tail->hw_next = bd->dma; | 
 | 896 | 	} | 
 | 897 |  | 
 | 898 | 	core_rxirq_enable(tibase, rx->index + 1); | 
 | 899 |  | 
 | 900 | 	/* BDs live in DMA-coherent memory, but writes might be pending */ | 
 | 901 | 	cpu_drain_writebuffer(); | 
 | 902 |  | 
 | 903 | 	/* REVISIT specs say to write this AFTER the BUFCNT register | 
 | 904 | 	 * below ... but that loses badly. | 
 | 905 | 	 */ | 
 | 906 | 	musb_writel(&rx_ram->rx_head, 0, bd->dma); | 
 | 907 |  | 
 | 908 | 	/* bufferCount must be at least 3, and zeroes on completion | 
 | 909 | 	 * unless it underflows below zero, or stops at two, or keeps | 
 | 910 | 	 * growing ... grr. | 
 | 911 | 	 */ | 
 | 912 | 	i = musb_readl(tibase, | 
 | 913 | 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
 | 914 | 			& 0xffff; | 
 | 915 |  | 
 | 916 | 	if (!i) | 
 | 917 | 		musb_writel(tibase, | 
 | 918 | 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
 | 919 | 			n_bds + 2); | 
 | 920 | 	else if (n_bds > (i - 3)) | 
 | 921 | 		musb_writel(tibase, | 
 | 922 | 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
 | 923 | 			n_bds - (i - 3)); | 
 | 924 |  | 
 | 925 | 	i = musb_readl(tibase, | 
 | 926 | 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
 | 927 | 			& 0xffff; | 
 | 928 | 	if (i < (2 + n_bds)) { | 
 | 929 | 		DBG(2, "bufcnt%d underrun - %d (for %d)\n", | 
 | 930 | 					rx->index, i, n_bds); | 
 | 931 | 		musb_writel(tibase, | 
 | 932 | 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
 | 933 | 			n_bds + 2); | 
 | 934 | 	} | 
 | 935 |  | 
 | 936 | 	cppi_dump_rx(4, rx, "/S"); | 
 | 937 | } | 
 | 938 |  | 
 | 939 | /** | 
 | 940 |  * cppi_channel_program - program channel for data transfer | 
 | 941 |  * @ch: the channel | 
 | 942 |  * @maxpacket: max packet size | 
 | 943 |  * @mode: For RX, 1 unless the usb protocol driver promised to treat | 
 | 944 |  *	all short reads as errors and kick in high level fault recovery. | 
 | 945 |  *	For TX, ignored because of RNDIS mode races/glitches. | 
 | 946 |  * @dma_addr: dma address of buffer | 
 | 947 |  * @len: length of buffer | 
 | 948 |  * Context: controller irqlocked | 
 | 949 |  */ | 
 | 950 | static int cppi_channel_program(struct dma_channel *ch, | 
 | 951 | 		u16 maxpacket, u8 mode, | 
 | 952 | 		dma_addr_t dma_addr, u32 len) | 
 | 953 | { | 
 | 954 | 	struct cppi_channel	*cppi_ch; | 
 | 955 | 	struct cppi		*controller; | 
 | 956 | 	struct musb		*musb; | 
 | 957 |  | 
 | 958 | 	cppi_ch = container_of(ch, struct cppi_channel, channel); | 
 | 959 | 	controller = cppi_ch->controller; | 
 | 960 | 	musb = controller->musb; | 
 | 961 |  | 
 | 962 | 	switch (ch->status) { | 
 | 963 | 	case MUSB_DMA_STATUS_BUS_ABORT: | 
 | 964 | 	case MUSB_DMA_STATUS_CORE_ABORT: | 
 | 965 | 		/* fault irq handler should have handled cleanup */ | 
 | 966 | 		WARNING("%cX DMA%d not cleaned up after abort!\n", | 
 | 967 | 				cppi_ch->transmit ? 'T' : 'R', | 
 | 968 | 				cppi_ch->index); | 
 | 969 | 		/* WARN_ON(1); */ | 
 | 970 | 		break; | 
 | 971 | 	case MUSB_DMA_STATUS_BUSY: | 
 | 972 | 		WARNING("program active channel?  %cX DMA%d\n", | 
 | 973 | 				cppi_ch->transmit ? 'T' : 'R', | 
 | 974 | 				cppi_ch->index); | 
 | 975 | 		/* WARN_ON(1); */ | 
