blob: 9bbc303598ea848453efbb647fffe9ac08ca5029 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200703/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200710{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200711 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712
Lucas De Marchi41acab82010-03-10 23:37:45 -0300713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200715
716 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200717 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100719
Ingo Molnare9acbff2007-10-15 17:00:04 +0200720 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200721 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200722}
723
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200724static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200725{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200726 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200727 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200738 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100739 if (!delta_exec)
740 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200741
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
Ingo Molnarf977bb42009-09-13 18:15:54 +0200748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100749 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700750 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200754}
755
756static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200758{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760}
761
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762/*
763 * Task is being enqueued - update stats:
764 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200766{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200771 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200772 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200773}
774
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200787 }
788#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300789 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200790}
791
792static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200794{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200799 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200800 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200808{
809 /*
810 * We are starting a new run period:
811 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200813}
814
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200819#ifdef CONFIG_NUMA_BALANCING
820/*
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200821 * numa task sample period in ms
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200822 */
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200823unsigned int sysctl_numa_balancing_scan_period_min = 100;
Mel Gormanb8593bf2012-11-21 01:18:23 +0000824unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200826
827/* Portion of address space to scan in MB */
828unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200829
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200830/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831unsigned int sysctl_numa_balancing_scan_delay = 1000;
832
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833static void task_numa_placement(struct task_struct *p)
834{
Hugh Dickins2832bc12012-12-19 17:42:16 -0800835 int seq;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200836
Hugh Dickins2832bc12012-12-19 17:42:16 -0800837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
838 return;
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200840 if (p->numa_scan_seq == seq)
841 return;
842 p->numa_scan_seq = seq;
843
844 /* FIXME: Scheduling placement policy hints go here */
845}
846
847/*
848 * Got a PROT_NONE fault for a page on @node.
849 */
Mel Gormanb8593bf2012-11-21 01:18:23 +0000850void task_numa_fault(int node, int pages, bool migrated)
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200851{
852 struct task_struct *p = current;
853
Mel Gorman1a687c22012-11-22 11:16:36 +0000854 if (!sched_feat_numa(NUMA))
855 return;
856
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200857 /* FIXME: Allocate task-specific structure for placement policy here */
858
Mel Gormanfb003b82012-11-15 09:01:14 +0000859 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +0000860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +0000862 */
Mel Gormanb8593bf2012-11-21 01:18:23 +0000863 if (!migrated)
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
Mel Gormanfb003b82012-11-15 09:01:14 +0000866
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200867 task_numa_placement(p);
868}
869
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200870static void reset_ptenuma_scan(struct task_struct *p)
871{
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
874}
875
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200876/*
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
879 */
880void task_numa_work(struct callback_head *work)
881{
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200885 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +0000886 unsigned long start, end;
887 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200888
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
890
891 work->next = work; /* protect against double add */
892 /*
893 * Who cares about NUMA placement when they're dying.
894 *
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
898 * work.
899 */
900 if (p->flags & PF_EXITING)
901 return;
902
903 /*
Mel Gorman5bca2302012-11-22 14:40:03 +0000904 * We do not care about task placement until a task runs on a node
905 * other than the first one used by the address space. This is
906 * largely because migrations are driven by what CPU the task
907 * is running on. If it's never scheduled on another node, it'll
908 * not migrate so why bother trapping the fault.
909 */
910 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
911 mm->first_nid = numa_node_id();
912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
913 /* Are we running on a new node yet? */
914 if (numa_node_id() == mm->first_nid &&
915 !sched_feat_numa(NUMA_FORCE))
916 return;
917
918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
919 }
920
921 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +0000922 * Reset the scan period if enough time has gone by. Objective is that
923 * scanning will be reduced if pages are properly placed. As tasks
924 * can enter different phases this needs to be re-examined. Lacking
925 * proper tracking of reference behaviour, this blunt hammer is used.
926 */
927 migrate = mm->numa_next_reset;
928 if (time_after(now, migrate)) {
929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
931 xchg(&mm->numa_next_reset, next_scan);
932 }
933
934 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200935 * Enforce maximal scan/migration frequency..
936 */
937 migrate = mm->numa_next_scan;
938 if (time_before(now, migrate))
939 return;
940
941 if (p->numa_scan_period == 0)
942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
943
Mel Gormanfb003b82012-11-15 09:01:14 +0000944 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
946 return;
947
Mel Gormane14808b2012-11-19 10:59:15 +0000948 /*
949 * Do not set pte_numa if the current running node is rate-limited.
950 * This loses statistics on the fault but if we are unwilling to
951 * migrate to this node, it is less likely we can do useful work
952 */
953 if (migrate_ratelimited(numa_node_id()))
954 return;
955
Mel Gorman9f406042012-11-14 18:34:32 +0000956 start = mm->numa_scan_offset;
957 pages = sysctl_numa_balancing_scan_size;
958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
959 if (!pages)
960 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200961
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200962 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +0000963 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200964 if (!vma) {
965 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +0000966 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200967 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200968 }
Mel Gorman9f406042012-11-14 18:34:32 +0000969 for (; vma; vma = vma->vm_next) {
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200970 if (!vma_migratable(vma))
971 continue;
972
973 /* Skip small VMAs. They are not likely to be of relevance */
Mel Gorman221392c2012-12-17 14:05:53 +0000974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200975 continue;
976
Mel Gorman9f406042012-11-14 18:34:32 +0000977 do {
978 start = max(start, vma->vm_start);
979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
980 end = min(end, vma->vm_end);
981 pages -= change_prot_numa(vma, start, end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200982
Mel Gorman9f406042012-11-14 18:34:32 +0000983 start = end;
984 if (pages <= 0)
985 goto out;
986 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200987 }
988
Mel Gorman9f406042012-11-14 18:34:32 +0000989out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200990 /*
991 * It is possible to reach the end of the VMA list but the last few VMAs are
992 * not guaranteed to the vma_migratable. If they are not, we would find the
993 * !migratable VMA on the next scan but not reset the scanner to the start
994 * so check it now.
995 */
996 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +0000997 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200998 else
999 reset_ptenuma_scan(p);
1000 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001001}
1002
1003/*
1004 * Drive the periodic memory faults..
1005 */
1006void task_tick_numa(struct rq *rq, struct task_struct *curr)
1007{
1008 struct callback_head *work = &curr->numa_work;
1009 u64 period, now;
1010
1011 /*
1012 * We don't care about NUMA placement if we don't have memory.
1013 */
1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1015 return;
1016
1017 /*
1018 * Using runtime rather than walltime has the dual advantage that
1019 * we (mostly) drive the selection from busy threads and that the
1020 * task needs to have done some actual work before we bother with
1021 * NUMA placement.
1022 */
1023 now = curr->se.sum_exec_runtime;
1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1025
1026 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001027 if (!curr->node_stamp)
1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001029 curr->node_stamp = now;
1030
1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1033 task_work_add(curr, work, true);
1034 }
1035 }
1036}
1037#else
1038static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1039{
1040}
1041#endif /* CONFIG_NUMA_BALANCING */
1042
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001043static void
1044account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045{
1046 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001047 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001049#ifdef CONFIG_SMP
1050 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001052#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001053 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001054}
1055
1056static void
1057account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1058{
1059 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001060 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001062 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301063 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001064 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001065}
1066
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001067#ifdef CONFIG_FAIR_GROUP_SCHED
1068# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001069static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1070{
1071 long tg_weight;
1072
1073 /*
1074 * Use this CPU's actual weight instead of the last load_contribution
1075 * to gain a more accurate current total weight. See
1076 * update_cfs_rq_load_contribution().
1077 */
Paul Turner82958362012-10-04 13:18:31 +02001078 tg_weight = atomic64_read(&tg->load_avg);
1079 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001080 tg_weight += cfs_rq->load.weight;
1081
1082 return tg_weight;
1083}
1084
Paul Turner6d5ab292011-01-21 20:45:01 -08001085static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001086{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001087 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001088
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001089 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001090 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001091
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001092 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001093 if (tg_weight)
1094 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001095
1096 if (shares < MIN_SHARES)
1097 shares = MIN_SHARES;
1098 if (shares > tg->shares)
1099 shares = tg->shares;
1100
1101 return shares;
1102}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001103# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001104static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001105{
1106 return tg->shares;
1107}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001108# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001109static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1110 unsigned long weight)
1111{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001112 if (se->on_rq) {
1113 /* commit outstanding execution time */
1114 if (cfs_rq->curr == se)
1115 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001116 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001117 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001118
1119 update_load_set(&se->load, weight);
1120
1121 if (se->on_rq)
1122 account_entity_enqueue(cfs_rq, se);
1123}
1124
Paul Turner82958362012-10-04 13:18:31 +02001125static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1126
Paul Turner6d5ab292011-01-21 20:45:01 -08001127static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001128{
1129 struct task_group *tg;
1130 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001131 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001132
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001133 tg = cfs_rq->tg;
1134 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001135 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001136 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001137#ifndef CONFIG_SMP
1138 if (likely(se->load.weight == tg->shares))
1139 return;
1140#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001141 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001142
1143 reweight_entity(cfs_rq_of(se), se, shares);
1144}
1145#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001146static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001147{
1148}
1149#endif /* CONFIG_FAIR_GROUP_SCHED */
1150
Alex Shi141965c2013-06-26 13:05:39 +08001151#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001152/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001153 * We choose a half-life close to 1 scheduling period.
1154 * Note: The tables below are dependent on this value.
1155 */
1156#define LOAD_AVG_PERIOD 32
1157#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1158#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1159
1160/* Precomputed fixed inverse multiplies for multiplication by y^n */
1161static const u32 runnable_avg_yN_inv[] = {
1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1167 0x85aac367, 0x82cd8698,
1168};
1169
1170/*
1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1172 * over-estimates when re-combining.
1173 */
1174static const u32 runnable_avg_yN_sum[] = {
1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1178};
1179
1180/*
Paul Turner9d85f212012-10-04 13:18:29 +02001181 * Approximate:
1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1183 */
1184static __always_inline u64 decay_load(u64 val, u64 n)
1185{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001186 unsigned int local_n;
1187
1188 if (!n)
1189 return val;
1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1191 return 0;
1192
1193 /* after bounds checking we can collapse to 32-bit */
1194 local_n = n;
1195
1196 /*
1197 * As y^PERIOD = 1/2, we can combine
1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1199 * With a look-up table which covers k^n (n<PERIOD)
1200 *
1201 * To achieve constant time decay_load.
1202 */
1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1204 val >>= local_n / LOAD_AVG_PERIOD;
1205 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001206 }
1207
Paul Turner5b51f2f2012-10-04 13:18:32 +02001208 val *= runnable_avg_yN_inv[local_n];
1209 /* We don't use SRR here since we always want to round down. */
1210 return val >> 32;
1211}
1212
1213/*
1214 * For updates fully spanning n periods, the contribution to runnable
1215 * average will be: \Sum 1024*y^n
1216 *
1217 * We can compute this reasonably efficiently by combining:
1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1219 */
1220static u32 __compute_runnable_contrib(u64 n)
1221{
1222 u32 contrib = 0;
1223
1224 if (likely(n <= LOAD_AVG_PERIOD))
1225 return runnable_avg_yN_sum[n];
1226 else if (unlikely(n >= LOAD_AVG_MAX_N))
1227 return LOAD_AVG_MAX;
1228
1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1230 do {
1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1233
1234 n -= LOAD_AVG_PERIOD;
1235 } while (n > LOAD_AVG_PERIOD);
1236
1237 contrib = decay_load(contrib, n);
1238 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001239}
1240
1241/*
1242 * We can represent the historical contribution to runnable average as the
1243 * coefficients of a geometric series. To do this we sub-divide our runnable
1244 * history into segments of approximately 1ms (1024us); label the segment that
1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1246 *
1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1248 * p0 p1 p2
1249 * (now) (~1ms ago) (~2ms ago)
1250 *
1251 * Let u_i denote the fraction of p_i that the entity was runnable.
1252 *
1253 * We then designate the fractions u_i as our co-efficients, yielding the
1254 * following representation of historical load:
1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1256 *
1257 * We choose y based on the with of a reasonably scheduling period, fixing:
1258 * y^32 = 0.5
1259 *
1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1261 * approximately half as much as the contribution to load within the last ms
1262 * (u_0).
1263 *
1264 * When a period "rolls over" and we have new u_0`, multiplying the previous
1265 * sum again by y is sufficient to update:
1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1268 */
1269static __always_inline int __update_entity_runnable_avg(u64 now,
1270 struct sched_avg *sa,
1271 int runnable)
1272{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001273 u64 delta, periods;
1274 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001275 int delta_w, decayed = 0;
1276
1277 delta = now - sa->last_runnable_update;
1278 /*
1279 * This should only happen when time goes backwards, which it
1280 * unfortunately does during sched clock init when we swap over to TSC.
1281 */
1282 if ((s64)delta < 0) {
1283 sa->last_runnable_update = now;
1284 return 0;
1285 }
1286
1287 /*
1288 * Use 1024ns as the unit of measurement since it's a reasonable
1289 * approximation of 1us and fast to compute.
1290 */
1291 delta >>= 10;
1292 if (!delta)
1293 return 0;
1294 sa->last_runnable_update = now;
1295
1296 /* delta_w is the amount already accumulated against our next period */
1297 delta_w = sa->runnable_avg_period % 1024;
1298 if (delta + delta_w >= 1024) {
1299 /* period roll-over */
1300 decayed = 1;
1301
1302 /*
1303 * Now that we know we're crossing a period boundary, figure
1304 * out how much from delta we need to complete the current
1305 * period and accrue it.
1306 */
1307 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001308 if (runnable)
1309 sa->runnable_avg_sum += delta_w;
1310 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001311
Paul Turner5b51f2f2012-10-04 13:18:32 +02001312 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001313
Paul Turner5b51f2f2012-10-04 13:18:32 +02001314 /* Figure out how many additional periods this update spans */
1315 periods = delta / 1024;
1316 delta %= 1024;
1317
1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1319 periods + 1);
1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1321 periods + 1);
1322
1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1324 runnable_contrib = __compute_runnable_contrib(periods);
1325 if (runnable)
1326 sa->runnable_avg_sum += runnable_contrib;
1327 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001328 }
1329
1330 /* Remainder of delta accrued against u_0` */
1331 if (runnable)
1332 sa->runnable_avg_sum += delta;
1333 sa->runnable_avg_period += delta;
1334
1335 return decayed;
1336}
1337
Paul Turner9ee474f2012-10-04 13:18:30 +02001338/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02001339static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02001340{
1341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1342 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1343
1344 decays -= se->avg.decay_count;
1345 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02001346 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02001347
1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1349 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02001350
1351 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02001352}
1353
Paul Turnerc566e8e2012-10-04 13:18:30 +02001354#ifdef CONFIG_FAIR_GROUP_SCHED
1355static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1356 int force_update)
1357{
1358 struct task_group *tg = cfs_rq->tg;
1359 s64 tg_contrib;
1360
1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1362 tg_contrib -= cfs_rq->tg_load_contrib;
1363
1364 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1365 atomic64_add(tg_contrib, &tg->load_avg);
1366 cfs_rq->tg_load_contrib += tg_contrib;
1367 }
1368}
Paul Turner8165e142012-10-04 13:18:31 +02001369
Paul Turnerbb17f652012-10-04 13:18:31 +02001370/*
1371 * Aggregate cfs_rq runnable averages into an equivalent task_group
1372 * representation for computing load contributions.
1373 */
1374static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1375 struct cfs_rq *cfs_rq)
1376{
1377 struct task_group *tg = cfs_rq->tg;
1378 long contrib;
1379
1380 /* The fraction of a cpu used by this cfs_rq */
1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1382 sa->runnable_avg_period + 1);
1383 contrib -= cfs_rq->tg_runnable_contrib;
1384
1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1386 atomic_add(contrib, &tg->runnable_avg);
1387 cfs_rq->tg_runnable_contrib += contrib;
1388 }
1389}
1390
Paul Turner8165e142012-10-04 13:18:31 +02001391static inline void __update_group_entity_contrib(struct sched_entity *se)
1392{
1393 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1394 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02001395 int runnable_avg;
1396
Paul Turner8165e142012-10-04 13:18:31 +02001397 u64 contrib;
1398
1399 contrib = cfs_rq->tg_load_contrib * tg->shares;
1400 se->avg.load_avg_contrib = div64_u64(contrib,
1401 atomic64_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02001402
1403 /*
1404 * For group entities we need to compute a correction term in the case
1405 * that they are consuming <1 cpu so that we would contribute the same
1406 * load as a task of equal weight.
1407 *
1408 * Explicitly co-ordinating this measurement would be expensive, but
1409 * fortunately the sum of each cpus contribution forms a usable
1410 * lower-bound on the true value.
1411 *
1412 * Consider the aggregate of 2 contributions. Either they are disjoint
1413 * (and the sum represents true value) or they are disjoint and we are
1414 * understating by the aggregate of their overlap.
1415 *
1416 * Extending this to N cpus, for a given overlap, the maximum amount we
1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1418 * cpus that overlap for this interval and w_i is the interval width.
1419 *
1420 * On a small machine; the first term is well-bounded which bounds the
1421 * total error since w_i is a subset of the period. Whereas on a
1422 * larger machine, while this first term can be larger, if w_i is the
1423 * of consequential size guaranteed to see n_i*w_i quickly converge to
1424 * our upper bound of 1-cpu.
1425 */
1426 runnable_avg = atomic_read(&tg->runnable_avg);
1427 if (runnable_avg < NICE_0_LOAD) {
1428 se->avg.load_avg_contrib *= runnable_avg;
1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1430 }
Paul Turner8165e142012-10-04 13:18:31 +02001431}
Paul Turnerc566e8e2012-10-04 13:18:30 +02001432#else
1433static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1434 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02001435static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1436 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02001437static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02001438#endif
1439
Paul Turner8165e142012-10-04 13:18:31 +02001440static inline void __update_task_entity_contrib(struct sched_entity *se)
1441{
1442 u32 contrib;
1443
1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1446 contrib /= (se->avg.runnable_avg_period + 1);
1447 se->avg.load_avg_contrib = scale_load(contrib);
1448}
1449
Paul Turner2dac7542012-10-04 13:18:30 +02001450/* Compute the current contribution to load_avg by se, return any delta */
1451static long __update_entity_load_avg_contrib(struct sched_entity *se)
1452{
1453 long old_contrib = se->avg.load_avg_contrib;
1454
Paul Turner8165e142012-10-04 13:18:31 +02001455 if (entity_is_task(se)) {
1456 __update_task_entity_contrib(se);
1457 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02001458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02001459 __update_group_entity_contrib(se);
1460 }
Paul Turner2dac7542012-10-04 13:18:30 +02001461
1462 return se->avg.load_avg_contrib - old_contrib;
1463}
1464
Paul Turner9ee474f2012-10-04 13:18:30 +02001465static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1466 long load_contrib)
1467{
1468 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1469 cfs_rq->blocked_load_avg -= load_contrib;
1470 else
1471 cfs_rq->blocked_load_avg = 0;
1472}
1473
Paul Turnerf1b17282012-10-04 13:18:31 +02001474static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1475
Paul Turner9d85f212012-10-04 13:18:29 +02001476/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02001477static inline void update_entity_load_avg(struct sched_entity *se,
1478 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02001479{
Paul Turner2dac7542012-10-04 13:18:30 +02001480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1481 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02001482 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02001483
Paul Turnerf1b17282012-10-04 13:18:31 +02001484 /*
1485 * For a group entity we need to use their owned cfs_rq_clock_task() in
1486 * case they are the parent of a throttled hierarchy.
