| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * lib/prio_tree.c - priority search tree | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> | 
 | 5 |  * | 
 | 6 |  * This file is released under the GPL v2. | 
 | 7 |  * | 
 | 8 |  * Based on the radix priority search tree proposed by Edward M. McCreight | 
 | 9 |  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 | 
 | 10 |  * | 
 | 11 |  * 02Feb2004	Initial version | 
 | 12 |  */ | 
 | 13 |  | 
 | 14 | #include <linux/init.h> | 
 | 15 | #include <linux/mm.h> | 
 | 16 | #include <linux/prio_tree.h> | 
 | 17 |  | 
 | 18 | /* | 
 | 19 |  * A clever mix of heap and radix trees forms a radix priority search tree (PST) | 
 | 20 |  * which is useful for storing intervals, e.g, we can consider a vma as a closed | 
 | 21 |  * interval of file pages [offset_begin, offset_end], and store all vmas that | 
 | 22 |  * map a file in a PST. Then, using the PST, we can answer a stabbing query, | 
 | 23 |  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a | 
 | 24 |  * given input interval X (a set of consecutive file pages), in "O(log n + m)" | 
 | 25 |  * time where 'log n' is the height of the PST, and 'm' is the number of stored | 
 | 26 |  * intervals (vmas) that overlap (map) with the input interval X (the set of | 
 | 27 |  * consecutive file pages). | 
 | 28 |  * | 
 | 29 |  * In our implementation, we store closed intervals of the form [radix_index, | 
 | 30 |  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST | 
 | 31 |  * is designed for storing intervals with unique radix indices, i.e., each | 
 | 32 |  * interval have different radix_index. However, this limitation can be easily | 
 | 33 |  * overcome by using the size, i.e., heap_index - radix_index, as part of the | 
 | 34 |  * index, so we index the tree using [(radix_index,size), heap_index]. | 
 | 35 |  * | 
 | 36 |  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit | 
 | 37 |  * machine, the maximum height of a PST can be 64. We can use a balanced version | 
 | 38 |  * of the priority search tree to optimize the tree height, but the balanced | 
 | 39 |  * tree proposed by McCreight is too complex and memory-hungry for our purpose. | 
 | 40 |  */ | 
 | 41 |  | 
 | 42 | /* | 
 | 43 |  * The following macros are used for implementing prio_tree for i_mmap | 
 | 44 |  */ | 
 | 45 |  | 
 | 46 | #define RADIX_INDEX(vma)  ((vma)->vm_pgoff) | 
 | 47 | #define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) | 
 | 48 | /* avoid overflow */ | 
 | 49 | #define HEAP_INDEX(vma)	  ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) | 
 | 50 |  | 
 | 51 |  | 
 | 52 | static void get_index(const struct prio_tree_root *root, | 
 | 53 |     const struct prio_tree_node *node, | 
 | 54 |     unsigned long *radix, unsigned long *heap) | 
 | 55 | { | 
 | 56 | 	if (root->raw) { | 
 | 57 | 		struct vm_area_struct *vma = prio_tree_entry( | 
 | 58 | 		    node, struct vm_area_struct, shared.prio_tree_node); | 
 | 59 |  | 
 | 60 | 		*radix = RADIX_INDEX(vma); | 
 | 61 | 		*heap = HEAP_INDEX(vma); | 
 | 62 | 	} | 
 | 63 | 	else { | 
 | 64 | 		*radix = node->start; | 
 | 65 | 		*heap = node->last; | 
 | 66 | 	} | 
 | 67 | } | 
 | 68 |  | 