 | 976 | 		break; | 
 | 977 | 	case MUSB_DMA_STATUS_UNKNOWN: | 
 | 978 | 		DBG(1, "%cX DMA%d not allocated!\n", | 
 | 979 | 				cppi_ch->transmit ? 'T' : 'R', | 
 | 980 | 				cppi_ch->index); | 
 | 981 | 		/* FALLTHROUGH */ | 
 | 982 | 	case MUSB_DMA_STATUS_FREE: | 
 | 983 | 		break; | 
 | 984 | 	} | 
 | 985 |  | 
 | 986 | 	ch->status = MUSB_DMA_STATUS_BUSY; | 
 | 987 |  | 
 | 988 | 	/* set transfer parameters, then queue up its first segment */ | 
 | 989 | 	cppi_ch->buf_dma = dma_addr; | 
 | 990 | 	cppi_ch->offset = 0; | 
 | 991 | 	cppi_ch->maxpacket = maxpacket; | 
 | 992 | 	cppi_ch->buf_len = len; | 
 | 993 |  | 
 | 994 | 	/* TX channel? or RX? */ | 
 | 995 | 	if (cppi_ch->transmit) | 
 | 996 | 		cppi_next_tx_segment(musb, cppi_ch); | 
 | 997 | 	else | 
 | 998 | 		cppi_next_rx_segment(musb, cppi_ch, mode); | 
 | 999 |  | 
 | 1000 | 	return true; | 
 | 1001 | } | 
 | 1002 |  | 
 | 1003 | static bool cppi_rx_scan(struct cppi *cppi, unsigned ch) | 
 | 1004 | { | 
 | 1005 | 	struct cppi_channel		*rx = &cppi->rx[ch]; | 
 | 1006 | 	struct cppi_rx_stateram __iomem	*state = rx->state_ram; | 
 | 1007 | 	struct cppi_descriptor		*bd; | 
 | 1008 | 	struct cppi_descriptor		*last = rx->last_processed; | 
 | 1009 | 	bool				completed = false; | 
 | 1010 | 	bool				acked = false; | 
 | 1011 | 	int				i; | 
 | 1012 | 	dma_addr_t			safe2ack; | 
 | 1013 | 	void __iomem			*regs = rx->hw_ep->regs; | 
 | 1014 |  | 
 | 1015 | 	cppi_dump_rx(6, rx, "/K"); | 
 | 1016 |  | 
 | 1017 | 	bd = last ? last->next : rx->head; | 
 | 1018 | 	if (!bd) | 
 | 1019 | 		return false; | 
 | 1020 |  | 
 | 1021 | 	/* run through all completed BDs */ | 
 | 1022 | 	for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0); | 
 | 1023 | 			(safe2ack || completed) && bd && i < NUM_RXCHAN_BD; | 
 | 1024 | 			i++, bd = bd->next) { | 
 | 1025 | 		u16	len; | 
 | 1026 |  | 
 | 1027 | 		/* catch latest BD writes from CPPI */ | 
 | 1028 | 		rmb(); | 
 | 1029 | 		if (!completed && (bd->hw_options & CPPI_OWN_SET)) | 
 | 1030 | 			break; | 
 | 1031 |  | 
 | 1032 | 		DBG(5, "C/RXBD %08x: nxt %08x buf %08x " | 
 | 1033 | 			"off.len %08x opt.len %08x (%d)\n", | 
 | 1034 | 			bd->dma, bd->hw_next, bd->hw_bufp, | 
 | 1035 | 			bd->hw_off_len, bd->hw_options, | 
 | 1036 | 			rx->channel.actual_len); | 
 | 1037 |  | 
 | 1038 | 		/* actual packet received length */ | 
 | 1039 | 		if ((bd->hw_options & CPPI_SOP_SET) && !completed) | 
 | 1040 | 			len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK; | 
 | 1041 | 		else | 
 | 1042 | 			len = 0; | 
 | 1043 |  | 
 | 1044 | 		if (bd->hw_options & CPPI_EOQ_MASK) | 
 | 1045 | 			completed = true; | 
 | 1046 |  | 
 | 1047 | 		if (!completed && len < bd->buflen) { | 
 | 1048 | 			/* NOTE:  when we get a short packet, RXCSR_H_REQPKT | 
 | 1049 | 			 * must have been cleared, and no more DMA packets may | 
 | 1050 | 			 * active be in the queue... TI docs didn't say, but | 
 | 1051 | 			 * CPPI ignores those BDs even though OWN is still set. | 
 | 1052 | 			 */ | 
 | 1053 | 			completed = true; | 
 | 1054 | 			DBG(3, "rx short %d/%d (%d)\n", | 
 | 1055 | 					len, bd->buflen, | 
 | 1056 | 					rx->channel.actual_len); | 
 | 1057 | 		} | 
