| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 1 | /*	Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). | 
 | 2 |  | 
 | 3 | 	Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), | 
 | 4 | 	which also acknowledges contributions by Mike Burrows, David Wheeler, | 
 | 5 | 	Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, | 
 | 6 | 	Robert Sedgewick, and Jon L. Bentley. | 
 | 7 |  | 
 | 8 | 	This code is licensed under the LGPLv2: | 
 | 9 | 		LGPL (http://www.gnu.org/copyleft/lgpl.html | 
 | 10 | */ | 
 | 11 |  | 
 | 12 | /* | 
 | 13 | 	Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org). | 
 | 14 |  | 
 | 15 | 	More efficient reading of Huffman codes, a streamlined read_bunzip() | 
 | 16 | 	function, and various other tweaks.  In (limited) tests, approximately | 
 | 17 | 	20% faster than bzcat on x86 and about 10% faster on arm. | 
 | 18 |  | 
 | 19 | 	Note that about 2/3 of the time is spent in read_unzip() reversing | 
 | 20 | 	the Burrows-Wheeler transformation.  Much of that time is delay | 
 | 21 | 	resulting from cache misses. | 
 | 22 |  | 
 | 23 | 	I would ask that anyone benefiting from this work, especially those | 
 | 24 | 	using it in commercial products, consider making a donation to my local | 
 | 25 | 	non-profit hospice organization in the name of the woman I loved, who | 
 | 26 | 	passed away Feb. 12, 2003. | 
 | 27 |  | 
 | 28 | 		In memory of Toni W. Hagan | 
 | 29 |  | 
 | 30 | 		Hospice of Acadiana, Inc. | 
 | 31 | 		2600 Johnston St., Suite 200 | 
 | 32 | 		Lafayette, LA 70503-3240 | 
 | 33 |  | 
 | 34 | 		Phone (337) 232-1234 or 1-800-738-2226 | 
 | 35 | 		Fax   (337) 232-1297 | 
 | 36 |  | 
 | 37 | 		http://www.hospiceacadiana.com/ | 
 | 38 |  | 
 | 39 | 	Manuel | 
 | 40 |  */ | 
 | 41 |  | 
 | 42 | /* | 
 | 43 | 	Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) | 
 | 44 | */ | 
 | 45 |  | 
 | 46 |  | 
| Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 47 | #ifdef STATIC | 
 | 48 | #define PREBOOT | 
 | 49 | #else | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 50 | #include <linux/decompress/bunzip2.h> | 
| Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 51 | #endif /* STATIC */ | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 52 |  | 
 | 53 | #include <linux/decompress/mm.h> | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 54 |  | 
 | 55 | #ifndef INT_MAX | 
 | 56 | #define INT_MAX 0x7fffffff | 
 | 57 | #endif | 
 | 58 |  | 
 | 59 | /* Constants for Huffman coding */ | 
 | 60 | #define MAX_GROUPS		6 | 
 | 61 | #define GROUP_SIZE   		50	/* 64 would have been more efficient */ | 
 | 62 | #define MAX_HUFCODE_BITS 	20	/* Longest Huffman code allowed */ | 
 | 63 | #define MAX_SYMBOLS 		258	/* 256 literals + RUNA + RUNB */ | 
 | 64 | #define SYMBOL_RUNA		0 | 
 | 65 | #define SYMBOL_RUNB		1 | 
 | 66 |  | 
 | 67 | /* Status return values */ | 
 | 68 | #define RETVAL_OK			0 | 
 | 69 | #define RETVAL_LAST_BLOCK		(-1) | 
 | 70 | #define RETVAL_NOT_BZIP_DATA		(-2) | 
 | 71 | #define RETVAL_UNEXPECTED_INPUT_EOF	(-3) | 
 | 72 | #define RETVAL_UNEXPECTED_OUTPUT_EOF	(-4) | 
 | 73 | #define RETVAL_DATA_ERROR		(-5) | 
 | 74 | #define RETVAL_OUT_OF_MEMORY		(-6) | 
 | 75 | #define RETVAL_OBSOLETE_INPUT		(-7) | 
 | 76 |  | 
 | 77 | /* Other housekeeping constants */ | 
 | 78 | #define BZIP2_IOBUF_SIZE		4096 | 
 | 79 |  | 
 | 80 | /* This is what we know about each Huffman coding group */ | 
 | 81 | struct group_data { | 
 | 82 | 	/* We have an extra slot at the end of limit[] for a sentinal value. */ | 
 | 83 | 	int limit[MAX_HUFCODE_BITS+1]; | 
 | 84 | 	int base[MAX_HUFCODE_BITS]; | 
 | 85 | 	int permute[MAX_SYMBOLS]; | 
 | 86 | 	int minLen, maxLen; | 
 | 87 | }; | 
 | 88 |  | 
 | 89 | /* Structure holding all the housekeeping data, including IO buffers and | 
 | 90 |    memory that persists between calls to bunzip */ | 
 | 91 | struct bunzip_data { | 
 | 92 | 	/* State for interrupting output loop */ | 
 | 93 | 	int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; | 
 | 94 | 	/* I/O tracking data (file handles, buffers, positions, etc.) */ | 
 | 95 | 	int (*fill)(void*, unsigned int); | 
 | 96 | 	int inbufCount, inbufPos /*, outbufPos*/; | 
 | 97 | 	unsigned char *inbuf /*,*outbuf*/; | 
 | 98 | 	unsigned int inbufBitCount, inbufBits; | 
 | 99 | 	/* The CRC values stored in the block header and calculated from the | 