 | 69 | static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; | 
 | 70 |  | 
 | 71 | void __init prio_tree_init(void) | 
 | 72 | { | 
 | 73 | 	unsigned int i; | 
 | 74 |  | 
 | 75 | 	for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) | 
 | 76 | 		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; | 
 | 77 | 	index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; | 
 | 78 | } | 
 | 79 |  | 
 | 80 | /* | 
 | 81 |  * Maximum heap_index that can be stored in a PST with index_bits bits | 
 | 82 |  */ | 
 | 83 | static inline unsigned long prio_tree_maxindex(unsigned int bits) | 
 | 84 | { | 
 | 85 | 	return index_bits_to_maxindex[bits - 1]; | 
 | 86 | } | 
 | 87 |  | 
| Xiao Guangrong | 97e834c | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 88 | static void prio_set_parent(struct prio_tree_node *parent, | 
 | 89 | 			    struct prio_tree_node *child, bool left) | 
 | 90 | { | 
 | 91 | 	if (left) | 
 | 92 | 		parent->left = child; | 
 | 93 | 	else | 
 | 94 | 		parent->right = child; | 
 | 95 |  | 
 | 96 | 	child->parent = parent; | 
 | 97 | } | 
 | 98 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 99 | /* | 
 | 100 |  * Extend a priority search tree so that it can store a node with heap_index | 
 | 101 |  * max_heap_index. In the worst case, this algorithm takes O((log n)^2). | 
 | 102 |  * However, this function is used rarely and the common case performance is | 
 | 103 |  * not bad. | 
 | 104 |  */ | 
 | 105 | static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, | 
 | 106 | 		struct prio_tree_node *node, unsigned long max_heap_index) | 
 | 107 | { | 
| Xiao Guangrong | 742245d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 108 | 	struct prio_tree_node *prev; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 109 |  | 
 | 110 | 	if (max_heap_index > prio_tree_maxindex(root->index_bits)) | 
 | 111 | 		root->index_bits++; | 
 | 112 |  | 
| Xiao Guangrong | 742245d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 113 | 	prev = node; | 
 | 114 | 	INIT_PRIO_TREE_NODE(node); | 
 | 115 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 116 | 	while (max_heap_index > prio_tree_maxindex(root->index_bits)) { | 
| Xiao Guangrong | 742245d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 117 | 		struct prio_tree_node *tmp = root->prio_tree_node; | 
 | 118 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 119 | 		root->index_bits++; | 
 | 120 |  | 
 | 121 | 		if (prio_tree_empty(root)) | 
 | 122 | 			continue; | 
 | 123 |  | 
| Xiao Guangrong | 742245d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 124 | 		prio_tree_remove(root, root->prio_tree_node); | 
 | 125 | 		INIT_PRIO_TREE_NODE(tmp); | 
 | 126 |  | 
| Xiao Guangrong | 97e834c | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 127 | 		prio_set_parent(prev, tmp, true); | 
| Xiao Guangrong | 742245d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 128 | 		prev = tmp; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 129 | 	} | 
 | 130 |  | 
| Xiao Guangrong | 97e834c | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 131 | 	if (!prio_tree_empty(root)) | 
 | 132 | 		prio_set_parent(prev, root->prio_tree_node, true); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 133 |  | 