 | 1058 |  | 
 | 1059 | 		/* If we got here, we expect to ack at least one BD; meanwhile | 
 | 1060 | 		 * CPPI may completing other BDs while we scan this list... | 
 | 1061 | 		 * | 
 | 1062 | 		 * RACE: we can notice OWN cleared before CPPI raises the | 
 | 1063 | 		 * matching irq by writing that BD as the completion pointer. | 
 | 1064 | 		 * In such cases, stop scanning and wait for the irq, avoiding | 
 | 1065 | 		 * lost acks and states where BD ownership is unclear. | 
 | 1066 | 		 */ | 
 | 1067 | 		if (bd->dma == safe2ack) { | 
 | 1068 | 			musb_writel(&state->rx_complete, 0, safe2ack); | 
 | 1069 | 			safe2ack = musb_readl(&state->rx_complete, 0); | 
 | 1070 | 			acked = true; | 
 | 1071 | 			if (bd->dma == safe2ack) | 
 | 1072 | 				safe2ack = 0; | 
 | 1073 | 		} | 
 | 1074 |  | 
 | 1075 | 		rx->channel.actual_len += len; | 
 | 1076 |  | 
 | 1077 | 		cppi_bd_free(rx, last); | 
 | 1078 | 		last = bd; | 
 | 1079 |  | 
 | 1080 | 		/* stop scanning on end-of-segment */ | 
 | 1081 | 		if (bd->hw_next == 0) | 
 | 1082 | 			completed = true; | 
 | 1083 | 	} | 
 | 1084 | 	rx->last_processed = last; | 
 | 1085 |  | 
 | 1086 | 	/* dma abort, lost ack, or ... */ | 
 | 1087 | 	if (!acked && last) { | 
 | 1088 | 		int	csr; | 
 | 1089 |  | 
 | 1090 | 		if (safe2ack == 0 || safe2ack == rx->last_processed->dma) | 
 | 1091 | 			musb_writel(&state->rx_complete, 0, safe2ack); | 
 | 1092 | 		if (safe2ack == 0) { | 
 | 1093 | 			cppi_bd_free(rx, last); | 
 | 1094 | 			rx->last_processed = NULL; | 
 | 1095 |  | 
 | 1096 | 			/* if we land here on the host side, H_REQPKT will | 
 | 1097 | 			 * be clear and we need to restart the queue... | 
 | 1098 | 			 */ | 
 | 1099 | 			WARN_ON(rx->head); | 
 | 1100 | 		} | 
 | 1101 | 		musb_ep_select(cppi->mregs, rx->index + 1); | 
 | 1102 | 		csr = musb_readw(regs, MUSB_RXCSR); | 
 | 1103 | 		if (csr & MUSB_RXCSR_DMAENAB) { | 
 | 1104 | 			DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n", | 
 | 1105 | 				rx->index, | 
 | 1106 | 				rx->head, rx->tail, | 
 | 1107 | 				rx->last_processed | 
 | 1108 | 					? rx->last_processed->dma | 
 | 1109 | 					: 0, | 
 | 1110 | 				completed ? ", completed" : "", | 
 | 1111 | 				csr); | 
 | 1112 | 			cppi_dump_rxq(4, "/what?", rx); | 
 | 1113 | 		} | 
 | 1114 | 	} | 
 | 1115 | 	if (!completed) { | 
 | 1116 | 		int	csr; | 
 | 1117 |  | 
 | 1118 | 		rx->head = bd; | 
 | 1119 |  | 
 | 1120 | 		/* REVISIT seems like "autoreq all but EOP" doesn't... | 
 | 1121 | 		 * setting it here "should" be racey, but seems to work | 
 | 1122 | 		 */ | 
 | 1123 | 		csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); | 
 | 1124 | 		if (is_host_active(cppi->musb) | 
 | 1125 | 				&& bd | 
 | 1126 | 				&& !(csr & MUSB_RXCSR_H_REQPKT)) { | 
 | 1127 | 			csr |= MUSB_RXCSR_H_REQPKT; | 
 | 1128 | 			musb_writew(regs, MUSB_RXCSR, | 
 | 1129 | 					MUSB_RXCSR_H_WZC_BITS | csr); | 
 | 1130 | 			csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); | 
 | 1131 | 		} | 
 | 1132 | 	} else { | 
 | 1133 | 		rx->head = NULL; | 
 | 1134 | 		rx->tail = NULL; | 
 | 1135 | 	} | 
 | 1136 |  | 
 | 1137 | 	cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned"); | 
 | 1138 | 	return completed; | 