 | 100 | 	data */ | 
 | 101 | 	unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; | 
 | 102 | 	/* Intermediate buffer and its size (in bytes) */ | 
 | 103 | 	unsigned int *dbuf, dbufSize; | 
 | 104 | 	/* These things are a bit too big to go on the stack */ | 
 | 105 | 	unsigned char selectors[32768];		/* nSelectors = 15 bits */ | 
 | 106 | 	struct group_data groups[MAX_GROUPS];	/* Huffman coding tables */ | 
 | 107 | 	int io_error;			/* non-zero if we have IO error */ | 
| Prarit Bhargava | dd21e9b | 2010-08-10 18:03:40 -0700 | [diff] [blame] | 108 | 	int byteCount[256]; | 
 | 109 | 	unsigned char symToByte[256], mtfSymbol[256]; | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 110 | }; | 
 | 111 |  | 
 | 112 |  | 
 | 113 | /* Return the next nnn bits of input.  All reads from the compressed input | 
 | 114 |    are done through this function.  All reads are big endian */ | 
 | 115 | static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) | 
 | 116 | { | 
 | 117 | 	unsigned int bits = 0; | 
 | 118 |  | 
 | 119 | 	/* If we need to get more data from the byte buffer, do so. | 
 | 120 | 	   (Loop getting one byte at a time to enforce endianness and avoid | 
 | 121 | 	   unaligned access.) */ | 
 | 122 | 	while (bd->inbufBitCount < bits_wanted) { | 
 | 123 | 		/* If we need to read more data from file into byte buffer, do | 
 | 124 | 		   so */ | 
 | 125 | 		if (bd->inbufPos == bd->inbufCount) { | 
 | 126 | 			if (bd->io_error) | 
 | 127 | 				return 0; | 
 | 128 | 			bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); | 
 | 129 | 			if (bd->inbufCount <= 0) { | 
 | 130 | 				bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; | 
 | 131 | 				return 0; | 
 | 132 | 			} | 
 | 133 | 			bd->inbufPos = 0; | 
 | 134 | 		} | 
 | 135 | 		/* Avoid 32-bit overflow (dump bit buffer to top of output) */ | 
 | 136 | 		if (bd->inbufBitCount >= 24) { | 
 | 137 | 			bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); | 
 | 138 | 			bits_wanted -= bd->inbufBitCount; | 
 | 139 | 			bits <<= bits_wanted; | 
 | 140 | 			bd->inbufBitCount = 0; | 
 | 141 | 		} | 
 | 142 | 		/* Grab next 8 bits of input from buffer. */ | 
 | 143 | 		bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; | 
 | 144 | 		bd->inbufBitCount += 8; | 
 | 145 | 	} | 
 | 146 | 	/* Calculate result */ | 
 | 147 | 	bd->inbufBitCount -= bits_wanted; | 
 | 148 | 	bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); | 
 | 149 |  | 
 | 150 | 	return bits; | 
 | 151 | } | 
 | 152 |  | 
 | 153 | /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ | 
 | 154 |  | 
 | 155 | static int INIT get_next_block(struct bunzip_data *bd) | 
 | 156 | { | 
 | 157 | 	struct group_data *hufGroup = NULL; | 
 | 158 | 	int *base = NULL; | 
 | 159 | 	int *limit = NULL; | 
 | 160 | 	int dbufCount, nextSym, dbufSize, groupCount, selector, | 
| Prarit Bhargava | dd21e9b | 2010-08-10 18:03:40 -0700 | [diff] [blame] | 161 | 		i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount; | 
 | 162 | 	unsigned char uc, *symToByte, *mtfSymbol, *selectors; | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 163 | 	unsigned int *dbuf, origPtr; | 
 | 164 |  | 
 | 165 | 	dbuf = bd->dbuf; | 
 | 166 | 	dbufSize = bd->dbufSize; | 
 | 167 | 	selectors = bd->selectors; | 
| Prarit Bhargava | dd21e9b | 2010-08-10 18:03:40 -0700 | [diff] [blame] | 168 | 	byteCount = bd->byteCount; | 
 | 169 | 	symToByte = bd->symToByte; | 
 | 170 | 	mtfSymbol = bd->mtfSymbol; | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 171 |  | 
 | 172 | 	/* Read in header signature and CRC, then validate signature. | 
 | 173 | 	   (last block signature means CRC is for whole file, return now) */ | 
 | 174 | 	i = get_bits(bd, 24); | 
 | 175 | 	j = get_bits(bd, 24); | 
 | 176 | 	bd->headerCRC = get_bits(bd, 32); | 
 | 177 | 	if ((i == 0x177245) && (j == 0x385090)) | 
 | 178 | 		return RETVAL_LAST_BLOCK; | 
 | 179 | 	if ((i != 0x314159) || (j != 0x265359)) | 
 | 180 | 		return RETVAL_NOT_BZIP_DATA; | 
 | 181 | 	/* We can add support for blockRandomised if anybody complains. | 
 | 182 | 	   There was some code for this in busybox 1.0.0-pre3, but nobody ever | 
 | 183 | 	   noticed that it didn't actually work. */ | 
 | 184 | 	if (get_bits(bd, 1)) | 
 | 185 | 		return RETVAL_OBSOLETE_INPUT; | 
 | 186 | 	origPtr = get_bits(bd, 24); | 
 | 187 | 	if (origPtr > dbufSize) | 
