| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * 2002-10-18  written by Jim Houston jim.houston@ccur.com | 
 | 3 |  *	Copyright (C) 2002 by Concurrent Computer Corporation | 
 | 4 |  *	Distributed under the GNU GPL license version 2. | 
 | 5 |  * | 
 | 6 |  * Modified by George Anzinger to reuse immediately and to use | 
 | 7 |  * find bit instructions.  Also removed _irq on spinlocks. | 
 | 8 |  * | 
 | 9 |  * Small id to pointer translation service.   | 
 | 10 |  * | 
 | 11 |  * It uses a radix tree like structure as a sparse array indexed  | 
 | 12 |  * by the id to obtain the pointer.  The bitmap makes allocating | 
 | 13 |  * a new id quick.   | 
 | 14 |  * | 
 | 15 |  * You call it to allocate an id (an int) an associate with that id a | 
 | 16 |  * pointer or what ever, we treat it as a (void *).  You can pass this | 
 | 17 |  * id to a user for him to pass back at a later time.  You then pass | 
 | 18 |  * that id to this code and it returns your pointer. | 
 | 19 |  | 
 | 20 |  * You can release ids at any time. When all ids are released, most of  | 
 | 21 |  * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we | 
 | 22 |  * don't need to go to the memory "store" during an id allocate, just  | 
 | 23 |  * so you don't need to be too concerned about locking and conflicts | 
 | 24 |  * with the slab allocator. | 
 | 25 |  */ | 
 | 26 |  | 
 | 27 | #ifndef TEST                        // to test in user space... | 
 | 28 | #include <linux/slab.h> | 
 | 29 | #include <linux/init.h> | 
 | 30 | #include <linux/module.h> | 
 | 31 | #endif | 
 | 32 | #include <linux/string.h> | 
 | 33 | #include <linux/idr.h> | 
 | 34 |  | 
 | 35 | static kmem_cache_t *idr_layer_cache; | 
 | 36 |  | 
 | 37 | static struct idr_layer *alloc_layer(struct idr *idp) | 
 | 38 | { | 
 | 39 | 	struct idr_layer *p; | 
 | 40 |  | 
 | 41 | 	spin_lock(&idp->lock); | 
 | 42 | 	if ((p = idp->id_free)) { | 
 | 43 | 		idp->id_free = p->ary[0]; | 
 | 44 | 		idp->id_free_cnt--; | 
 | 45 | 		p->ary[0] = NULL; | 
 | 46 | 	} | 
 | 47 | 	spin_unlock(&idp->lock); | 
 | 48 | 	return(p); | 
 | 49 | } | 
 | 50 |  | 
 | 51 | static void free_layer(struct idr *idp, struct idr_layer *p) | 
 | 52 | { | 
 | 53 | 	/* | 
 | 54 | 	 * Depends on the return element being zeroed. | 
 | 55 | 	 */ | 
 | 56 | 	spin_lock(&idp->lock); | 
 | 57 | 	p->ary[0] = idp->id_free; | 
 | 58 | 	idp->id_free = p; | 
 | 59 | 	idp->id_free_cnt++; | 
 | 60 | 	spin_unlock(&idp->lock); | 
 | 61 | } | 
 | 62 |  | 
 | 63 | /** | 
 | 64 |  * idr_pre_get - reserver resources for idr allocation | 
 | 65 |  * @idp:	idr handle | 
 | 66 |  * @gfp_mask:	memory allocation flags | 
 | 67 |  * | 
 | 68 |  * This function should be called prior to locking and calling the | 
 | 69 |  * following function.  It preallocates enough memory to satisfy | 
 | 70 |  * the worst possible allocation. | 