 | 1139 | } | 
 | 1140 |  | 
 | 1141 | void cppi_completion(struct musb *musb, u32 rx, u32 tx) | 
 | 1142 | { | 
 | 1143 | 	void __iomem		*tibase; | 
 | 1144 | 	int			i, index; | 
 | 1145 | 	struct cppi		*cppi; | 
 | 1146 | 	struct musb_hw_ep	*hw_ep = NULL; | 
 | 1147 |  | 
 | 1148 | 	cppi = container_of(musb->dma_controller, struct cppi, controller); | 
 | 1149 |  | 
 | 1150 | 	tibase = musb->ctrl_base; | 
 | 1151 |  | 
 | 1152 | 	/* process TX channels */ | 
 | 1153 | 	for (index = 0; tx; tx = tx >> 1, index++) { | 
 | 1154 | 		struct cppi_channel		*tx_ch; | 
 | 1155 | 		struct cppi_tx_stateram __iomem	*tx_ram; | 
 | 1156 | 		bool				completed = false; | 
 | 1157 | 		struct cppi_descriptor		*bd; | 
 | 1158 |  | 
 | 1159 | 		if (!(tx & 1)) | 
 | 1160 | 			continue; | 
 | 1161 |  | 
 | 1162 | 		tx_ch = cppi->tx + index; | 
 | 1163 | 		tx_ram = tx_ch->state_ram; | 
 | 1164 |  | 
 | 1165 | 		/* FIXME  need a cppi_tx_scan() routine, which | 
 | 1166 | 		 * can also be called from abort code | 
 | 1167 | 		 */ | 
 | 1168 |  | 
 | 1169 | 		cppi_dump_tx(5, tx_ch, "/E"); | 
 | 1170 |  | 
 | 1171 | 		bd = tx_ch->head; | 
 | 1172 |  | 
 | 1173 | 		if (NULL == bd) { | 
 | 1174 | 			DBG(1, "null BD\n"); | 
 | 1175 | 			continue; | 
 | 1176 | 		} | 
 | 1177 |  | 
 | 1178 | 		/* run through all completed BDs */ | 
 | 1179 | 		for (i = 0; !completed && bd && i < NUM_TXCHAN_BD; | 
 | 1180 | 				i++, bd = bd->next) { | 
 | 1181 | 			u16	len; | 
 | 1182 |  | 
 | 1183 | 			/* catch latest BD writes from CPPI */ | 
 | 1184 | 			rmb(); | 
 | 1185 | 			if (bd->hw_options & CPPI_OWN_SET) | 
 | 1186 | 				break; | 
 | 1187 |  | 
 | 1188 | 			DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n", | 
 | 1189 | 					bd, bd->hw_next, bd->hw_bufp, | 
 | 1190 | 					bd->hw_off_len, bd->hw_options); | 
 | 1191 |  | 
 | 1192 | 			len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK; | 
 | 1193 | 			tx_ch->channel.actual_len += len; | 
 | 1194 |  | 
 | 1195 | 			tx_ch->last_processed = bd; | 
 | 1196 |  | 
 | 1197 | 			/* write completion register to acknowledge | 
 | 1198 | 			 * processing of completed BDs, and possibly | 
 | 1199 | 			 * release the IRQ; EOQ might not be set ... | 
 | 1200 | 			 * | 
 | 1201 | 			 * REVISIT use the same ack strategy as rx | 
 | 1202 | 			 * | 
 | 1203 | 			 * REVISIT have observed bit 18 set; huh?? | 
 | 1204 | 			 */ | 
 | 1205 | 			/* if ((bd->hw_options & CPPI_EOQ_MASK)) */ | 
 | 1206 | 				musb_writel(&tx_ram->tx_complete, 0, bd->dma); | 
 | 1207 |  | 
 | 1208 | 			/* stop scanning on end-of-segment */ | 
 | 1209 | 			if (bd->hw_next == 0) | 
 | 1210 | 				completed = true; | 
 | 1211 | 		} | 
 | 1212 |  | 
 | 1213 | 		/* on end of segment, maybe go to next one */ | 
 | 1214 | 		if (completed) { | 
 | 1215 | 			/* cppi_dump_tx(4, tx_ch, "/complete"); */ | 
 | 1216 |  | 
 | 1217 | 			/* transfer more, or report completion */ | 
 | 1218 | 			if (tx_ch->offset >= tx_ch->buf_len) { | 
 | 1219 | 				tx_ch->head = NULL; | 
 | 1220 | 				tx_ch->tail = NULL; | 
 | 1221 | 				tx_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
 | 1222 |  | 
 | 1223 | 				hw_ep = tx_ch->hw_ep; | 
 | 1224 |  | 