1487 */
1488 if (entity_is_task(se))
1489 now = cfs_rq_clock_task(cfs_rq);
1490 else
1491 now = cfs_rq_clock_task(group_cfs_rq(se));
1492
1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02001494 return;
1495
1496 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02001497
1498 if (!update_cfs_rq)
1499 return;
1500
Paul Turner2dac7542012-10-04 13:18:30 +02001501 if (se->on_rq)
1502 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02001503 else
1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1505}
1506
1507/*
1508 * Decay the load contributed by all blocked children and account this so that
1509 * their contribution may appropriately discounted when they wake up.
1510 */
Paul Turneraff3e492012-10-04 13:18:30 +02001511static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02001512{
Paul Turnerf1b17282012-10-04 13:18:31 +02001513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02001514 u64 decays;
1515
1516 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02001517 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02001518 return;
1519
Paul Turneraff3e492012-10-04 13:18:30 +02001520 if (atomic64_read(&cfs_rq->removed_load)) {
1521 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1522 subtract_blocked_load_contrib(cfs_rq, removed_load);
1523 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001524
Paul Turneraff3e492012-10-04 13:18:30 +02001525 if (decays) {
1526 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1527 decays);
1528 atomic64_add(decays, &cfs_rq->decay_counter);
1529 cfs_rq->last_decay = now;
1530 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02001531
1532 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02001533}
Ben Segall18bf2802012-10-04 12:51:20 +02001534
1535static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1536{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02001537 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02001538 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02001539}
Paul Turner2dac7542012-10-04 13:18:30 +02001540
1541/* Add the load generated by se into cfs_rq's child load-average */
1542static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001543 struct sched_entity *se,
1544 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02001545{
Paul Turneraff3e492012-10-04 13:18:30 +02001546 /*
1547 * We track migrations using entity decay_count <= 0, on a wake-up
1548 * migration we use a negative decay count to track the remote decays
1549 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08001550 *
1551 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1552 * are seen by enqueue_entity_load_avg() as a migration with an already
1553 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02001554 */
1555 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02001556 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02001557 if (se->avg.decay_count) {
1558 /*
1559 * In a wake-up migration we have to approximate the
1560 * time sleeping. This is because we can't synchronize
1561 * clock_task between the two cpus, and it is not
1562 * guaranteed to be read-safe. Instead, we can
1563 * approximate this using our carried decays, which are
1564 * explicitly atomically readable.
1565 */
1566 se->avg.last_runnable_update -= (-se->avg.decay_count)
1567 << 20;
1568 update_entity_load_avg(se, 0);
1569 /* Indicate that we're now synchronized and on-rq */
1570 se->avg.decay_count = 0;
1571 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001572 wakeup = 0;
1573 } else {
Alex Shi282cf492013-06-20 10:18:48 +08001574 /*
1575 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1576 * would have made count negative); we must be careful to avoid
1577 * double-accounting blocked time after synchronizing decays.
1578 */
1579 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1580 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02001581 }
1582
Paul Turneraff3e492012-10-04 13:18:30 +02001583 /* migrated tasks did not contribute to our blocked load */
1584 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02001585 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02001586 update_entity_load_avg(se, 0);
1587 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001588
Paul Turner2dac7542012-10-04 13:18:30 +02001589 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02001590 /* we force update consideration on load-balancer moves */
1591 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02001592}
1593
Paul Turner9ee474f2012-10-04 13:18:30 +02001594/*
1595 * Remove se's load from this cfs_rq child load-average, if the entity is
1596 * transitioning to a blocked state we track its projected decay using
1597 * blocked_load_avg.
1598 */
Paul Turner2dac7542012-10-04 13:18:30 +02001599static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001600 struct sched_entity *se,
1601 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02001602{
Paul Turner9ee474f2012-10-04 13:18:30 +02001603 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02001604 /* we force update consideration on load-balancer moves */
1605 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02001606
Paul Turner2dac7542012-10-04 13:18:30 +02001607 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02001608 if (sleep) {
1609 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1610 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1611 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02001612}
Vincent Guittot642dbc32013-04-18 18:34:26 +02001613
1614/*
1615 * Update the rq's load with the elapsed running time before entering
1616 * idle. if the last scheduled task is not a CFS task, idle_enter will
1617 * be the only way to update the runnable statistic.
1618 */
1619void idle_enter_fair(struct rq *this_rq)
1620{
1621 update_rq_runnable_avg(this_rq, 1);
1622}
1623
1624/*
1625 * Update the rq's load with the elapsed idle time before a task is
1626 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1627 * be the only way to update the runnable statistic.
1628 */
1629void idle_exit_fair(struct rq *this_rq)
1630{
1631 update_rq_runnable_avg(this_rq, 0);
1632}
1633
Paul Turner9d85f212012-10-04 13:18:29 +02001634#else
Paul Turner9ee474f2012-10-04 13:18:30 +02001635static inline void update_entity_load_avg(struct sched_entity *se,
1636 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02001637static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02001638static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001639 struct sched_entity *se,
1640 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02001641static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001642 struct sched_entity *se,
1643 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02001644static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1645 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02001646#endif
1647
Ingo Molnar2396af62007-08-09 11:16:48 +02001648static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001649{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001650#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02001651 struct task_struct *tsk = NULL;
1652
1653 if (entity_is_task(se))
1654 tsk = task_of(se);
1655
Lucas De Marchi41acab82010-03-10 23:37:45 -03001656 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02001657 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001658
1659 if ((s64)delta < 0)
1660 delta = 0;
1661
Lucas De Marchi41acab82010-03-10 23:37:45 -03001662 if (unlikely(delta > se->statistics.sleep_max))
1663 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001664
Peter Zijlstra8c79a042012-01-30 14:51:37 +01001665 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03001666 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01001667
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001668 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02001669 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001670 trace_sched_stat_sleep(tsk, delta);
1671 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001672 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03001673 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02001674 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001675
1676 if ((s64)delta < 0)
1677 delta = 0;
1678
Lucas De Marchi41acab82010-03-10 23:37:45 -03001679 if (unlikely(delta > se->statistics.block_max))
1680 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001681
Peter Zijlstra8c79a042012-01-30 14:51:37 +01001682 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03001683 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02001684
Peter Zijlstrae4143142009-07-23 20:13:26 +02001685 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07001686 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001687 se->statistics.iowait_sum += delta;
1688 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02001689 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07001690 }
1691
Andrew Vaginb781a602011-11-28 12:03:35 +03001692 trace_sched_stat_blocked(tsk, delta);
1693
Peter Zijlstrae4143142009-07-23 20:13:26 +02001694 /*
1695 * Blocking time is in units of nanosecs, so shift by
1696 * 20 to get a milliseconds-range estimation of the
1697 * amount of time that the task spent sleeping:
1698 */
1699 if (unlikely(prof_on == SLEEP_PROFILING)) {
1700 profile_hits(SLEEP_PROFILING,
1701 (void *)get_wchan(tsk),
1702 delta >> 20);
1703 }
1704 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02001705 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001706 }
1707#endif
1708}
1709
Peter Zijlstraddc97292007-10-15 17:00:10 +02001710static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1711{
1712#ifdef CONFIG_SCHED_DEBUG
1713 s64 d = se->vruntime - cfs_rq->min_vruntime;
1714
1715 if (d < 0)
1716 d = -d;
1717
1718 if (d > 3*sysctl_sched_latency)
1719 schedstat_inc(cfs_rq, nr_spread_over);
1720#endif
1721}
1722
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001723static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001724place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1725{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02001726 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02001727
Peter Zijlstra2cb86002007-11-09 22:39:37 +01001728 /*
1729 * The 'current' period is already promised to the current tasks,
1730 * however the extra weight of the new task will slow them down a
1731 * little, place the new task so that it fits in the slot that
1732 * stays open at the end.
1733 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02001734 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02001735 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001736
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001737 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01001738 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001739 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02001740
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001741 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001742 * Halve their sleep time's effect, to allow
1743 * for a gentler effect of sleepers:
1744 */
1745 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1746 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02001747
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02001748 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001749 }
1750
Mike Galbraithb5d9d732009-09-08 11:12:28 +02001751 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05301752 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001753}
1754
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001755static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1756
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001757static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001758enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001759{
1760 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001761 * Update the normalized vruntime before updating min_vruntime
1762 * through callig update_curr().
1763 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001764 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001765 se->vruntime += cfs_rq->min_vruntime;
1766
1767 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001768 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001769 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02001770 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02001771 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001772 account_entity_enqueue(cfs_rq, se);
1773 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001774
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001775 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02001776 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02001777 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02001778 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001779
Ingo Molnard2417e52007-08-09 11:16:47 +02001780 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02001781 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001782 if (se != cfs_rq->curr)
1783 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001784 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08001785
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001786 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08001787 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001788 check_enqueue_throttle(cfs_rq);
1789 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001790}
1791
Rik van Riel2c13c9192011-02-01 09:48:37 -05001792static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01001793{
Rik van Riel2c13c9192011-02-01 09:48:37 -05001794 for_each_sched_entity(se) {
1795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1796 if (cfs_rq->last == se)
1797 cfs_rq->last = NULL;
1798 else
1799 break;
1800 }
1801}
Peter Zijlstra2002c692008-11-11 11:52:33 +01001802
Rik van Riel2c13c9192011-02-01 09:48:37 -05001803static void __clear_buddies_next(struct sched_entity *se)
1804{
1805 for_each_sched_entity(se) {
1806 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1807 if (cfs_rq->next == se)
1808 cfs_rq->next = NULL;
1809 else
1810 break;
1811 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01001812}
1813
Rik van Rielac53db52011-02-01 09:51:03 -05001814static void __clear_buddies_skip(struct sched_entity *se)
1815{
1816 for_each_sched_entity(se) {
1817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1818 if (cfs_rq->skip == se)
1819 cfs_rq->skip = NULL;
1820 else
1821 break;
1822 }
1823}
1824
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01001825static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1826{
Rik van Riel2c13c9192011-02-01 09:48:37 -05001827 if (cfs_rq->last == se)
1828 __clear_buddies_last(se);
1829
1830 if (cfs_rq->next == se)
1831 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05001832
1833 if (cfs_rq->skip == se)
1834 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01001835}
1836
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07001837static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07001838
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001839static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001840dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001841{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001842 /*
1843 * Update run-time statistics of the 'current'.
1844 */
1845 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001846 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001847
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02001848 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001849 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02001850#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001851 if (entity_is_task(se)) {
1852 struct task_struct *tsk = task_of(se);
1853
1854 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02001855 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001856 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02001857 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001858 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02001859#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02001860 }
1861
Peter Zijlstra2002c692008-11-11 11:52:33 +01001862 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01001863
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001864 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001865 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001866 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001867 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001868
1869 /*
1870 * Normalize the entity after updating the min_vruntime because the
1871 * update can refer to the ->curr item and we need to reflect this
1872 * movement in our normalized position.
1873 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001874 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001875 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07001876
Paul Turnerd8b49862011-07-21 09:43:41 -07001877 /* return excess runtime on last dequeue */
1878 return_cfs_rq_runtime(cfs_rq);
1879
Peter Zijlstra1e876232011-05-17 16:21:10 -07001880 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08001881 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001882}
1883
1884/*
1885 * Preempt the current task with a newly woken task if needed:
1886 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02001887static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02001888check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001889{
Peter Zijlstra11697832007-09-05 14:32:49 +02001890 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001891 struct sched_entity *se;
1892 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02001893
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02001894 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02001895 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01001896 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001897 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01001898 /*
1899 * The current task ran long enough, ensure it doesn't get
1900 * re-elected due to buddy favours.
1901 */
1902 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02001903 return;
1904 }
1905
1906 /*
1907 * Ensure that a task that missed wakeup preemption by a
1908 * narrow margin doesn't have to wait for a full slice.
1909 * This also mitigates buddy induced latencies under load.
1910 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02001911 if (delta_exec < sysctl_sched_min_granularity)
1912 return;
1913
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001914 se = __pick_first_entity(cfs_rq);
1915 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02001916
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001917 if (delta < 0)
1918 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01001919
Wang Xingchaof4cfb332011-09-16 13:35:52 -04001920 if (delta > ideal_runtime)
1921 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001922}
1923
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001924static void
Ingo Molnar8494f412007-08-09 11:16:48 +02001925set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001926{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001927 /* 'current' is not kept within the tree. */
1928 if (se->on_rq) {
1929 /*
1930 * Any task has to be enqueued before it get to execute on
1931 * a CPU. So account for the time it spent waiting on the
1932 * runqueue.
1933 */
1934 update_stats_wait_end(cfs_rq, se);
1935 __dequeue_entity(cfs_rq, se);
1936 }
1937
Ingo Molnar79303e92007-08-09 11:16:47 +02001938 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02001939 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02001940#ifdef CONFIG_SCHEDSTATS
1941 /*
1942 * Track our maximum slice length, if the CPU's load is at
1943 * least twice that of our own weight (i.e. dont track it
1944 * when there are only lesser-weight tasks around):
1945 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02001946 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001947 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02001948 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1949 }
1950#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02001951 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001952}
1953
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02001954static int
1955wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1956
Rik van Rielac53db52011-02-01 09:51:03 -05001957/*
1958 * Pick the next process, keeping these things in mind, in this order:
1959 * 1) keep things fair between processes/task groups
1960 * 2) pick the "next" process, since someone really wants that to run
1961 * 3) pick the "last" process, for cache locality
1962 * 4) do not run the "skip" process, if something else is available
1963 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001964static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001965{
Rik van Rielac53db52011-02-01 09:51:03 -05001966 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02001967 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001968
Rik van Rielac53db52011-02-01 09:51:03 -05001969 /*
1970 * Avoid running the skip buddy, if running something else can
1971 * be done without getting too unfair.
1972 */
1973 if (cfs_rq->skip == se) {
1974 struct sched_entity *second = __pick_next_entity(se);
1975 if (second && wakeup_preempt_entity(second, left) < 1)
1976 se = second;
1977 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001978
Mike Galbraithf685cea2009-10-23 23:09:22 +02001979 /*
1980 * Prefer last buddy, try to return the CPU to a preempted task.
1981 */
1982 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1983 se = cfs_rq->last;
1984
Rik van Rielac53db52011-02-01 09:51:03 -05001985 /*
1986 * Someone really wants this to run. If it's not unfair, run it.
1987 */
1988 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1989 se = cfs_rq->next;
1990
Mike Galbraithf685cea2009-10-23 23:09:22 +02001991 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01001992
1993 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001994}
1995
Paul Turnerd3d9dc32011-07-21 09:43:39 -07001996static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1997
Ingo Molnarab6cde22007-08-09 11:16:48 +02001998static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001999{
2000 /*
2001 * If still on the runqueue then deactivate_task()
2002 * was not called and update_curr() has to be done:
2003 */
2004 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002005 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002006
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002007 /* throttle cfs_rqs exceeding runtime */
2008 check_cfs_rq_runtime(cfs_rq);
2009
Peter Zijlstraddc97292007-10-15 17:00:10 +02002010 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002011 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002012 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002013 /* Put 'current' back into the tree. */
2014 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002015 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002016 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002017 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002018 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002019}
2020
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002021static void
2022entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002023{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002024 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002025 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002026 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002027 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002028
Paul Turner43365bd2010-12-15 19:10:17 -08002029 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002030 * Ensure that runnable average is periodically updated.
2031 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002032 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002033 update_cfs_rq_blocked_load(cfs_rq, 1);
Paul Turner9d85f212012-10-04 13:18:29 +02002034
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002035#ifdef CONFIG_SCHED_HRTICK
2036 /*
2037 * queued ticks are scheduled to match the slice, so don't bother
2038 * validating it and just reschedule.
2039 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002040 if (queued) {
2041 resched_task(rq_of(cfs_rq)->curr);
2042 return;
2043 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002044 /*
2045 * don't let the period tick interfere with the hrtick preemption
2046 */
2047 if (!sched_feat(DOUBLE_TICK) &&
2048 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2049 return;
2050#endif
2051
Yong Zhang2c2efae2011-07-29 16:20:33 +08002052 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002053 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002054}
2055
Paul Turnerab84d312011-07-21 09:43:28 -07002056
2057/**************************************************
2058 * CFS bandwidth control machinery
2059 */
2060
2061#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002062
2063#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002064static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002065
2066static inline bool cfs_bandwidth_used(void)
2067{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002068 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002069}
2070
2071void account_cfs_bandwidth_used(int enabled, int was_enabled)
2072{
2073 /* only need to count groups transitioning between enabled/!enabled */
2074 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002075 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002076 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002077 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002078}
2079#else /* HAVE_JUMP_LABEL */
2080static bool cfs_bandwidth_used(void)
2081{
2082 return true;
2083}
2084
2085void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2086#endif /* HAVE_JUMP_LABEL */
2087
Paul Turnerab84d312011-07-21 09:43:28 -07002088/*
2089 * default period for cfs group bandwidth.
2090 * default: 0.1s, units: nanoseconds
2091 */
2092static inline u64 default_cfs_period(void)
2093{
2094 return 100000000ULL;
2095}
Paul Turnerec12cb72011-07-21 09:43:30 -07002096
2097static inline u64 sched_cfs_bandwidth_slice(void)
2098{
2099 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2100}
2101
Paul Turnera9cf55b2011-07-21 09:43:32 -07002102/*
2103 * Replenish runtime according to assigned quota and update expiration time.
2104 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2105 * additional synchronization around rq->lock.
2106 *
2107 * requires cfs_b->lock
2108 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002109void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002110{
2111 u64 now;
2112
2113 if (cfs_b->quota == RUNTIME_INF)
2114 return;
2115
2116 now = sched_clock_cpu(smp_processor_id());
2117 cfs_b->runtime = cfs_b->quota;
2118 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2119}
2120
Peter Zijlstra029632f2011-10-25 10:00:11 +02002121static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2122{
2123 return &tg->cfs_bandwidth;
2124}
2125
Paul Turnerf1b17282012-10-04 13:18:31 +02002126/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2127static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2128{
2129 if (unlikely(cfs_rq->throttle_count))
2130 return cfs_rq->throttled_clock_task;
2131
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002132 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002133}
2134
Paul Turner85dac902011-07-21 09:43:33 -07002135/* returns 0 on failure to allocate runtime */
2136static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002137{
2138 struct task_group *tg = cfs_rq->tg;
2139 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002140 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002141
2142 /* note: this is a positive sum as runtime_remaining <= 0 */
2143 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2144
2145 raw_spin_lock(&cfs_b->lock);
2146 if (cfs_b->quota == RUNTIME_INF)
2147 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002148 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002149 /*
2150 * If the bandwidth pool has become inactive, then at least one
2151 * period must have elapsed since the last consumption.
2152 * Refresh the global state and ensure bandwidth timer becomes
2153 * active.