 | 71 |  * | 
 | 72 |  * If the system is REALLY out of memory this function returns 0, | 
 | 73 |  * otherwise 1. | 
 | 74 |  */ | 
 | 75 | int idr_pre_get(struct idr *idp, unsigned gfp_mask) | 
 | 76 | { | 
 | 77 | 	while (idp->id_free_cnt < IDR_FREE_MAX) { | 
 | 78 | 		struct idr_layer *new; | 
 | 79 | 		new = kmem_cache_alloc(idr_layer_cache, gfp_mask); | 
 | 80 | 		if(new == NULL) | 
 | 81 | 			return (0); | 
 | 82 | 		free_layer(idp, new); | 
 | 83 | 	} | 
 | 84 | 	return 1; | 
 | 85 | } | 
 | 86 | EXPORT_SYMBOL(idr_pre_get); | 
 | 87 |  | 
 | 88 | static int sub_alloc(struct idr *idp, void *ptr, int *starting_id) | 
 | 89 | { | 
 | 90 | 	int n, m, sh; | 
 | 91 | 	struct idr_layer *p, *new; | 
 | 92 | 	struct idr_layer *pa[MAX_LEVEL]; | 
 | 93 | 	int l, id; | 
 | 94 | 	long bm; | 
 | 95 |  | 
 | 96 | 	id = *starting_id; | 
 | 97 | 	p = idp->top; | 
 | 98 | 	l = idp->layers; | 
 | 99 | 	pa[l--] = NULL; | 
 | 100 | 	while (1) { | 
 | 101 | 		/* | 
 | 102 | 		 * We run around this while until we reach the leaf node... | 
 | 103 | 		 */ | 
 | 104 | 		n = (id >> (IDR_BITS*l)) & IDR_MASK; | 
 | 105 | 		bm = ~p->bitmap; | 
 | 106 | 		m = find_next_bit(&bm, IDR_SIZE, n); | 
 | 107 | 		if (m == IDR_SIZE) { | 
 | 108 | 			/* no space available go back to previous layer. */ | 
 | 109 | 			l++; | 
 | 110 | 			id = (id | ((1 << (IDR_BITS*l))-1)) + 1; | 
 | 111 | 			if (!(p = pa[l])) { | 
 | 112 | 				*starting_id = id; | 
 | 113 | 				return -2; | 
 | 114 | 			} | 
 | 115 | 			continue; | 
 | 116 | 		} | 
 | 117 | 		if (m != n) { | 
 | 118 | 			sh = IDR_BITS*l; | 
 | 119 | 			id = ((id >> sh) ^ n ^ m) << sh; | 
 | 120 | 		} | 
 | 121 | 		if ((id >= MAX_ID_BIT) || (id < 0)) | 
 | 122 | 			return -3; | 
 | 123 | 		if (l == 0) | 
 | 124 | 			break; | 
 | 125 | 		/* | 
 | 126 | 		 * Create the layer below if it is missing. | 
 | 127 | 		 */ | 
 | 128 | 		if (!p->ary[m]) { | 
 | 129 | 			if (!(new = alloc_layer(idp))) | 
 | 130 | 				return -1; | 
 | 131 | 			p->ary[m] = new; | 
 | 132 | 			p->count++; | 
 | 133 | 		} | 
 | 134 | 		pa[l--] = p; | 
 | 135 | 		p = p->ary[m]; | 
 | 136 | 	} | 
 | 137 | 	/* | 
 | 138 | 	 * We have reached the leaf node, plant the | 
 | 139 | 	 * users pointer and return the raw id. | 
 | 140 | 	 */ | 
 | 141 | 	p->ary[m] = (struct idr_layer *)ptr; | 
 | 142 | 	__set_bit(m, &p->bitmap); | 
 | 143 | 	p->count++; | 
 | 144 | 	/* | 
 | 145 | 	 * If this layer is full mark the bit in the layer above | 
 | 146 | 	 * to show that this part of the radix tree is full. | 
 | 147 | 	 * This may complete the layer above and require walking | 
 | 148 | 	 * up the radix tree. | 
 | 149 | 	 */ | 
 | 150 | 	n = id; | 
 | 151 | 	while (p->bitmap == IDR_FULL) { | 
 | 152 | 		if (!(p = pa[++l])) | 
 | 153 | 			break; | 
 | 154 | 		n = n >> IDR_BITS; | 
 | 155 | 		__set_bit((n & IDR_MASK), &p->bitmap); | 
 | 156 | 	} | 