 | 1225 | 				/* Peripheral role never repurposes the | 
 | 1226 | 				 * endpoint, so immediate completion is | 
 | 1227 | 				 * safe.  Host role waits for the fifo | 
 | 1228 | 				 * to empty (TXPKTRDY irq) before going | 
 | 1229 | 				 * to the next queued bulk transfer. | 
 | 1230 | 				 */ | 
 | 1231 | 				if (is_host_active(cppi->musb)) { | 
 | 1232 | #if 0 | 
 | 1233 | 					/* WORKAROUND because we may | 
 | 1234 | 					 * not always get TXKPTRDY ... | 
 | 1235 | 					 */ | 
 | 1236 | 					int	csr; | 
 | 1237 |  | 
 | 1238 | 					csr = musb_readw(hw_ep->regs, | 
 | 1239 | 						MUSB_TXCSR); | 
 | 1240 | 					if (csr & MUSB_TXCSR_TXPKTRDY) | 
 | 1241 | #endif | 
 | 1242 | 						completed = false; | 
 | 1243 | 				} | 
 | 1244 | 				if (completed) | 
 | 1245 | 					musb_dma_completion(musb, index + 1, 1); | 
 | 1246 |  | 
 | 1247 | 			} else { | 
 | 1248 | 				/* Bigger transfer than we could fit in | 
 | 1249 | 				 * that first batch of descriptors... | 
 | 1250 | 				 */ | 
 | 1251 | 				cppi_next_tx_segment(musb, tx_ch); | 
 | 1252 | 			} | 
 | 1253 | 		} else | 
 | 1254 | 			tx_ch->head = bd; | 
 | 1255 | 	} | 
 | 1256 |  | 
 | 1257 | 	/* Start processing the RX block */ | 
 | 1258 | 	for (index = 0; rx; rx = rx >> 1, index++) { | 
 | 1259 |  | 
 | 1260 | 		if (rx & 1) { | 
 | 1261 | 			struct cppi_channel		*rx_ch; | 
 | 1262 |  | 
 | 1263 | 			rx_ch = cppi->rx + index; | 
 | 1264 |  | 
 | 1265 | 			/* let incomplete dma segments finish */ | 
 | 1266 | 			if (!cppi_rx_scan(cppi, index)) | 
 | 1267 | 				continue; | 
 | 1268 |  | 
 | 1269 | 			/* start another dma segment if needed */ | 
 | 1270 | 			if (rx_ch->channel.actual_len != rx_ch->buf_len | 
 | 1271 | 					&& rx_ch->channel.actual_len | 
 | 1272 | 						== rx_ch->offset) { | 
 | 1273 | 				cppi_next_rx_segment(musb, rx_ch, 1); | 
 | 1274 | 				continue; | 
 | 1275 | 			} | 
 | 1276 |  | 
 | 1277 | 			/* all segments completed! */ | 
 | 1278 | 			rx_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
 | 1279 |  | 
 | 1280 | 			hw_ep = rx_ch->hw_ep; | 
 | 1281 |  | 
 | 1282 | 			core_rxirq_disable(tibase, index + 1); | 
 | 1283 | 			musb_dma_completion(musb, index + 1, 0); | 
 | 1284 | 		} | 
 | 1285 | 	} | 
 | 1286 |  | 
 | 1287 | 	/* write to CPPI EOI register to re-enable interrupts */ | 
 | 1288 | 	musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0); | 
 | 1289 | } | 
 | 1290 |  | 
 | 1291 | /* Instantiate a software object representing a DMA controller. */ | 
 | 1292 | struct dma_controller *__init | 
 | 1293 | dma_controller_create(struct musb *musb, void __iomem *mregs) | 
 | 1294 | { | 
 | 1295 | 	struct cppi		*controller; | 
 | 1296 |  | 
 | 1297 | 	controller = kzalloc(sizeof *controller, GFP_KERNEL); | 
 | 1298 | 	if (!controller) | 
 | 1299 | 		return NULL; | 
 | 1300 |  | 
 | 1301 | 	controller->mregs = mregs; | 
 | 1302 | 	controller->tibase = mregs - DAVINCI_BASE_OFFSET; | 
 | 1303 |  | 
 | 1304 | 	controller->musb = musb; | 
 | 1305 | 	controller->controller.start = cppi_controller_start; | 
 | 1306 | 	controller->controller.stop = cppi_controller_stop; | 
 | 1307 | 	controller->controller.channel_alloc = cppi_channel_allocate; | 
 | 1308 | 	controller->controller.channel_release = cppi_channel_release; | 