2154 */
2155 if (!cfs_b->timer_active) {
2156 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002157 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002158 }
Paul Turner58088ad2011-07-21 09:43:31 -07002159
2160 if (cfs_b->runtime > 0) {
2161 amount = min(cfs_b->runtime, min_amount);
2162 cfs_b->runtime -= amount;
2163 cfs_b->idle = 0;
2164 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002165 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002166 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002167 raw_spin_unlock(&cfs_b->lock);
2168
2169 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002170 /*
2171 * we may have advanced our local expiration to account for allowed
2172 * spread between our sched_clock and the one on which runtime was
2173 * issued.
2174 */
2175 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2176 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002177
2178 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002179}
2180
2181/*
2182 * Note: This depends on the synchronization provided by sched_clock and the
2183 * fact that rq->clock snapshots this value.
2184 */
2185static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2186{
2187 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002188
2189 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002190 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002191 return;
2192
2193 if (cfs_rq->runtime_remaining < 0)
2194 return;
2195
2196 /*
2197 * If the local deadline has passed we have to consider the
2198 * possibility that our sched_clock is 'fast' and the global deadline
2199 * has not truly expired.
2200 *
2201 * Fortunately we can check determine whether this the case by checking
2202 * whether the global deadline has advanced.
2203 */
2204
2205 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2206 /* extend local deadline, drift is bounded above by 2 ticks */
2207 cfs_rq->runtime_expires += TICK_NSEC;
2208 } else {
2209 /* global deadline is ahead, expiration has passed */
2210 cfs_rq->runtime_remaining = 0;
2211 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002212}
2213
2214static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2215 unsigned long delta_exec)
2216{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002217 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002218 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002219 expire_cfs_rq_runtime(cfs_rq);
2220
2221 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002222 return;
2223
Paul Turner85dac902011-07-21 09:43:33 -07002224 /*
2225 * if we're unable to extend our runtime we resched so that the active
2226 * hierarchy can be throttled
2227 */
2228 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2229 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002230}
2231
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002232static __always_inline
2233void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002234{
Paul Turner56f570e2011-11-07 20:26:33 -08002235 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002236 return;
2237
2238 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2239}
2240
Paul Turner85dac902011-07-21 09:43:33 -07002241static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2242{
Paul Turner56f570e2011-11-07 20:26:33 -08002243 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002244}
2245
Paul Turner64660c82011-07-21 09:43:36 -07002246/* check whether cfs_rq, or any parent, is throttled */
2247static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2248{
Paul Turner56f570e2011-11-07 20:26:33 -08002249 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002250}
2251
2252/*
2253 * Ensure that neither of the group entities corresponding to src_cpu or
2254 * dest_cpu are members of a throttled hierarchy when performing group
2255 * load-balance operations.
2256 */
2257static inline int throttled_lb_pair(struct task_group *tg,
2258 int src_cpu, int dest_cpu)
2259{
2260 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2261
2262 src_cfs_rq = tg->cfs_rq[src_cpu];
2263 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2264
2265 return throttled_hierarchy(src_cfs_rq) ||
2266 throttled_hierarchy(dest_cfs_rq);
2267}
2268
2269/* updated child weight may affect parent so we have to do this bottom up */
2270static int tg_unthrottle_up(struct task_group *tg, void *data)
2271{
2272 struct rq *rq = data;
2273 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2274
2275 cfs_rq->throttle_count--;
2276#ifdef CONFIG_SMP
2277 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002278 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002279 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02002280 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002281 }
2282#endif
2283
2284 return 0;
2285}
2286
2287static int tg_throttle_down(struct task_group *tg, void *data)
2288{
2289 struct rq *rq = data;
2290 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2291
Paul Turner82958362012-10-04 13:18:31 +02002292 /* group is entering throttled state, stop time */
2293 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002294 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07002295 cfs_rq->throttle_count++;
2296
2297 return 0;
2298}
2299
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002300static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002301{
2302 struct rq *rq = rq_of(cfs_rq);
2303 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2304 struct sched_entity *se;
2305 long task_delta, dequeue = 1;
2306
2307 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2308
Paul Turnerf1b17282012-10-04 13:18:31 +02002309 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002310 rcu_read_lock();
2311 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2312 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002313
2314 task_delta = cfs_rq->h_nr_running;
2315 for_each_sched_entity(se) {
2316 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2317 /* throttled entity or throttle-on-deactivate */
2318 if (!se->on_rq)
2319 break;
2320
2321 if (dequeue)
2322 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2323 qcfs_rq->h_nr_running -= task_delta;
2324
2325 if (qcfs_rq->load.weight)
2326 dequeue = 0;
2327 }
2328
2329 if (!se)
2330 rq->nr_running -= task_delta;
2331
2332 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002333 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07002334 raw_spin_lock(&cfs_b->lock);
2335 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2336 raw_spin_unlock(&cfs_b->lock);
2337}
2338
Peter Zijlstra029632f2011-10-25 10:00:11 +02002339void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07002340{
2341 struct rq *rq = rq_of(cfs_rq);
2342 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2343 struct sched_entity *se;
2344 int enqueue = 1;
2345 long task_delta;
2346
Michael Wang22b958d2013-06-04 14:23:39 +08002347 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07002348
2349 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02002350
2351 update_rq_clock(rq);
2352
Paul Turner671fd9d2011-07-21 09:43:34 -07002353 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002354 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07002355 list_del_rcu(&cfs_rq->throttled_list);
2356 raw_spin_unlock(&cfs_b->lock);
2357
Paul Turner64660c82011-07-21 09:43:36 -07002358 /* update hierarchical throttle state */
2359 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2360
Paul Turner671fd9d2011-07-21 09:43:34 -07002361 if (!cfs_rq->load.weight)
2362 return;
2363
2364 task_delta = cfs_rq->h_nr_running;
2365 for_each_sched_entity(se) {
2366 if (se->on_rq)
2367 enqueue = 0;
2368
2369 cfs_rq = cfs_rq_of(se);
2370 if (enqueue)
2371 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2372 cfs_rq->h_nr_running += task_delta;
2373
2374 if (cfs_rq_throttled(cfs_rq))
2375 break;
2376 }
2377
2378 if (!se)
2379 rq->nr_running += task_delta;
2380
2381 /* determine whether we need to wake up potentially idle cpu */
2382 if (rq->curr == rq->idle && rq->cfs.nr_running)
2383 resched_task(rq->curr);
2384}
2385
2386static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2387 u64 remaining, u64 expires)
2388{
2389 struct cfs_rq *cfs_rq;
2390 u64 runtime = remaining;
2391
2392 rcu_read_lock();
2393 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2394 throttled_list) {
2395 struct rq *rq = rq_of(cfs_rq);
2396
2397 raw_spin_lock(&rq->lock);
2398 if (!cfs_rq_throttled(cfs_rq))
2399 goto next;
2400
2401 runtime = -cfs_rq->runtime_remaining + 1;
2402 if (runtime > remaining)
2403 runtime = remaining;
2404 remaining -= runtime;
2405
2406 cfs_rq->runtime_remaining += runtime;
2407 cfs_rq->runtime_expires = expires;
2408
2409 /* we check whether we're throttled above */
2410 if (cfs_rq->runtime_remaining > 0)
2411 unthrottle_cfs_rq(cfs_rq);
2412
2413next:
2414 raw_spin_unlock(&rq->lock);
2415
2416 if (!remaining)
2417 break;
2418 }
2419 rcu_read_unlock();
2420
2421 return remaining;
2422}
2423
Paul Turner58088ad2011-07-21 09:43:31 -07002424/*
2425 * Responsible for refilling a task_group's bandwidth and unthrottling its
2426 * cfs_rqs as appropriate. If there has been no activity within the last
2427 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2428 * used to track this state.
2429 */
2430static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2431{
Paul Turner671fd9d2011-07-21 09:43:34 -07002432 u64 runtime, runtime_expires;
2433 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07002434
2435 raw_spin_lock(&cfs_b->lock);
2436 /* no need to continue the timer with no bandwidth constraint */
2437 if (cfs_b->quota == RUNTIME_INF)
2438 goto out_unlock;
2439
Paul Turner671fd9d2011-07-21 09:43:34 -07002440 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2441 /* idle depends on !throttled (for the case of a large deficit) */
2442 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07002443 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07002444
Paul Turnera9cf55b2011-07-21 09:43:32 -07002445 /* if we're going inactive then everything else can be deferred */
2446 if (idle)
2447 goto out_unlock;
2448
2449 __refill_cfs_bandwidth_runtime(cfs_b);
2450
Paul Turner671fd9d2011-07-21 09:43:34 -07002451 if (!throttled) {
2452 /* mark as potentially idle for the upcoming period */
2453 cfs_b->idle = 1;
2454 goto out_unlock;
2455 }
Paul Turner58088ad2011-07-21 09:43:31 -07002456
Nikhil Raoe8da1b12011-07-21 09:43:40 -07002457 /* account preceding periods in which throttling occurred */
2458 cfs_b->nr_throttled += overrun;
2459
Paul Turner671fd9d2011-07-21 09:43:34 -07002460 /*
2461 * There are throttled entities so we must first use the new bandwidth
2462 * to unthrottle them before making it generally available. This
2463 * ensures that all existing debts will be paid before a new cfs_rq is
2464 * allowed to run.
2465 */
2466 runtime = cfs_b->runtime;
2467 runtime_expires = cfs_b->runtime_expires;
2468 cfs_b->runtime = 0;
2469
2470 /*
2471 * This check is repeated as we are holding onto the new bandwidth
2472 * while we unthrottle. This can potentially race with an unthrottled
2473 * group trying to acquire new bandwidth from the global pool.
2474 */
2475 while (throttled && runtime > 0) {
2476 raw_spin_unlock(&cfs_b->lock);
2477 /* we can't nest cfs_b->lock while distributing bandwidth */
2478 runtime = distribute_cfs_runtime(cfs_b, runtime,
2479 runtime_expires);
2480 raw_spin_lock(&cfs_b->lock);
2481
2482 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2483 }
2484
2485 /* return (any) remaining runtime */
2486 cfs_b->runtime = runtime;
2487 /*
2488 * While we are ensured activity in the period following an
2489 * unthrottle, this also covers the case in which the new bandwidth is
2490 * insufficient to cover the existing bandwidth deficit. (Forcing the
2491 * timer to remain active while there are any throttled entities.)
2492 */
2493 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07002494out_unlock:
2495 if (idle)
2496 cfs_b->timer_active = 0;
2497 raw_spin_unlock(&cfs_b->lock);
2498
2499 return idle;
2500}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002501
Paul Turnerd8b49862011-07-21 09:43:41 -07002502/* a cfs_rq won't donate quota below this amount */
2503static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2504/* minimum remaining period time to redistribute slack quota */
2505static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2506/* how long we wait to gather additional slack before distributing */
2507static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2508
2509/* are we near the end of the current quota period? */
2510static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2511{
2512 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2513 u64 remaining;
2514
2515 /* if the call-back is running a quota refresh is already occurring */
2516 if (hrtimer_callback_running(refresh_timer))
2517 return 1;
2518
2519 /* is a quota refresh about to occur? */
2520 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2521 if (remaining < min_expire)
2522 return 1;
2523
2524 return 0;
2525}
2526
2527static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2528{
2529 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2530
2531 /* if there's a quota refresh soon don't bother with slack */
2532 if (runtime_refresh_within(cfs_b, min_left))
2533 return;
2534
2535 start_bandwidth_timer(&cfs_b->slack_timer,
2536 ns_to_ktime(cfs_bandwidth_slack_period));
2537}
2538
2539/* we know any runtime found here is valid as update_curr() precedes return */
2540static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2541{
2542 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2543 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2544
2545 if (slack_runtime <= 0)
2546 return;
2547
2548 raw_spin_lock(&cfs_b->lock);
2549 if (cfs_b->quota != RUNTIME_INF &&
2550 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2551 cfs_b->runtime += slack_runtime;
2552
2553 /* we are under rq->lock, defer unthrottling using a timer */
2554 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2555 !list_empty(&cfs_b->throttled_cfs_rq))
2556 start_cfs_slack_bandwidth(cfs_b);
2557 }
2558 raw_spin_unlock(&cfs_b->lock);
2559
2560 /* even if it's not valid for return we don't want to try again */
2561 cfs_rq->runtime_remaining -= slack_runtime;
2562}
2563
2564static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2565{
Paul Turner56f570e2011-11-07 20:26:33 -08002566 if (!cfs_bandwidth_used())
2567 return;
2568
Paul Turnerfccfdc62011-11-07 20:26:34 -08002569 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07002570 return;
2571
2572 __return_cfs_rq_runtime(cfs_rq);
2573}
2574
2575/*
2576 * This is done with a timer (instead of inline with bandwidth return) since
2577 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2578 */
2579static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2580{
2581 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2582 u64 expires;
2583
2584 /* confirm we're still not at a refresh boundary */
2585 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2586 return;
2587
2588 raw_spin_lock(&cfs_b->lock);
2589 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2590 runtime = cfs_b->runtime;
2591 cfs_b->runtime = 0;
2592 }
2593 expires = cfs_b->runtime_expires;
2594 raw_spin_unlock(&cfs_b->lock);
2595
2596 if (!runtime)
2597 return;
2598
2599 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2600
2601 raw_spin_lock(&cfs_b->lock);
2602 if (expires == cfs_b->runtime_expires)
2603 cfs_b->runtime = runtime;
2604 raw_spin_unlock(&cfs_b->lock);
2605}
2606
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002607/*
2608 * When a group wakes up we want to make sure that its quota is not already
2609 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2610 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2611 */
2612static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2613{
Paul Turner56f570e2011-11-07 20:26:33 -08002614 if (!cfs_bandwidth_used())
2615 return;
2616
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002617 /* an active group must be handled by the update_curr()->put() path */
2618 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2619 return;
2620
2621 /* ensure the group is not already throttled */
2622 if (cfs_rq_throttled(cfs_rq))
2623 return;
2624
2625 /* update runtime allocation */
2626 account_cfs_rq_runtime(cfs_rq, 0);
2627 if (cfs_rq->runtime_remaining <= 0)
2628 throttle_cfs_rq(cfs_rq);
2629}
2630
2631/* conditionally throttle active cfs_rq's from put_prev_entity() */
2632static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2633{
Paul Turner56f570e2011-11-07 20:26:33 -08002634 if (!cfs_bandwidth_used())
2635 return;
2636
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002637 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2638 return;
2639
2640 /*
2641 * it's possible for a throttled entity to be forced into a running
2642 * state (e.g. set_curr_task), in this case we're finished.
2643 */
2644 if (cfs_rq_throttled(cfs_rq))
2645 return;
2646
2647 throttle_cfs_rq(cfs_rq);
2648}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002649
Peter Zijlstra029632f2011-10-25 10:00:11 +02002650static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2651{
2652 struct cfs_bandwidth *cfs_b =
2653 container_of(timer, struct cfs_bandwidth, slack_timer);
2654 do_sched_cfs_slack_timer(cfs_b);
2655
2656 return HRTIMER_NORESTART;
2657}
2658
2659static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2660{
2661 struct cfs_bandwidth *cfs_b =
2662 container_of(timer, struct cfs_bandwidth, period_timer);
2663 ktime_t now;
2664 int overrun;
2665 int idle = 0;
2666
2667 for (;;) {
2668 now = hrtimer_cb_get_time(timer);
2669 overrun = hrtimer_forward(timer, now, cfs_b->period);
2670
2671 if (!overrun)
2672 break;
2673
2674 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2675 }
2676
2677 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2678}
2679
2680void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2681{
2682 raw_spin_lock_init(&cfs_b->lock);
2683 cfs_b->runtime = 0;
2684 cfs_b->quota = RUNTIME_INF;
2685 cfs_b->period = ns_to_ktime(default_cfs_period());
2686
2687 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2688 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2689 cfs_b->period_timer.function = sched_cfs_period_timer;
2690 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2691 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2692}
2693
2694static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2695{
2696 cfs_rq->runtime_enabled = 0;
2697 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2698}
2699
2700/* requires cfs_b->lock, may release to reprogram timer */
2701void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2702{
2703 /*
2704 * The timer may be active because we're trying to set a new bandwidth
2705 * period or because we're racing with the tear-down path
2706 * (timer_active==0 becomes visible before the hrtimer call-back
2707 * terminates). In either case we ensure that it's re-programmed
2708 */
2709 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2710 raw_spin_unlock(&cfs_b->lock);
2711 /* ensure cfs_b->lock is available while we wait */
2712 hrtimer_cancel(&cfs_b->period_timer);
2713
2714 raw_spin_lock(&cfs_b->lock);
2715 /* if someone else restarted the timer then we're done */
2716 if (cfs_b->timer_active)
2717 return;
2718 }
2719
2720 cfs_b->timer_active = 1;
2721 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2722}
2723
2724static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2725{
2726 hrtimer_cancel(&cfs_b->period_timer);
2727 hrtimer_cancel(&cfs_b->slack_timer);
2728}
2729
Arnd Bergmann38dc3342013-01-25 14:14:22 +00002730static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02002731{
2732 struct cfs_rq *cfs_rq;
2733
2734 for_each_leaf_cfs_rq(rq, cfs_rq) {
2735 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2736
2737 if (!cfs_rq->runtime_enabled)
2738 continue;
2739
2740 /*
2741 * clock_task is not advancing so we just need to make sure
2742 * there's some valid quota amount
2743 */
2744 cfs_rq->runtime_remaining = cfs_b->quota;
2745 if (cfs_rq_throttled(cfs_rq))
2746 unthrottle_cfs_rq(cfs_rq);
2747 }
2748}
2749
2750#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02002751static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2752{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002753 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02002754}
2755
2756static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2757 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002758static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2759static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002760static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07002761
2762static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2763{
2764 return 0;
2765}
Paul Turner64660c82011-07-21 09:43:36 -07002766
2767static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2768{
2769 return 0;
2770}
2771
2772static inline int throttled_lb_pair(struct task_group *tg,
2773 int src_cpu, int dest_cpu)
2774{
2775 return 0;
2776}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002777
2778void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2779
2780#ifdef CONFIG_FAIR_GROUP_SCHED
2781static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07002782#endif
2783
Peter Zijlstra029632f2011-10-25 10:00:11 +02002784static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2785{
2786 return NULL;
2787}
2788static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07002789static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02002790
2791#endif /* CONFIG_CFS_BANDWIDTH */
2792
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002793/**************************************************
2794 * CFS operations on tasks:
2795 */
2796
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002797#ifdef CONFIG_SCHED_HRTICK
2798static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2799{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002800 struct sched_entity *se = &p->se;
2801 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2802
2803 WARN_ON(task_rq(p) != rq);
2804
Mike Galbraithb39e66e2011-11-22 15:20:07 +01002805 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002806 u64 slice = sched_slice(cfs_rq, se);
2807 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2808 s64 delta = slice - ran;
2809
2810 if (delta < 0) {
2811 if (rq->curr == p)
2812 resched_task(p);
2813 return;
2814 }
2815
2816 /*
2817 * Don't schedule slices shorter than 10000ns, that just
2818 * doesn't make sense. Rely on vruntime for fairness.