 | 188 | 		return RETVAL_DATA_ERROR; | 
 | 189 | 	/* mapping table: if some byte values are never used (encoding things | 
 | 190 | 	   like ascii text), the compression code removes the gaps to have fewer | 
 | 191 | 	   symbols to deal with, and writes a sparse bitfield indicating which | 
 | 192 | 	   values were present.  We make a translation table to convert the | 
 | 193 | 	   symbols back to the corresponding bytes. */ | 
 | 194 | 	t = get_bits(bd, 16); | 
 | 195 | 	symTotal = 0; | 
 | 196 | 	for (i = 0; i < 16; i++) { | 
 | 197 | 		if (t&(1 << (15-i))) { | 
 | 198 | 			k = get_bits(bd, 16); | 
 | 199 | 			for (j = 0; j < 16; j++) | 
 | 200 | 				if (k&(1 << (15-j))) | 
 | 201 | 					symToByte[symTotal++] = (16*i)+j; | 
 | 202 | 		} | 
 | 203 | 	} | 
 | 204 | 	/* How many different Huffman coding groups does this block use? */ | 
 | 205 | 	groupCount = get_bits(bd, 3); | 
 | 206 | 	if (groupCount < 2 || groupCount > MAX_GROUPS) | 
 | 207 | 		return RETVAL_DATA_ERROR; | 
 | 208 | 	/* nSelectors: Every GROUP_SIZE many symbols we select a new | 
 | 209 | 	   Huffman coding group.  Read in the group selector list, | 
 | 210 | 	   which is stored as MTF encoded bit runs.  (MTF = Move To | 
 | 211 | 	   Front, as each value is used it's moved to the start of the | 
 | 212 | 	   list.) */ | 
 | 213 | 	nSelectors = get_bits(bd, 15); | 
 | 214 | 	if (!nSelectors) | 
 | 215 | 		return RETVAL_DATA_ERROR; | 
 | 216 | 	for (i = 0; i < groupCount; i++) | 
 | 217 | 		mtfSymbol[i] = i; | 
 | 218 | 	for (i = 0; i < nSelectors; i++) { | 
 | 219 | 		/* Get next value */ | 
 | 220 | 		for (j = 0; get_bits(bd, 1); j++) | 
 | 221 | 			if (j >= groupCount) | 
 | 222 | 				return RETVAL_DATA_ERROR; | 
 | 223 | 		/* Decode MTF to get the next selector */ | 
 | 224 | 		uc = mtfSymbol[j]; | 
 | 225 | 		for (; j; j--) | 
 | 226 | 			mtfSymbol[j] = mtfSymbol[j-1]; | 
 | 227 | 		mtfSymbol[0] = selectors[i] = uc; | 
 | 228 | 	} | 
 | 229 | 	/* Read the Huffman coding tables for each group, which code | 
 | 230 | 	   for symTotal literal symbols, plus two run symbols (RUNA, | 
 | 231 | 	   RUNB) */ | 
 | 232 | 	symCount = symTotal+2; | 
 | 233 | 	for (j = 0; j < groupCount; j++) { | 
 | 234 | 		unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; | 
 | 235 | 		int	minLen,	maxLen, pp; | 
 | 236 | 		/* Read Huffman code lengths for each symbol.  They're | 
 | 237 | 		   stored in a way similar to mtf; record a starting | 
 | 238 | 		   value for the first symbol, and an offset from the | 
 | 239 | 		   previous value for everys symbol after that. | 
 | 240 | 		   (Subtracting 1 before the loop and then adding it | 
 | 241 | 		   back at the end is an optimization that makes the | 
 | 242 | 		   test inside the loop simpler: symbol length 0 | 
 | 243 | 		   becomes negative, so an unsigned inequality catches | 
 | 244 | 		   it.) */ | 
 | 245 | 		t = get_bits(bd, 5)-1; | 
 | 246 | 		for (i = 0; i < symCount; i++) { | 
 | 247 | 			for (;;) { | 
 | 248 | 				if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) | 
 | 249 | 					return RETVAL_DATA_ERROR; | 
 | 250 |  | 
 | 251 | 				/* If first bit is 0, stop.  Else | 
 | 252 | 				   second bit indicates whether to | 
 | 253 | 				   increment or decrement the value. | 
 | 254 | 				   Optimization: grab 2 bits and unget | 
 | 255 | 				   the second if the first was 0. */ | 
 | 256 |  | 
 | 257 | 				k = get_bits(bd, 2); | 
 | 258 | 				if (k < 2) { | 
 | 259 | 					bd->inbufBitCount++; | 
 | 260 | 					break; | 
 | 261 | 				} | 
 | 262 | 				/* Add one if second bit 1, else | 
 | 263 | 				 * subtract 1.  Avoids if/else */ | 
 | 264 | 				t += (((k+1)&2)-1); | 
 | 265 | 			} | 
 | 266 | 			/* Correct for the initial -1, to get the | 
 | 267 | 			 * final symbol length */ | 
 | 268 | 			length[i] = t+1; | 
 | 269 | 		} | 
 | 270 | 		/* Find largest and smallest lengths in this group */ | 
 | 271 | 		minLen = maxLen = length[0]; | 
 | 272 |  | 
 | 273 | 		for (i = 1; i < symCount; i++) { | 
 | 274 | 			if (length[i] > maxLen) | 
 | 275 | 				maxLen = length[i]; | 
 | 276 | 			else if (length[i] < minLen) | 
 | 277 | 				minLen = length[i]; | 
 | 278 | 		} | 
 | 279 |  | 
 | 280 | 		/* Calculate permute[], base[], and limit[] tables from | 
 | 281 | 		 * length[]. | 
 | 282 | 		 * | 
 | 283 | 		 * permute[] is the lookup table for converting | 