 | 157 | 	return(id); | 
 | 158 | } | 
 | 159 |  | 
 | 160 | static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) | 
 | 161 | { | 
 | 162 | 	struct idr_layer *p, *new; | 
 | 163 | 	int layers, v, id; | 
 | 164 | 	 | 
 | 165 | 	id = starting_id; | 
 | 166 | build_up: | 
 | 167 | 	p = idp->top; | 
 | 168 | 	layers = idp->layers; | 
 | 169 | 	if (unlikely(!p)) { | 
 | 170 | 		if (!(p = alloc_layer(idp))) | 
 | 171 | 			return -1; | 
 | 172 | 		layers = 1; | 
 | 173 | 	} | 
 | 174 | 	/* | 
 | 175 | 	 * Add a new layer to the top of the tree if the requested | 
 | 176 | 	 * id is larger than the currently allocated space. | 
 | 177 | 	 */ | 
 | 178 | 	while ((layers < MAX_LEVEL) && (id >= (1 << (layers*IDR_BITS)))) { | 
 | 179 | 		layers++; | 
 | 180 | 		if (!p->count) | 
 | 181 | 			continue; | 
 | 182 | 		if (!(new = alloc_layer(idp))) { | 
 | 183 | 			/* | 
 | 184 | 			 * The allocation failed.  If we built part of | 
 | 185 | 			 * the structure tear it down. | 
 | 186 | 			 */ | 
 | 187 | 			for (new = p; p && p != idp->top; new = p) { | 
 | 188 | 				p = p->ary[0]; | 
 | 189 | 				new->ary[0] = NULL; | 
 | 190 | 				new->bitmap = new->count = 0; | 
 | 191 | 				free_layer(idp, new); | 
 | 192 | 			} | 
 | 193 | 			return -1; | 
 | 194 | 		} | 
 | 195 | 		new->ary[0] = p; | 
 | 196 | 		new->count = 1; | 
 | 197 | 		if (p->bitmap == IDR_FULL) | 
 | 198 | 			__set_bit(0, &new->bitmap); | 
 | 199 | 		p = new; | 
 | 200 | 	} | 
 | 201 | 	idp->top = p; | 
 | 202 | 	idp->layers = layers; | 
 | 203 | 	v = sub_alloc(idp, ptr, &id); | 
 | 204 | 	if (v == -2) | 
 | 205 | 		goto build_up; | 
 | 206 | 	return(v); | 
 | 207 | } | 
 | 208 |  | 
 | 209 | /** | 
 | 210 |  * idr_get_new_above - allocate new idr entry above a start id | 
 | 211 |  * @idp: idr handle | 
 | 212 |  * @ptr: pointer you want associated with the ide | 
 | 213 |  * @start_id: id to start search at | 
 | 214 |  * @id: pointer to the allocated handle | 
 | 215 |  * | 
 | 216 |  * This is the allocate id function.  It should be called with any | 
 | 217 |  * required locks. | 
 | 218 |  * | 
 | 219 |  * If memory is required, it will return -EAGAIN, you should unlock | 
 | 220 |  * and go back to the idr_pre_get() call.  If the idr is full, it will | 
 | 221 |  * return -ENOSPC. | 
 | 222 |  * | 
 | 223 |  * @id returns a value in the range 0 ... 0x7fffffff | 
 | 224 |  */ | 
 | 225 | int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) | 
 | 226 | { | 
 | 227 | 	int rv; | 
 | 228 | 	rv = idr_get_new_above_int(idp, ptr, starting_id); | 
 | 229 | 	/* | 
 | 230 | 	 * This is a cheap hack until the IDR code can be fixed to | 
 | 231 | 	 * return proper error values. | 
 | 232 | 	 */ | 
 | 233 | 	if (rv < 0) { | 
 | 234 | 		if (rv == -1) | 
 | 235 | 			return -EAGAIN; | 
 | 236 | 		else /* Will be -3 */ | 
 | 237 | 			return -ENOSPC; | 
 | 238 | 	} | 