2819 */
Peter Zijlstra31656512008-07-18 18:01:23 +02002820 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02002821 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002822
Peter Zijlstra31656512008-07-18 18:01:23 +02002823 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002824 }
2825}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002826
2827/*
2828 * called from enqueue/dequeue and updates the hrtick when the
2829 * current task is from our class and nr_running is low enough
2830 * to matter.
2831 */
2832static void hrtick_update(struct rq *rq)
2833{
2834 struct task_struct *curr = rq->curr;
2835
Mike Galbraithb39e66e2011-11-22 15:20:07 +01002836 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002837 return;
2838
2839 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2840 hrtick_start_fair(rq, curr);
2841}
Dhaval Giani55e12e52008-06-24 23:39:43 +05302842#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002843static inline void
2844hrtick_start_fair(struct rq *rq, struct task_struct *p)
2845{
2846}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002847
2848static inline void hrtick_update(struct rq *rq)
2849{
2850}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002851#endif
2852
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002853/*
2854 * The enqueue_task method is called before nr_running is
2855 * increased. Here we update the fair scheduling stats and
2856 * then put the task into the rbtree:
2857 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00002858static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002859enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002860{
2861 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002862 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002863
2864 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002865 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002866 break;
2867 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002868 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07002869
2870 /*
2871 * end evaluation on encountering a throttled cfs_rq
2872 *
2873 * note: in the case of encountering a throttled cfs_rq we will
2874 * post the final h_nr_running increment below.
2875 */
2876 if (cfs_rq_throttled(cfs_rq))
2877 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07002878 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07002879
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002880 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002881 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002882
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002883 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08002884 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07002885 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002886
Paul Turner85dac902011-07-21 09:43:33 -07002887 if (cfs_rq_throttled(cfs_rq))
2888 break;
2889
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002890 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02002891 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002892 }
2893
Ben Segall18bf2802012-10-04 12:51:20 +02002894 if (!se) {
2895 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07002896 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02002897 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002898 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002899}
2900
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002901static void set_next_buddy(struct sched_entity *se);
2902
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002903/*
2904 * The dequeue_task method is called before nr_running is
2905 * decreased. We remove the task from the rbtree and
2906 * update the fair scheduling stats:
2907 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002908static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002909{
2910 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01002911 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002912 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002913
2914 for_each_sched_entity(se) {
2915 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002916 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07002917
2918 /*
2919 * end evaluation on encountering a throttled cfs_rq
2920 *
2921 * note: in the case of encountering a throttled cfs_rq we will
2922 * post the final h_nr_running decrement below.
2923 */
2924 if (cfs_rq_throttled(cfs_rq))
2925 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07002926 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002927
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002928 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002929 if (cfs_rq->load.weight) {
2930 /*
2931 * Bias pick_next to pick a task from this cfs_rq, as
2932 * p is sleeping when it is within its sched_slice.
2933 */
2934 if (task_sleep && parent_entity(se))
2935 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07002936
2937 /* avoid re-evaluating load for this entity */
2938 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002939 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07002940 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002941 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002942 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002943
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002944 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08002945 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07002946 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002947
Paul Turner85dac902011-07-21 09:43:33 -07002948 if (cfs_rq_throttled(cfs_rq))
2949 break;
2950
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002951 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02002952 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002953 }
2954
Ben Segall18bf2802012-10-04 12:51:20 +02002955 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07002956 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02002957 update_rq_runnable_avg(rq, 1);
2958 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02002959 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002960}
2961
Gregory Haskinse7693a32008-01-25 21:08:09 +01002962#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02002963/* Used instead of source_load when we know the type == 0 */
2964static unsigned long weighted_cpuload(const int cpu)
2965{
2966 return cpu_rq(cpu)->load.weight;
2967}
2968
2969/*
2970 * Return a low guess at the load of a migration-source cpu weighted
2971 * according to the scheduling class and "nice" value.
2972 *
2973 * We want to under-estimate the load of migration sources, to
2974 * balance conservatively.
2975 */
2976static unsigned long source_load(int cpu, int type)
2977{
2978 struct rq *rq = cpu_rq(cpu);
2979 unsigned long total = weighted_cpuload(cpu);
2980
2981 if (type == 0 || !sched_feat(LB_BIAS))
2982 return total;
2983
2984 return min(rq->cpu_load[type-1], total);
2985}
2986
2987/*
2988 * Return a high guess at the load of a migration-target cpu weighted
2989 * according to the scheduling class and "nice" value.
2990 */
2991static unsigned long target_load(int cpu, int type)
2992{
2993 struct rq *rq = cpu_rq(cpu);
2994 unsigned long total = weighted_cpuload(cpu);
2995
2996 if (type == 0 || !sched_feat(LB_BIAS))
2997 return total;
2998
2999 return max(rq->cpu_load[type-1], total);
3000}
3001
3002static unsigned long power_of(int cpu)
3003{
3004 return cpu_rq(cpu)->cpu_power;
3005}
3006
3007static unsigned long cpu_avg_load_per_task(int cpu)
3008{
3009 struct rq *rq = cpu_rq(cpu);
3010 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3011
3012 if (nr_running)
3013 return rq->load.weight / nr_running;
3014
3015 return 0;
3016}
3017
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003018
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003019static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003020{
3021 struct sched_entity *se = &p->se;
3022 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003023 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003024
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003025#ifndef CONFIG_64BIT
3026 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003027
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003028 do {
3029 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3030 smp_rmb();
3031 min_vruntime = cfs_rq->min_vruntime;
3032 } while (min_vruntime != min_vruntime_copy);
3033#else
3034 min_vruntime = cfs_rq->min_vruntime;
3035#endif
3036
3037 se->vruntime -= min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003038}
3039
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003040#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003041/*
3042 * effective_load() calculates the load change as seen from the root_task_group
3043 *
3044 * Adding load to a group doesn't make a group heavier, but can cause movement
3045 * of group shares between cpus. Assuming the shares were perfectly aligned one
3046 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003047 *
3048 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3049 * on this @cpu and results in a total addition (subtraction) of @wg to the
3050 * total group weight.
3051 *
3052 * Given a runqueue weight distribution (rw_i) we can compute a shares
3053 * distribution (s_i) using:
3054 *
3055 * s_i = rw_i / \Sum rw_j (1)
3056 *
3057 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3058 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3059 * shares distribution (s_i):
3060 *
3061 * rw_i = { 2, 4, 1, 0 }
3062 * s_i = { 2/7, 4/7, 1/7, 0 }
3063 *
3064 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3065 * task used to run on and the CPU the waker is running on), we need to
3066 * compute the effect of waking a task on either CPU and, in case of a sync
3067 * wakeup, compute the effect of the current task going to sleep.
3068 *
3069 * So for a change of @wl to the local @cpu with an overall group weight change
3070 * of @wl we can compute the new shares distribution (s'_i) using:
3071 *
3072 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3073 *
3074 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3075 * differences in waking a task to CPU 0. The additional task changes the
3076 * weight and shares distributions like:
3077 *
3078 * rw'_i = { 3, 4, 1, 0 }
3079 * s'_i = { 3/8, 4/8, 1/8, 0 }
3080 *
3081 * We can then compute the difference in effective weight by using:
3082 *
3083 * dw_i = S * (s'_i - s_i) (3)
3084 *
3085 * Where 'S' is the group weight as seen by its parent.
3086 *
3087 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3088 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3089 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003090 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003091static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003092{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003093 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003094
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003095 if (!tg->parent) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003096 return wl;
3097
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003098 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003099 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003100
Paul Turner977dda72011-01-14 17:57:50 -08003101 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003102
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003103 /*
3104 * W = @wg + \Sum rw_j
3105 */
3106 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003107
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003108 /*
3109 * w = rw_i + @wl
3110 */
3111 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003112
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003113 /*
3114 * wl = S * s'_i; see (2)
3115 */
3116 if (W > 0 && w < W)
3117 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003118 else
3119 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003120
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003121 /*
3122 * Per the above, wl is the new se->load.weight value; since
3123 * those are clipped to [MIN_SHARES, ...) do so now. See
3124 * calc_cfs_shares().
3125 */
Paul Turner977dda72011-01-14 17:57:50 -08003126 if (wl < MIN_SHARES)
3127 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003128
3129 /*
3130 * wl = dw_i = S * (s'_i - s_i); see (3)
3131 */
Paul Turner977dda72011-01-14 17:57:50 -08003132 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003133
3134 /*
3135 * Recursively apply this logic to all parent groups to compute
3136 * the final effective load change on the root group. Since
3137 * only the @tg group gets extra weight, all parent groups can
3138 * only redistribute existing shares. @wl is the shift in shares
3139 * resulting from this level per the above.
3140 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003141 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003142 }
3143
3144 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003145}
3146#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003147
Peter Zijlstra83378262008-06-27 13:41:37 +02003148static inline unsigned long effective_load(struct task_group *tg, int cpu,
3149 unsigned long wl, unsigned long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003150{
Peter Zijlstra83378262008-06-27 13:41:37 +02003151 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003152}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003153
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003154#endif
3155
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003156static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003157{
Paul Turnere37b6a72011-01-21 20:44:59 -08003158 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003159 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003160 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003161 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003162 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003163 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003164
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003165 idx = sd->wake_idx;
3166 this_cpu = smp_processor_id();
3167 prev_cpu = task_cpu(p);
3168 load = source_load(prev_cpu, idx);
3169 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003170
3171 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003172 * If sync wakeup then subtract the (maximum possible)
3173 * effect of the currently running task from the load
3174 * of the current CPU:
3175 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003176 if (sync) {
3177 tg = task_group(current);
3178 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003179
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003180 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003181 load += effective_load(tg, prev_cpu, 0, -weight);
3182 }
3183
3184 tg = task_group(p);
3185 weight = p->se.load.weight;
3186
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003187 /*
3188 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003189 * due to the sync cause above having dropped this_load to 0, we'll
3190 * always have an imbalance, but there's really nothing you can do
3191 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003192 *
3193 * Otherwise check if either cpus are near enough in load to allow this
3194 * task to be woken on this_cpu.
3195 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003196 if (this_load > 0) {
3197 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003198
3199 this_eff_load = 100;
3200 this_eff_load *= power_of(prev_cpu);
3201 this_eff_load *= this_load +
3202 effective_load(tg, this_cpu, weight, weight);
3203
3204 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3205 prev_eff_load *= power_of(this_cpu);
3206 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3207
3208 balanced = this_eff_load <= prev_eff_load;
3209 } else
3210 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003211
3212 /*
3213 * If the currently running task will sleep within
3214 * a reasonable amount of time then attract this newly
3215 * woken task:
3216 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003217 if (sync && balanced)
3218 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003219
Lucas De Marchi41acab82010-03-10 23:37:45 -03003220 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003221 tl_per_task = cpu_avg_load_per_task(this_cpu);
3222
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003223 if (balanced ||
3224 (this_load <= load &&
3225 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003226 /*
3227 * This domain has SD_WAKE_AFFINE and
3228 * p is cache cold in this domain, and
3229 * there is no bad imbalance.
3230 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003231 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003232 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003233
3234 return 1;
3235 }
3236 return 0;
3237}
3238
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003239/*
3240 * find_idlest_group finds and returns the least busy CPU group within the
3241 * domain.
3242 */
3243static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003244find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003245 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003246{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003247 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003248 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003249 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003250
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003251 do {
3252 unsigned long load, avg_load;
3253 int local_group;
3254 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003255
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003256 /* Skip over this group if it has no CPUs allowed */
3257 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003258 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003259 continue;
3260
3261 local_group = cpumask_test_cpu(this_cpu,
3262 sched_group_cpus(group));
3263
3264 /* Tally up the load of all CPUs in the group */
3265 avg_load = 0;
3266
3267 for_each_cpu(i, sched_group_cpus(group)) {
3268 /* Bias balancing toward cpus of our domain */
3269 if (local_group)
3270 load = source_load(i, load_idx);
3271 else
3272 load = target_load(i, load_idx);
3273
3274 avg_load += load;
3275 }
3276
3277 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003278 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003279
3280 if (local_group) {
3281 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003282 } else if (avg_load < min_load) {
3283 min_load = avg_load;
3284 idlest = group;
3285 }
3286 } while (group = group->next, group != sd->groups);
3287
3288 if (!idlest || 100*this_load < imbalance*min_load)
3289 return NULL;
3290 return idlest;
3291}
3292
3293/*
3294 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3295 */
3296static int
3297find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3298{
3299 unsigned long load, min_load = ULONG_MAX;
3300 int idlest = -1;
3301 int i;
3302
3303 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003304 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003305 load = weighted_cpuload(i);
3306
3307 if (load < min_load || (load == min_load && i == this_cpu)) {
3308 min_load = load;
3309 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003310 }
3311 }
3312
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003313 return idlest;
3314}
Gregory Haskinse7693a32008-01-25 21:08:09 +01003315
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003316/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003317 * Try and locate an idle CPU in the sched_domain.
3318 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003319static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003320{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003321 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07003322 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003323 int i = task_cpu(p);
3324
3325 if (idle_cpu(target))
3326 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003327
3328 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003329 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003330 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003331 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3332 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003333
3334 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07003335 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003336 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01003337 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08003338 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07003339 sg = sd->groups;
3340 do {
3341 if (!cpumask_intersects(sched_group_cpus(sg),
3342 tsk_cpus_allowed(p)))
3343 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02003344
Linus Torvalds37407ea2012-09-16 12:29:43 -07003345 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003346 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07003347 goto next;
3348 }
3349
3350 target = cpumask_first_and(sched_group_cpus(sg),
3351 tsk_cpus_allowed(p));
3352 goto done;
3353next:
3354 sg = sg->next;
3355 } while (sg != sd->groups);
3356 }
3357done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003358 return target;
3359}
3360
3361/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003362 * sched_balance_self: balance the current task (running on cpu) in domains
3363 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3364 * SD_BALANCE_EXEC.
3365 *
3366 * Balance, ie. select the least loaded group.
3367 *
3368 * Returns the target CPU number, or the same CPU if no balancing is needed.
3369 *
3370 * preempt must be disabled.
3371 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01003372static int
Peter Zijlstra7608dec2011-04-05 17:23:46 +02003373select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003374{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003375 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003376 int cpu = smp_processor_id();
3377 int prev_cpu = task_cpu(p);
3378 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003379 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003380 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003381
Peter Zijlstra29baa742012-04-23 12:11:21 +02003382 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01003383 return prev_cpu;
3384
Peter Zijlstra0763a662009-09-14 19:37:39 +02003385 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003386 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003387 want_affine = 1;
3388 new_cpu = prev_cpu;
3389 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01003390
Peter Zijlstradce840a2011-04-07 14:09:50 +02003391 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003392 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01003393 if (!(tmp->flags & SD_LOAD_BALANCE))
3394 continue;
3395
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003396 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003397 * If both cpu and prev_cpu are part of this domain,
3398 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01003399 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003400 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3401 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3402 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08003403 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003404 }
3405
Alex Shif03542a2012-07-26 08:55:34 +08003406 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003407 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003408 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003409
Mike Galbraith8b911ac2010-03-11 17:17:16 +01003410 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08003411 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02003412 prev_cpu = cpu;
3413
3414 new_cpu = select_idle_sibling(p, prev_cpu);
3415 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01003416 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02003417
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003418 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003419 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003420 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003421 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003422
Peter Zijlstra0763a662009-09-14 19:37:39 +02003423 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003424 sd = sd->child;
3425 continue;
3426 }
3427
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003428 if (sd_flag & SD_BALANCE_WAKE)
3429 load_idx = sd->wake_idx;
3430
3431 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003432 if (!group) {
3433 sd = sd->child;
3434 continue;
3435 }
3436
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02003437 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003438 if (new_cpu == -1 || new_cpu == cpu) {
3439 /* Now try balancing at a lower domain level of cpu */
3440 sd = sd->child;
3441 continue;
3442 }
3443
3444 /* Now try balancing at a lower domain level of new_cpu */
3445 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02003446 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003447 sd = NULL;
3448 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02003449 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003450 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02003451 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003452 sd = tmp;
3453 }
3454 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01003455 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02003456unlock:
3457 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01003458
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003459 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003460}
Paul Turner0a74bef2012-10-04 13:18:30 +02003461
3462/*
3463 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3464 * cfs_rq_of(p) references at time of call are still valid and identify the
3465 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3466 * other assumptions, including the state of rq->lock, should be made.
3467 */
3468static void
3469migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3470{
Paul Turneraff3e492012-10-04 13:18:30 +02003471 struct sched_entity *se = &p->se;
3472 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3473
3474 /*
3475 * Load tracking: accumulate removed load so that it can be processed
3476 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3477 * to blocked load iff they have a positive decay-count. It can never
3478 * be negative here since on-rq tasks have decay-count == 0.
3479 */
3480 if (se->avg.decay_count) {
3481 se->avg.decay_count = -__synchronize_entity_decay(se);
3482 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3483 }
Paul Turner0a74bef2012-10-04 13:18:30 +02003484}
Gregory Haskinse7693a32008-01-25 21:08:09 +01003485#endif /* CONFIG_SMP */
3486
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003487static unsigned long
3488wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003489{
3490 unsigned long gran = sysctl_sched_wakeup_granularity;
3491
3492 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003493 * Since its curr running now, convert the gran from real-time
3494 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01003495 *
3496 * By using 'se' instead of 'curr' we penalize light tasks, so
3497 * they get preempted easier. That is, if 'se' < 'curr' then
3498 * the resulting gran will be larger, therefore penalizing the
3499 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3500 * be smaller, again penalizing the lighter task.
3501 *
3502 * This is especially important for buddies when the leftmost
3503 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003504 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08003505 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003506}
3507
3508/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02003509 * Should 'se' preempt 'curr'.
3510 *
3511 * |s1
3512 * |s2
3513 * |s3
3514 * g
3515 * |<--->|c
3516 *
3517 * w(c, s1) = -1
3518 * w(c, s2) = 0
3519 * w(c, s3) = 1
3520 *
3521 */
3522static int
3523wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3524{
3525 s64 gran, vdiff = curr->vruntime - se->vruntime;
3526
3527 if (vdiff <= 0)
3528 return -1;
3529
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003530 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02003531 if (vdiff > gran)
3532 return 1;
3533
3534 return 0;
3535}
3536
Peter Zijlstra02479092008-11-04 21:25:10 +01003537static void set_last_buddy(struct sched_entity *se)
3538{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003539 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3540 return;
3541
3542 for_each_sched_entity(se)
3543 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01003544}
3545
3546static void set_next_buddy(struct sched_entity *se)
3547{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003548 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3549 return;
3550
3551 for_each_sched_entity(se)
3552 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01003553}
3554
Rik van Rielac53db52011-02-01 09:51:03 -05003555static void set_skip_buddy(struct sched_entity *se)
3556{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003557 for_each_sched_entity(se)
3558 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05003559}
3560
Peter Zijlstra464b7522008-10-24 11:06:15 +02003561/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003562 * Preempt the current task with a newly woken task if needed:
3563 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02003564static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003565{
3566 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02003567 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01003568 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02003569 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003570 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01003571
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01003572 if (unlikely(se == pse))
3573 return;
3574
Paul Turner5238cdd2011-07-21 09:43:37 -07003575 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003576 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07003577 * unconditionally check_prempt_curr() after an enqueue (which may have
3578 * lead to a throttle). This both saves work and prevents false
3579 * next-buddy nomination below.