 | 134 | 	root->prio_tree_node = node; | 
 | 135 | 	return node; | 
 | 136 | } | 
 | 137 |  | 
 | 138 | /* | 
 | 139 |  * Replace a prio_tree_node with a new node and return the old node | 
 | 140 |  */ | 
 | 141 | struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, | 
 | 142 | 		struct prio_tree_node *old, struct prio_tree_node *node) | 
 | 143 | { | 
 | 144 | 	INIT_PRIO_TREE_NODE(node); | 
 | 145 |  | 
 | 146 | 	if (prio_tree_root(old)) { | 
 | 147 | 		BUG_ON(root->prio_tree_node != old); | 
 | 148 | 		/* | 
 | 149 | 		 * We can reduce root->index_bits here. However, it is complex | 
 | 150 | 		 * and does not help much to improve performance (IMO). | 
 | 151 | 		 */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 152 | 		root->prio_tree_node = node; | 
| Xiao Guangrong | 97e834c | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 153 | 	} else | 
 | 154 | 		prio_set_parent(old->parent, node, old->parent->left == old); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 155 |  | 
| Xiao Guangrong | 97e834c | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 156 | 	if (!prio_tree_left_empty(old)) | 
 | 157 | 		prio_set_parent(node, old->left, true); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 158 |  | 
| Xiao Guangrong | 97e834c | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 159 | 	if (!prio_tree_right_empty(old)) | 
 | 160 | 		prio_set_parent(node, old->right, false); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 161 |  | 
 | 162 | 	return old; | 
 | 163 | } | 
 | 164 |  | 
 | 165 | /* | 
 | 166 |  * Insert a prio_tree_node @node into a radix priority search tree @root. The | 
 | 167 |  * algorithm typically takes O(log n) time where 'log n' is the number of bits | 
 | 168 |  * required to represent the maximum heap_index. In the worst case, the algo | 
 | 169 |  * can take O((log n)^2) - check prio_tree_expand. | 
 | 170 |  * | 
 | 171 |  * If a prior node with same radix_index and heap_index is already found in | 
 | 172 |  * the tree, then returns the address of the prior node. Otherwise, inserts | 
 | 173 |  * @node into the tree and returns @node. | 
 | 174 |  */ | 
 | 175 | struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, | 
 | 176 | 		struct prio_tree_node *node) | 
 | 177 | { | 
 | 178 | 	struct prio_tree_node *cur, *res = node; | 
 | 179 | 	unsigned long radix_index, heap_index; | 
 | 180 | 	unsigned long r_index, h_index, index, mask; | 
 | 181 | 	int size_flag = 0; | 
 | 182 |  | 
 | 183 | 	get_index(root, node, &radix_index, &heap_index); | 
 | 184 |  | 
 | 185 | 	if (prio_tree_empty(root) || | 
 | 186 | 			heap_index > prio_tree_maxindex(root->index_bits)) | 
 | 187 | 		return prio_tree_expand(root, node, heap_index); | 
 | 188 |  | 
 | 189 | 	cur = root->prio_tree_node; | 
 | 190 | 	mask = 1UL << (root->index_bits - 1); | 
 | 191 |  | 
 | 192 | 	while (mask) { | 
 | 193 | 		get_index(root, cur, &r_index, &h_index); | 
 | 194 |  | 
 | 195 | 		if (r_index == radix_index && h_index == heap_index) | 
 | 196 | 			return cur; | 
 | 197 |  | 
 | 198 |                 if (h_index < heap_index || | 
 | 199 | 		    (h_index == heap_index && r_index > radix_index)) { | 
 | 200 | 			struct prio_tree_node *tmp = node; | 
