blob: 70a3d98f4bd78d1aef6ae7dac3bd550f2760b334 [file] [log] [blame]
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001/**
2 * drivers/net/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19/**
20 * Supports:
21 * KS8851 16bit MLL chip from Micrel Inc.
22 */
23
Joe Perches0dc7d2b2010-02-27 14:43:51 +000024#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
Choi, Davida55c0a0e2009-09-25 14:42:12 +000026#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/ethtool.h>
31#include <linux/cache.h>
32#include <linux/crc32.h>
33#include <linux/mii.h>
34#include <linux/platform_device.h>
35#include <linux/delay.h>
36
37#define DRV_NAME "ks8851_mll"
38
39static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
40#define MAX_RECV_FRAMES 32
41#define MAX_BUF_SIZE 2048
42#define TX_BUF_SIZE 2000
43#define RX_BUF_SIZE 2000
44
45#define KS_CCR 0x08
46#define CCR_EEPROM (1 << 9)
47#define CCR_SPI (1 << 8)
48#define CCR_8BIT (1 << 7)
49#define CCR_16BIT (1 << 6)
50#define CCR_32BIT (1 << 5)
51#define CCR_SHARED (1 << 4)
52#define CCR_32PIN (1 << 0)
53
54/* MAC address registers */
55#define KS_MARL 0x10
56#define KS_MARM 0x12
57#define KS_MARH 0x14
58
59#define KS_OBCR 0x20
60#define OBCR_ODS_16MA (1 << 6)
61
62#define KS_EEPCR 0x22
63#define EEPCR_EESA (1 << 4)
64#define EEPCR_EESB (1 << 3)
65#define EEPCR_EEDO (1 << 2)
66#define EEPCR_EESCK (1 << 1)
67#define EEPCR_EECS (1 << 0)
68
69#define KS_MBIR 0x24
70#define MBIR_TXMBF (1 << 12)
71#define MBIR_TXMBFA (1 << 11)
72#define MBIR_RXMBF (1 << 4)
73#define MBIR_RXMBFA (1 << 3)
74
75#define KS_GRR 0x26
76#define GRR_QMU (1 << 1)
77#define GRR_GSR (1 << 0)
78
79#define KS_WFCR 0x2A
80#define WFCR_MPRXE (1 << 7)
81#define WFCR_WF3E (1 << 3)
82#define WFCR_WF2E (1 << 2)
83#define WFCR_WF1E (1 << 1)
84#define WFCR_WF0E (1 << 0)
85
86#define KS_WF0CRC0 0x30
87#define KS_WF0CRC1 0x32
88#define KS_WF0BM0 0x34
89#define KS_WF0BM1 0x36
90#define KS_WF0BM2 0x38
91#define KS_WF0BM3 0x3A
92
93#define KS_WF1CRC0 0x40
94#define KS_WF1CRC1 0x42
95#define KS_WF1BM0 0x44
96#define KS_WF1BM1 0x46
97#define KS_WF1BM2 0x48
98#define KS_WF1BM3 0x4A
99
100#define KS_WF2CRC0 0x50
101#define KS_WF2CRC1 0x52
102#define KS_WF2BM0 0x54
103#define KS_WF2BM1 0x56
104#define KS_WF2BM2 0x58
105#define KS_WF2BM3 0x5A
106
107#define KS_WF3CRC0 0x60
108#define KS_WF3CRC1 0x62
109#define KS_WF3BM0 0x64
110#define KS_WF3BM1 0x66
111#define KS_WF3BM2 0x68
112#define KS_WF3BM3 0x6A
113
114#define KS_TXCR 0x70
115#define TXCR_TCGICMP (1 << 8)
116#define TXCR_TCGUDP (1 << 7)
117#define TXCR_TCGTCP (1 << 6)
118#define TXCR_TCGIP (1 << 5)
119#define TXCR_FTXQ (1 << 4)
120#define TXCR_TXFCE (1 << 3)
121#define TXCR_TXPE (1 << 2)
122#define TXCR_TXCRC (1 << 1)
123#define TXCR_TXE (1 << 0)
124
125#define KS_TXSR 0x72
126#define TXSR_TXLC (1 << 13)
127#define TXSR_TXMC (1 << 12)
128#define TXSR_TXFID_MASK (0x3f << 0)
129#define TXSR_TXFID_SHIFT (0)
130#define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
131
132
133#define KS_RXCR1 0x74
134#define RXCR1_FRXQ (1 << 15)
135#define RXCR1_RXUDPFCC (1 << 14)
136#define RXCR1_RXTCPFCC (1 << 13)
137#define RXCR1_RXIPFCC (1 << 12)
138#define RXCR1_RXPAFMA (1 << 11)
139#define RXCR1_RXFCE (1 << 10)
140#define RXCR1_RXEFE (1 << 9)
141#define RXCR1_RXMAFMA (1 << 8)
142#define RXCR1_RXBE (1 << 7)
143#define RXCR1_RXME (1 << 6)
144#define RXCR1_RXUE (1 << 5)
145#define RXCR1_RXAE (1 << 4)
146#define RXCR1_RXINVF (1 << 1)
147#define RXCR1_RXE (1 << 0)
148#define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
149 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
150
151#define KS_RXCR2 0x76
152#define RXCR2_SRDBL_MASK (0x7 << 5)
153#define RXCR2_SRDBL_SHIFT (5)
154#define RXCR2_SRDBL_4B (0x0 << 5)
155#define RXCR2_SRDBL_8B (0x1 << 5)
156#define RXCR2_SRDBL_16B (0x2 << 5)
157#define RXCR2_SRDBL_32B (0x3 << 5)
158/* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
159#define RXCR2_IUFFP (1 << 4)
160#define RXCR2_RXIUFCEZ (1 << 3)
161#define RXCR2_UDPLFE (1 << 2)
162#define RXCR2_RXICMPFCC (1 << 1)
163#define RXCR2_RXSAF (1 << 0)
164
165#define KS_TXMIR 0x78
166
167#define KS_RXFHSR 0x7C
168#define RXFSHR_RXFV (1 << 15)
169#define RXFSHR_RXICMPFCS (1 << 13)
170#define RXFSHR_RXIPFCS (1 << 12)
171#define RXFSHR_RXTCPFCS (1 << 11)
172#define RXFSHR_RXUDPFCS (1 << 10)
173#define RXFSHR_RXBF (1 << 7)
174#define RXFSHR_RXMF (1 << 6)
175#define RXFSHR_RXUF (1 << 5)
176#define RXFSHR_RXMR (1 << 4)
177#define RXFSHR_RXFT (1 << 3)
178#define RXFSHR_RXFTL (1 << 2)
179#define RXFSHR_RXRF (1 << 1)
180#define RXFSHR_RXCE (1 << 0)
181#define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
182 RXFSHR_RXFTL | RXFSHR_RXMR |\
183 RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
184 RXFSHR_RXTCPFCS)
185#define KS_RXFHBCR 0x7E
186#define RXFHBCR_CNT_MASK 0x0FFF
187
188#define KS_TXQCR 0x80
189#define TXQCR_AETFE (1 << 2)
190#define TXQCR_TXQMAM (1 << 1)
191#define TXQCR_METFE (1 << 0)
192
193#define KS_RXQCR 0x82
194#define RXQCR_RXDTTS (1 << 12)
195#define RXQCR_RXDBCTS (1 << 11)
196#define RXQCR_RXFCTS (1 << 10)
197#define RXQCR_RXIPHTOE (1 << 9)
198#define RXQCR_RXDTTE (1 << 7)
199#define RXQCR_RXDBCTE (1 << 6)
200#define RXQCR_RXFCTE (1 << 5)