3580 */
3581 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3582 return;
3583
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003584 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02003585 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003586 next_buddy_marked = 1;
3587 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02003588
Bharata B Raoaec0a512008-08-28 14:42:49 +05303589 /*
3590 * We can come here with TIF_NEED_RESCHED already set from new task
3591 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07003592 *
3593 * Note: this also catches the edge-case of curr being in a throttled
3594 * group (e.g. via set_curr_task), since update_curr() (in the
3595 * enqueue of curr) will have resulted in resched being set. This
3596 * prevents us from potentially nominating it as a false LAST_BUDDY
3597 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05303598 */
3599 if (test_tsk_need_resched(curr))
3600 return;
3601
Darren Harta2f5c9a2011-02-22 13:04:33 -08003602 /* Idle tasks are by definition preempted by non-idle tasks. */
3603 if (unlikely(curr->policy == SCHED_IDLE) &&
3604 likely(p->policy != SCHED_IDLE))
3605 goto preempt;
3606
Ingo Molnar91c234b2007-10-15 17:00:18 +02003607 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08003608 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3609 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02003610 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02003611 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02003612 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003613
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003614 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07003615 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003616 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003617 if (wakeup_preempt_entity(se, pse) == 1) {
3618 /*
3619 * Bias pick_next to pick the sched entity that is
3620 * triggering this preemption.
3621 */
3622 if (!next_buddy_marked)
3623 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003624 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003625 }
Jupyung Leea65ac742009-11-17 18:51:40 +09003626
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01003627 return;
3628
3629preempt:
3630 resched_task(curr);
3631 /*
3632 * Only set the backward buddy when the current task is still
3633 * on the rq. This can happen when a wakeup gets interleaved
3634 * with schedule on the ->pre_schedule() or idle_balance()
3635 * point, either of which can * drop the rq lock.
3636 *
3637 * Also, during early boot the idle thread is in the fair class,
3638 * for obvious reasons its a bad idea to schedule back to it.
3639 */
3640 if (unlikely(!se->on_rq || curr == rq->idle))
3641 return;
3642
3643 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3644 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003645}
3646
Ingo Molnarfb8d4722007-08-09 11:16:48 +02003647static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003648{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003649 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003650 struct cfs_rq *cfs_rq = &rq->cfs;
3651 struct sched_entity *se;
3652
Tim Blechmann36ace272009-11-24 11:55:45 +01003653 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003654 return NULL;
3655
3656 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02003657 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01003658 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003659 cfs_rq = group_cfs_rq(se);
3660 } while (cfs_rq);
3661
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003662 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003663 if (hrtick_enabled(rq))
3664 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003665
3666 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003667}
3668
3669/*
3670 * Account for a descheduled task:
3671 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02003672static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003673{
3674 struct sched_entity *se = &prev->se;
3675 struct cfs_rq *cfs_rq;
3676
3677 for_each_sched_entity(se) {
3678 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02003679 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003680 }
3681}
3682
Rik van Rielac53db52011-02-01 09:51:03 -05003683/*
3684 * sched_yield() is very simple
3685 *
3686 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3687 */
3688static void yield_task_fair(struct rq *rq)
3689{
3690 struct task_struct *curr = rq->curr;
3691 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3692 struct sched_entity *se = &curr->se;
3693
3694 /*
3695 * Are we the only task in the tree?
3696 */
3697 if (unlikely(rq->nr_running == 1))
3698 return;
3699
3700 clear_buddies(cfs_rq, se);
3701
3702 if (curr->policy != SCHED_BATCH) {
3703 update_rq_clock(rq);
3704 /*
3705 * Update run-time statistics of the 'current'.
3706 */
3707 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01003708 /*
3709 * Tell update_rq_clock() that we've just updated,
3710 * so we don't do microscopic update in schedule()
3711 * and double the fastpath cost.
3712 */
3713 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05003714 }
3715
3716 set_skip_buddy(se);
3717}
3718
Mike Galbraithd95f4122011-02-01 09:50:51 -05003719static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3720{
3721 struct sched_entity *se = &p->se;
3722
Paul Turner5238cdd2011-07-21 09:43:37 -07003723 /* throttled hierarchies are not runnable */
3724 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05003725 return false;
3726
3727 /* Tell the scheduler that we'd really like pse to run next. */
3728 set_next_buddy(se);
3729
Mike Galbraithd95f4122011-02-01 09:50:51 -05003730 yield_task_fair(rq);
3731
3732 return true;
3733}
3734
Peter Williams681f3e62007-10-24 18:23:51 +02003735#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003736/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02003737 * Fair scheduling class load-balancing methods.
3738 *
3739 * BASICS
3740 *
3741 * The purpose of load-balancing is to achieve the same basic fairness the
3742 * per-cpu scheduler provides, namely provide a proportional amount of compute
3743 * time to each task. This is expressed in the following equation:
3744 *
3745 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3746 *
3747 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3748 * W_i,0 is defined as:
3749 *
3750 * W_i,0 = \Sum_j w_i,j (2)
3751 *
3752 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3753 * is derived from the nice value as per prio_to_weight[].
3754 *
3755 * The weight average is an exponential decay average of the instantaneous
3756 * weight:
3757 *
3758 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3759 *
3760 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3761 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3762 * can also include other factors [XXX].
3763 *
3764 * To achieve this balance we define a measure of imbalance which follows
3765 * directly from (1):
3766 *
3767 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3768 *
3769 * We them move tasks around to minimize the imbalance. In the continuous
3770 * function space it is obvious this converges, in the discrete case we get
3771 * a few fun cases generally called infeasible weight scenarios.
3772 *
3773 * [XXX expand on:
3774 * - infeasible weights;
3775 * - local vs global optima in the discrete case. ]
3776 *
3777 *
3778 * SCHED DOMAINS
3779 *
3780 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3781 * for all i,j solution, we create a tree of cpus that follows the hardware
3782 * topology where each level pairs two lower groups (or better). This results
3783 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3784 * tree to only the first of the previous level and we decrease the frequency
3785 * of load-balance at each level inv. proportional to the number of cpus in
3786 * the groups.
3787 *
3788 * This yields:
3789 *
3790 * log_2 n 1 n
3791 * \Sum { --- * --- * 2^i } = O(n) (5)
3792 * i = 0 2^i 2^i
3793 * `- size of each group
3794 * | | `- number of cpus doing load-balance
3795 * | `- freq
3796 * `- sum over all levels
3797 *
3798 * Coupled with a limit on how many tasks we can migrate every balance pass,
3799 * this makes (5) the runtime complexity of the balancer.
3800 *
3801 * An important property here is that each CPU is still (indirectly) connected
3802 * to every other cpu in at most O(log n) steps:
3803 *
3804 * The adjacency matrix of the resulting graph is given by:
3805 *
3806 * log_2 n
3807 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3808 * k = 0
3809 *
3810 * And you'll find that:
3811 *
3812 * A^(log_2 n)_i,j != 0 for all i,j (7)
3813 *
3814 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3815 * The task movement gives a factor of O(m), giving a convergence complexity
3816 * of:
3817 *
3818 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3819 *
3820 *
3821 * WORK CONSERVING
3822 *
3823 * In order to avoid CPUs going idle while there's still work to do, new idle
3824 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3825 * tree itself instead of relying on other CPUs to bring it work.
3826 *
3827 * This adds some complexity to both (5) and (8) but it reduces the total idle
3828 * time.
3829 *
3830 * [XXX more?]
3831 *
3832 *
3833 * CGROUPS
3834 *
3835 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3836 *
3837 * s_k,i
3838 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3839 * S_k
3840 *
3841 * Where
3842 *
3843 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3844 *
3845 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3846 *
3847 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3848 * property.
3849 *
3850 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3851 * rewrite all of this once again.]
3852 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003853
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09003854static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3855
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003856#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01003857#define LBF_NEED_BREAK 0x02
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303858#define LBF_SOME_PINNED 0x04
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003859
3860struct lb_env {
3861 struct sched_domain *sd;
3862
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003863 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05303864 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003865
3866 int dst_cpu;
3867 struct rq *dst_rq;
3868
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303869 struct cpumask *dst_grpmask;
3870 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003871 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02003872 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08003873 /* The set of CPUs under consideration for load-balancing */
3874 struct cpumask *cpus;
3875
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003876 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01003877
3878 unsigned int loop;
3879 unsigned int loop_break;
3880 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003881};
3882
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003883/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003884 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003885 * Both runqueues must be locked.
3886 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003887static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003888{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003889 deactivate_task(env->src_rq, p, 0);
3890 set_task_cpu(p, env->dst_cpu);
3891 activate_task(env->dst_rq, p, 0);
3892 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003893}
3894
3895/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02003896 * Is this task likely cache-hot:
3897 */
3898static int
3899task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3900{
3901 s64 delta;
3902
3903 if (p->sched_class != &fair_sched_class)
3904 return 0;
3905
3906 if (unlikely(p->policy == SCHED_IDLE))
3907 return 0;
3908
3909 /*
3910 * Buddy candidates are cache hot:
3911 */
3912 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3913 (&p->se == cfs_rq_of(&p->se)->next ||
3914 &p->se == cfs_rq_of(&p->se)->last))
3915 return 1;
3916
3917 if (sysctl_sched_migration_cost == -1)
3918 return 1;
3919 if (sysctl_sched_migration_cost == 0)
3920 return 0;
3921
3922 delta = now - p->se.exec_start;
3923
3924 return delta < (s64)sysctl_sched_migration_cost;
3925}
3926
3927/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003928 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3929 */
3930static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003931int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003932{
3933 int tsk_cache_hot = 0;
3934 /*
3935 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09003936 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003937 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09003938 * 3) running (obviously), or
3939 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003940 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09003941 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3942 return 0;
3943
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003944 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003945 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303946
Lucas De Marchi41acab82010-03-10 23:37:45 -03003947 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303948
3949 /*
3950 * Remember if this task can be migrated to any other cpu in
3951 * our sched_group. We may want to revisit it if we couldn't
3952 * meet load balance goals by pulling other tasks on src_cpu.
3953 *
3954 * Also avoid computing new_dst_cpu if we have already computed
3955 * one in current iteration.
3956 */
3957 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3958 return 0;
3959
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003960 /* Prevent to re-select dst_cpu via env's cpus */
3961 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3962 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3963 env->flags |= LBF_SOME_PINNED;
3964 env->new_dst_cpu = cpu;
3965 break;
3966 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303967 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09003968
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003969 return 0;
3970 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05303971
3972 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003973 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003974
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01003975 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03003976 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003977 return 0;
3978 }
3979
3980 /*
3981 * Aggressive migration if:
3982 * 1) task is cache cold, or
3983 * 2) too many balance attempts have failed.
3984 */
3985
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003986 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003987 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003988 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003989
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003990 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01003991 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003992 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003993 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003994
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003995 return 1;
3996 }
3997
Zhang Hang4e2dcb72013-04-10 14:04:55 +08003998 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3999 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004000}
4001
Peter Zijlstra897c3952009-12-17 17:45:42 +01004002/*
4003 * move_one_task tries to move exactly one task from busiest to this_rq, as
4004 * part of active balancing operations within "domain".
4005 * Returns 1 if successful and 0 otherwise.
4006 *
4007 * Called with both runqueues locked.
4008 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004009static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004010{
4011 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004012
Peter Zijlstra367456c2012-02-20 21:49:09 +01004013 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004014 if (!can_migrate_task(p, env))
4015 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004016
Peter Zijlstra367456c2012-02-20 21:49:09 +01004017 move_task(p, env);
4018 /*
4019 * Right now, this is only the second place move_task()
4020 * is called, so we can safely collect move_task()
4021 * stats here rather than inside move_task().
4022 */
4023 schedstat_inc(env->sd, lb_gained[env->idle]);
4024 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004025 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004026 return 0;
4027}
4028
Peter Zijlstra367456c2012-02-20 21:49:09 +01004029static unsigned long task_h_load(struct task_struct *p);
4030
Peter Zijlstraeb953082012-04-17 13:38:40 +02004031static const unsigned int sched_nr_migrate_break = 32;
4032
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004033/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004034 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004035 * this_rq, as part of a balancing operation within domain "sd".
4036 * Returns 1 if successful and 0 otherwise.
4037 *
4038 * Called with both runqueues locked.
4039 */
4040static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004041{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004042 struct list_head *tasks = &env->src_rq->cfs_tasks;
4043 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004044 unsigned long load;
4045 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004046
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004047 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004048 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004049
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004050 while (!list_empty(tasks)) {
4051 p = list_first_entry(tasks, struct task_struct, se.group_node);
4052
Peter Zijlstra367456c2012-02-20 21:49:09 +01004053 env->loop++;
4054 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004055 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004056 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004057
4058 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004059 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004060 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004061 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004062 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004063 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004064
Joonsoo Kimd3198082013-04-23 17:27:40 +09004065 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004066 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004067
Peter Zijlstra367456c2012-02-20 21:49:09 +01004068 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004069
Peter Zijlstraeb953082012-04-17 13:38:40 +02004070 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004071 goto next;
4072
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004073 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004074 goto next;
4075
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004076 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004077 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004078 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004079
4080#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004081 /*
4082 * NEWIDLE balancing is a source of latency, so preemptible
4083 * kernels will stop after the first task is pulled to minimize
4084 * the critical section.
4085 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004086 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004087 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004088#endif
4089
Peter Zijlstraee00e662009-12-17 17:25:20 +01004090 /*
4091 * We only want to steal up to the prescribed amount of
4092 * weighted load.
4093 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004094 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004095 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004096
Peter Zijlstra367456c2012-02-20 21:49:09 +01004097 continue;
4098next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004099 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004100 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004101
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004102 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004103 * Right now, this is one of only two places move_task() is called,
4104 * so we can safely collect move_task() stats here rather than
4105 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004106 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004107 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004108
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004109 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004110}
4111
Peter Zijlstra230059de2009-12-17 17:47:12 +01004112#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004113/*
4114 * update tg->load_weight by folding this cpu's load_avg
4115 */
Paul Turner48a16752012-10-04 13:18:31 +02004116static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004117{
Paul Turner48a16752012-10-04 13:18:31 +02004118 struct sched_entity *se = tg->se[cpu];
4119 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004120
Paul Turner48a16752012-10-04 13:18:31 +02004121 /* throttled entities do not contribute to load */
4122 if (throttled_hierarchy(cfs_rq))
4123 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004124
Paul Turneraff3e492012-10-04 13:18:30 +02004125 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004126
Paul Turner82958362012-10-04 13:18:31 +02004127 if (se) {
4128 update_entity_load_avg(se, 1);
4129 /*
4130 * We pivot on our runnable average having decayed to zero for
4131 * list removal. This generally implies that all our children
4132 * have also been removed (modulo rounding error or bandwidth
4133 * control); however, such cases are rare and we can fix these
4134 * at enqueue.
4135 *
4136 * TODO: fix up out-of-order children on enqueue.
4137 */
4138 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4139 list_del_leaf_cfs_rq(cfs_rq);
4140 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004141 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004142 update_rq_runnable_avg(rq, rq->nr_running);
4143 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004144}
4145
Paul Turner48a16752012-10-04 13:18:31 +02004146static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004147{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004148 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004149 struct cfs_rq *cfs_rq;
4150 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004151
Paul Turner48a16752012-10-04 13:18:31 +02004152 raw_spin_lock_irqsave(&rq->lock, flags);
4153 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004154 /*
4155 * Iterates the task_group tree in a bottom up fashion, see
4156 * list_add_leaf_cfs_rq() for details.
4157 */
Paul Turner64660c82011-07-21 09:43:36 -07004158 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004159 /*
4160 * Note: We may want to consider periodically releasing
4161 * rq->lock about these updates so that creating many task
4162 * groups does not result in continually extending hold time.
4163 */
4164 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004165 }
Paul Turner48a16752012-10-04 13:18:31 +02004166
4167 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004168}
4169
Peter Zijlstra9763b672011-07-13 13:09:25 +02004170/*
4171 * Compute the cpu's hierarchical load factor for each task group.
4172 * This needs to be done in a top-down fashion because the load of a child
4173 * group is a fraction of its parents load.
4174 */
4175static int tg_load_down(struct task_group *tg, void *data)
4176{
4177 unsigned long load;
4178 long cpu = (long)data;
4179
4180 if (!tg->parent) {
4181 load = cpu_rq(cpu)->load.weight;
4182 } else {
4183 load = tg->parent->cfs_rq[cpu]->h_load;
4184 load *= tg->se[cpu]->load.weight;
4185 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4186 }
4187
4188 tg->cfs_rq[cpu]->h_load = load;
4189
4190 return 0;
4191}
4192
4193static void update_h_load(long cpu)
4194{
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004195 struct rq *rq = cpu_rq(cpu);
4196 unsigned long now = jiffies;
4197
4198 if (rq->h_load_throttle == now)
4199 return;
4200
4201 rq->h_load_throttle = now;
4202
Peter Zijlstra367456c2012-02-20 21:49:09 +01004203 rcu_read_lock();
Peter Zijlstra9763b672011-07-13 13:09:25 +02004204 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
Peter Zijlstra367456c2012-02-20 21:49:09 +01004205 rcu_read_unlock();
Peter Zijlstra9763b672011-07-13 13:09:25 +02004206}
4207
Peter Zijlstra367456c2012-02-20 21:49:09 +01004208static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004209{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004210 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4211 unsigned long load;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004212
Peter Zijlstra367456c2012-02-20 21:49:09 +01004213 load = p->se.load.weight;
4214 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004215
Peter Zijlstra367456c2012-02-20 21:49:09 +01004216 return load;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004217}
4218#else
Paul Turner48a16752012-10-04 13:18:31 +02004219static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004220{
4221}
4222
Peter Zijlstra367456c2012-02-20 21:49:09 +01004223static inline void update_h_load(long cpu)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004224{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004225}
4226
4227static unsigned long task_h_load(struct task_struct *p)
4228{
4229 return p->se.load.weight;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004230}
4231#endif
4232
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004233/********** Helpers for find_busiest_group ************************/
4234/*
4235 * sd_lb_stats - Structure to store the statistics of a sched_domain
4236 * during load balancing.
4237 */
4238struct sd_lb_stats {
4239 struct sched_group *busiest; /* Busiest group in this sd */
4240 struct sched_group *this; /* Local group in this sd */
4241 unsigned long total_load; /* Total load of all groups in sd */
4242 unsigned long total_pwr; /* Total power of all groups in sd */
4243 unsigned long avg_load; /* Average load across all groups in sd */
4244
4245 /** Statistics of this group */
4246 unsigned long this_load;
4247 unsigned long this_load_per_task;
4248 unsigned long this_nr_running;
Nikhil Raofab47622010-10-15 13:12:29 -07004249 unsigned long this_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004250 unsigned int this_idle_cpus;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004251
4252 /* Statistics of the busiest group */
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004253 unsigned int busiest_idle_cpus;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004254 unsigned long max_load;
4255 unsigned long busiest_load_per_task;
4256 unsigned long busiest_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004257 unsigned long busiest_group_capacity;
Nikhil Raofab47622010-10-15 13:12:29 -07004258 unsigned long busiest_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004259 unsigned int busiest_group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004260
4261 int group_imb; /* Is there imbalance in this sd */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004262};
4263
4264/*
4265 * sg_lb_stats - stats of a sched_group required for load_balancing
4266 */
4267struct sg_lb_stats {
4268 unsigned long avg_load; /*Avg load across the CPUs of the group */
4269 unsigned long group_load; /* Total load over the CPUs of the group */
4270 unsigned long sum_nr_running; /* Nr tasks running in the group */
4271 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4272 unsigned long group_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004273 unsigned long idle_cpus;
4274 unsigned long group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004275 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07004276 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004277};
4278
4279/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004280 * get_sd_load_idx - Obtain the load index for a given sched domain.