 | 284 | 		 * Huffman coded symbols into decoded symbols.  base[] | 
 | 285 | 		 * is the amount to subtract from the value of a | 
 | 286 | 		 * Huffman symbol of a given length when using | 
 | 287 | 		 * permute[]. | 
 | 288 | 		 * | 
 | 289 | 		 * limit[] indicates the largest numerical value a | 
 | 290 | 		 * symbol with a given number of bits can have.  This | 
 | 291 | 		 * is how the Huffman codes can vary in length: each | 
 | 292 | 		 * code with a value > limit[length] needs another | 
 | 293 | 		 * bit. | 
 | 294 | 		 */ | 
 | 295 | 		hufGroup = bd->groups+j; | 
 | 296 | 		hufGroup->minLen = minLen; | 
 | 297 | 		hufGroup->maxLen = maxLen; | 
 | 298 | 		/* Note that minLen can't be smaller than 1, so we | 
 | 299 | 		   adjust the base and limit array pointers so we're | 
 | 300 | 		   not always wasting the first entry.  We do this | 
 | 301 | 		   again when using them (during symbol decoding).*/ | 
 | 302 | 		base = hufGroup->base-1; | 
 | 303 | 		limit = hufGroup->limit-1; | 
| André Goddard Rosa | af901ca | 2009-11-14 13:09:05 -0200 | [diff] [blame] | 304 | 		/* Calculate permute[].  Concurrently, initialize | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 305 | 		 * temp[] and limit[]. */ | 
 | 306 | 		pp = 0; | 
 | 307 | 		for (i = minLen; i <= maxLen; i++) { | 
 | 308 | 			temp[i] = limit[i] = 0; | 
 | 309 | 			for (t = 0; t < symCount; t++) | 
 | 310 | 				if (length[t] == i) | 
 | 311 | 					hufGroup->permute[pp++] = t; | 
 | 312 | 		} | 
 | 313 | 		/* Count symbols coded for at each bit length */ | 
 | 314 | 		for (i = 0; i < symCount; i++) | 
 | 315 | 			temp[length[i]]++; | 
 | 316 | 		/* Calculate limit[] (the largest symbol-coding value | 
 | 317 | 		 *at each bit length, which is (previous limit << | 
 | 318 | 		 *1)+symbols at this level), and base[] (number of | 
 | 319 | 		 *symbols to ignore at each bit length, which is limit | 
 | 320 | 		 *minus the cumulative count of symbols coded for | 
 | 321 | 		 *already). */ | 
 | 322 | 		pp = t = 0; | 
 | 323 | 		for (i = minLen; i < maxLen; i++) { | 
 | 324 | 			pp += temp[i]; | 
 | 325 | 			/* We read the largest possible symbol size | 
 | 326 | 			   and then unget bits after determining how | 
 | 327 | 			   many we need, and those extra bits could be | 
 | 328 | 			   set to anything.  (They're noise from | 
 | 329 | 			   future symbols.)  At each level we're | 
 | 330 | 			   really only interested in the first few | 
 | 331 | 			   bits, so here we set all the trailing | 
 | 332 | 			   to-be-ignored bits to 1 so they don't | 
 | 333 | 			   affect the value > limit[length] | 
 | 334 | 			   comparison. */ | 
 | 335 | 			limit[i] = (pp << (maxLen - i)) - 1; | 
 | 336 | 			pp <<= 1; | 
 | 337 | 			base[i+1] = pp-(t += temp[i]); | 
 | 338 | 		} | 
 | 339 | 		limit[maxLen+1] = INT_MAX; /* Sentinal value for | 
 | 340 | 					    * reading next sym. */ | 
 | 341 | 		limit[maxLen] = pp+temp[maxLen]-1; | 
 | 342 | 		base[minLen] = 0; | 
 | 343 | 	} | 
 | 344 | 	/* We've finished reading and digesting the block header.  Now | 
 | 345 | 	   read this block's Huffman coded symbols from the file and | 
 | 346 | 	   undo the Huffman coding and run length encoding, saving the | 
 | 347 | 	   result into dbuf[dbufCount++] = uc */ | 
 | 348 |  | 
 | 349 | 	/* Initialize symbol occurrence counters and symbol Move To | 
 | 350 | 	 * Front table */ | 
 | 351 | 	for (i = 0; i < 256; i++) { | 
 | 352 | 		byteCount[i] = 0; | 
 | 353 | 		mtfSymbol[i] = (unsigned char)i; | 
 | 354 | 	} | 
 | 355 | 	/* Loop through compressed symbols. */ | 
 | 356 | 	runPos = dbufCount = symCount = selector = 0; | 
 | 357 | 	for (;;) { | 
 | 358 | 		/* Determine which Huffman coding group to use. */ | 
 | 359 | 		if (!(symCount--)) { | 
 | 360 | 			symCount = GROUP_SIZE-1; | 
 | 361 | 			if (selector >= nSelectors) | 
 | 362 | 				return RETVAL_DATA_ERROR; | 
 | 363 | 			hufGroup = bd->groups+selectors[selector++]; | 
 | 364 | 			base = hufGroup->base-1; | 
 | 365 | 			limit = hufGroup->limit-1; | 
 | 366 | 		} | 
 | 367 | 		/* Read next Huffman-coded symbol. */ | 
 | 368 | 		/* Note: It is far cheaper to read maxLen bits and | 
 | 369 | 		   back up than it is to read minLen bits and then an | 
 | 370 | 		   additional bit at a time, testing as we go. | 
 | 371 | 		   Because there is a trailing last block (with file | 
 | 372 | 		   CRC), there is no danger of the overread causing an | 