 | 201 | 			node = prio_tree_replace(root, cur, node); | 
 | 202 | 			cur = tmp; | 
 | 203 | 			/* swap indices */ | 
 | 204 | 			index = r_index; | 
 | 205 | 			r_index = radix_index; | 
 | 206 | 			radix_index = index; | 
 | 207 | 			index = h_index; | 
 | 208 | 			h_index = heap_index; | 
 | 209 | 			heap_index = index; | 
 | 210 | 		} | 
 | 211 |  | 
 | 212 | 		if (size_flag) | 
 | 213 | 			index = heap_index - radix_index; | 
 | 214 | 		else | 
 | 215 | 			index = radix_index; | 
 | 216 |  | 
 | 217 | 		if (index & mask) { | 
 | 218 | 			if (prio_tree_right_empty(cur)) { | 
 | 219 | 				INIT_PRIO_TREE_NODE(node); | 
| Xiao Guangrong | 97e834c | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 220 | 				prio_set_parent(cur, node, false); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 221 | 				return res; | 
 | 222 | 			} else | 
 | 223 | 				cur = cur->right; | 
 | 224 | 		} else { | 
 | 225 | 			if (prio_tree_left_empty(cur)) { | 
 | 226 | 				INIT_PRIO_TREE_NODE(node); | 
| Xiao Guangrong | 97e834c | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 227 | 				prio_set_parent(cur, node, true); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 228 | 				return res; | 
 | 229 | 			} else | 
 | 230 | 				cur = cur->left; | 
 | 231 | 		} | 
 | 232 |  | 
 | 233 | 		mask >>= 1; | 
 | 234 |  | 
 | 235 | 		if (!mask) { | 
 | 236 | 			mask = 1UL << (BITS_PER_LONG - 1); | 
 | 237 | 			size_flag = 1; | 
 | 238 | 		} | 
 | 239 | 	} | 
 | 240 | 	/* Should not reach here */ | 
 | 241 | 	BUG(); | 
 | 242 | 	return NULL; | 
 | 243 | } | 
 | 244 |  | 
 | 245 | /* | 
 | 246 |  * Remove a prio_tree_node @node from a radix priority search tree @root. The | 
 | 247 |  * algorithm takes O(log n) time where 'log n' is the number of bits required | 
 | 248 |  * to represent the maximum heap_index. | 
 | 249 |  */ | 
 | 250 | void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) | 
 | 251 | { | 
 | 252 | 	struct prio_tree_node *cur; | 
 | 253 | 	unsigned long r_index, h_index_right, h_index_left; | 
 | 254 |  | 
 | 255 | 	cur = node; | 
 | 256 |  | 
 | 257 | 	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { | 
 | 258 | 		if (!prio_tree_left_empty(cur)) | 
 | 259 | 			get_index(root, cur->left, &r_index, &h_index_left); | 
 | 260 | 		else { | 
 | 261 | 			cur = cur->right; | 
 | 262 | 			continue; | 
 | 263 | 		} | 
 | 264 |  | 
 | 265 | 		if (!prio_tree_right_empty(cur)) | 
 | 266 | 			get_index(root, cur->right, &r_index, &h_index_right); | 
 | 267 | 		else { | 
 | 268 | 			cur = cur->left; | 
 | 269 | 			continue; | 
 | 270 | 		} | 
 | 271 |  | 
 | 272 | 		/* both h_index_left and h_index_right cannot be 0 */ | 
 | 273 | 		if (h_index_left >= h_index_right) | 
 | 274 | 			cur = cur->left; | 
 | 275 | 		else | 
 | 276 | 			cur = cur->right; | 
 | 277 | 	} | 
 | 278 |  | 
 | 279 | 	if (prio_tree_root(cur)) { | 
 | 280 | 		BUG_ON(root->prio_tree_node != cur); | 
 | 281 | 		__INIT_PRIO_TREE_ROOT(root, root->raw); | 
 | 282 | 		return; | 
 | 283 | 	} | 
 | 284 |  | 
 | 285 | 	if (cur->parent->right == cur) | 
 | 286 | 		cur->parent->right = cur->parent; | 
 | 287 | 	else | 
 | 288 | 		cur->parent->left = cur->parent; | 
 | 289 |  | 
 | 290 | 	while (cur != node) | 