4281 * @sd: The sched_domain whose load_idx is to be obtained.
4282 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4283 */
4284static inline int get_sd_load_idx(struct sched_domain *sd,
4285 enum cpu_idle_type idle)
4286{
4287 int load_idx;
4288
4289 switch (idle) {
4290 case CPU_NOT_IDLE:
4291 load_idx = sd->busy_idx;
4292 break;
4293
4294 case CPU_NEWLY_IDLE:
4295 load_idx = sd->newidle_idx;
4296 break;
4297 default:
4298 load_idx = sd->idle_idx;
4299 break;
4300 }
4301
4302 return load_idx;
4303}
4304
Li Zefan15f803c2013-03-05 16:07:11 +08004305static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004306{
Nikhil Rao1399fa72011-05-18 10:09:39 -07004307 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004308}
4309
4310unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4311{
4312 return default_scale_freq_power(sd, cpu);
4313}
4314
Li Zefan15f803c2013-03-05 16:07:11 +08004315static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004316{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004317 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004318 unsigned long smt_gain = sd->smt_gain;
4319
4320 smt_gain /= weight;
4321
4322 return smt_gain;
4323}
4324
4325unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4326{
4327 return default_scale_smt_power(sd, cpu);
4328}
4329
Li Zefan15f803c2013-03-05 16:07:11 +08004330static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004331{
4332 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004333 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004334
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004335 /*
4336 * Since we're reading these variables without serialization make sure
4337 * we read them once before doing sanity checks on them.
4338 */
4339 age_stamp = ACCESS_ONCE(rq->age_stamp);
4340 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004341
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004342 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004343
4344 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004345 /* Ensures that power won't end up being negative */
4346 available = 0;
4347 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004348 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004349 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004350
Nikhil Rao1399fa72011-05-18 10:09:39 -07004351 if (unlikely((s64)total < SCHED_POWER_SCALE))
4352 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004353
Nikhil Rao1399fa72011-05-18 10:09:39 -07004354 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004355
4356 return div_u64(available, total);
4357}
4358
4359static void update_cpu_power(struct sched_domain *sd, int cpu)
4360{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004361 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07004362 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004363 struct sched_group *sdg = sd->groups;
4364
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004365 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4366 if (sched_feat(ARCH_POWER))
4367 power *= arch_scale_smt_power(sd, cpu);
4368 else
4369 power *= default_scale_smt_power(sd, cpu);
4370
Nikhil Rao1399fa72011-05-18 10:09:39 -07004371 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004372 }
4373
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004374 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004375
4376 if (sched_feat(ARCH_POWER))
4377 power *= arch_scale_freq_power(sd, cpu);
4378 else
4379 power *= default_scale_freq_power(sd, cpu);
4380
Nikhil Rao1399fa72011-05-18 10:09:39 -07004381 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004382
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004383 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004384 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004385
4386 if (!power)
4387 power = 1;
4388
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004389 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004390 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004391}
4392
Peter Zijlstra029632f2011-10-25 10:00:11 +02004393void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004394{
4395 struct sched_domain *child = sd->child;
4396 struct sched_group *group, *sdg = sd->groups;
4397 unsigned long power;
Vincent Guittot4ec44122011-12-12 20:21:08 +01004398 unsigned long interval;
4399
4400 interval = msecs_to_jiffies(sd->balance_interval);
4401 interval = clamp(interval, 1UL, max_load_balance_interval);
4402 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004403
4404 if (!child) {
4405 update_cpu_power(sd, cpu);
4406 return;
4407 }
4408
4409 power = 0;
4410
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02004411 if (child->flags & SD_OVERLAP) {
4412 /*
4413 * SD_OVERLAP domains cannot assume that child groups
4414 * span the current group.
4415 */
4416
4417 for_each_cpu(cpu, sched_group_cpus(sdg))
4418 power += power_of(cpu);
4419 } else {
4420 /*
4421 * !SD_OVERLAP domains can assume that child groups
4422 * span the current group.
4423 */
4424
4425 group = child->groups;
4426 do {
4427 power += group->sgp->power;
4428 group = group->next;
4429 } while (group != child->groups);
4430 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004431
Peter Zijlstrac3decf02012-05-31 12:05:32 +02004432 sdg->sgp->power_orig = sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004433}
4434
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004435/*
4436 * Try and fix up capacity for tiny siblings, this is needed when
4437 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4438 * which on its own isn't powerful enough.
4439 *
4440 * See update_sd_pick_busiest() and check_asym_packing().
4441 */
4442static inline int
4443fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4444{
4445 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07004446 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004447 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02004448 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004449 return 0;
4450
4451 /*
4452 * If ~90% of the cpu_power is still there, we're good.
4453 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004454 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004455 return 1;
4456
4457 return 0;
4458}
4459
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004460/**
4461 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004462 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004463 * @group: sched_group whose statistics are to be updated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004464 * @load_idx: Load index of sched_domain of this_cpu for load calc.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004465 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004466 * @balance: Should we balance.
4467 * @sgs: variable to hold the statistics for this group.
4468 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004469static inline void update_sg_lb_stats(struct lb_env *env,
4470 struct sched_group *group, int load_idx,
Michael Wangb9403132012-07-12 16:10:13 +08004471 int local_group, int *balance, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004472{
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004473 unsigned long nr_running, max_nr_running, min_nr_running;
4474 unsigned long load, max_cpu_load, min_cpu_load;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004475 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004476 unsigned long avg_load_per_task = 0;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004477 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004478
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06004479 if (local_group)
Peter Zijlstrac1174872012-05-31 14:47:33 +02004480 balance_cpu = group_balance_cpu(group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004481
4482 /* Tally up the load of all CPUs in the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004483 max_cpu_load = 0;
4484 min_cpu_load = ~0UL;
Nikhil Rao2582f0e2010-10-13 12:09:36 -07004485 max_nr_running = 0;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004486 min_nr_running = ~0UL;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004487
Michael Wangb9403132012-07-12 16:10:13 +08004488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004489 struct rq *rq = cpu_rq(i);
4490
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004491 nr_running = rq->nr_running;
4492
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004493 /* Bias balancing toward cpus of our domain */
4494 if (local_group) {
Peter Zijlstrac1174872012-05-31 14:47:33 +02004495 if (idle_cpu(i) && !first_idle_cpu &&
4496 cpumask_test_cpu(i, sched_group_mask(group))) {
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004497 first_idle_cpu = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004498 balance_cpu = i;
4499 }
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004500
4501 load = target_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004502 } else {
4503 load = source_load(i, load_idx);
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004504 if (load > max_cpu_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004505 max_cpu_load = load;
4506 if (min_cpu_load > load)
4507 min_cpu_load = load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004508
4509 if (nr_running > max_nr_running)
4510 max_nr_running = nr_running;
4511 if (min_nr_running > nr_running)
4512 min_nr_running = nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004513 }
4514
4515 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004516 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004517 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004518 if (idle_cpu(i))
4519 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004520 }
4521
4522 /*
4523 * First idle cpu or the first cpu(busiest) in this sched group
4524 * is eligible for doing load balancing at this and above
4525 * domains. In the newly idle case, we will allow all the cpu's
4526 * to do the newly idle load balance.
4527 */
Vincent Guittot4ec44122011-12-12 20:21:08 +01004528 if (local_group) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004529 if (env->idle != CPU_NEWLY_IDLE) {
Peter Zijlstra04f733b2012-05-11 00:12:02 +02004530 if (balance_cpu != env->dst_cpu) {
Vincent Guittot4ec44122011-12-12 20:21:08 +01004531 *balance = 0;
4532 return;
4533 }
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004534 update_group_power(env->sd, env->dst_cpu);
Vincent Guittot4ec44122011-12-12 20:21:08 +01004535 } else if (time_after_eq(jiffies, group->sgp->next_update))
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004536 update_group_power(env->sd, env->dst_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004537 }
4538
4539 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004540 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004541
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004542 /*
4543 * Consider the group unbalanced when the imbalance is larger
Peter Zijlstra866ab432011-02-21 18:56:47 +01004544 * than the average weight of a task.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004545 *
4546 * APZ: with cgroup the avg task weight can vary wildly and
4547 * might not be a suitable number - should we keep a
4548 * normalized nr_running number somewhere that negates
4549 * the hierarchy?
4550 */
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004551 if (sgs->sum_nr_running)
4552 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004553
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02004554 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4555 (max_nr_running - min_nr_running) > 1)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004556 sgs->group_imb = 1;
4557
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004558 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
Nikhil Rao1399fa72011-05-18 10:09:39 -07004559 SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004560 if (!sgs->group_capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004561 sgs->group_capacity = fix_small_capacity(env->sd, group);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004562 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07004563
4564 if (sgs->group_capacity > sgs->sum_nr_running)
4565 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004566}
4567
4568/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10004569 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07004570 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10004571 * @sds: sched_domain statistics
4572 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10004573 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10004574 *
4575 * Determine if @sg is a busier group than the previously selected
4576 * busiest group.
4577 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004578static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10004579 struct sd_lb_stats *sds,
4580 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004581 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004582{
4583 if (sgs->avg_load <= sds->max_load)
4584 return false;
4585
4586 if (sgs->sum_nr_running > sgs->group_capacity)
4587 return true;
4588
4589 if (sgs->group_imb)
4590 return true;
4591
4592 /*
4593 * ASYM_PACKING needs to move all the work to the lowest
4594 * numbered CPUs in the group, therefore mark all groups
4595 * higher than ourself as busy.
4596 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004597 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4598 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10004599 if (!sds->busiest)
4600 return true;
4601
4602 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4603 return true;
4604 }
4605
4606 return false;
4607}
4608
4609/**
Hui Kang461819a2011-10-11 23:00:59 -04004610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004611 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004612 * @balance: Should we balance.
4613 * @sds: variable to hold the statistics for this sched_domain.
4614 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004615static inline void update_sd_lb_stats(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08004616 int *balance, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004617{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004618 struct sched_domain *child = env->sd->child;
4619 struct sched_group *sg = env->sd->groups;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004620 struct sg_lb_stats sgs;
4621 int load_idx, prefer_sibling = 0;
4622
4623 if (child && child->flags & SD_PREFER_SIBLING)
4624 prefer_sibling = 1;
4625
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004626 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004627
4628 do {
4629 int local_group;
4630
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004631 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004632 memset(&sgs, 0, sizeof(sgs));
Michael Wangb9403132012-07-12 16:10:13 +08004633 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004634
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01004635 if (local_group && !(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004636 return;
4637
4638 sds->total_load += sgs.group_load;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004639 sds->total_pwr += sg->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004640
4641 /*
4642 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10004643 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07004644 * and move all the excess tasks away. We lower the capacity
4645 * of a group only if the local group has the capacity to fit
4646 * these excess tasks, i.e. nr_running < group_capacity. The
4647 * extra check prevents the case where you always pull from the
4648 * heaviest group when it is already under-utilized (possible
4649 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004650 */
Nikhil Rao75dd3212010-10-15 13:12:30 -07004651 if (prefer_sibling && !local_group && sds->this_has_capacity)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004652 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4653
4654 if (local_group) {
4655 sds->this_load = sgs.avg_load;
Michael Neuling532cb4c2010-06-08 14:57:02 +10004656 sds->this = sg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004657 sds->this_nr_running = sgs.sum_nr_running;
4658 sds->this_load_per_task = sgs.sum_weighted_load;
Nikhil Raofab47622010-10-15 13:12:29 -07004659 sds->this_has_capacity = sgs.group_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004660 sds->this_idle_cpus = sgs.idle_cpus;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004661 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004662 sds->max_load = sgs.avg_load;
Michael Neuling532cb4c2010-06-08 14:57:02 +10004663 sds->busiest = sg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004664 sds->busiest_nr_running = sgs.sum_nr_running;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004665 sds->busiest_idle_cpus = sgs.idle_cpus;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004666 sds->busiest_group_capacity = sgs.group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004667 sds->busiest_load_per_task = sgs.sum_weighted_load;
Nikhil Raofab47622010-10-15 13:12:29 -07004668 sds->busiest_has_capacity = sgs.group_has_capacity;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004669 sds->busiest_group_weight = sgs.group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004670 sds->group_imb = sgs.group_imb;
4671 }
4672
Michael Neuling532cb4c2010-06-08 14:57:02 +10004673 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004674 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10004675}
4676
Michael Neuling532cb4c2010-06-08 14:57:02 +10004677/**
4678 * check_asym_packing - Check to see if the group is packed into the
4679 * sched doman.
4680 *
4681 * This is primarily intended to used at the sibling level. Some
4682 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4683 * case of POWER7, it can move to lower SMT modes only when higher
4684 * threads are idle. When in lower SMT modes, the threads will
4685 * perform better since they share less core resources. Hence when we
4686 * have idle threads, we want them to be the higher ones.
4687 *
4688 * This packing function is run on idle threads. It checks to see if
4689 * the busiest CPU in this domain (core in the P7 case) has a higher
4690 * CPU number than the packing function is being run on. Here we are
4691 * assuming lower CPU number will be equivalent to lower a SMT thread
4692 * number.
4693 *
Michael Neulingb6b12292010-06-10 12:06:21 +10004694 * Returns 1 when packing is required and a task should be moved to
4695 * this CPU. The amount of the imbalance is returned in *imbalance.
4696 *
Randy Dunlapcd968912012-06-08 13:18:33 -07004697 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10004698 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10004699 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004700static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004701{
4702 int busiest_cpu;
4703
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004704 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10004705 return 0;
4706
4707 if (!sds->busiest)
4708 return 0;
4709
4710 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004711 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10004712 return 0;
4713
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004714 env->imbalance = DIV_ROUND_CLOSEST(
4715 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4716
Michael Neuling532cb4c2010-06-08 14:57:02 +10004717 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004718}
4719
4720/**
4721 * fix_small_imbalance - Calculate the minor imbalance that exists
4722 * amongst the groups of a sched_domain, during
4723 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07004724 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004725 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004726 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004727static inline
4728void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004729{
4730 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4731 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004732 unsigned long scaled_busy_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004733
4734 if (sds->this_nr_running) {
4735 sds->this_load_per_task /= sds->this_nr_running;
4736 if (sds->busiest_load_per_task >
4737 sds->this_load_per_task)
4738 imbn = 1;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004739 } else {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004740 sds->this_load_per_task =
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004741 cpu_avg_load_per_task(env->dst_cpu);
4742 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004743
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004744 scaled_busy_load_per_task = sds->busiest_load_per_task
Nikhil Rao1399fa72011-05-18 10:09:39 -07004745 * SCHED_POWER_SCALE;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004746 scaled_busy_load_per_task /= sds->busiest->sgp->power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004747
4748 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4749 (scaled_busy_load_per_task * imbn)) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004750 env->imbalance = sds->busiest_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004751 return;
4752 }
4753
4754 /*
4755 * OK, we don't have enough imbalance to justify moving tasks,
4756 * however we may be able to increase total CPU power used by
4757 * moving them.
4758 */
4759
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004760 pwr_now += sds->busiest->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004761 min(sds->busiest_load_per_task, sds->max_load);
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004762 pwr_now += sds->this->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004763 min(sds->this_load_per_task, sds->this_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004764 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004765
4766 /* Amount of load we'd subtract */
Nikhil Rao1399fa72011-05-18 10:09:39 -07004767 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004768 sds->busiest->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004769 if (sds->max_load > tmp)
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004770 pwr_move += sds->busiest->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004771 min(sds->busiest_load_per_task, sds->max_load - tmp);
4772
4773 /* Amount of load we'd add */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004774 if (sds->max_load * sds->busiest->sgp->power <
Nikhil Rao1399fa72011-05-18 10:09:39 -07004775 sds->busiest_load_per_task * SCHED_POWER_SCALE)
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004776 tmp = (sds->max_load * sds->busiest->sgp->power) /
4777 sds->this->sgp->power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004778 else
Nikhil Rao1399fa72011-05-18 10:09:39 -07004779 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004780 sds->this->sgp->power;
4781 pwr_move += sds->this->sgp->power *
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004782 min(sds->this_load_per_task, sds->this_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004783 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004784
4785 /* Move if we gain throughput */
4786 if (pwr_move > pwr_now)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004787 env->imbalance = sds->busiest_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004788}
4789
4790/**
4791 * calculate_imbalance - Calculate the amount of imbalance present within the
4792 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004793 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004794 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004795 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004796static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004797{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004798 unsigned long max_pull, load_above_capacity = ~0UL;
4799
4800 sds->busiest_load_per_task /= sds->busiest_nr_running;
4801 if (sds->group_imb) {
4802 sds->busiest_load_per_task =
4803 min(sds->busiest_load_per_task, sds->avg_load);
4804 }
4805
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004806 /*
4807 * In the presence of smp nice balancing, certain scenarios can have
4808 * max load less than avg load(as we skip the groups at or below
4809 * its cpu_power, while calculating max_load..)
4810 */
4811 if (sds->max_load < sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004812 env->imbalance = 0;
4813 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004814 }
4815
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004816 if (!sds->group_imb) {
4817 /*
4818 * Don't want to pull so many tasks that a group would go idle.
4819 */
4820 load_above_capacity = (sds->busiest_nr_running -
4821 sds->busiest_group_capacity);
4822
Nikhil Rao1399fa72011-05-18 10:09:39 -07004823 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004824
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004825 load_above_capacity /= sds->busiest->sgp->power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08004826 }
4827
4828 /*
4829 * We're trying to get all the cpus to the average_load, so we don't
4830 * want to push ourselves above the average load, nor do we wish to
4831 * reduce the max loaded cpu below the average load. At the same time,
4832 * we also don't want to reduce the group load below the group capacity
4833 * (so that we can implement power-savings policies etc). Thus we look
4834 * for the minimum possible imbalance.
4835 * Be careful of negative numbers as they'll appear as very large values
4836 * with unsigned longs.
4837 */
4838 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004839
4840 /* How much load to actually move to equalise the imbalance */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004841 env->imbalance = min(max_pull * sds->busiest->sgp->power,
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004842 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
Nikhil Rao1399fa72011-05-18 10:09:39 -07004843 / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004844
4845 /*
4846 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03004847 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004848 * a think about bumping its value to force at least one task to be
4849 * moved
4850 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004851 if (env->imbalance < sds->busiest_load_per_task)
4852 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004853
4854}
Nikhil Raofab47622010-10-15 13:12:29 -07004855
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004856/******* find_busiest_group() helpers end here *********************/
4857
4858/**
4859 * find_busiest_group - Returns the busiest group within the sched_domain
4860 * if there is an imbalance. If there isn't an imbalance, and
4861 * the user has opted for power-savings, it returns a group whose
4862 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4863 * such a group exists.