 | 1309 | 	controller->controller.channel_program = cppi_channel_program; | 
 | 1310 | 	controller->controller.channel_abort = cppi_channel_abort; | 
 | 1311 |  | 
 | 1312 | 	/* NOTE: allocating from on-chip SRAM would give the least | 
 | 1313 | 	 * contention for memory access, if that ever matters here. | 
 | 1314 | 	 */ | 
 | 1315 |  | 
 | 1316 | 	/* setup BufferPool */ | 
 | 1317 | 	controller->pool = dma_pool_create("cppi", | 
 | 1318 | 			controller->musb->controller, | 
 | 1319 | 			sizeof(struct cppi_descriptor), | 
 | 1320 | 			CPPI_DESCRIPTOR_ALIGN, 0); | 
 | 1321 | 	if (!controller->pool) { | 
 | 1322 | 		kfree(controller); | 
 | 1323 | 		return NULL; | 
 | 1324 | 	} | 
 | 1325 |  | 
 | 1326 | 	return &controller->controller; | 
 | 1327 | } | 
 | 1328 |  | 
 | 1329 | /* | 
 | 1330 |  *  Destroy a previously-instantiated DMA controller. | 
 | 1331 |  */ | 
 | 1332 | void dma_controller_destroy(struct dma_controller *c) | 
 | 1333 | { | 
 | 1334 | 	struct cppi	*cppi; | 
 | 1335 |  | 
 | 1336 | 	cppi = container_of(c, struct cppi, controller); | 
 | 1337 |  | 
 | 1338 | 	/* assert:  caller stopped the controller first */ | 
 | 1339 | 	dma_pool_destroy(cppi->pool); | 
 | 1340 |  | 
 | 1341 | 	kfree(cppi); | 
 | 1342 | } | 
 | 1343 |  | 
 | 1344 | /* | 
 | 1345 |  * Context: controller irqlocked, endpoint selected | 
 | 1346 |  */ | 
 | 1347 | static int cppi_channel_abort(struct dma_channel *channel) | 
 | 1348 | { | 
 | 1349 | 	struct cppi_channel	*cppi_ch; | 
 | 1350 | 	struct cppi		*controller; | 
 | 1351 | 	void __iomem		*mbase; | 
 | 1352 | 	void __iomem		*tibase; | 
 | 1353 | 	void __iomem		*regs; | 
 | 1354 | 	u32			value; | 
 | 1355 | 	struct cppi_descriptor	*queue; | 
 | 1356 |  | 
 | 1357 | 	cppi_ch = container_of(channel, struct cppi_channel, channel); | 
 | 1358 |  | 
 | 1359 | 	controller = cppi_ch->controller; | 
 | 1360 |  | 
 | 1361 | 	switch (channel->status) { | 
 | 1362 | 	case MUSB_DMA_STATUS_BUS_ABORT: | 
 | 1363 | 	case MUSB_DMA_STATUS_CORE_ABORT: | 
 | 1364 | 		/* from RX or TX fault irq handler */ | 
 | 1365 | 	case MUSB_DMA_STATUS_BUSY: | 
 | 1366 | 		/* the hardware needs shutting down */ | 
 | 1367 | 		regs = cppi_ch->hw_ep->regs; | 
 | 1368 | 		break; | 
 | 1369 | 	case MUSB_DMA_STATUS_UNKNOWN: | 
 | 1370 | 	case MUSB_DMA_STATUS_FREE: | 
 | 1371 | 		return 0; | 
 | 1372 | 	default: | 
 | 1373 | 		return -EINVAL; | 
 | 1374 | 	} | 
 | 1375 |  | 
 | 1376 | 	if (!cppi_ch->transmit && cppi_ch->head) | 
 | 1377 | 		cppi_dump_rxq(3, "/abort", cppi_ch); | 
 | 1378 |  | 
 | 1379 | 	mbase = controller->mregs; | 
 | 1380 | 	tibase = controller->tibase; | 
 | 1381 |  | 
 | 1382 | 	queue = cppi_ch->head; | 
 | 1383 | 	cppi_ch->head = NULL; | 
 | 1384 | 	cppi_ch->tail = NULL; | 
 | 1385 |  | 
 | 1386 | 	/* REVISIT should rely on caller having done this, | 
 | 1387 | 	 * and caller should rely on us not changing it. | 
 | 1388 | 	 * peripheral code is safe ... check host too. | 
 | 1389 | 	 */ | 
 | 1390 | 	musb_ep_select(mbase, cppi_ch->index + 1); | 
 | 1391 |  | 
 | 1392 | 	if (cppi_ch->transmit) { | 
 | 1393 | 		struct cppi_tx_stateram __iomem *tx_ram; | 
 | 1394 | 		int			enabled; | 