201#define RXQCR_ADRFE (1 << 4)
202#define RXQCR_SDA (1 << 3)
203#define RXQCR_RRXEF (1 << 0)
204#define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
205
206#define KS_TXFDPR 0x84
207#define TXFDPR_TXFPAI (1 << 14)
208#define TXFDPR_TXFP_MASK (0x7ff << 0)
209#define TXFDPR_TXFP_SHIFT (0)
210
211#define KS_RXFDPR 0x86
212#define RXFDPR_RXFPAI (1 << 14)
213
214#define KS_RXDTTR 0x8C
215#define KS_RXDBCTR 0x8E
216
217#define KS_IER 0x90
218#define KS_ISR 0x92
219#define IRQ_LCI (1 << 15)
220#define IRQ_TXI (1 << 14)
221#define IRQ_RXI (1 << 13)
222#define IRQ_RXOI (1 << 11)
223#define IRQ_TXPSI (1 << 9)
224#define IRQ_RXPSI (1 << 8)
225#define IRQ_TXSAI (1 << 6)
226#define IRQ_RXWFDI (1 << 5)
227#define IRQ_RXMPDI (1 << 4)
228#define IRQ_LDI (1 << 3)
229#define IRQ_EDI (1 << 2)
230#define IRQ_SPIBEI (1 << 1)
231#define IRQ_DEDI (1 << 0)
232
233#define KS_RXFCTR 0x9C
234#define RXFCTR_THRESHOLD_MASK 0x00FF
235
236#define KS_RXFC 0x9D
237#define RXFCTR_RXFC_MASK (0xff << 8)
238#define RXFCTR_RXFC_SHIFT (8)
239#define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
240#define RXFCTR_RXFCT_MASK (0xff << 0)
241#define RXFCTR_RXFCT_SHIFT (0)
242
243#define KS_TXNTFSR 0x9E
244
245#define KS_MAHTR0 0xA0
246#define KS_MAHTR1 0xA2
247#define KS_MAHTR2 0xA4
248#define KS_MAHTR3 0xA6
249
250#define KS_FCLWR 0xB0
251#define KS_FCHWR 0xB2
252#define KS_FCOWR 0xB4
253
254#define KS_CIDER 0xC0
255#define CIDER_ID 0x8870
256#define CIDER_REV_MASK (0x7 << 1)
257#define CIDER_REV_SHIFT (1)
258#define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
259
260#define KS_CGCR 0xC6
261#define KS_IACR 0xC8
262#define IACR_RDEN (1 << 12)
263#define IACR_TSEL_MASK (0x3 << 10)
264#define IACR_TSEL_SHIFT (10)
265#define IACR_TSEL_MIB (0x3 << 10)
266#define IACR_ADDR_MASK (0x1f << 0)
267#define IACR_ADDR_SHIFT (0)
268
269#define KS_IADLR 0xD0
270#define KS_IAHDR 0xD2
271
272#define KS_PMECR 0xD4
273#define PMECR_PME_DELAY (1 << 14)
274#define PMECR_PME_POL (1 << 12)
275#define PMECR_WOL_WAKEUP (1 << 11)
276#define PMECR_WOL_MAGICPKT (1 << 10)
277#define PMECR_WOL_LINKUP (1 << 9)
278#define PMECR_WOL_ENERGY (1 << 8)
279#define PMECR_AUTO_WAKE_EN (1 << 7)
280#define PMECR_WAKEUP_NORMAL (1 << 6)
281#define PMECR_WKEVT_MASK (0xf << 2)
282#define PMECR_WKEVT_SHIFT (2)
283#define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
284#define PMECR_WKEVT_ENERGY (0x1 << 2)
285#define PMECR_WKEVT_LINK (0x2 << 2)
286#define PMECR_WKEVT_MAGICPKT (0x4 << 2)
287#define PMECR_WKEVT_FRAME (0x8 << 2)
288#define PMECR_PM_MASK (0x3 << 0)
289#define PMECR_PM_SHIFT (0)
290#define PMECR_PM_NORMAL (0x0 << 0)
291#define PMECR_PM_ENERGY (0x1 << 0)
292#define PMECR_PM_SOFTDOWN (0x2 << 0)
293#define PMECR_PM_POWERSAVE (0x3 << 0)
294
295/* Standard MII PHY data */
296#define KS_P1MBCR 0xE4
297#define P1MBCR_FORCE_FDX (1 << 8)
298
299#define KS_P1MBSR 0xE6
300#define P1MBSR_AN_COMPLETE (1 << 5)
301#define P1MBSR_AN_CAPABLE (1 << 3)
302#define P1MBSR_LINK_UP (1 << 2)
303
304#define KS_PHY1ILR 0xE8
305#define KS_PHY1IHR 0xEA
306#define KS_P1ANAR 0xEC
307#define KS_P1ANLPR 0xEE
308
309#define KS_P1SCLMD 0xF4
310#define P1SCLMD_LEDOFF (1 << 15)
311#define P1SCLMD_TXIDS (1 << 14)
312#define P1SCLMD_RESTARTAN (1 << 13)
313#define P1SCLMD_DISAUTOMDIX (1 << 10)
314#define P1SCLMD_FORCEMDIX (1 << 9)
315#define P1SCLMD_AUTONEGEN (1 << 7)
316#define P1SCLMD_FORCE100 (1 << 6)
317#define P1SCLMD_FORCEFDX (1 << 5)
318#define P1SCLMD_ADV_FLOW (1 << 4)
319#define P1SCLMD_ADV_100BT_FDX (1 << 3)
320#define P1SCLMD_ADV_100BT_HDX (1 << 2)
321#define P1SCLMD_ADV_10BT_FDX (1 << 1)
322#define P1SCLMD_ADV_10BT_HDX (1 << 0)
323
324#define KS_P1CR 0xF6
325#define P1CR_HP_MDIX (1 << 15)
326#define P1CR_REV_POL (1 << 13)
327#define P1CR_OP_100M (1 << 10)
328#define P1CR_OP_FDX (1 << 9)
329#define P1CR_OP_MDI (1 << 7)
330#define P1CR_AN_DONE (1 << 6)
331#define P1CR_LINK_GOOD (1 << 5)
332#define P1CR_PNTR_FLOW (1 << 4)
333#define P1CR_PNTR_100BT_FDX (1 << 3)
334#define P1CR_PNTR_100BT_HDX (1 << 2)
335#define P1CR_PNTR_10BT_FDX (1 << 1)
336#define P1CR_PNTR_10BT_HDX (1 << 0)
337
338/* TX Frame control */
339
340#define TXFR_TXIC (1 << 15)
341#define TXFR_TXFID_MASK (0x3f << 0)
342#define TXFR_TXFID_SHIFT (0)
343
344#define KS_P1SR 0xF8
345#define P1SR_HP_MDIX (1 << 15)
346#define P1SR_REV_POL (1 << 13)
347#define P1SR_OP_100M (1 << 10)
348#define P1SR_OP_FDX (1 << 9)
349#define P1SR_OP_MDI (1 << 7)
350#define P1SR_AN_DONE (1 << 6)
351#define P1SR_LINK_GOOD (1 << 5)
352#define P1SR_PNTR_FLOW (1 << 4)
353#define P1SR_PNTR_100BT_FDX (1 << 3)
354#define P1SR_PNTR_100BT_HDX (1 << 2)
355#define P1SR_PNTR_10BT_FDX (1 << 1)
356#define P1SR_PNTR_10BT_HDX (1 << 0)
357
358#define ENUM_BUS_NONE 0
359#define ENUM_BUS_8BIT 1
360#define ENUM_BUS_16BIT 2
361#define ENUM_BUS_32BIT 3
362
363#define MAX_MCAST_LST 32
364#define HW_MCAST_SIZE 8
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000365
366/**
367 * union ks_tx_hdr - tx header data
368 * @txb: The header as bytes
369 * @txw: The header as 16bit, little-endian words
370 *
371 * A dual representation of the tx header data to allow
372 * access to individual bytes, and to allow 16bit accesses
373 * with 16bit alignment.