4864 *
4865 * Also calculates the amount of weighted load which should be moved
4866 * to restore balance.
4867 *
Randy Dunlapcd968912012-06-08 13:18:33 -07004868 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004869 * @balance: Pointer to a variable indicating if this_cpu
4870 * is the appropriate cpu to perform load balancing at this_level.
4871 *
4872 * Returns: - the busiest group if imbalance exists.
4873 * - If no imbalance and user has opted for power-savings balance,
4874 * return the least loaded group whose CPUs can be
4875 * put to idle by rebalancing its tasks onto our group.
4876 */
4877static struct sched_group *
Michael Wangb9403132012-07-12 16:10:13 +08004878find_busiest_group(struct lb_env *env, int *balance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004879{
4880 struct sd_lb_stats sds;
4881
4882 memset(&sds, 0, sizeof(sds));
4883
4884 /*
4885 * Compute the various statistics relavent for load balancing at
4886 * this level.
4887 */
Michael Wangb9403132012-07-12 16:10:13 +08004888 update_sd_lb_stats(env, balance, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004889
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004890 /*
4891 * this_cpu is not the appropriate cpu to perform load balancing at
4892 * this level.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004893 */
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01004894 if (!(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004895 goto ret;
4896
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004897 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4898 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10004899 return sds.busiest;
4900
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004901 /* There is no busy sibling group to pull tasks from */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004902 if (!sds.busiest || sds.busiest_nr_running == 0)
4903 goto out_balanced;
4904
Nikhil Rao1399fa72011-05-18 10:09:39 -07004905 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07004906
Peter Zijlstra866ab432011-02-21 18:56:47 +01004907 /*
4908 * If the busiest group is imbalanced the below checks don't
4909 * work because they assumes all things are equal, which typically
4910 * isn't true due to cpus_allowed constraints and the like.
4911 */
4912 if (sds.group_imb)
4913 goto force_balance;
4914
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004915 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004916 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
Nikhil Raofab47622010-10-15 13:12:29 -07004917 !sds.busiest_has_capacity)
4918 goto force_balance;
4919
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004920 /*
4921 * If the local group is more busy than the selected busiest group
4922 * don't try and pull any tasks.
4923 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004924 if (sds.this_load >= sds.max_load)
4925 goto out_balanced;
4926
Peter Zijlstracc57aa82011-02-21 18:55:32 +01004927 /*
4928 * Don't pull any tasks if this group is already above the domain
4929 * average load.
4930 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004931 if (sds.this_load >= sds.avg_load)
4932 goto out_balanced;
4933
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004934 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004935 /*
4936 * This cpu is idle. If the busiest group load doesn't
4937 * have more tasks than the number of available cpu's and
4938 * there is no imbalance between this and busiest group
4939 * wrt to idle cpu's, it is balanced.
4940 */
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004941 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004942 sds.busiest_nr_running <= sds.busiest_group_weight)
4943 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004944 } else {
4945 /*
4946 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4947 * imbalance_pct to be conservative.
4948 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004949 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01004950 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07004951 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004952
Nikhil Raofab47622010-10-15 13:12:29 -07004953force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004954 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004955 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004956 return sds.busiest;
4957
4958out_balanced:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004959ret:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004960 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004961 return NULL;
4962}
4963
4964/*
4965 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4966 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004967static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08004968 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004969{
4970 struct rq *busiest = NULL, *rq;
4971 unsigned long max_load = 0;
4972 int i;
4973
4974 for_each_cpu(i, sched_group_cpus(group)) {
4975 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004976 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4977 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004978 unsigned long wl;
4979
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004980 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004981 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004982
Michael Wangb9403132012-07-12 16:10:13 +08004983 if (!cpumask_test_cpu(i, env->cpus))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004984 continue;
4985
4986 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004987 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004988
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004989 /*
4990 * When comparing with imbalance, use weighted_cpuload()
4991 * which is not scaled with the cpu power.
4992 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004993 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004994 continue;
4995
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01004996 /*
4997 * For the load comparisons with the other cpu's, consider
4998 * the weighted_cpuload() scaled with the cpu power, so that
4999 * the load can be moved away from the cpu that is potentially
5000 * running at a lower capacity.
5001 */
Nikhil Rao1399fa72011-05-18 10:09:39 -07005002 wl = (wl * SCHED_POWER_SCALE) / power;
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005003
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005004 if (wl > max_load) {
5005 max_load = wl;
5006 busiest = rq;
5007 }
5008 }
5009
5010 return busiest;
5011}
5012
5013/*
5014 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5015 * so long as it is large enough.
5016 */
5017#define MAX_PINNED_INTERVAL 512
5018
5019/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005020DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005021
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005022static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005023{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005024 struct sched_domain *sd = env->sd;
5025
5026 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005027
5028 /*
5029 * ASYM_PACKING needs to force migrate tasks from busy but
5030 * higher numbered CPUs in order to pack all tasks in the
5031 * lowest numbered CPUs.
5032 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005033 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005034 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005035 }
5036
5037 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5038}
5039
Tejun Heo969c7922010-05-06 18:49:21 +02005040static int active_load_balance_cpu_stop(void *data);
5041
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005042/*
5043 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5044 * tasks if there is an imbalance.
5045 */
5046static int load_balance(int this_cpu, struct rq *this_rq,
5047 struct sched_domain *sd, enum cpu_idle_type idle,
5048 int *balance)
5049{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305050 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005051 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005052 struct rq *busiest;
5053 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005054 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005055
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005056 struct lb_env env = {
5057 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005058 .dst_cpu = this_cpu,
5059 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305060 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005061 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005062 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08005063 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005064 };
5065
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005066 /*
5067 * For NEWLY_IDLE load_balancing, we don't need to consider
5068 * other cpus in our group
5069 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005070 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005071 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005072
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005073 cpumask_copy(cpus, cpu_active_mask);
5074
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005075 schedstat_inc(sd, lb_count[idle]);
5076
5077redo:
Michael Wangb9403132012-07-12 16:10:13 +08005078 group = find_busiest_group(&env, balance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005079
5080 if (*balance == 0)
5081 goto out_balanced;
5082
5083 if (!group) {
5084 schedstat_inc(sd, lb_nobusyg[idle]);
5085 goto out_balanced;
5086 }
5087
Michael Wangb9403132012-07-12 16:10:13 +08005088 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005089 if (!busiest) {
5090 schedstat_inc(sd, lb_nobusyq[idle]);
5091 goto out_balanced;
5092 }
5093
Michael Wang78feefc2012-08-06 16:41:59 +08005094 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005095
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005096 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005097
5098 ld_moved = 0;
5099 if (busiest->nr_running > 1) {
5100 /*
5101 * Attempt to move tasks. If find_busiest_group has found
5102 * an imbalance but busiest->nr_running <= 1, the group is
5103 * still unbalanced. ld_moved simply stays zero, so it is
5104 * correctly treated as an imbalance.
5105 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005106 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005107 env.src_cpu = busiest->cpu;
5108 env.src_rq = busiest;
5109 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005110
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005111 update_h_load(env.src_cpu);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005112more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005113 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005114 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305115
5116 /*
5117 * cur_ld_moved - load moved in current iteration
5118 * ld_moved - cumulative load moved across iterations
5119 */
5120 cur_ld_moved = move_tasks(&env);
5121 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005122 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005123 local_irq_restore(flags);
5124
5125 /*
5126 * some other cpu did the load balance for us.
5127 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305128 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5129 resched_cpu(env.dst_cpu);
5130
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09005131 if (env.flags & LBF_NEED_BREAK) {
5132 env.flags &= ~LBF_NEED_BREAK;
5133 goto more_balance;
5134 }
5135
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305136 /*
5137 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5138 * us and move them to an alternate dst_cpu in our sched_group
5139 * where they can run. The upper limit on how many times we
5140 * iterate on same src_cpu is dependent on number of cpus in our
5141 * sched_group.
5142 *
5143 * This changes load balance semantics a bit on who can move
5144 * load to a given_cpu. In addition to the given_cpu itself
5145 * (or a ilb_cpu acting on its behalf where given_cpu is
5146 * nohz-idle), we now have balance_cpu in a position to move
5147 * load to given_cpu. In rare situations, this may cause
5148 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5149 * _independently_ and at _same_ time to move some load to
5150 * given_cpu) causing exceess load to be moved to given_cpu.
5151 * This however should not happen so much in practice and
5152 * moreover subsequent load balance cycles should correct the
5153 * excess load moved.
5154 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005155 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305156
Michael Wang78feefc2012-08-06 16:41:59 +08005157 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305158 env.dst_cpu = env.new_dst_cpu;
5159 env.flags &= ~LBF_SOME_PINNED;
5160 env.loop = 0;
5161 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005162
5163 /* Prevent to re-select dst_cpu via env's cpus */
5164 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5165
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305166 /*
5167 * Go back to "more_balance" rather than "redo" since we
5168 * need to continue with same src_cpu.
5169 */
5170 goto more_balance;
5171 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005172
5173 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005174 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005175 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305176 if (!cpumask_empty(cpus)) {
5177 env.loop = 0;
5178 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005179 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305180 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005181 goto out_balanced;
5182 }
5183 }
5184
5185 if (!ld_moved) {
5186 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07005187 /*
5188 * Increment the failure counter only on periodic balance.
5189 * We do not want newidle balance, which can be very
5190 * frequent, pollute the failure counter causing
5191 * excessive cache_hot migrations and active balances.
5192 */
5193 if (idle != CPU_NEWLY_IDLE)
5194 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005195
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005196 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005197 raw_spin_lock_irqsave(&busiest->lock, flags);
5198
Tejun Heo969c7922010-05-06 18:49:21 +02005199 /* don't kick the active_load_balance_cpu_stop,
5200 * if the curr task on busiest cpu can't be
5201 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005202 */
5203 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02005204 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005205 raw_spin_unlock_irqrestore(&busiest->lock,
5206 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005207 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005208 goto out_one_pinned;
5209 }
5210
Tejun Heo969c7922010-05-06 18:49:21 +02005211 /*
5212 * ->active_balance synchronizes accesses to
5213 * ->active_balance_work. Once set, it's cleared
5214 * only after active load balance is finished.
5215 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005216 if (!busiest->active_balance) {
5217 busiest->active_balance = 1;
5218 busiest->push_cpu = this_cpu;
5219 active_balance = 1;
5220 }
5221 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02005222
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005223 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02005224 stop_one_cpu_nowait(cpu_of(busiest),
5225 active_load_balance_cpu_stop, busiest,
5226 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005227 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005228
5229 /*
5230 * We've kicked active balancing, reset the failure
5231 * counter.
5232 */
5233 sd->nr_balance_failed = sd->cache_nice_tries+1;
5234 }
5235 } else
5236 sd->nr_balance_failed = 0;
5237
5238 if (likely(!active_balance)) {
5239 /* We were unbalanced, so reset the balancing interval */
5240 sd->balance_interval = sd->min_interval;
5241 } else {
5242 /*
5243 * If we've begun active balancing, start to back off. This
5244 * case may not be covered by the all_pinned logic if there
5245 * is only 1 task on the busy runqueue (because we don't call
5246 * move_tasks).
5247 */
5248 if (sd->balance_interval < sd->max_interval)
5249 sd->balance_interval *= 2;
5250 }
5251
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005252 goto out;
5253
5254out_balanced:
5255 schedstat_inc(sd, lb_balanced[idle]);
5256
5257 sd->nr_balance_failed = 0;
5258
5259out_one_pinned:
5260 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005261 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02005262 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005263 (sd->balance_interval < sd->max_interval))
5264 sd->balance_interval *= 2;
5265
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08005266 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005267out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005268 return ld_moved;
5269}
5270
5271/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005272 * idle_balance is called by schedule() if this_cpu is about to become
5273 * idle. Attempts to pull tasks from other CPUs.
5274 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005275void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005276{
5277 struct sched_domain *sd;
5278 int pulled_task = 0;
5279 unsigned long next_balance = jiffies + HZ;
5280
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005281 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005282
5283 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5284 return;
5285
Peter Zijlstraf492e122009-12-23 15:29:42 +01005286 /*
5287 * Drop the rq->lock, but keep IRQ/preempt disabled.
5288 */
5289 raw_spin_unlock(&this_rq->lock);
5290
Paul Turner48a16752012-10-04 13:18:31 +02005291 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02005292 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005293 for_each_domain(this_cpu, sd) {
5294 unsigned long interval;
Peter Zijlstraf492e122009-12-23 15:29:42 +01005295 int balance = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005296
5297 if (!(sd->flags & SD_LOAD_BALANCE))
5298 continue;
5299
Peter Zijlstraf492e122009-12-23 15:29:42 +01005300 if (sd->flags & SD_BALANCE_NEWIDLE) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005301 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01005302 pulled_task = load_balance(this_cpu, this_rq,
5303 sd, CPU_NEWLY_IDLE, &balance);
5304 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005305
5306 interval = msecs_to_jiffies(sd->balance_interval);
5307 if (time_after(next_balance, sd->last_balance + interval))
5308 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08005309 if (pulled_task) {
5310 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005311 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08005312 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005313 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005314 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01005315
5316 raw_spin_lock(&this_rq->lock);
5317
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005318 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5319 /*
5320 * We are going idle. next_balance may be set based on
5321 * a busy processor. So reset next_balance.
5322 */
5323 this_rq->next_balance = next_balance;
5324 }
5325}
5326
5327/*
Tejun Heo969c7922010-05-06 18:49:21 +02005328 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5329 * running tasks off the busiest CPU onto idle CPUs. It requires at
5330 * least 1 task to be running on each physical CPU where possible, and
5331 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005332 */
Tejun Heo969c7922010-05-06 18:49:21 +02005333static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005334{
Tejun Heo969c7922010-05-06 18:49:21 +02005335 struct rq *busiest_rq = data;
5336 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005337 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02005338 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005339 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02005340
5341 raw_spin_lock_irq(&busiest_rq->lock);
5342
5343 /* make sure the requested cpu hasn't gone down in the meantime */
5344 if (unlikely(busiest_cpu != smp_processor_id() ||
5345 !busiest_rq->active_balance))
5346 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005347
5348 /* Is there any task to move? */
5349 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02005350 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005351
5352 /*
5353 * This condition is "impossible", if it occurs
5354 * we need to fix it. Originally reported by
5355 * Bjorn Helgaas on a 128-cpu setup.
5356 */
5357 BUG_ON(busiest_rq == target_rq);
5358
5359 /* move a task from busiest_rq to target_rq */
5360 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005361
5362 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02005363 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005364 for_each_domain(target_cpu, sd) {
5365 if ((sd->flags & SD_LOAD_BALANCE) &&
5366 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5367 break;
5368 }
5369
5370 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005371 struct lb_env env = {
5372 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005373 .dst_cpu = target_cpu,
5374 .dst_rq = target_rq,
5375 .src_cpu = busiest_rq->cpu,
5376 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005377 .idle = CPU_IDLE,
5378 };
5379
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005380 schedstat_inc(sd, alb_count);
5381
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005382 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005383 schedstat_inc(sd, alb_pushed);
5384 else
5385 schedstat_inc(sd, alb_failed);
5386 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005387 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005388 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02005389out_unlock:
5390 busiest_rq->active_balance = 0;
5391 raw_spin_unlock_irq(&busiest_rq->lock);
5392 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005393}
5394
Frederic Weisbecker3451d022011-08-10 23:21:01 +02005395#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005396/*
5397 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005398 * - When one of the busy CPUs notice that there may be an idle rebalancing
5399 * needed, they will kick the idle load balancer, which then does idle
5400 * load balancing for all the idle CPUs.
5401 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005402static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005403 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005404 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005405 unsigned long next_balance; /* in jiffy units */
5406} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005407
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01005408static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005409{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005410 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005411
Suresh Siddha786d6dc2011-12-01 17:07:35 -08005412 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5413 return ilb;
5414
5415 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005416}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005417
5418/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005419 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5420 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5421 * CPU (if there is one).
5422 */
5423static void nohz_balancer_kick(int cpu)
5424{
5425 int ilb_cpu;
5426
5427 nohz.next_balance++;
5428
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005429 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005430
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005431 if (ilb_cpu >= nr_cpu_ids)
5432 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005433
Suresh Siddhacd490c52011-12-06 11:26:34 -08005434 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08005435 return;
5436 /*
5437 * Use smp_send_reschedule() instead of resched_cpu().
5438 * This way we generate a sched IPI on the target cpu which
5439 * is idle. And the softirq performing nohz idle load balance
5440 * will be run before returning from the IPI.
5441 */
5442 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005443 return;
5444}
5445
Alex Shic1cc0172012-09-10 15:10:58 +08005446static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08005447{
5448 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5449 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5450 atomic_dec(&nohz.nr_cpus);
5451 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5452 }
5453}
5454
Suresh Siddha69e1e812011-12-01 17:07:33 -08005455static inline void set_cpu_sd_state_busy(void)
5456{
5457 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08005458
Suresh Siddha69e1e812011-12-01 17:07:33 -08005459 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05005460 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005461
5462 if (!sd || !sd->nohz_idle)
5463 goto unlock;
5464 sd->nohz_idle = 0;
5465
5466 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08005467 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005468unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08005469 rcu_read_unlock();
5470}
5471
5472void set_cpu_sd_state_idle(void)
5473{
5474 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08005475
Suresh Siddha69e1e812011-12-01 17:07:33 -08005476 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05005477 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005478
5479 if (!sd || sd->nohz_idle)
5480 goto unlock;
5481 sd->nohz_idle = 1;
5482
5483 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08005484 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02005485unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08005486 rcu_read_unlock();
5487}
5488
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005489/*
Alex Shic1cc0172012-09-10 15:10:58 +08005490 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005491 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005492 */
Alex Shic1cc0172012-09-10 15:10:58 +08005493void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005494{
Suresh Siddha71325962012-01-19 18:28:57 -08005495 /*
5496 * If this cpu is going down, then nothing needs to be done.
5497 */
5498 if (!cpu_active(cpu))
5499 return;
5500
Alex Shic1cc0172012-09-10 15:10:58 +08005501 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5502 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005503
Alex Shic1cc0172012-09-10 15:10:58 +08005504 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5505 atomic_inc(&nohz.nr_cpus);
5506 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005507}
Suresh Siddha71325962012-01-19 18:28:57 -08005508
5509static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5510 unsigned long action, void *hcpu)
5511{
5512 switch (action & ~CPU_TASKS_FROZEN) {
5513 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08005514 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08005515 return NOTIFY_OK;
5516 default:
5517 return NOTIFY_DONE;
5518 }
5519}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005520#endif
5521
5522static DEFINE_SPINLOCK(balancing);
5523
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005524/*
5525 * Scale the max load_balance interval with the number of CPUs in the system.
5526 * This trades load-balance latency on larger machines for less cross talk.
5527 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005528void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005529{
5530 max_load_balance_interval = HZ*num_online_cpus()/10;
5531}
5532
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005533/*
5534 * It checks each scheduling domain to see if it is due to be balanced,
5535 * and initiates a balancing operation if so.