 | 373 | 		   unexpected EOF for a valid compressed file.  As a | 
 | 374 | 		   further optimization, we do the read inline | 
 | 375 | 		   (falling back to a call to get_bits if the buffer | 
 | 376 | 		   runs dry).  The following (up to got_huff_bits:) is | 
 | 377 | 		   equivalent to j = get_bits(bd, hufGroup->maxLen); | 
 | 378 | 		 */ | 
 | 379 | 		while (bd->inbufBitCount < hufGroup->maxLen) { | 
 | 380 | 			if (bd->inbufPos == bd->inbufCount) { | 
 | 381 | 				j = get_bits(bd, hufGroup->maxLen); | 
 | 382 | 				goto got_huff_bits; | 
 | 383 | 			} | 
 | 384 | 			bd->inbufBits = | 
 | 385 | 				(bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; | 
 | 386 | 			bd->inbufBitCount += 8; | 
 | 387 | 		}; | 
 | 388 | 		bd->inbufBitCount -= hufGroup->maxLen; | 
 | 389 | 		j = (bd->inbufBits >> bd->inbufBitCount)& | 
 | 390 | 			((1 << hufGroup->maxLen)-1); | 
 | 391 | got_huff_bits: | 
 | 392 | 		/* Figure how how many bits are in next symbol and | 
 | 393 | 		 * unget extras */ | 
 | 394 | 		i = hufGroup->minLen; | 
 | 395 | 		while (j > limit[i]) | 
 | 396 | 			++i; | 
 | 397 | 		bd->inbufBitCount += (hufGroup->maxLen - i); | 
 | 398 | 		/* Huffman decode value to get nextSym (with bounds checking) */ | 
 | 399 | 		if ((i > hufGroup->maxLen) | 
 | 400 | 			|| (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) | 
 | 401 | 				>= MAX_SYMBOLS)) | 
 | 402 | 			return RETVAL_DATA_ERROR; | 
 | 403 | 		nextSym = hufGroup->permute[j]; | 
 | 404 | 		/* We have now decoded the symbol, which indicates | 
 | 405 | 		   either a new literal byte, or a repeated run of the | 
 | 406 | 		   most recent literal byte.  First, check if nextSym | 
 | 407 | 		   indicates a repeated run, and if so loop collecting | 
 | 408 | 		   how many times to repeat the last literal. */ | 
 | 409 | 		if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ | 
 | 410 | 			/* If this is the start of a new run, zero out | 
 | 411 | 			 * counter */ | 
 | 412 | 			if (!runPos) { | 
 | 413 | 				runPos = 1; | 
 | 414 | 				t = 0; | 
 | 415 | 			} | 
 | 416 | 			/* Neat trick that saves 1 symbol: instead of | 
 | 417 | 			   or-ing 0 or 1 at each bit position, add 1 | 
 | 418 | 			   or 2 instead.  For example, 1011 is 1 << 0 | 
 | 419 | 			   + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1 | 
 | 420 | 			   + 1 << 2.  You can make any bit pattern | 
 | 421 | 			   that way using 1 less symbol than the basic | 
 | 422 | 			   or 0/1 method (except all bits 0, which | 
 | 423 | 			   would use no symbols, but a run of length 0 | 
 | 424 | 			   doesn't mean anything in this context). | 
 | 425 | 			   Thus space is saved. */ | 
 | 426 | 			t += (runPos << nextSym); | 
 | 427 | 			/* +runPos if RUNA; +2*runPos if RUNB */ | 
 | 428 |  | 
 | 429 | 			runPos <<= 1; | 
 | 430 | 			continue; | 
 | 431 | 		} | 
 | 432 | 		/* When we hit the first non-run symbol after a run, | 
 | 433 | 		   we now know how many times to repeat the last | 
 | 434 | 		   literal, so append that many copies to our buffer | 
 | 435 | 		   of decoded symbols (dbuf) now.  (The last literal | 
 | 436 | 		   used is the one at the head of the mtfSymbol | 
 | 437 | 		   array.) */ | 
 | 438 | 		if (runPos) { | 
 | 439 | 			runPos = 0; | 
 | 440 | 			if (dbufCount+t >= dbufSize) | 
 | 441 | 				return RETVAL_DATA_ERROR; | 
 | 442 |  | 
 | 443 | 			uc = symToByte[mtfSymbol[0]]; | 
 | 444 | 			byteCount[uc] += t; | 
 | 445 | 			while (t--) | 
 | 446 | 				dbuf[dbufCount++] = uc; | 
 | 447 | 		} | 
 | 448 | 		/* Is this the terminating symbol? */ | 
 | 449 | 		if (nextSym > symTotal) | 
 | 450 | 			break; | 
 | 451 | 		/* At this point, nextSym indicates a new literal | 
 | 452 | 		   character.  Subtract one to get the position in the | 
 | 453 | 		   MTF array at which this literal is currently to be | 
 | 454 | 		   found.  (Note that the result can't be -1 or 0, | 
 | 455 | 		   because 0 and 1 are RUNA and RUNB.  But another | 
 | 456 | 		   instance of the first symbol in the mtf array, | 
 | 457 | 		   position 0, would have been handled as part of a | 
 | 458 | 		   run above.  Therefore 1 unused mtf position minus 2 | 
 | 459 | 		   non-literal nextSym values equals -1.) */ | 
 | 460 | 		if (dbufCount >= dbufSize) | 
 | 461 | 			return RETVAL_DATA_ERROR; | 
 | 462 | 		i = nextSym - 1; | 
 | 463 | 		uc = mtfSymbol[i]; | 