374 */
375union ks_tx_hdr {
376 u8 txb[4];
377 __le16 txw[2];
378};
379
380/**
381 * struct ks_net - KS8851 driver private data
382 * @net_device : The network device we're bound to
383 * @hw_addr : start address of data register.
384 * @hw_addr_cmd : start address of command register.
385 * @txh : temporaly buffer to save status/length.
386 * @lock : Lock to ensure that the device is not accessed when busy.
387 * @pdev : Pointer to platform device.
388 * @mii : The MII state information for the mii calls.
389 * @frame_head_info : frame header information for multi-pkt rx.
390 * @statelock : Lock on this structure for tx list.
391 * @msg_enable : The message flags controlling driver output (see ethtool).
392 * @frame_cnt : number of frames received.
393 * @bus_width : i/o bus width.
394 * @irq : irq number assigned to this device.
395 * @rc_rxqcr : Cached copy of KS_RXQCR.
396 * @rc_txcr : Cached copy of KS_TXCR.
397 * @rc_ier : Cached copy of KS_IER.
398 * @sharedbus : Multipex(addr and data bus) mode indicator.
399 * @cmd_reg_cache : command register cached.
400 * @cmd_reg_cache_int : command register cached. Used in the irq handler.
401 * @promiscuous : promiscuous mode indicator.
402 * @all_mcast : mutlicast indicator.
403 * @mcast_lst_size : size of multicast list.
404 * @mcast_lst : multicast list.
405 * @mcast_bits : multicast enabed.
406 * @mac_addr : MAC address assigned to this device.
407 * @fid : frame id.
408 * @extra_byte : number of extra byte prepended rx pkt.
409 * @enabled : indicator this device works.
410 *
411 * The @lock ensures that the chip is protected when certain operations are
412 * in progress. When the read or write packet transfer is in progress, most
413 * of the chip registers are not accessible until the transfer is finished and
414 * the DMA has been de-asserted.
415 *
416 * The @statelock is used to protect information in the structure which may
417 * need to be accessed via several sources, such as the network driver layer
418 * or one of the work queues.
419 *
420 */
421
422/* Receive multiplex framer header info */
423struct type_frame_head {
424 u16 sts; /* Frame status */
425 u16 len; /* Byte count */
426};
427
428struct ks_net {
429 struct net_device *netdev;
430 void __iomem *hw_addr;
431 void __iomem *hw_addr_cmd;
432 union ks_tx_hdr txh ____cacheline_aligned;
433 struct mutex lock; /* spinlock to be interrupt safe */
434 struct platform_device *pdev;
435 struct mii_if_info mii;
436 struct type_frame_head *frame_head_info;
437 spinlock_t statelock;
438 u32 msg_enable;
439 u32 frame_cnt;
440 int bus_width;
441 int irq;
442
443 u16 rc_rxqcr;
444 u16 rc_txcr;
445 u16 rc_ier;
446 u16 sharedbus;
447 u16 cmd_reg_cache;
448 u16 cmd_reg_cache_int;
449 u16 promiscuous;
450 u16 all_mcast;
451 u16 mcast_lst_size;
Jiri Pirko22bedad2010-04-01 21:22:57 +0000452 u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN];
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000453 u8 mcast_bits[HW_MCAST_SIZE];
454 u8 mac_addr[6];
455 u8 fid;
456 u8 extra_byte;
457 u8 enabled;
458};
459
460static int msg_enable;
461
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000462#define BE3 0x8000 /* Byte Enable 3 */
463#define BE2 0x4000 /* Byte Enable 2 */
464#define BE1 0x2000 /* Byte Enable 1 */
465#define BE0 0x1000 /* Byte Enable 0 */
466
467/**
468 * register read/write calls.
469 *
470 * All these calls issue transactions to access the chip's registers. They
471 * all require that the necessary lock is held to prevent accesses when the
472 * chip is busy transfering packet data (RX/TX FIFO accesses).
473 */
474
475/**
476 * ks_rdreg8 - read 8 bit register from device
477 * @ks : The chip information
478 * @offset: The register address
479 *
480 * Read a 8bit register from the chip, returning the result
481 */
482static u8 ks_rdreg8(struct ks_net *ks, int offset)
483{
484 u16 data;
485 u8 shift_bit = offset & 0x03;
486 u8 shift_data = (offset & 1) << 3;
487 ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
488 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
489 data = ioread16(ks->hw_addr);
490 return (u8)(data >> shift_data);
491}
492
493/**
494 * ks_rdreg16 - read 16 bit register from device
495 * @ks : The chip information
496 * @offset: The register address
497 *
498 * Read a 16bit register from the chip, returning the result
499 */
500
501static u16 ks_rdreg16(struct ks_net *ks, int offset)
502{
503 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
504 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
505 return ioread16(ks->hw_addr);
506}
507
508/**
509 * ks_wrreg8 - write 8bit register value to chip
510 * @ks: The chip information
511 * @offset: The register address
512 * @value: The value to write
513 *
514 */
515static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
516{
517 u8 shift_bit = (offset & 0x03);
518 u16 value_write = (u16)(value << ((offset & 1) << 3));
519 ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
520 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
521 iowrite16(value_write, ks->hw_addr);
522}
523
524/**
525 * ks_wrreg16 - write 16bit register value to chip
526 * @ks: The chip information
527 * @offset: The register address
528 * @value: The value to write
529 *
530 */
531
532static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
533{
534 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
535 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
536 iowrite16(value, ks->hw_addr);
537}
538
539/**
540 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
541 * @ks: The chip state
542 * @wptr: buffer address to save data
543 * @len: length in byte to read
544 *
545 */
546static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
547{
548 len >>= 1;
549 while (len--)
550 *wptr++ = (u16)ioread16(ks->hw_addr);
551}
552
553/**
554 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
555 * @ks: The chip information
556 * @wptr: buffer address
557 * @len: length in byte to write
558 *
559 */
560static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
561{
562 len >>= 1;
563 while (len--)
564 iowrite16(*wptr++, ks->hw_addr);
565}
566
David J. Choi4a91ca42009-11-19 15:34:30 +0000567static void ks_disable_int(struct ks_net *ks)
568{
569 ks_wrreg16(ks, KS_IER, 0x0000);
570} /* ks_disable_int */
571
572static void ks_enable_int(struct ks_net *ks)
573{
574 ks_wrreg16(ks, KS_IER, ks->rc_ier);
575} /* ks_enable_int */
576
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000577/**
578 * ks_tx_fifo_space - return the available hardware buffer size.