5536 *
Libinb9b08532013-04-01 19:14:01 +08005537 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005538 */
5539static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5540{
5541 int balance = 1;
5542 struct rq *rq = cpu_rq(cpu);
5543 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005544 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005545 /* Earliest time when we have to do rebalance again */
5546 unsigned long next_balance = jiffies + 60*HZ;
5547 int update_next_balance = 0;
5548 int need_serialize;
5549
Paul Turner48a16752012-10-04 13:18:31 +02005550 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08005551
Peter Zijlstradce840a2011-04-07 14:09:50 +02005552 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005553 for_each_domain(cpu, sd) {
5554 if (!(sd->flags & SD_LOAD_BALANCE))
5555 continue;
5556
5557 interval = sd->balance_interval;
5558 if (idle != CPU_IDLE)
5559 interval *= sd->busy_factor;
5560
5561 /* scale ms to jiffies */
5562 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02005563 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005564
5565 need_serialize = sd->flags & SD_SERIALIZE;
5566
5567 if (need_serialize) {
5568 if (!spin_trylock(&balancing))
5569 goto out;
5570 }
5571
5572 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5573 if (load_balance(cpu, rq, sd, idle, &balance)) {
5574 /*
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09005575 * The LBF_SOME_PINNED logic could have changed
5576 * env->dst_cpu, so we can't know our idle
5577 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005578 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09005579 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005580 }
5581 sd->last_balance = jiffies;
5582 }
5583 if (need_serialize)
5584 spin_unlock(&balancing);
5585out:
5586 if (time_after(next_balance, sd->last_balance + interval)) {
5587 next_balance = sd->last_balance + interval;
5588 update_next_balance = 1;
5589 }
5590
5591 /*
5592 * Stop the load balance at this level. There is another
5593 * CPU in our sched group which is doing load balancing more
5594 * actively.
5595 */
5596 if (!balance)
5597 break;
5598 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005599 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005600
5601 /*
5602 * next_balance will be updated only when there is a need.
5603 * When the cpu is attached to null domain for ex, it will not be
5604 * updated.
5605 */
5606 if (likely(update_next_balance))
5607 rq->next_balance = next_balance;
5608}
5609
Frederic Weisbecker3451d022011-08-10 23:21:01 +02005610#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005611/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02005612 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005613 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5614 */
5615static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5616{
5617 struct rq *this_rq = cpu_rq(this_cpu);
5618 struct rq *rq;
5619 int balance_cpu;
5620
Suresh Siddha1c792db2011-12-01 17:07:32 -08005621 if (idle != CPU_IDLE ||
5622 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5623 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005624
5625 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08005626 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005627 continue;
5628
5629 /*
5630 * If this cpu gets work to do, stop the load balancing
5631 * work being done for other cpus. Next load
5632 * balancing owner will pick it up.
5633 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08005634 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005635 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005636
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02005637 rq = cpu_rq(balance_cpu);
5638
5639 raw_spin_lock_irq(&rq->lock);
5640 update_rq_clock(rq);
5641 update_idle_cpu_load(rq);
5642 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005643
5644 rebalance_domains(balance_cpu, CPU_IDLE);
5645
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005646 if (time_after(this_rq->next_balance, rq->next_balance))
5647 this_rq->next_balance = rq->next_balance;
5648 }
5649 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08005650end:
5651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005652}
5653
5654/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005655 * Current heuristic for kicking the idle load balancer in the presence
5656 * of an idle cpu is the system.
5657 * - This rq has more than one task.
5658 * - At any scheduler domain level, this cpu's scheduler group has multiple
5659 * busy cpu's exceeding the group's power.
5660 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5661 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005662 */
5663static inline int nohz_kick_needed(struct rq *rq, int cpu)
5664{
5665 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005666 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005667
Suresh Siddha1c792db2011-12-01 17:07:32 -08005668 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005669 return 0;
5670
Suresh Siddha1c792db2011-12-01 17:07:32 -08005671 /*
5672 * We may be recently in ticked or tickless idle mode. At the first
5673 * busy tick after returning from idle, we will update the busy stats.
5674 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08005675 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08005676 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005677
5678 /*
5679 * None are in tickless mode and hence no need for NOHZ idle load
5680 * balancing.
5681 */
5682 if (likely(!atomic_read(&nohz.nr_cpus)))
5683 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08005684
5685 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005686 return 0;
5687
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005688 if (rq->nr_running >= 2)
5689 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005690
Peter Zijlstra067491b2011-12-07 14:32:08 +01005691 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005692 for_each_domain(cpu, sd) {
5693 struct sched_group *sg = sd->groups;
5694 struct sched_group_power *sgp = sg->sgp;
5695 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005696
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005697 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01005698 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005699
5700 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5701 && (cpumask_first_and(nohz.idle_cpus_mask,
5702 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01005703 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005704
5705 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5706 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005707 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01005708 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005709 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01005710
5711need_kick_unlock:
5712 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08005713need_kick:
5714 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005715}
5716#else
5717static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5718#endif
5719
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005720/*
5721 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005722 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005723 */
5724static void run_rebalance_domains(struct softirq_action *h)
5725{
5726 int this_cpu = smp_processor_id();
5727 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07005728 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005729 CPU_IDLE : CPU_NOT_IDLE;
5730
5731 rebalance_domains(this_cpu, idle);
5732
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005733 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005734 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005735 * balancing on behalf of the other idle cpus whose ticks are
5736 * stopped.
5737 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005738 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005739}
5740
5741static inline int on_null_domain(int cpu)
5742{
Paul E. McKenney90a65012010-02-28 08:32:18 -08005743 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005744}
5745
5746/*
5747 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005748 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005749void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005750{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005751 /* Don't need to rebalance while attached to NULL domain */
5752 if (time_after_eq(jiffies, rq->next_balance) &&
5753 likely(!on_null_domain(cpu)))
5754 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02005755#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08005756 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07005757 nohz_balancer_kick(cpu);
5758#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005759}
5760
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01005761static void rq_online_fair(struct rq *rq)
5762{
5763 update_sysctl();
5764}
5765
5766static void rq_offline_fair(struct rq *rq)
5767{
5768 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07005769
5770 /* Ensure any throttled groups are reachable by pick_next_task */
5771 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01005772}
5773
Dhaval Giani55e12e52008-06-24 23:39:43 +05305774#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02005775
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005776/*
5777 * scheduler tick hitting a task of our scheduling class:
5778 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01005779static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005780{
5781 struct cfs_rq *cfs_rq;
5782 struct sched_entity *se = &curr->se;
5783
5784 for_each_sched_entity(se) {
5785 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01005786 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005787 }
Ben Segall18bf2802012-10-04 12:51:20 +02005788
Peter Zijlstracbee9f82012-10-25 14:16:43 +02005789 if (sched_feat_numa(NUMA))
5790 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08005791
Ben Segall18bf2802012-10-04 12:51:20 +02005792 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005793}
5794
5795/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005796 * called on fork with the child task as argument from the parent's context
5797 * - child not yet on the tasklist
5798 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005799 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005800static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005801{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09005802 struct cfs_rq *cfs_rq;
5803 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02005804 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005805 struct rq *rq = this_rq();
5806 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005807
Thomas Gleixner05fa7852009-11-17 14:28:38 +01005808 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005809
Peter Zijlstra861d0342010-08-19 13:31:43 +02005810 update_rq_clock(rq);
5811
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09005812 cfs_rq = task_cfs_rq(current);
5813 curr = cfs_rq->curr;
5814
Paul E. McKenneyb0a0f662010-10-06 17:32:51 -07005815 if (unlikely(task_cpu(p) != this_cpu)) {
5816 rcu_read_lock();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005817 __set_task_cpu(p, this_cpu);
Paul E. McKenneyb0a0f662010-10-06 17:32:51 -07005818 rcu_read_unlock();
5819 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005820
Ting Yang7109c442007-08-28 12:53:24 +02005821 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005822
Mike Galbraithb5d9d732009-09-08 11:12:28 +02005823 if (curr)
5824 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02005825 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005826
Peter Zijlstracd29fe62009-11-27 17:32:46 +01005827 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02005828 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02005829 * Upon rescheduling, sched_class::put_prev_task() will place
5830 * 'current' within the tree based on its new key value.
5831 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005832 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05305833 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02005834 }
5835
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01005836 se->vruntime -= cfs_rq->min_vruntime;
5837
Thomas Gleixner05fa7852009-11-17 14:28:38 +01005838 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005839}
5840
Steven Rostedtcb469842008-01-25 21:08:22 +01005841/*
5842 * Priority of the task has changed. Check to see if we preempt
5843 * the current task.
5844 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005845static void
5846prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01005847{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005848 if (!p->se.on_rq)
5849 return;
5850
Steven Rostedtcb469842008-01-25 21:08:22 +01005851 /*
5852 * Reschedule if we are currently running on this runqueue and
5853 * our priority decreased, or if we are not currently running on
5854 * this runqueue and our priority is higher than the current's
5855 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005856 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01005857 if (p->prio > oldprio)
5858 resched_task(rq->curr);
5859 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02005860 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01005861}
5862
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005863static void switched_from_fair(struct rq *rq, struct task_struct *p)
5864{
5865 struct sched_entity *se = &p->se;
5866 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5867
5868 /*
5869 * Ensure the task's vruntime is normalized, so that when its
5870 * switched back to the fair class the enqueue_entity(.flags=0) will
5871 * do the right thing.
5872 *
5873 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5874 * have normalized the vruntime, if it was !on_rq, then only when
5875 * the task is sleeping will it still have non-normalized vruntime.
5876 */
5877 if (!se->on_rq && p->state != TASK_RUNNING) {
5878 /*
5879 * Fix up our vruntime so that the current sleep doesn't
5880 * cause 'unlimited' sleep bonus.
5881 */
5882 place_entity(cfs_rq, se, 0);
5883 se->vruntime -= cfs_rq->min_vruntime;
5884 }
Paul Turner9ee474f2012-10-04 13:18:30 +02005885
Alex Shi141965c2013-06-26 13:05:39 +08005886#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02005887 /*
5888 * Remove our load from contribution when we leave sched_fair
5889 * and ensure we don't carry in an old decay_count if we
5890 * switch back.
5891 */
5892 if (p->se.avg.decay_count) {
5893 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5894 __synchronize_entity_decay(&p->se);
5895 subtract_blocked_load_contrib(cfs_rq,
5896 p->se.avg.load_avg_contrib);
5897 }
5898#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005899}
5900
Steven Rostedtcb469842008-01-25 21:08:22 +01005901/*
5902 * We switched to the sched_fair class.
5903 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005904static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01005905{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005906 if (!p->se.on_rq)
5907 return;
5908
Steven Rostedtcb469842008-01-25 21:08:22 +01005909 /*
5910 * We were most likely switched from sched_rt, so
5911 * kick off the schedule if running, otherwise just see
5912 * if we can still preempt the current task.
5913 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01005914 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01005915 resched_task(rq->curr);
5916 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02005917 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01005918}
5919
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02005920/* Account for a task changing its policy or group.
5921 *
5922 * This routine is mostly called to set cfs_rq->curr field when a task
5923 * migrates between groups/classes.
5924 */
5925static void set_curr_task_fair(struct rq *rq)
5926{
5927 struct sched_entity *se = &rq->curr->se;
5928
Paul Turnerec12cb72011-07-21 09:43:30 -07005929 for_each_sched_entity(se) {
5930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5931
5932 set_next_entity(cfs_rq, se);
5933 /* ensure bandwidth has been allocated on our new cfs_rq */
5934 account_cfs_rq_runtime(cfs_rq, 0);
5935 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02005936}
5937
Peter Zijlstra029632f2011-10-25 10:00:11 +02005938void init_cfs_rq(struct cfs_rq *cfs_rq)
5939{
5940 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02005941 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5942#ifndef CONFIG_64BIT
5943 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5944#endif
Alex Shi141965c2013-06-26 13:05:39 +08005945#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02005946 atomic64_set(&cfs_rq->decay_counter, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02005947 atomic64_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02005948#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02005949}
5950
Peter Zijlstra810b3812008-02-29 15:21:01 -05005951#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005952static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05005953{
Paul Turneraff3e492012-10-04 13:18:30 +02005954 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005955 /*
5956 * If the task was not on the rq at the time of this cgroup movement
5957 * it must have been asleep, sleeping tasks keep their ->vruntime
5958 * absolute on their old rq until wakeup (needed for the fair sleeper
5959 * bonus in place_entity()).
5960 *
5961 * If it was on the rq, we've just 'preempted' it, which does convert
5962 * ->vruntime to a relative base.
5963 *
5964 * Make sure both cases convert their relative position when migrating
5965 * to another cgroup's rq. This does somewhat interfere with the
5966 * fair sleeper stuff for the first placement, but who cares.
5967 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005968 /*
5969 * When !on_rq, vruntime of the task has usually NOT been normalized.
5970 * But there are some cases where it has already been normalized:
5971 *
5972 * - Moving a forked child which is waiting for being woken up by
5973 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09005974 * - Moving a task which has been woken up by try_to_wake_up() and
5975 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005976 *
5977 * To prevent boost or penalty in the new cfs_rq caused by delta
5978 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5979 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09005980 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09005981 on_rq = 1;
5982
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01005983 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02005984 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5985 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02005986 if (!on_rq) {
5987 cfs_rq = cfs_rq_of(&p->se);
5988 p->se.vruntime += cfs_rq->min_vruntime;
5989#ifdef CONFIG_SMP
5990 /*
5991 * migrate_task_rq_fair() will have removed our previous
5992 * contribution, but we must synchronize for ongoing future
5993 * decay.
5994 */
5995 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5996 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5997#endif
5998 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05005999}
Peter Zijlstra029632f2011-10-25 10:00:11 +02006000
6001void free_fair_sched_group(struct task_group *tg)
6002{
6003 int i;
6004
6005 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6006
6007 for_each_possible_cpu(i) {
6008 if (tg->cfs_rq)
6009 kfree(tg->cfs_rq[i]);
6010 if (tg->se)
6011 kfree(tg->se[i]);
6012 }
6013
6014 kfree(tg->cfs_rq);
6015 kfree(tg->se);
6016}
6017
6018int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6019{
6020 struct cfs_rq *cfs_rq;
6021 struct sched_entity *se;
6022 int i;
6023
6024 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6025 if (!tg->cfs_rq)
6026 goto err;
6027 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6028 if (!tg->se)
6029 goto err;
6030
6031 tg->shares = NICE_0_LOAD;
6032
6033 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6034
6035 for_each_possible_cpu(i) {
6036 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6037 GFP_KERNEL, cpu_to_node(i));
6038 if (!cfs_rq)
6039 goto err;
6040
6041 se = kzalloc_node(sizeof(struct sched_entity),
6042 GFP_KERNEL, cpu_to_node(i));
6043 if (!se)
6044 goto err_free_rq;
6045
6046 init_cfs_rq(cfs_rq);
6047 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6048 }
6049
6050 return 1;
6051
6052err_free_rq:
6053 kfree(cfs_rq);
6054err:
6055 return 0;
6056}
6057
6058void unregister_fair_sched_group(struct task_group *tg, int cpu)
6059{
6060 struct rq *rq = cpu_rq(cpu);
6061 unsigned long flags;
6062
6063 /*
6064 * Only empty task groups can be destroyed; so we can speculatively
6065 * check on_list without danger of it being re-added.
6066 */
6067 if (!tg->cfs_rq[cpu]->on_list)
6068 return;
6069
6070 raw_spin_lock_irqsave(&rq->lock, flags);
6071 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6072 raw_spin_unlock_irqrestore(&rq->lock, flags);
6073}
6074
6075void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6076 struct sched_entity *se, int cpu,
6077 struct sched_entity *parent)
6078{
6079 struct rq *rq = cpu_rq(cpu);
6080
6081 cfs_rq->tg = tg;
6082 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006083 init_cfs_rq_runtime(cfs_rq);
6084
6085 tg->cfs_rq[cpu] = cfs_rq;
6086 tg->se[cpu] = se;
6087
6088 /* se could be NULL for root_task_group */
6089 if (!se)
6090 return;
6091
6092 if (!parent)
6093 se->cfs_rq = &rq->cfs;
6094 else
6095 se->cfs_rq = parent->my_q;
6096
6097 se->my_q = cfs_rq;
6098 update_load_set(&se->load, 0);
6099 se->parent = parent;
6100}
6101
6102static DEFINE_MUTEX(shares_mutex);
6103
6104int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6105{
6106 int i;
6107 unsigned long flags;
6108
6109 /*
6110 * We can't change the weight of the root cgroup.
6111 */
6112 if (!tg->se[0])
6113 return -EINVAL;
6114
6115 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6116
6117 mutex_lock(&shares_mutex);
6118 if (tg->shares == shares)
6119 goto done;
6120
6121 tg->shares = shares;
6122 for_each_possible_cpu(i) {
6123 struct rq *rq = cpu_rq(i);
6124 struct sched_entity *se;
6125
6126 se = tg->se[i];
6127 /* Propagate contribution to hierarchy */
6128 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02006129
6130 /* Possible calls to update_curr() need rq clock */
6131 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08006132 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02006133 update_cfs_shares(group_cfs_rq(se));
6134 raw_spin_unlock_irqrestore(&rq->lock, flags);
6135 }
6136
6137done:
6138 mutex_unlock(&shares_mutex);
6139 return 0;
6140}
6141#else /* CONFIG_FAIR_GROUP_SCHED */
6142
6143void free_fair_sched_group(struct task_group *tg) { }
6144
6145int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6146{
6147 return 1;
6148}
6149
6150void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6151
6152#endif /* CONFIG_FAIR_GROUP_SCHED */
6153
Peter Zijlstra810b3812008-02-29 15:21:01 -05006154
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07006155static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00006156{
6157 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00006158 unsigned int rr_interval = 0;
6159
6160 /*
6161 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6162 * idle runqueue:
6163 */
Peter Williams0d721ce2009-09-21 01:31:53 +00006164 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08006165 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00006166
6167 return rr_interval;
6168}
6169
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006170/*
6171 * All the scheduling class methods:
6172 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006173const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02006174 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006175 .enqueue_task = enqueue_task_fair,
6176 .dequeue_task = dequeue_task_fair,
6177 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05006178 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006179
Ingo Molnar2e09bf52007-10-15 17:00:05 +02006180 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006181
6182 .pick_next_task = pick_next_task_fair,
6183 .put_prev_task = put_prev_task_fair,
6184
Peter Williams681f3e62007-10-24 18:23:51 +02006185#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08006186 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02006187 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08006188
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006189 .rq_online = rq_online_fair,
6190 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006191
6192 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02006193#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006194
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006195 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006196 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006197 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01006198
6199 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006200 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01006201 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05006202
Peter Williams0d721ce2009-09-21 01:31:53 +00006203 .get_rr_interval = get_rr_interval_fair,
6204
Peter Zijlstra810b3812008-02-29 15:21:01 -05006205#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006206 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05006207#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006208};
6209
6210#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02006211void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006212{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006213 struct cfs_rq *cfs_rq;
6214
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01006215 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02006216 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02006217 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01006218 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006219}
6220#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006221
6222__init void init_sched_fair_class(void)
6223{
6224#ifdef CONFIG_SMP
6225 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6226
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006227#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08006228 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08006230 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02006231#endif
6232#endif /* SMP */
6233
6234}