 | 291 | 		cur = prio_tree_replace(root, cur->parent, cur); | 
 | 292 | } | 
 | 293 |  | 
| Xiao Guangrong | f35368d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 294 | static void iter_walk_down(struct prio_tree_iter *iter) | 
 | 295 | { | 
 | 296 | 	iter->mask >>= 1; | 
 | 297 | 	if (iter->mask) { | 
 | 298 | 		if (iter->size_level) | 
 | 299 | 			iter->size_level++; | 
 | 300 | 		return; | 
 | 301 | 	} | 
 | 302 |  | 
 | 303 | 	if (iter->size_level) { | 
 | 304 | 		BUG_ON(!prio_tree_left_empty(iter->cur)); | 
 | 305 | 		BUG_ON(!prio_tree_right_empty(iter->cur)); | 
 | 306 | 		iter->size_level++; | 
 | 307 | 		iter->mask = ULONG_MAX; | 
 | 308 | 	} else { | 
 | 309 | 		iter->size_level = 1; | 
 | 310 | 		iter->mask = 1UL << (BITS_PER_LONG - 1); | 
 | 311 | 	} | 
 | 312 | } | 
 | 313 |  | 
 | 314 | static void iter_walk_up(struct prio_tree_iter *iter) | 
 | 315 | { | 
 | 316 | 	if (iter->mask == ULONG_MAX) | 
 | 317 | 		iter->mask = 1UL; | 
 | 318 | 	else if (iter->size_level == 1) | 
 | 319 | 		iter->mask = 1UL; | 
 | 320 | 	else | 
 | 321 | 		iter->mask <<= 1; | 
 | 322 | 	if (iter->size_level) | 
 | 323 | 		iter->size_level--; | 
 | 324 | 	if (!iter->size_level && (iter->value & iter->mask)) | 
 | 325 | 		iter->value ^= iter->mask; | 
 | 326 | } | 
 | 327 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 328 | /* | 
 | 329 |  * Following functions help to enumerate all prio_tree_nodes in the tree that | 
 | 330 |  * overlap with the input interval X [radix_index, heap_index]. The enumeration | 
 | 331 |  * takes O(log n + m) time where 'log n' is the height of the tree (which is | 
 | 332 |  * proportional to # of bits required to represent the maximum heap_index) and | 
 | 333 |  * 'm' is the number of prio_tree_nodes that overlap the interval X. | 
 | 334 |  */ | 
 | 335 |  | 
 | 336 | static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, | 
 | 337 | 		unsigned long *r_index, unsigned long *h_index) | 
 | 338 | { | 
 | 339 | 	if (prio_tree_left_empty(iter->cur)) | 
 | 340 | 		return NULL; | 
 | 341 |  | 
 | 342 | 	get_index(iter->root, iter->cur->left, r_index, h_index); | 
 | 343 |  | 
 | 344 | 	if (iter->r_index <= *h_index) { | 
 | 345 | 		iter->cur = iter->cur->left; | 
| Xiao Guangrong | f35368d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 346 | 		iter_walk_down(iter); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 347 | 		return iter->cur; | 
 | 348 | 	} | 
 | 349 |  | 
 | 350 | 	return NULL; | 
 | 351 | } | 
 | 352 |  | 
 | 353 | static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, | 
 | 354 | 		unsigned long *r_index, unsigned long *h_index) | 
 | 355 | { | 
 | 356 | 	unsigned long value; | 
 | 357 |  | 
 | 358 | 	if (prio_tree_right_empty(iter->cur)) | 
 | 359 | 		return NULL; | 
 | 360 |  | 
 | 361 | 	if (iter->size_level) | 
 | 362 | 		value = iter->value; | 
 | 363 | 	else | 
 | 364 | 		value = iter->value | iter->mask; | 
 | 365 |  | 
 | 366 | 	if (iter->h_index < value) | 
 | 367 | 		return NULL; | 
 | 368 |  | 
 | 369 | 	get_index(iter->root, iter->cur->right, r_index, h_index); | 
 | 370 |  | 
 | 371 | 	if (iter->r_index <= *h_index) { | 
 | 372 | 		iter->cur = iter->cur->right; | 