579 * @ks: The chip information
580 *
581 */
582static inline u16 ks_tx_fifo_space(struct ks_net *ks)
583{
584 return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
585}
586
587/**
588 * ks_save_cmd_reg - save the command register from the cache.
589 * @ks: The chip information
590 *
591 */
592static inline void ks_save_cmd_reg(struct ks_net *ks)
593{
594 /*ks8851 MLL has a bug to read back the command register.
595 * So rely on software to save the content of command register.
596 */
597 ks->cmd_reg_cache_int = ks->cmd_reg_cache;
598}
599
600/**
601 * ks_restore_cmd_reg - restore the command register from the cache and
602 * write to hardware register.
603 * @ks: The chip information
604 *
605 */
606static inline void ks_restore_cmd_reg(struct ks_net *ks)
607{
608 ks->cmd_reg_cache = ks->cmd_reg_cache_int;
609 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
610}
611
612/**
613 * ks_set_powermode - set power mode of the device
614 * @ks: The chip information
615 * @pwrmode: The power mode value to write to KS_PMECR.
616 *
617 * Change the power mode of the chip.
618 */
619static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
620{
621 unsigned pmecr;
622
Joe Perches0dc7d2b2010-02-27 14:43:51 +0000623 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000624
625 ks_rdreg16(ks, KS_GRR);
626 pmecr = ks_rdreg16(ks, KS_PMECR);
627 pmecr &= ~PMECR_PM_MASK;
628 pmecr |= pwrmode;
629
630 ks_wrreg16(ks, KS_PMECR, pmecr);
631}
632
633/**
634 * ks_read_config - read chip configuration of bus width.
635 * @ks: The chip information
636 *
637 */
638static void ks_read_config(struct ks_net *ks)
639{
640 u16 reg_data = 0;
641
642 /* Regardless of bus width, 8 bit read should always work.*/
643 reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
644 reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
645
646 /* addr/data bus are multiplexed */
647 ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
648
649 /* There are garbage data when reading data from QMU,
650 depending on bus-width.
651 */
652
653 if (reg_data & CCR_8BIT) {
654 ks->bus_width = ENUM_BUS_8BIT;
655 ks->extra_byte = 1;
656 } else if (reg_data & CCR_16BIT) {
657 ks->bus_width = ENUM_BUS_16BIT;
658 ks->extra_byte = 2;
659 } else {
660 ks->bus_width = ENUM_BUS_32BIT;
661 ks->extra_byte = 4;
662 }
663}
664
665/**
666 * ks_soft_reset - issue one of the soft reset to the device
667 * @ks: The device state.
668 * @op: The bit(s) to set in the GRR
669 *
670 * Issue the relevant soft-reset command to the device's GRR register
671 * specified by @op.
672 *
673 * Note, the delays are in there as a caution to ensure that the reset
674 * has time to take effect and then complete. Since the datasheet does
675 * not currently specify the exact sequence, we have chosen something
676 * that seems to work with our device.
677 */
678static void ks_soft_reset(struct ks_net *ks, unsigned op)
679{
680 /* Disable interrupt first */
681 ks_wrreg16(ks, KS_IER, 0x0000);
682 ks_wrreg16(ks, KS_GRR, op);
683 mdelay(10); /* wait a short time to effect reset */
684 ks_wrreg16(ks, KS_GRR, 0);
685 mdelay(1); /* wait for condition to clear */
686}
687
688
David J. Choi4a91ca42009-11-19 15:34:30 +0000689void ks_enable_qmu(struct ks_net *ks)
690{
691 u16 w;
692
693 w = ks_rdreg16(ks, KS_TXCR);
694 /* Enables QMU Transmit (TXCR). */
695 ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
696
697 /*
698 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
699 * Enable
700 */
701
702 w = ks_rdreg16(ks, KS_RXQCR);
703 ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
704
705 /* Enables QMU Receive (RXCR1). */
706 w = ks_rdreg16(ks, KS_RXCR1);
707 ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
708 ks->enabled = true;
709} /* ks_enable_qmu */
710
711static void ks_disable_qmu(struct ks_net *ks)
712{
713 u16 w;
714
715 w = ks_rdreg16(ks, KS_TXCR);
716
717 /* Disables QMU Transmit (TXCR). */
718 w &= ~TXCR_TXE;
719 ks_wrreg16(ks, KS_TXCR, w);
720
721 /* Disables QMU Receive (RXCR1). */
722 w = ks_rdreg16(ks, KS_RXCR1);
723 w &= ~RXCR1_RXE ;
724 ks_wrreg16(ks, KS_RXCR1, w);
725
726 ks->enabled = false;
727
728} /* ks_disable_qmu */
729
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000730/**
731 * ks_read_qmu - read 1 pkt data from the QMU.
732 * @ks: The chip information
733 * @buf: buffer address to save 1 pkt
734 * @len: Pkt length
735 * Here is the sequence to read 1 pkt:
736 * 1. set sudo DMA mode
737 * 2. read prepend data
738 * 3. read pkt data
739 * 4. reset sudo DMA Mode
740 */
741static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
742{
743 u32 r = ks->extra_byte & 0x1 ;
744 u32 w = ks->extra_byte - r;
745
746 /* 1. set sudo DMA mode */
747 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
748 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
749
750 /* 2. read prepend data */
751 /**
752 * read 4 + extra bytes and discard them.
753 * extra bytes for dummy, 2 for status, 2 for len
754 */
755
756 /* use likely(r) for 8 bit access for performance */
757 if (unlikely(r))
758 ioread8(ks->hw_addr);
759 ks_inblk(ks, buf, w + 2 + 2);
760
761 /* 3. read pkt data */
762 ks_inblk(ks, buf, ALIGN(len, 4));
763
764 /* 4. reset sudo DMA Mode */
765 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
766}
767
768/**
769 * ks_rcv - read multiple pkts data from the QMU.
770 * @ks: The chip information
771 * @netdev: The network device being opened.
772 *
773 * Read all of header information before reading pkt content.
774 * It is not allowed only port of pkts in QMU after issuing
775 * interrupt ack.
