Nicolas Pitre | 1e904e1 | 2012-05-02 20:56:52 -0400 | [diff] [blame^] | 1 | /* |
| 2 | * arch/arm/mach-vexpress/dcscb.c - Dual Cluster System Configuration Block |
| 3 | * |
| 4 | * Created by: Nicolas Pitre, May 2012 |
| 5 | * Copyright: (C) 2012-2013 Linaro Limited |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | |
| 12 | #include <linux/init.h> |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/io.h> |
| 15 | #include <linux/spinlock.h> |
| 16 | #include <linux/errno.h> |
| 17 | #include <linux/of_address.h> |
| 18 | #include <linux/vexpress.h> |
| 19 | |
| 20 | #include <asm/mcpm.h> |
| 21 | #include <asm/proc-fns.h> |
| 22 | #include <asm/cacheflush.h> |
| 23 | #include <asm/cputype.h> |
| 24 | #include <asm/cp15.h> |
| 25 | |
| 26 | |
| 27 | #define RST_HOLD0 0x0 |
| 28 | #define RST_HOLD1 0x4 |
| 29 | #define SYS_SWRESET 0x8 |
| 30 | #define RST_STAT0 0xc |
| 31 | #define RST_STAT1 0x10 |
| 32 | #define EAG_CFG_R 0x20 |
| 33 | #define EAG_CFG_W 0x24 |
| 34 | #define KFC_CFG_R 0x28 |
| 35 | #define KFC_CFG_W 0x2c |
| 36 | #define DCS_CFG_R 0x30 |
| 37 | |
| 38 | /* |
| 39 | * We can't use regular spinlocks. In the switcher case, it is possible |
| 40 | * for an outbound CPU to call power_down() while its inbound counterpart |
| 41 | * is already live using the same logical CPU number which trips lockdep |
| 42 | * debugging. |
| 43 | */ |
| 44 | static arch_spinlock_t dcscb_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
| 45 | |
| 46 | static void __iomem *dcscb_base; |
| 47 | |
| 48 | static int dcscb_power_up(unsigned int cpu, unsigned int cluster) |
| 49 | { |
| 50 | unsigned int rst_hold, cpumask = (1 << cpu); |
| 51 | |
| 52 | pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| 53 | if (cpu >= 4 || cluster >= 2) |
| 54 | return -EINVAL; |
| 55 | |
| 56 | /* |
| 57 | * Since this is called with IRQs enabled, and no arch_spin_lock_irq |
| 58 | * variant exists, we need to disable IRQs manually here. |
| 59 | */ |
| 60 | local_irq_disable(); |
| 61 | arch_spin_lock(&dcscb_lock); |
| 62 | |
| 63 | rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4); |
| 64 | if (rst_hold & (1 << 8)) { |
| 65 | /* remove cluster reset and add individual CPU's reset */ |
| 66 | rst_hold &= ~(1 << 8); |
| 67 | rst_hold |= 0xf; |
| 68 | } |
| 69 | rst_hold &= ~(cpumask | (cpumask << 4)); |
| 70 | writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4); |
| 71 | |
| 72 | arch_spin_unlock(&dcscb_lock); |
| 73 | local_irq_enable(); |
| 74 | |
| 75 | return 0; |
| 76 | } |
| 77 | |
| 78 | static void dcscb_power_down(void) |
| 79 | { |
| 80 | unsigned int mpidr, cpu, cluster, rst_hold, cpumask, last_man; |
| 81 | |
| 82 | mpidr = read_cpuid_mpidr(); |
| 83 | cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| 84 | cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| 85 | cpumask = (1 << cpu); |
| 86 | |
| 87 | pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| 88 | BUG_ON(cpu >= 4 || cluster >= 2); |
| 89 | |
| 90 | arch_spin_lock(&dcscb_lock); |
| 91 | rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4); |
| 92 | rst_hold |= cpumask; |
| 93 | if (((rst_hold | (rst_hold >> 4)) & 0xf) == 0xf) |
| 94 | rst_hold |= (1 << 8); |
| 95 | writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4); |
| 96 | arch_spin_unlock(&dcscb_lock); |
| 97 | last_man = (rst_hold & (1 << 8)); |
| 98 | |
| 99 | /* |
| 100 | * Now let's clean our L1 cache and shut ourself down. |
| 101 | * If we're the last CPU in this cluster then clean L2 too. |
| 102 | */ |
| 103 | |
| 104 | /* |
| 105 | * A15/A7 can hit in the cache with SCTLR.C=0, so we don't need |
| 106 | * a preliminary flush here for those CPUs. At least, that's |
| 107 | * the theory -- without the extra flush, Linux explodes on |
| 108 | * RTSM (to be investigated).. |
| 109 | */ |
| 110 | flush_cache_louis(); |
| 111 | set_cr(get_cr() & ~CR_C); |
| 112 | |
| 113 | if (!last_man) { |
| 114 | flush_cache_louis(); |
| 115 | } else { |
| 116 | flush_cache_all(); |
| 117 | outer_flush_all(); |
| 118 | } |
| 119 | |
| 120 | /* Disable local coherency by clearing the ACTLR "SMP" bit: */ |
| 121 | set_auxcr(get_auxcr() & ~(1 << 6)); |
| 122 | |
| 123 | /* Now we are prepared for power-down, do it: */ |
| 124 | dsb(); |
| 125 | wfi(); |
| 126 | |
| 127 | /* Not dead at this point? Let our caller cope. */ |
| 128 | } |
| 129 | |
| 130 | static const struct mcpm_platform_ops dcscb_power_ops = { |
| 131 | .power_up = dcscb_power_up, |
| 132 | .power_down = dcscb_power_down, |
| 133 | }; |
| 134 | |
| 135 | static int __init dcscb_init(void) |
| 136 | { |
| 137 | struct device_node *node; |
| 138 | int ret; |
| 139 | |
| 140 | node = of_find_compatible_node(NULL, NULL, "arm,rtsm,dcscb"); |
| 141 | if (!node) |
| 142 | return -ENODEV; |
| 143 | dcscb_base = of_iomap(node, 0); |
| 144 | if (!dcscb_base) |
| 145 | return -EADDRNOTAVAIL; |
| 146 | |
| 147 | ret = mcpm_platform_register(&dcscb_power_ops); |
| 148 | if (ret) { |
| 149 | iounmap(dcscb_base); |
| 150 | return ret; |
| 151 | } |
| 152 | |
| 153 | pr_info("VExpress DCSCB support installed\n"); |
| 154 | |
| 155 | /* |
| 156 | * Future entries into the kernel can now go |
| 157 | * through the cluster entry vectors. |
| 158 | */ |
| 159 | vexpress_flags_set(virt_to_phys(mcpm_entry_point)); |
| 160 | |
| 161 | return 0; |
| 162 | } |
| 163 | |
| 164 | early_initcall(dcscb_init); |