 | 464 | 		/* Adjust the MTF array.  Since we typically expect to | 
 | 465 | 		 *move only a small number of symbols, and are bound | 
 | 466 | 		 *by 256 in any case, using memmove here would | 
 | 467 | 		 *typically be bigger and slower due to function call | 
 | 468 | 		 *overhead and other assorted setup costs. */ | 
 | 469 | 		do { | 
 | 470 | 			mtfSymbol[i] = mtfSymbol[i-1]; | 
 | 471 | 		} while (--i); | 
 | 472 | 		mtfSymbol[0] = uc; | 
 | 473 | 		uc = symToByte[uc]; | 
 | 474 | 		/* We have our literal byte.  Save it into dbuf. */ | 
 | 475 | 		byteCount[uc]++; | 
 | 476 | 		dbuf[dbufCount++] = (unsigned int)uc; | 
 | 477 | 	} | 
 | 478 | 	/* At this point, we've read all the Huffman-coded symbols | 
 | 479 | 	   (and repeated runs) for this block from the input stream, | 
 | 480 | 	   and decoded them into the intermediate buffer.  There are | 
 | 481 | 	   dbufCount many decoded bytes in dbuf[].  Now undo the | 
 | 482 | 	   Burrows-Wheeler transform on dbuf.  See | 
 | 483 | 	   http://dogma.net/markn/articles/bwt/bwt.htm | 
 | 484 | 	 */ | 
 | 485 | 	/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ | 
 | 486 | 	j = 0; | 
 | 487 | 	for (i = 0; i < 256; i++) { | 
 | 488 | 		k = j+byteCount[i]; | 
 | 489 | 		byteCount[i] = j; | 
 | 490 | 		j = k; | 
 | 491 | 	} | 
 | 492 | 	/* Figure out what order dbuf would be in if we sorted it. */ | 
 | 493 | 	for (i = 0; i < dbufCount; i++) { | 
 | 494 | 		uc = (unsigned char)(dbuf[i] & 0xff); | 
 | 495 | 		dbuf[byteCount[uc]] |= (i << 8); | 
 | 496 | 		byteCount[uc]++; | 
 | 497 | 	} | 
 | 498 | 	/* Decode first byte by hand to initialize "previous" byte. | 
 | 499 | 	   Note that it doesn't get output, and if the first three | 
 | 500 | 	   characters are identical it doesn't qualify as a run (hence | 
 | 501 | 	   writeRunCountdown = 5). */ | 
 | 502 | 	if (dbufCount) { | 
 | 503 | 		if (origPtr >= dbufCount) | 
 | 504 | 			return RETVAL_DATA_ERROR; | 
 | 505 | 		bd->writePos = dbuf[origPtr]; | 
 | 506 | 		bd->writeCurrent = (unsigned char)(bd->writePos&0xff); | 
 | 507 | 		bd->writePos >>= 8; | 
 | 508 | 		bd->writeRunCountdown = 5; | 
 | 509 | 	} | 
 | 510 | 	bd->writeCount = dbufCount; | 
 | 511 |  | 
 | 512 | 	return RETVAL_OK; | 
 | 513 | } | 
 | 514 |  | 
 | 515 | /* Undo burrows-wheeler transform on intermediate buffer to produce output. | 
 | 516 |    If start_bunzip was initialized with out_fd =-1, then up to len bytes of | 
 | 517 |    data are written to outbuf.  Return value is number of bytes written or | 
 | 518 |    error (all errors are negative numbers).  If out_fd!=-1, outbuf and len | 
 | 519 |    are ignored, data is written to out_fd and return is RETVAL_OK or error. | 
 | 520 | */ | 
 | 521 |  | 
 | 522 | static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) | 
 | 523 | { | 
 | 524 | 	const unsigned int *dbuf; | 
 | 525 | 	int pos, xcurrent, previous, gotcount; | 
 | 526 |  | 
 | 527 | 	/* If last read was short due to end of file, return last block now */ | 
 | 528 | 	if (bd->writeCount < 0) | 
 | 529 | 		return bd->writeCount; | 
 | 530 |  | 
 | 531 | 	gotcount = 0; | 
 | 532 | 	dbuf = bd->dbuf; | 
 | 533 | 	pos = bd->writePos; | 
 | 534 | 	xcurrent = bd->writeCurrent; | 
 | 535 |  | 
 | 536 | 	/* We will always have pending decoded data to write into the output | 
 | 537 | 	   buffer unless this is the very first call (in which case we haven't | 
 | 538 | 	   Huffman-decoded a block into the intermediate buffer yet). */ | 
 | 539 |  | 
 | 540 | 	if (bd->writeCopies) { | 
 | 541 | 		/* Inside the loop, writeCopies means extra copies (beyond 1) */ | 
 | 542 | 		--bd->writeCopies; | 
 | 543 | 		/* Loop outputting bytes */ | 
 | 544 | 		for (;;) { | 
 | 545 | 			/* If the output buffer is full, snapshot | 
 | 546 | 			 * state and return */ | 
 | 547 | 			if (gotcount >= len) { | 
 | 548 | 				bd->writePos = pos; | 
 | 549 | 				bd->writeCurrent = xcurrent; | 
 | 550 | 				bd->writeCopies++; | 
 | 551 | 				return len; | 
 | 552 | 			} | 
 | 553 | 			/* Write next byte into output buffer, updating CRC */ | 
 | 554 | 			outbuf[gotcount++] = xcurrent; | 
 | 555 | 			bd->writeCRC = (((bd->writeCRC) << 8) | 
 | 556 | 				^bd->crc32Table[((bd->writeCRC) >> 24) | 
 | 557 | 				^xcurrent]); | 
 | 558 | 			/* Loop now if we're outputting multiple | 
 | 559 | 			 * copies of this byte */ | 