776 */
777static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
778{
779 u32 i;
780 struct type_frame_head *frame_hdr = ks->frame_head_info;
781 struct sk_buff *skb;
782
783 ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
784
785 /* read all header information */
786 for (i = 0; i < ks->frame_cnt; i++) {
787 /* Checking Received packet status */
788 frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
789 /* Get packet len from hardware */
790 frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
791 frame_hdr++;
792 }
793
794 frame_hdr = ks->frame_head_info;
795 while (ks->frame_cnt--) {
796 skb = dev_alloc_skb(frame_hdr->len + 16);
797 if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) &&
798 (frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) {
799 skb_reserve(skb, 2);
800 /* read data block including CRC 4 bytes */
David J. Choi4a91ca42009-11-19 15:34:30 +0000801 ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000802 skb_put(skb, frame_hdr->len);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000803 skb->protocol = eth_type_trans(skb, netdev);
804 netif_rx(skb);
805 } else {
Joe Perches0dc7d2b2010-02-27 14:43:51 +0000806 pr_err("%s: err:skb alloc\n", __func__);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000807 ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
808 if (skb)
809 dev_kfree_skb_irq(skb);
810 }
811 frame_hdr++;
812 }
813}
814
815/**
816 * ks_update_link_status - link status update.
817 * @netdev: The network device being opened.
818 * @ks: The chip information
819 *
820 */
821
822static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
823{
824 /* check the status of the link */
825 u32 link_up_status;
826 if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
827 netif_carrier_on(netdev);
828 link_up_status = true;
829 } else {
830 netif_carrier_off(netdev);
831 link_up_status = false;
832 }
Joe Perches0dc7d2b2010-02-27 14:43:51 +0000833 netif_dbg(ks, link, ks->netdev,
834 "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000835}
836
837/**
838 * ks_irq - device interrupt handler
839 * @irq: Interrupt number passed from the IRQ hnalder.
840 * @pw: The private word passed to register_irq(), our struct ks_net.
841 *
842 * This is the handler invoked to find out what happened
843 *
844 * Read the interrupt status, work out what needs to be done and then clear
845 * any of the interrupts that are not needed.
846 */
847
848static irqreturn_t ks_irq(int irq, void *pw)
849{
Choi, Davidaeedba82010-01-27 06:03:16 +0000850 struct net_device *netdev = pw;
851 struct ks_net *ks = netdev_priv(netdev);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000852 u16 status;
853
854 /*this should be the first in IRQ handler */
855 ks_save_cmd_reg(ks);
856
857 status = ks_rdreg16(ks, KS_ISR);
858 if (unlikely(!status)) {
859 ks_restore_cmd_reg(ks);
860 return IRQ_NONE;
861 }
862
863 ks_wrreg16(ks, KS_ISR, status);
864
865 if (likely(status & IRQ_RXI))
866 ks_rcv(ks, netdev);
867
868 if (unlikely(status & IRQ_LCI))
869 ks_update_link_status(netdev, ks);
870
871 if (unlikely(status & IRQ_TXI))
872 netif_wake_queue(netdev);
873
874 if (unlikely(status & IRQ_LDI)) {
875
876 u16 pmecr = ks_rdreg16(ks, KS_PMECR);
877 pmecr &= ~PMECR_WKEVT_MASK;
878 ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
879 }
880
881 /* this should be the last in IRQ handler*/
882 ks_restore_cmd_reg(ks);
883 return IRQ_HANDLED;
884}
885
886
887/**
888 * ks_net_open - open network device
889 * @netdev: The network device being opened.
890 *
891 * Called when the network device is marked active, such as a user executing
892 * 'ifconfig up' on the device.
893 */
894static int ks_net_open(struct net_device *netdev)
895{
896 struct ks_net *ks = netdev_priv(netdev);
897 int err;
898
899#define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW)
900 /* lock the card, even if we may not actually do anything
901 * else at the moment.
902 */
903
Joe Perches0dc7d2b2010-02-27 14:43:51 +0000904 netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000905
906 /* reset the HW */
David J. Choi4a91ca42009-11-19 15:34:30 +0000907 err = request_irq(ks->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000908
909 if (err) {
Joe Perches0dc7d2b2010-02-27 14:43:51 +0000910 pr_err("Failed to request IRQ: %d: %d\n", ks->irq, err);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000911 return err;
912 }
913
David J. Choi4a91ca42009-11-19 15:34:30 +0000914 /* wake up powermode to normal mode */
915 ks_set_powermode(ks, PMECR_PM_NORMAL);
916 mdelay(1); /* wait for normal mode to take effect */
917
918 ks_wrreg16(ks, KS_ISR, 0xffff);
919 ks_enable_int(ks);
920 ks_enable_qmu(ks);
921 netif_start_queue(ks->netdev);
922
Joe Perches0dc7d2b2010-02-27 14:43:51 +0000923 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000924
925 return 0;
926}
927
928/**
929 * ks_net_stop - close network device
930 * @netdev: The device being closed.
931 *
932 * Called to close down a network device which has been active. Cancell any
933 * work, shutdown the RX and TX process and then place the chip into a low
934 * power state whilst it is not being used.
935 */
936static int ks_net_stop(struct net_device *netdev)
937{
938 struct ks_net *ks = netdev_priv(netdev);
939
Joe Perches0dc7d2b2010-02-27 14:43:51 +0000940 netif_info(ks, ifdown, netdev, "shutting down\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000941
942 netif_stop_queue(netdev);
943
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000944 mutex_lock(&ks->lock);
945
946 /* turn off the IRQs and ack any outstanding */
947 ks_wrreg16(ks, KS_IER, 0x0000);
948 ks_wrreg16(ks, KS_ISR, 0xffff);
949
David J. Choi4a91ca42009-11-19 15:34:30 +0000950 /* shutdown RX/TX QMU */
951 ks_disable_qmu(ks);
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000952
953 /* set powermode to soft power down to save power */
954 ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
955 free_irq(ks->irq, netdev);
956 mutex_unlock(&ks->lock);
957 return 0;
958}
959
960
961/**
962 * ks_write_qmu - write 1 pkt data to the QMU.
963 * @ks: The chip information
964 * @pdata: buffer address to save 1 pkt
965 * @len: Pkt length in byte
966 * Here is the sequence to write 1 pkt:
967 * 1. set sudo DMA mode
968 * 2. write status/length
969 * 3. write pkt data
970 * 4. reset sudo DMA Mode
971 * 5. reset sudo DMA mode
972 * 6. Wait until pkt is out
973 */
974static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
975{
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000976 /* start header at txb[0] to align txw entries */
David J. Choi4a91ca42009-11-19 15:34:30 +0000977 ks->txh.txw[0] = 0;
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000978 ks->txh.txw[1] = cpu_to_le16(len);
979
980 /* 1. set sudo-DMA mode */
981 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
982 /* 2. write status/lenth info */
983 ks_outblk(ks, ks->txh.txw, 4);
984 /* 3. write pkt data */
985 ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
986 /* 4. reset sudo-DMA mode */
987 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
988 /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
989 ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
990 /* 6. wait until TXQCR_METFE is auto-cleared */
991 while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
992 ;
993}
994
Choi, Davida55c0a0e2009-09-25 14:42:12 +0000995/**
996 * ks_start_xmit - transmit packet
997 * @skb : The buffer to transmit
998 * @netdev : The device used to transmit the packet.
999 *
1000 * Called by the network layer to transmit the @skb.