 | 239 | 	*id = rv; | 
 | 240 | 	return 0; | 
 | 241 | } | 
 | 242 | EXPORT_SYMBOL(idr_get_new_above); | 
 | 243 |  | 
 | 244 | /** | 
 | 245 |  * idr_get_new - allocate new idr entry | 
 | 246 |  * @idp: idr handle | 
 | 247 |  * @ptr: pointer you want associated with the ide | 
 | 248 |  * @id: pointer to the allocated handle | 
 | 249 |  * | 
 | 250 |  * This is the allocate id function.  It should be called with any | 
 | 251 |  * required locks. | 
 | 252 |  * | 
 | 253 |  * If memory is required, it will return -EAGAIN, you should unlock | 
 | 254 |  * and go back to the idr_pre_get() call.  If the idr is full, it will | 
 | 255 |  * return -ENOSPC. | 
 | 256 |  * | 
 | 257 |  * @id returns a value in the range 0 ... 0x7fffffff | 
 | 258 |  */ | 
 | 259 | int idr_get_new(struct idr *idp, void *ptr, int *id) | 
 | 260 | { | 
 | 261 | 	int rv; | 
 | 262 | 	rv = idr_get_new_above_int(idp, ptr, 0); | 
 | 263 | 	/* | 
 | 264 | 	 * This is a cheap hack until the IDR code can be fixed to | 
 | 265 | 	 * return proper error values. | 
 | 266 | 	 */ | 
 | 267 | 	if (rv < 0) { | 
 | 268 | 		if (rv == -1) | 
 | 269 | 			return -EAGAIN; | 
 | 270 | 		else /* Will be -3 */ | 
 | 271 | 			return -ENOSPC; | 
 | 272 | 	} | 
 | 273 | 	*id = rv; | 
 | 274 | 	return 0; | 
 | 275 | } | 
 | 276 | EXPORT_SYMBOL(idr_get_new); | 
 | 277 |  | 
 | 278 | static void idr_remove_warning(int id) | 
 | 279 | { | 
 | 280 | 	printk("idr_remove called for id=%d which is not allocated.\n", id); | 
 | 281 | 	dump_stack(); | 
 | 282 | } | 
 | 283 |  | 
 | 284 | static void sub_remove(struct idr *idp, int shift, int id) | 
 | 285 | { | 
 | 286 | 	struct idr_layer *p = idp->top; | 
 | 287 | 	struct idr_layer **pa[MAX_LEVEL]; | 
 | 288 | 	struct idr_layer ***paa = &pa[0]; | 
 | 289 | 	int n; | 
 | 290 |  | 
 | 291 | 	*paa = NULL; | 
 | 292 | 	*++paa = &idp->top; | 
 | 293 |  | 
 | 294 | 	while ((shift > 0) && p) { | 
 | 295 | 		n = (id >> shift) & IDR_MASK; | 
 | 296 | 		__clear_bit(n, &p->bitmap); | 
 | 297 | 		*++paa = &p->ary[n]; | 
 | 298 | 		p = p->ary[n]; | 
 | 299 | 		shift -= IDR_BITS; | 
 | 300 | 	} | 
 | 301 | 	n = id & IDR_MASK; | 
 | 302 | 	if (likely(p != NULL && test_bit(n, &p->bitmap))){ | 
 | 303 | 		__clear_bit(n, &p->bitmap); | 
 | 304 | 		p->ary[n] = NULL; | 
 | 305 | 		while(*paa && ! --((**paa)->count)){ | 
 | 306 | 			free_layer(idp, **paa); | 
 | 307 | 			**paa-- = NULL; | 
 | 308 | 		} | 
 | 309 | 		if ( ! *paa ) | 
 | 310 | 			idp->layers = 0; | 
 | 311 | 	} else { | 
 | 312 | 		idr_remove_warning(id); | 
 | 313 | 	} | 
 | 314 | } | 
 | 315 |  | 
 | 316 | /** | 
 | 317 |  * idr_remove - remove the given id and free it's slot | 
 | 318 |  * idp: idr handle | 
 | 319 |  * id: uniqueue key | 
 | 320 |  */ | 
 | 321 | void idr_remove(struct idr *idp, int id) | 
 | 322 | { | 
 | 323 | 	struct idr_layer *p; | 
 | 324 |  | 