 | 560 | 			if (bd->writeCopies) { | 
 | 561 | 				--bd->writeCopies; | 
 | 562 | 				continue; | 
 | 563 | 			} | 
 | 564 | decode_next_byte: | 
 | 565 | 			if (!bd->writeCount--) | 
 | 566 | 				break; | 
 | 567 | 			/* Follow sequence vector to undo | 
 | 568 | 			 * Burrows-Wheeler transform */ | 
 | 569 | 			previous = xcurrent; | 
 | 570 | 			pos = dbuf[pos]; | 
 | 571 | 			xcurrent = pos&0xff; | 
 | 572 | 			pos >>= 8; | 
 | 573 | 			/* After 3 consecutive copies of the same | 
 | 574 | 			   byte, the 4th is a repeat count.  We count | 
 | 575 | 			   down from 4 instead *of counting up because | 
 | 576 | 			   testing for non-zero is faster */ | 
 | 577 | 			if (--bd->writeRunCountdown) { | 
 | 578 | 				if (xcurrent != previous) | 
 | 579 | 					bd->writeRunCountdown = 4; | 
 | 580 | 			} else { | 
 | 581 | 				/* We have a repeated run, this byte | 
 | 582 | 				 * indicates the count */ | 
 | 583 | 				bd->writeCopies = xcurrent; | 
 | 584 | 				xcurrent = previous; | 
 | 585 | 				bd->writeRunCountdown = 5; | 
 | 586 | 				/* Sometimes there are just 3 bytes | 
 | 587 | 				 * (run length 0) */ | 
 | 588 | 				if (!bd->writeCopies) | 
 | 589 | 					goto decode_next_byte; | 
 | 590 | 				/* Subtract the 1 copy we'd output | 
 | 591 | 				 * anyway to get extras */ | 
 | 592 | 				--bd->writeCopies; | 
 | 593 | 			} | 
 | 594 | 		} | 
 | 595 | 		/* Decompression of this block completed successfully */ | 
 | 596 | 		bd->writeCRC = ~bd->writeCRC; | 
 | 597 | 		bd->totalCRC = ((bd->totalCRC << 1) | | 
 | 598 | 				(bd->totalCRC >> 31)) ^ bd->writeCRC; | 
 | 599 | 		/* If this block had a CRC error, force file level CRC error. */ | 
 | 600 | 		if (bd->writeCRC != bd->headerCRC) { | 
 | 601 | 			bd->totalCRC = bd->headerCRC+1; | 
 | 602 | 			return RETVAL_LAST_BLOCK; | 
 | 603 | 		} | 
 | 604 | 	} | 
 | 605 |  | 
 | 606 | 	/* Refill the intermediate buffer by Huffman-decoding next | 
 | 607 | 	 * block of input */ | 
 | 608 | 	/* (previous is just a convenient unused temp variable here) */ | 
 | 609 | 	previous = get_next_block(bd); | 
 | 610 | 	if (previous) { | 
 | 611 | 		bd->writeCount = previous; | 
 | 612 | 		return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; | 
 | 613 | 	} | 
 | 614 | 	bd->writeCRC = 0xffffffffUL; | 
 | 615 | 	pos = bd->writePos; | 
 | 616 | 	xcurrent = bd->writeCurrent; | 
 | 617 | 	goto decode_next_byte; | 
 | 618 | } | 
 | 619 |  | 
 | 620 | static int INIT nofill(void *buf, unsigned int len) | 
 | 621 | { | 
 | 622 | 	return -1; | 
 | 623 | } | 
 | 624 |  | 
 | 625 | /* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain | 
 | 626 |    a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are | 
 | 627 |    ignored, and data is read from file handle into temporary buffer. */ | 
 | 628 | static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len, | 
 | 629 | 			     int (*fill)(void*, unsigned int)) | 
 | 630 | { | 
 | 631 | 	struct bunzip_data *bd; | 
 | 632 | 	unsigned int i, j, c; | 
 | 633 | 	const unsigned int BZh0 = | 
 | 634 | 		(((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) | 
 | 635 | 		+(((unsigned int)'h') << 8)+(unsigned int)'0'; | 
 | 636 |  | 
 | 637 | 	/* Figure out how much data to allocate */ | 
 | 638 | 	i = sizeof(struct bunzip_data); | 
 | 639 |  | 
 | 640 | 	/* Allocate bunzip_data.  Most fields initialize to zero. */ | 
 | 641 | 	bd = *bdp = malloc(i); | 
| Phillip Lougher | d452986 | 2009-12-14 21:45:19 +0000 | [diff] [blame] | 642 | 	if (!bd) | 
 | 643 | 		return RETVAL_OUT_OF_MEMORY; | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 644 | 	memset(bd, 0, sizeof(struct bunzip_data)); | 
 | 645 | 	/* Setup input buffer */ | 
 | 646 | 	bd->inbuf = inbuf; | 
 | 647 | 	bd->inbufCount = len; | 
 | 648 | 	if (fill != NULL) | 
 | 649 | 		bd->fill = fill; | 
 | 650 | 	else | 
 | 651 | 		bd->fill = nofill; | 
 | 652 |  | 
 | 653 | 	/* Init the CRC32 table (big endian) */ | 
 | 654 | 	for (i = 0; i < 256; i++) { | 
 | 655 | 		c = i << 24; | 
 | 656 | 		for (j = 8; j; j--) | 
 | 657 | 			c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1); | 
 | 658 | 		bd->crc32Table[i] = c; | 
 | 659 | 	} | 
 | 660 |  | 
 | 661 | 	/* Ensure that file starts with "BZh['1'-'9']." */ | 
 | 662 | 	i = get_bits(bd, 32); | 
 | 663 | 	if (((unsigned int)(i-BZh0-1)) >= 9) | 
 | 664 | 		return RETVAL_NOT_BZIP_DATA; | 
 | 665 |  | 