1001 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1002 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1003 */
1004static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1005{
1006 int retv = NETDEV_TX_OK;
1007 struct ks_net *ks = netdev_priv(netdev);
1008
1009 disable_irq(netdev->irq);
1010 ks_disable_int(ks);
1011 spin_lock(&ks->statelock);
1012
1013 /* Extra space are required:
1014 * 4 byte for alignment, 4 for status/length, 4 for CRC
1015 */
1016
1017 if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1018 ks_write_qmu(ks, skb->data, skb->len);
1019 dev_kfree_skb(skb);
1020 } else
1021 retv = NETDEV_TX_BUSY;
1022 spin_unlock(&ks->statelock);
1023 ks_enable_int(ks);
1024 enable_irq(netdev->irq);
1025 return retv;
1026}
1027
1028/**
1029 * ks_start_rx - ready to serve pkts
1030 * @ks : The chip information
1031 *
1032 */
1033static void ks_start_rx(struct ks_net *ks)
1034{
1035 u16 cntl;
1036
1037 /* Enables QMU Receive (RXCR1). */
1038 cntl = ks_rdreg16(ks, KS_RXCR1);
1039 cntl |= RXCR1_RXE ;
1040 ks_wrreg16(ks, KS_RXCR1, cntl);
1041} /* ks_start_rx */
1042
1043/**
1044 * ks_stop_rx - stop to serve pkts
1045 * @ks : The chip information
1046 *
1047 */
1048static void ks_stop_rx(struct ks_net *ks)
1049{
1050 u16 cntl;
1051
1052 /* Disables QMU Receive (RXCR1). */
1053 cntl = ks_rdreg16(ks, KS_RXCR1);
1054 cntl &= ~RXCR1_RXE ;
1055 ks_wrreg16(ks, KS_RXCR1, cntl);
1056
1057} /* ks_stop_rx */
1058
1059static unsigned long const ethernet_polynomial = 0x04c11db7U;
1060
1061static unsigned long ether_gen_crc(int length, u8 *data)
1062{
1063 long crc = -1;
1064 while (--length >= 0) {
1065 u8 current_octet = *data++;
1066 int bit;
1067
1068 for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1069 crc = (crc << 1) ^
1070 ((crc < 0) ^ (current_octet & 1) ?
1071 ethernet_polynomial : 0);
1072 }
1073 }
1074 return (unsigned long)crc;
1075} /* ether_gen_crc */
1076
1077/**
1078* ks_set_grpaddr - set multicast information
1079* @ks : The chip information
1080*/
1081
1082static void ks_set_grpaddr(struct ks_net *ks)
1083{
1084 u8 i;
1085 u32 index, position, value;
1086
1087 memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1088
1089 for (i = 0; i < ks->mcast_lst_size; i++) {
1090 position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1091 index = position >> 3;
1092 value = 1 << (position & 7);
1093 ks->mcast_bits[index] |= (u8)value;
1094 }
1095
1096 for (i = 0; i < HW_MCAST_SIZE; i++) {
1097 if (i & 1) {
1098 ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1099 (ks->mcast_bits[i] << 8) |
1100 ks->mcast_bits[i - 1]);
1101 }
1102 }
1103} /* ks_set_grpaddr */
1104
1105/*
1106* ks_clear_mcast - clear multicast information
1107*
1108* @ks : The chip information
1109* This routine removes all mcast addresses set in the hardware.
1110*/
1111
1112static void ks_clear_mcast(struct ks_net *ks)
1113{
1114 u16 i, mcast_size;
1115 for (i = 0; i < HW_MCAST_SIZE; i++)
1116 ks->mcast_bits[i] = 0;
1117
1118 mcast_size = HW_MCAST_SIZE >> 2;
1119 for (i = 0; i < mcast_size; i++)
1120 ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1121}
1122
1123static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1124{
1125 u16 cntl;
1126 ks->promiscuous = promiscuous_mode;
1127 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1128 cntl = ks_rdreg16(ks, KS_RXCR1);
1129
1130 cntl &= ~RXCR1_FILTER_MASK;
1131 if (promiscuous_mode)
1132 /* Enable Promiscuous mode */
1133 cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1134 else
1135 /* Disable Promiscuous mode (default normal mode) */
1136 cntl |= RXCR1_RXPAFMA;
1137
1138 ks_wrreg16(ks, KS_RXCR1, cntl);
1139
1140 if (ks->enabled)
1141 ks_start_rx(ks);
1142
1143} /* ks_set_promis */
1144
1145static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1146{
1147 u16 cntl;
1148
1149 ks->all_mcast = mcast;
1150 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1151 cntl = ks_rdreg16(ks, KS_RXCR1);
1152 cntl &= ~RXCR1_FILTER_MASK;
1153 if (mcast)
1154 /* Enable "Perfect with Multicast address passed mode" */
1155 cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1156 else
1157 /**
1158 * Disable "Perfect with Multicast address passed
1159 * mode" (normal mode).
1160 */
1161 cntl |= RXCR1_RXPAFMA;
1162
1163 ks_wrreg16(ks, KS_RXCR1, cntl);
1164
1165 if (ks->enabled)
1166 ks_start_rx(ks);
1167} /* ks_set_mcast */
1168
1169static void ks_set_rx_mode(struct net_device *netdev)
1170{
1171 struct ks_net *ks = netdev_priv(netdev);
Jiri Pirko22bedad2010-04-01 21:22:57 +00001172 struct netdev_hw_addr *ha;
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001173
1174 /* Turn on/off promiscuous mode. */
1175 if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1176 ks_set_promis(ks,
1177 (u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1178 /* Turn on/off all mcast mode. */
1179 else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1180 ks_set_mcast(ks,
1181 (u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1182 else
1183 ks_set_promis(ks, false);
1184
Jiri Pirko4cd24ea2010-02-08 04:30:35 +00001185 if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1186 if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001187 int i = 0;
Jiri Pirkof9dcbcc2010-02-23 09:19:49 +00001188
Jiri Pirko22bedad2010-04-01 21:22:57 +00001189 netdev_for_each_mc_addr(ha, netdev) {
1190 if (!(*ha->addr & 1))
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001191 continue;
1192 if (i >= MAX_MCAST_LST)
1193 break;
Jiri Pirko22bedad2010-04-01 21:22:57 +00001194 memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001195 }
1196 ks->mcast_lst_size = (u8)i;
1197 ks_set_grpaddr(ks);
1198 } else {
1199 /**
1200 * List too big to support so
1201 * turn on all mcast mode.