 | 1395 |  | 
 | 1396 | 		/* mask interrupts raised to signal teardown complete.  */ | 
 | 1397 | 		enabled = musb_readl(tibase, DAVINCI_TXCPPI_INTENAB_REG) | 
 | 1398 | 				& (1 << cppi_ch->index); | 
 | 1399 | 		if (enabled) | 
 | 1400 | 			musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, | 
 | 1401 | 					(1 << cppi_ch->index)); | 
 | 1402 |  | 
 | 1403 | 		/* REVISIT put timeouts on these controller handshakes */ | 
 | 1404 |  | 
 | 1405 | 		cppi_dump_tx(6, cppi_ch, " (teardown)"); | 
 | 1406 |  | 
 | 1407 | 		/* teardown DMA engine then usb core */ | 
 | 1408 | 		do { | 
 | 1409 | 			value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG); | 
 | 1410 | 		} while (!(value & CPPI_TEAR_READY)); | 
 | 1411 | 		musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index); | 
 | 1412 |  | 
 | 1413 | 		tx_ram = cppi_ch->state_ram; | 
 | 1414 | 		do { | 
 | 1415 | 			value = musb_readl(&tx_ram->tx_complete, 0); | 
 | 1416 | 		} while (0xFFFFFFFC != value); | 
 | 1417 | 		musb_writel(&tx_ram->tx_complete, 0, 0xFFFFFFFC); | 
 | 1418 |  | 
 | 1419 | 		/* FIXME clean up the transfer state ... here? | 
 | 1420 | 		 * the completion routine should get called with | 
 | 1421 | 		 * an appropriate status code. | 
 | 1422 | 		 */ | 
 | 1423 |  | 
 | 1424 | 		value = musb_readw(regs, MUSB_TXCSR); | 
 | 1425 | 		value &= ~MUSB_TXCSR_DMAENAB; | 
 | 1426 | 		value |= MUSB_TXCSR_FLUSHFIFO; | 
 | 1427 | 		musb_writew(regs, MUSB_TXCSR, value); | 
 | 1428 | 		musb_writew(regs, MUSB_TXCSR, value); | 
 | 1429 |  | 
 | 1430 | 		/* re-enable interrupt */ | 
 | 1431 | 		if (enabled) | 
 | 1432 | 			musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, | 
 | 1433 | 					(1 << cppi_ch->index)); | 
 | 1434 |  | 
 | 1435 | 		/* While we scrub the TX state RAM, ensure that we clean | 
 | 1436 | 		 * up any interrupt that's currently asserted: | 
 | 1437 | 		 * 1. Write to completion Ptr value 0x1(bit 0 set) | 
 | 1438 | 		 *    (write back mode) | 
 | 1439 | 		 * 2. Write to completion Ptr value 0x0(bit 0 cleared) | 
 | 1440 | 		 *    (compare mode) | 
 | 1441 | 		 * Value written is compared(for bits 31:2) and when | 
 | 1442 | 		 * equal, interrupt is deasserted. | 
 | 1443 | 		 */ | 
 | 1444 | 		cppi_reset_tx(tx_ram, 1); | 
 | 1445 | 		musb_writel(&tx_ram->tx_complete, 0, 0); | 
 | 1446 |  | 
 | 1447 | 		cppi_dump_tx(5, cppi_ch, " (done teardown)"); | 
 | 1448 |  | 
 | 1449 | 		/* REVISIT tx side _should_ clean up the same way | 
 | 1450 | 		 * as the RX side ... this does no cleanup at all! | 
 | 1451 | 		 */ | 
 | 1452 |  | 
 | 1453 | 	} else /* RX */ { | 
 | 1454 | 		u16			csr; | 
 | 1455 |  | 
 | 1456 | 		/* NOTE: docs don't guarantee any of this works ...  we | 
 | 1457 | 		 * expect that if the usb core stops telling the cppi core | 
 | 1458 | 		 * to pull more data from it, then it'll be safe to flush | 
 | 1459 | 		 * current RX DMA state iff any pending fifo transfer is done. | 
 | 1460 | 		 */ | 
 | 1461 |  | 
 | 1462 | 		core_rxirq_disable(tibase, cppi_ch->index + 1); | 
 | 1463 |  | 
 | 1464 | 		/* for host, ensure ReqPkt is never set again */ | 
 | 1465 | 		if (is_host_active(cppi_ch->controller->musb)) { | 