 | 666 | 	/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of | 
 | 667 | 	   uncompressed data.  Allocate intermediate buffer for block. */ | 
 | 668 | 	bd->dbufSize = 100000*(i-BZh0); | 
 | 669 |  | 
 | 670 | 	bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); | 
| Phillip Lougher | d452986 | 2009-12-14 21:45:19 +0000 | [diff] [blame] | 671 | 	if (!bd->dbuf) | 
 | 672 | 		return RETVAL_OUT_OF_MEMORY; | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 673 | 	return RETVAL_OK; | 
 | 674 | } | 
 | 675 |  | 
 | 676 | /* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data, | 
 | 677 |    not end of file.) */ | 
 | 678 | STATIC int INIT bunzip2(unsigned char *buf, int len, | 
 | 679 | 			int(*fill)(void*, unsigned int), | 
 | 680 | 			int(*flush)(void*, unsigned int), | 
 | 681 | 			unsigned char *outbuf, | 
 | 682 | 			int *pos, | 
| Lasse Collin | 93685ad2 | 2011-01-12 17:01:14 -0800 | [diff] [blame] | 683 | 			void(*error)(char *x)) | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 684 | { | 
 | 685 | 	struct bunzip_data *bd; | 
 | 686 | 	int i = -1; | 
 | 687 | 	unsigned char *inbuf; | 
 | 688 |  | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 689 | 	if (flush) | 
 | 690 | 		outbuf = malloc(BZIP2_IOBUF_SIZE); | 
| Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 691 |  | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 692 | 	if (!outbuf) { | 
| Paul Bolle | 90802ed | 2011-12-05 13:00:34 +0100 | [diff] [blame] | 693 | 		error("Could not allocate output buffer"); | 
| Phillip Lougher | d452986 | 2009-12-14 21:45:19 +0000 | [diff] [blame] | 694 | 		return RETVAL_OUT_OF_MEMORY; | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 695 | 	} | 
 | 696 | 	if (buf) | 
 | 697 | 		inbuf = buf; | 
 | 698 | 	else | 
 | 699 | 		inbuf = malloc(BZIP2_IOBUF_SIZE); | 
 | 700 | 	if (!inbuf) { | 
| Paul Bolle | 90802ed | 2011-12-05 13:00:34 +0100 | [diff] [blame] | 701 | 		error("Could not allocate input buffer"); | 
| Phillip Lougher | d452986 | 2009-12-14 21:45:19 +0000 | [diff] [blame] | 702 | 		i = RETVAL_OUT_OF_MEMORY; | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 703 | 		goto exit_0; | 
 | 704 | 	} | 
 | 705 | 	i = start_bunzip(&bd, inbuf, len, fill); | 
 | 706 | 	if (!i) { | 
 | 707 | 		for (;;) { | 
 | 708 | 			i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); | 
 | 709 | 			if (i <= 0) | 
 | 710 | 				break; | 
 | 711 | 			if (!flush) | 
 | 712 | 				outbuf += i; | 
 | 713 | 			else | 
 | 714 | 				if (i != flush(outbuf, i)) { | 
 | 715 | 					i = RETVAL_UNEXPECTED_OUTPUT_EOF; | 
 | 716 | 					break; | 
 | 717 | 				} | 
 | 718 | 		} | 
 | 719 | 	} | 
 | 720 | 	/* Check CRC and release memory */ | 
 | 721 | 	if (i == RETVAL_LAST_BLOCK) { | 
 | 722 | 		if (bd->headerCRC != bd->totalCRC) | 
 | 723 | 			error("Data integrity error when decompressing."); | 
 | 724 | 		else | 
 | 725 | 			i = RETVAL_OK; | 
 | 726 | 	} else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { | 
 | 727 | 		error("Compressed file ends unexpectedly"); | 
 | 728 | 	} | 
| Phillip Lougher | d452986 | 2009-12-14 21:45:19 +0000 | [diff] [blame] | 729 | 	if (!bd) | 
 | 730 | 		goto exit_1; | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 731 | 	if (bd->dbuf) | 
 | 732 | 		large_free(bd->dbuf); | 
 | 733 | 	if (pos) | 
 | 734 | 		*pos = bd->inbufPos; | 
 | 735 | 	free(bd); | 
| Phillip Lougher | d452986 | 2009-12-14 21:45:19 +0000 | [diff] [blame] | 736 | exit_1: | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 737 | 	if (!buf) | 
 | 738 | 		free(inbuf); | 
 | 739 | exit_0: | 
 | 740 | 	if (flush) | 
 | 741 | 		free(outbuf); | 
 | 742 | 	return i; | 
 | 743 | } | 
 | 744 |  | 
| Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 745 | #ifdef PREBOOT | 
 | 746 | STATIC int INIT decompress(unsigned char *buf, int len, | 
 | 747 | 			int(*fill)(void*, unsigned int), | 
 | 748 | 			int(*flush)(void*, unsigned int), | 
 | 749 | 			unsigned char *outbuf, | 
 | 750 | 			int *pos, | 
| Lasse Collin | 93685ad2 | 2011-01-12 17:01:14 -0800 | [diff] [blame] | 751 | 			void(*error)(char *x)) | 
| Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 752 | { | 
| Lasse Collin | 93685ad2 | 2011-01-12 17:01:14 -0800 | [diff] [blame] | 753 | 	return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error); | 
| Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 754 | } | 
 | 755 | #endif |