1202 */
1203 ks->mcast_lst_size = MAX_MCAST_LST;
1204 ks_set_mcast(ks, true);
1205 }
1206 } else {
1207 ks->mcast_lst_size = 0;
1208 ks_clear_mcast(ks);
1209 }
1210} /* ks_set_rx_mode */
1211
1212static void ks_set_mac(struct ks_net *ks, u8 *data)
1213{
1214 u16 *pw = (u16 *)data;
1215 u16 w, u;
1216
1217 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1218
1219 u = *pw++;
1220 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1221 ks_wrreg16(ks, KS_MARH, w);
1222
1223 u = *pw++;
1224 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1225 ks_wrreg16(ks, KS_MARM, w);
1226
1227 u = *pw;
1228 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1229 ks_wrreg16(ks, KS_MARL, w);
1230
1231 memcpy(ks->mac_addr, data, 6);
1232
1233 if (ks->enabled)
1234 ks_start_rx(ks);
1235}
1236
1237static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1238{
1239 struct ks_net *ks = netdev_priv(netdev);
1240 struct sockaddr *addr = paddr;
1241 u8 *da;
1242
1243 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1244
1245 da = (u8 *)netdev->dev_addr;
1246
1247 ks_set_mac(ks, da);
1248 return 0;
1249}
1250
1251static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1252{
1253 struct ks_net *ks = netdev_priv(netdev);
1254
1255 if (!netif_running(netdev))
1256 return -EINVAL;
1257
1258 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1259}
1260
1261static const struct net_device_ops ks_netdev_ops = {
1262 .ndo_open = ks_net_open,
1263 .ndo_stop = ks_net_stop,
1264 .ndo_do_ioctl = ks_net_ioctl,
1265 .ndo_start_xmit = ks_start_xmit,
1266 .ndo_set_mac_address = ks_set_mac_address,
1267 .ndo_set_rx_mode = ks_set_rx_mode,
1268 .ndo_change_mtu = eth_change_mtu,
1269 .ndo_validate_addr = eth_validate_addr,
1270};
1271
1272/* ethtool support */
1273
1274static void ks_get_drvinfo(struct net_device *netdev,
1275 struct ethtool_drvinfo *di)
1276{
1277 strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1278 strlcpy(di->version, "1.00", sizeof(di->version));
1279 strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1280 sizeof(di->bus_info));
1281}
1282
1283static u32 ks_get_msglevel(struct net_device *netdev)
1284{
1285 struct ks_net *ks = netdev_priv(netdev);
1286 return ks->msg_enable;
1287}
1288
1289static void ks_set_msglevel(struct net_device *netdev, u32 to)
1290{
1291 struct ks_net *ks = netdev_priv(netdev);
1292 ks->msg_enable = to;
1293}
1294
1295static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1296{
1297 struct ks_net *ks = netdev_priv(netdev);
1298 return mii_ethtool_gset(&ks->mii, cmd);
1299}
1300
1301static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1302{
1303 struct ks_net *ks = netdev_priv(netdev);
1304 return mii_ethtool_sset(&ks->mii, cmd);
1305}
1306
1307static u32 ks_get_link(struct net_device *netdev)
1308{
1309 struct ks_net *ks = netdev_priv(netdev);
1310 return mii_link_ok(&ks->mii);
1311}
1312
1313static int ks_nway_reset(struct net_device *netdev)
1314{
1315 struct ks_net *ks = netdev_priv(netdev);
1316 return mii_nway_restart(&ks->mii);
1317}
1318
1319static const struct ethtool_ops ks_ethtool_ops = {
1320 .get_drvinfo = ks_get_drvinfo,
1321 .get_msglevel = ks_get_msglevel,
1322 .set_msglevel = ks_set_msglevel,
1323 .get_settings = ks_get_settings,
1324 .set_settings = ks_set_settings,
1325 .get_link = ks_get_link,
1326 .nway_reset = ks_nway_reset,
1327};
1328
1329/* MII interface controls */
1330
1331/**
1332 * ks_phy_reg - convert MII register into a KS8851 register
1333 * @reg: MII register number.
1334 *
1335 * Return the KS8851 register number for the corresponding MII PHY register
1336 * if possible. Return zero if the MII register has no direct mapping to the
1337 * KS8851 register set.
1338 */
1339static int ks_phy_reg(int reg)
1340{
1341 switch (reg) {
1342 case MII_BMCR:
1343 return KS_P1MBCR;
1344 case MII_BMSR:
1345 return KS_P1MBSR;
1346 case MII_PHYSID1:
1347 return KS_PHY1ILR;
1348 case MII_PHYSID2:
1349 return KS_PHY1IHR;
1350 case MII_ADVERTISE:
1351 return KS_P1ANAR;
1352 case MII_LPA:
1353 return KS_P1ANLPR;
1354 }
1355
1356 return 0x0;
1357}
1358
1359/**
1360 * ks_phy_read - MII interface PHY register read.
1361 * @netdev: The network device the PHY is on.
1362 * @phy_addr: Address of PHY (ignored as we only have one)
1363 * @reg: The register to read.
1364 *
1365 * This call reads data from the PHY register specified in @reg. Since the
1366 * device does not support all the MII registers, the non-existant values
1367 * are always returned as zero.
1368 *
1369 * We return zero for unsupported registers as the MII code does not check
1370 * the value returned for any error status, and simply returns it to the
1371 * caller. The mii-tool that the driver was tested with takes any -ve error
1372 * as real PHY capabilities, thus displaying incorrect data to the user.
1373 */
1374static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1375{
1376 struct ks_net *ks = netdev_priv(netdev);
1377 int ksreg;
1378 int result;
1379
1380 ksreg = ks_phy_reg(reg);
1381 if (!ksreg)
1382 return 0x0; /* no error return allowed, so use zero */
1383
1384 mutex_lock(&ks->lock);
1385 result = ks_rdreg16(ks, ksreg);
1386 mutex_unlock(&ks->lock);
1387
1388 return result;
1389}
1390
1391static void ks_phy_write(struct net_device *netdev,
1392 int phy, int reg, int value)
1393{
1394 struct ks_net *ks = netdev_priv(netdev);
1395 int ksreg;
1396
1397 ksreg = ks_phy_reg(reg);
1398 if (ksreg) {
1399 mutex_lock(&ks->lock);
1400 ks_wrreg16(ks, ksreg, value);
1401 mutex_unlock(&ks->lock);
1402 }
1403}
1404
1405/**
1406 * ks_read_selftest - read the selftest memory info.
1407 * @ks: The device state
1408 *
1409 * Read and check the TX/RX memory selftest information.
1410 */
1411static int ks_read_selftest(struct ks_net *ks)
1412{
1413 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1414 int ret = 0;
1415 unsigned rd;
1416
1417 rd = ks_rdreg16(ks, KS_MBIR);
1418
1419 if ((rd & both_done) != both_done) {
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001420 netdev_warn(ks->netdev, "Memory selftest not finished\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001421 return 0;
1422 }
1423
1424 if (rd & MBIR_TXMBFA) {
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001425 netdev_err(ks->netdev, "TX memory selftest fails\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001426 ret |= 1;
1427 }
1428
1429 if (rd & MBIR_RXMBFA) {
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001430 netdev_err(ks->netdev, "RX memory selftest fails\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001431 ret |= 2;
1432 }
1433
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001434 netdev_info(ks->netdev, "the selftest passes\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001435 return ret;
1436}
1437
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001438static void ks_setup(struct ks_net *ks)
1439{
1440 u16 w;
1441
1442 /**
1443 * Configure QMU Transmit
1444 */
1445
1446 /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1447 ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1448
1449 /* Setup Receive Frame Data Pointer Auto-Increment */
1450 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1451
1452 /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1453 ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1454
1455 /* Setup RxQ Command Control (RXQCR) */
1456 ks->rc_rxqcr = RXQCR_CMD_CNTL;
1457 ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1458
1459 /**
1460 * set the force mode to half duplex, default is full duplex
1461 * because if the auto-negotiation fails, most switch uses
1462 * half-duplex.