 | 1466 | 			value = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
 | 1467 | 			value &= ~((0x3) << (cppi_ch->index * 2)); | 
 | 1468 | 			musb_writel(tibase, DAVINCI_AUTOREQ_REG, value); | 
 | 1469 | 		} | 
 | 1470 |  | 
 | 1471 | 		csr = musb_readw(regs, MUSB_RXCSR); | 
 | 1472 |  | 
 | 1473 | 		/* for host, clear (just) ReqPkt at end of current packet(s) */ | 
 | 1474 | 		if (is_host_active(cppi_ch->controller->musb)) { | 
 | 1475 | 			csr |= MUSB_RXCSR_H_WZC_BITS; | 
 | 1476 | 			csr &= ~MUSB_RXCSR_H_REQPKT; | 
 | 1477 | 		} else | 
 | 1478 | 			csr |= MUSB_RXCSR_P_WZC_BITS; | 
 | 1479 |  | 
 | 1480 | 		/* clear dma enable */ | 
 | 1481 | 		csr &= ~(MUSB_RXCSR_DMAENAB); | 
 | 1482 | 		musb_writew(regs, MUSB_RXCSR, csr); | 
 | 1483 | 		csr = musb_readw(regs, MUSB_RXCSR); | 
 | 1484 |  | 
 | 1485 | 		/* Quiesce: wait for current dma to finish (if not cleanup). | 
 | 1486 | 		 * We can't use bit zero of stateram->rx_sop, since that | 
 | 1487 | 		 * refers to an entire "DMA packet" not just emptying the | 
 | 1488 | 		 * current fifo.  Most segments need multiple usb packets. | 
 | 1489 | 		 */ | 
 | 1490 | 		if (channel->status == MUSB_DMA_STATUS_BUSY) | 
 | 1491 | 			udelay(50); | 
 | 1492 |  | 
 | 1493 | 		/* scan the current list, reporting any data that was | 
 | 1494 | 		 * transferred and acking any IRQ | 
 | 1495 | 		 */ | 
 | 1496 | 		cppi_rx_scan(controller, cppi_ch->index); | 
 | 1497 |  | 
 | 1498 | 		/* clobber the existing state once it's idle | 
 | 1499 | 		 * | 
 | 1500 | 		 * NOTE:  arguably, we should also wait for all the other | 
 | 1501 | 		 * RX channels to quiesce (how??) and then temporarily | 
 | 1502 | 		 * disable RXCPPI_CTRL_REG ... but it seems that we can | 
 | 1503 | 		 * rely on the controller restarting from state ram, with | 
 | 1504 | 		 * only RXCPPI_BUFCNT state being bogus.  BUFCNT will | 
 | 1505 | 		 * correct itself after the next DMA transfer though. | 
 | 1506 | 		 * | 
 | 1507 | 		 * REVISIT does using rndis mode change that? | 
 | 1508 | 		 */ | 
 | 1509 | 		cppi_reset_rx(cppi_ch->state_ram); | 
 | 1510 |  | 
 | 1511 | 		/* next DMA request _should_ load cppi head ptr */ | 
 | 1512 |  | 
 | 1513 | 		/* ... we don't "free" that list, only mutate it in place.  */ | 
 | 1514 | 		cppi_dump_rx(5, cppi_ch, " (done abort)"); | 
 | 1515 |  | 
 | 1516 | 		/* clean up previously pending bds */ | 
 | 1517 | 		cppi_bd_free(cppi_ch, cppi_ch->last_processed); | 
 | 1518 | 		cppi_ch->last_processed = NULL; | 
 | 1519 |  | 
 | 1520 | 		while (queue) { | 
 | 1521 | 			struct cppi_descriptor	*tmp = queue->next; | 
 | 1522 |  | 
 | 1523 | 			cppi_bd_free(cppi_ch, queue); | 
 | 1524 | 			queue = tmp; | 
 | 1525 | 		} | 
 | 1526 | 	} | 
 | 1527 |  | 
 | 1528 | 	channel->status = MUSB_DMA_STATUS_FREE; | 
 | 1529 | 	cppi_ch->buf_dma = 0; | 
 | 1530 | 	cppi_ch->offset = 0; | 
 | 1531 | 	cppi_ch->buf_len = 0; | 
 | 1532 | 	cppi_ch->maxpacket = 0; | 
 | 1533 | 	return 0; | 
 | 1534 | } | 
 | 1535 |  | 
 | 1536 | /* TBD Queries: | 
 | 1537 |  * | 
 | 1538 |  * Power Management ... probably turn off cppi during suspend, restart; | 
 | 1539 |  * check state ram?  Clocking is presumably shared with usb core. | 
 | 1540 |  */ |