 | 325 | 	/* Mask off upper bits we don't use for the search. */ | 
 | 326 | 	id &= MAX_ID_MASK; | 
 | 327 |  | 
 | 328 | 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); | 
 | 329 | 	if ( idp->top && idp->top->count == 1 &&  | 
 | 330 | 	     (idp->layers > 1) && | 
 | 331 | 	     idp->top->ary[0]){  // We can drop a layer | 
 | 332 |  | 
 | 333 | 		p = idp->top->ary[0]; | 
 | 334 | 		idp->top->bitmap = idp->top->count = 0; | 
 | 335 | 		free_layer(idp, idp->top); | 
 | 336 | 		idp->top = p; | 
 | 337 | 		--idp->layers; | 
 | 338 | 	} | 
 | 339 | 	while (idp->id_free_cnt >= IDR_FREE_MAX) { | 
 | 340 | 		 | 
 | 341 | 		p = alloc_layer(idp); | 
 | 342 | 		kmem_cache_free(idr_layer_cache, p); | 
 | 343 | 		return; | 
 | 344 | 	} | 
 | 345 | } | 
 | 346 | EXPORT_SYMBOL(idr_remove); | 
 | 347 |  | 
 | 348 | /** | 
 | 349 |  * idr_find - return pointer for given id | 
 | 350 |  * @idp: idr handle | 
 | 351 |  * @id: lookup key | 
 | 352 |  * | 
 | 353 |  * Return the pointer given the id it has been registered with.  A %NULL | 
 | 354 |  * return indicates that @id is not valid or you passed %NULL in | 
 | 355 |  * idr_get_new(). | 
 | 356 |  * | 
 | 357 |  * The caller must serialize idr_find() vs idr_get_new() and idr_remove(). | 
 | 358 |  */ | 
 | 359 | void *idr_find(struct idr *idp, int id) | 
 | 360 | { | 
 | 361 | 	int n; | 
 | 362 | 	struct idr_layer *p; | 
 | 363 |  | 
 | 364 | 	n = idp->layers * IDR_BITS; | 
 | 365 | 	p = idp->top; | 
 | 366 |  | 
 | 367 | 	/* Mask off upper bits we don't use for the search. */ | 
 | 368 | 	id &= MAX_ID_MASK; | 
 | 369 |  | 
 | 370 | 	if (id >= (1 << n)) | 
 | 371 | 		return NULL; | 
 | 372 |  | 
 | 373 | 	while (n > 0 && p) { | 
 | 374 | 		n -= IDR_BITS; | 
 | 375 | 		p = p->ary[(id >> n) & IDR_MASK]; | 
 | 376 | 	} | 
 | 377 | 	return((void *)p); | 
 | 378 | } | 
 | 379 | EXPORT_SYMBOL(idr_find); | 
 | 380 |  | 
 | 381 | static void idr_cache_ctor(void * idr_layer,  | 
 | 382 | 			   kmem_cache_t *idr_layer_cache, unsigned long flags) | 
 | 383 | { | 
 | 384 | 	memset(idr_layer, 0, sizeof(struct idr_layer)); | 
 | 385 | } | 
 | 386 |  | 
 | 387 | static  int init_id_cache(void) | 
 | 388 | { | 
 | 389 | 	if (!idr_layer_cache) | 
 | 390 | 		idr_layer_cache = kmem_cache_create("idr_layer_cache",  | 
 | 391 | 			sizeof(struct idr_layer), 0, 0, idr_cache_ctor, NULL); | 
 | 392 | 	return 0; | 
 | 393 | } | 
 | 394 |  | 
 | 395 | /** | 
 | 396 |  * idr_init - initialize idr handle | 
 | 397 |  * @idp:	idr handle | 
 | 398 |  * | 
 | 399 |  * This function is use to set up the handle (@idp) that you will pass | 
 | 400 |  * to the rest of the functions. | 
 | 401 |  */ | 
 | 402 | void idr_init(struct idr *idp) | 
 | 403 | { | 
 | 404 | 	init_id_cache(); | 
 | 405 | 	memset(idp, 0, sizeof(struct idr)); | 
 | 406 | 	spin_lock_init(&idp->lock); | 
 | 407 | } | 
 | 408 | EXPORT_SYMBOL(idr_init); |