1463 */
1464
1465 w = ks_rdreg16(ks, KS_P1MBCR);
1466 w &= ~P1MBCR_FORCE_FDX;
1467 ks_wrreg16(ks, KS_P1MBCR, w);
1468
1469 w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1470 ks_wrreg16(ks, KS_TXCR, w);
1471
David J. Choi4a91ca42009-11-19 15:34:30 +00001472 w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001473
1474 if (ks->promiscuous) /* bPromiscuous */
1475 w |= (RXCR1_RXAE | RXCR1_RXINVF);
1476 else if (ks->all_mcast) /* Multicast address passed mode */
1477 w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1478 else /* Normal mode */
1479 w |= RXCR1_RXPAFMA;
1480
1481 ks_wrreg16(ks, KS_RXCR1, w);
1482} /*ks_setup */
1483
1484
1485static void ks_setup_int(struct ks_net *ks)
1486{
1487 ks->rc_ier = 0x00;
1488 /* Clear the interrupts status of the hardware. */
1489 ks_wrreg16(ks, KS_ISR, 0xffff);
1490
1491 /* Enables the interrupts of the hardware. */
1492 ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1493} /* ks_setup_int */
1494
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001495static int ks_hw_init(struct ks_net *ks)
1496{
1497#define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1498 ks->promiscuous = 0;
1499 ks->all_mcast = 0;
1500 ks->mcast_lst_size = 0;
1501
1502 ks->frame_head_info = (struct type_frame_head *) \
1503 kmalloc(MHEADER_SIZE, GFP_KERNEL);
1504 if (!ks->frame_head_info) {
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001505 pr_err("Error: Fail to allocate frame memory\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001506 return false;
1507 }
1508
1509 ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1510 return true;
1511}
1512
1513
1514static int __devinit ks8851_probe(struct platform_device *pdev)
1515{
1516 int err = -ENOMEM;
1517 struct resource *io_d, *io_c;
1518 struct net_device *netdev;
1519 struct ks_net *ks;
1520 u16 id, data;
1521
1522 io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1523 io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1524
1525 if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
1526 goto err_mem_region;
1527
1528 if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
1529 goto err_mem_region1;
1530
1531 netdev = alloc_etherdev(sizeof(struct ks_net));
1532 if (!netdev)
1533 goto err_alloc_etherdev;
1534
1535 SET_NETDEV_DEV(netdev, &pdev->dev);
1536
1537 ks = netdev_priv(netdev);
1538 ks->netdev = netdev;
1539 ks->hw_addr = ioremap(io_d->start, resource_size(io_d));
1540
1541 if (!ks->hw_addr)
1542 goto err_ioremap;
1543
1544 ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
1545 if (!ks->hw_addr_cmd)
1546 goto err_ioremap1;
1547
1548 ks->irq = platform_get_irq(pdev, 0);
1549
1550 if (ks->irq < 0) {
1551 err = ks->irq;
1552 goto err_get_irq;
1553 }
1554
1555 ks->pdev = pdev;
1556
1557 mutex_init(&ks->lock);
1558 spin_lock_init(&ks->statelock);
1559
1560 netdev->netdev_ops = &ks_netdev_ops;
1561 netdev->ethtool_ops = &ks_ethtool_ops;
1562
1563 /* setup mii state */
1564 ks->mii.dev = netdev;
1565 ks->mii.phy_id = 1,
1566 ks->mii.phy_id_mask = 1;
1567 ks->mii.reg_num_mask = 0xf;
1568 ks->mii.mdio_read = ks_phy_read;
1569 ks->mii.mdio_write = ks_phy_write;
1570
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001571 netdev_info(netdev, "message enable is %d\n", msg_enable);
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001572 /* set the default message enable */
1573 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1574 NETIF_MSG_PROBE |
1575 NETIF_MSG_LINK));
1576 ks_read_config(ks);
1577
1578 /* simple check for a valid chip being connected to the bus */
1579 if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001580 netdev_err(netdev, "failed to read device ID\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001581 err = -ENODEV;
1582 goto err_register;
1583 }
1584
1585 if (ks_read_selftest(ks)) {
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001586 netdev_err(netdev, "failed to read device ID\n");
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001587 err = -ENODEV;
1588 goto err_register;
1589 }
1590
1591 err = register_netdev(netdev);
1592 if (err)
1593 goto err_register;
1594
1595 platform_set_drvdata(pdev, netdev);
1596
1597 ks_soft_reset(ks, GRR_GSR);
1598 ks_hw_init(ks);
David J. Choi4a91ca42009-11-19 15:34:30 +00001599 ks_disable_qmu(ks);
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001600 ks_setup(ks);
1601 ks_setup_int(ks);
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001602 memcpy(netdev->dev_addr, ks->mac_addr, 6);
1603
1604 data = ks_rdreg16(ks, KS_OBCR);
1605 ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1606
1607 /**
1608 * If you want to use the default MAC addr,
1609 * comment out the 2 functions below.
1610 */
1611
1612 random_ether_addr(netdev->dev_addr);
1613 ks_set_mac(ks, netdev->dev_addr);
1614
1615 id = ks_rdreg16(ks, KS_CIDER);
1616
Joe Perches0dc7d2b2010-02-27 14:43:51 +00001617 netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1618 (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001619 return 0;
1620
1621err_register:
1622err_get_irq:
1623 iounmap(ks->hw_addr_cmd);
1624err_ioremap1:
1625 iounmap(ks->hw_addr);
1626err_ioremap:
1627 free_netdev(netdev);
1628err_alloc_etherdev:
1629 release_mem_region(io_c->start, resource_size(io_c));
1630err_mem_region1:
1631 release_mem_region(io_d->start, resource_size(io_d));
1632err_mem_region:
1633 return err;
1634}
1635
1636static int __devexit ks8851_remove(struct platform_device *pdev)
1637{
1638 struct net_device *netdev = platform_get_drvdata(pdev);
1639 struct ks_net *ks = netdev_priv(netdev);
1640 struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1641
David J. Choi4a91ca42009-11-19 15:34:30 +00001642 kfree(ks->frame_head_info);
Choi, Davida55c0a0e2009-09-25 14:42:12 +00001643 unregister_netdev(netdev);
1644 iounmap(ks->hw_addr);
1645 free_netdev(netdev);
1646 release_mem_region(iomem->start, resource_size(iomem));
1647 platform_set_drvdata(pdev, NULL);
1648 return 0;
1649
1650}
1651
1652static struct platform_driver ks8851_platform_driver = {
1653 .driver = {
1654 .name = DRV_NAME,
1655 .owner = THIS_MODULE,
1656 },
1657 .probe = ks8851_probe,
1658 .remove = __devexit_p(ks8851_remove),
1659};
1660
1661static int __init ks8851_init(void)
1662{
1663 return platform_driver_register(&ks8851_platform_driver);
1664}
1665
1666static void __exit ks8851_exit(void)
1667{
1668 platform_driver_unregister(&ks8851_platform_driver);
1669}
1670
1671module_init(ks8851_init);
1672module_exit(ks8851_exit);
1673
1674MODULE_DESCRIPTION("KS8851 MLL Network driver");
1675MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1676MODULE_LICENSE("GPL");
1677module_param_named(message, msg_enable, int, 0);
1678MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1679