| Xiao Guangrong | f35368d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 373 | 		iter_walk_down(iter); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 374 | 		return iter->cur; | 
 | 375 | 	} | 
 | 376 |  | 
 | 377 | 	return NULL; | 
 | 378 | } | 
 | 379 |  | 
 | 380 | static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) | 
 | 381 | { | 
 | 382 | 	iter->cur = iter->cur->parent; | 
| Xiao Guangrong | f35368d | 2012-03-23 15:02:15 -0700 | [diff] [blame] | 383 | 	iter_walk_up(iter); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 384 | 	return iter->cur; | 
 | 385 | } | 
 | 386 |  | 
 | 387 | static inline int overlap(struct prio_tree_iter *iter, | 
 | 388 | 		unsigned long r_index, unsigned long h_index) | 
 | 389 | { | 
 | 390 | 	return iter->h_index >= r_index && iter->r_index <= h_index; | 
 | 391 | } | 
 | 392 |  | 
 | 393 | /* | 
 | 394 |  * prio_tree_first: | 
 | 395 |  * | 
 | 396 |  * Get the first prio_tree_node that overlaps with the interval [radix_index, | 
 | 397 |  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order | 
 | 398 |  * traversal of the tree. | 
 | 399 |  */ | 
 | 400 | static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) | 
 | 401 | { | 
 | 402 | 	struct prio_tree_root *root; | 
 | 403 | 	unsigned long r_index, h_index; | 
 | 404 |  | 
 | 405 | 	INIT_PRIO_TREE_ITER(iter); | 
 | 406 |  | 
 | 407 | 	root = iter->root; | 
 | 408 | 	if (prio_tree_empty(root)) | 
 | 409 | 		return NULL; | 
 | 410 |  | 
 | 411 | 	get_index(root, root->prio_tree_node, &r_index, &h_index); | 
 | 412 |  | 
 | 413 | 	if (iter->r_index > h_index) | 
 | 414 | 		return NULL; | 
 | 415 |  | 
 | 416 | 	iter->mask = 1UL << (root->index_bits - 1); | 
 | 417 | 	iter->cur = root->prio_tree_node; | 
 | 418 |  | 
 | 419 | 	while (1) { | 
 | 420 | 		if (overlap(iter, r_index, h_index)) | 
 | 421 | 			return iter->cur; | 
 | 422 |  | 
 | 423 | 		if (prio_tree_left(iter, &r_index, &h_index)) | 
 | 424 | 			continue; | 
 | 425 |  | 
 | 426 | 		if (prio_tree_right(iter, &r_index, &h_index)) | 
 | 427 | 			continue; | 
 | 428 |  | 
 | 429 | 		break; | 
 | 430 | 	} | 
 | 431 | 	return NULL; | 
 | 432 | } | 
 | 433 |  | 
 | 434 | /* | 
 | 435 |  * prio_tree_next: | 
 | 436 |  * | 
 | 437 |  * Get the next prio_tree_node that overlaps with the input interval in iter | 
 | 438 |  */ | 
 | 439 | struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) | 
 | 440 | { | 
 | 441 | 	unsigned long r_index, h_index; | 
 | 442 |  | 
 | 443 | 	if (iter->cur == NULL) | 
 | 444 | 		return prio_tree_first(iter); | 
 | 445 |  | 
 | 446 | repeat: | 
 | 447 | 	while (prio_tree_left(iter, &r_index, &h_index)) | 
 | 448 | 		if (overlap(iter, r_index, h_index)) | 
 | 449 | 			return iter->cur; | 
 | 450 |  | 
 | 451 | 	while (!prio_tree_right(iter, &r_index, &h_index)) { | 
 | 452 | 	    	while (!prio_tree_root(iter->cur) && | 
 | 453 | 				iter->cur->parent->right == iter->cur) | 
 | 454 | 			prio_tree_parent(iter); | 
 | 455 |  | 
 | 456 | 		if (prio_tree_root(iter->cur)) | 
 | 457 | 			return NULL; | 
 | 458 |  | 
 | 459 | 		prio_tree_parent(iter); | 
 | 460 | 	} | 
 | 461 |  | 
 | 462 | 	if (overlap(iter, r_index, h_index)) | 
 | 463 | 		return iter->cur; | 
 | 464 |  | 
 | 465 | 	goto repeat; | 
 | 466 | } |