blob: 7f58fa6824917beef6104bb6f3e1414179a8381b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
27#include <linux/kallsyms.h>
Andi Kleen312df5f2005-05-16 21:53:28 -070028#include <linux/acpi.h>
Andi Kleen8d916402005-05-31 14:39:26 -070029#ifdef CONFIG_ACPI
Andi Kleen312df5f2005-05-16 21:53:28 -070030#include <acpi/achware.h> /* for PM timer frequency */
Andi Kleen8d916402005-05-31 14:39:26 -070031#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <asm/8253pit.h>
33#include <asm/pgtable.h>
34#include <asm/vsyscall.h>
35#include <asm/timex.h>
36#include <asm/proto.h>
37#include <asm/hpet.h>
38#include <asm/sections.h>
39#include <linux/cpufreq.h>
40#include <linux/hpet.h>
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/apic.h>
43#endif
44
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#ifdef CONFIG_CPU_FREQ
46static void cpufreq_delayed_get(void);
47#endif
48extern void i8254_timer_resume(void);
49extern int using_apic_timer;
50
Andi Kleene8b91772006-02-26 04:18:49 +010051static char *time_init_gtod(void);
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053DEFINE_SPINLOCK(rtc_lock);
54DEFINE_SPINLOCK(i8253_lock);
55
Andi Kleen73dea472006-02-03 21:50:50 +010056int nohpet __initdata = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -070057static int notsc __initdata = 0;
58
59#undef HPET_HACK_ENABLE_DANGEROUS
60
61unsigned int cpu_khz; /* TSC clocks / usec, not used here */
62static unsigned long hpet_period; /* fsecs / HPET clock */
63unsigned long hpet_tick; /* HPET clocks / interrupt */
Chris McDermott33042a92006-02-11 17:55:50 -080064int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
Linus Torvalds1da177e2005-04-16 15:20:36 -070065unsigned long vxtime_hz = PIT_TICK_RATE;
66int report_lost_ticks; /* command line option */
67unsigned long long monotonic_base;
68
69struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
70
71volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
72unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
73struct timespec __xtime __section_xtime;
74struct timezone __sys_tz __section_sys_tz;
75
Linus Torvalds1da177e2005-04-16 15:20:36 -070076/*
77 * do_gettimeoffset() returns microseconds since last timer interrupt was
78 * triggered by hardware. A memory read of HPET is slower than a register read
79 * of TSC, but much more reliable. It's also synchronized to the timer
80 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
81 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
82 * This is not a problem, because jiffies hasn't updated either. They are bound
83 * together by xtime_lock.
84 */
85
86static inline unsigned int do_gettimeoffset_tsc(void)
87{
88 unsigned long t;
89 unsigned long x;
Andi Kleenc818a182006-01-11 22:45:24 +010090 t = get_cycles_sync();
Andi Kleen7351c0b2006-03-25 16:30:34 +010091 if (t < vxtime.last_tsc)
92 t = vxtime.last_tsc; /* hack */
Linus Torvalds1da177e2005-04-16 15:20:36 -070093 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
94 return x;
95}
96
97static inline unsigned int do_gettimeoffset_hpet(void)
98{
john stultza3a00752005-06-23 00:08:36 -070099 /* cap counter read to one tick to avoid inconsistencies */
100 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
101 return (min(counter,hpet_tick) * vxtime.quot) >> 32;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700102}
103
104unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
105
106/*
107 * This version of gettimeofday() has microsecond resolution and better than
108 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
109 * MHz) HPET timer.
110 */
111
112void do_gettimeofday(struct timeval *tv)
113{
114 unsigned long seq, t;
115 unsigned int sec, usec;
116
117 do {
118 seq = read_seqbegin(&xtime_lock);
119
120 sec = xtime.tv_sec;
121 usec = xtime.tv_nsec / 1000;
122
123 /* i386 does some correction here to keep the clock
124 monotonous even when ntpd is fixing drift.
125 But they didn't work for me, there is a non monotonic
126 clock anyways with ntp.
127 I dropped all corrections now until a real solution can
128 be found. Note when you fix it here you need to do the same
129 in arch/x86_64/kernel/vsyscall.c and export all needed
130 variables in vmlinux.lds. -AK */
131
132 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
133 do_gettimeoffset();
134 usec += t;
135
136 } while (read_seqretry(&xtime_lock, seq));
137
138 tv->tv_sec = sec + usec / 1000000;
139 tv->tv_usec = usec % 1000000;
140}
141
142EXPORT_SYMBOL(do_gettimeofday);
143
144/*
145 * settimeofday() first undoes the correction that gettimeofday would do
146 * on the time, and then saves it. This is ugly, but has been like this for
147 * ages already.
148 */
149
150int do_settimeofday(struct timespec *tv)
151{
152 time_t wtm_sec, sec = tv->tv_sec;
153 long wtm_nsec, nsec = tv->tv_nsec;
154
155 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
156 return -EINVAL;
157
158 write_seqlock_irq(&xtime_lock);
159
160 nsec -= do_gettimeoffset() * 1000 +
161 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
162
163 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
164 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
165
166 set_normalized_timespec(&xtime, sec, nsec);
167 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
168
john stultzb149ee22005-09-06 15:17:46 -0700169 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170
171 write_sequnlock_irq(&xtime_lock);
172 clock_was_set();
173 return 0;
174}
175
176EXPORT_SYMBOL(do_settimeofday);
177
178unsigned long profile_pc(struct pt_regs *regs)
179{
180 unsigned long pc = instruction_pointer(regs);
181
Andi Kleen7351c0b2006-03-25 16:30:34 +0100182 /* Assume the lock function has either no stack frame or only a single
183 word. This checks if the address on the stack looks like a kernel
184 text address.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185 There is a small window for false hits, but in that case the tick
186 is just accounted to the spinlock function.
187 Better would be to write these functions in assembler again
188 and check exactly. */
189 if (in_lock_functions(pc)) {
190 char *v = *(char **)regs->rsp;
191 if ((v >= _stext && v <= _etext) ||
192 (v >= _sinittext && v <= _einittext) ||
193 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
194 return (unsigned long)v;
195 return ((unsigned long *)regs->rsp)[1];
196 }
197 return pc;
198}
199EXPORT_SYMBOL(profile_pc);
200
201/*
202 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
203 * ms after the second nowtime has started, because when nowtime is written
204 * into the registers of the CMOS clock, it will jump to the next second
205 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
206 * sheet for details.
207 */
208
209static void set_rtc_mmss(unsigned long nowtime)
210{
211 int real_seconds, real_minutes, cmos_minutes;
212 unsigned char control, freq_select;
213
214/*
215 * IRQs are disabled when we're called from the timer interrupt,
216 * no need for spin_lock_irqsave()
217 */
218
219 spin_lock(&rtc_lock);
220
221/*
222 * Tell the clock it's being set and stop it.
223 */
224
225 control = CMOS_READ(RTC_CONTROL);
226 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
227
228 freq_select = CMOS_READ(RTC_FREQ_SELECT);
229 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
230
231 cmos_minutes = CMOS_READ(RTC_MINUTES);
232 BCD_TO_BIN(cmos_minutes);
233
234/*
235 * since we're only adjusting minutes and seconds, don't interfere with hour
236 * overflow. This avoids messing with unknown time zones but requires your RTC
237 * not to be off by more than 15 minutes. Since we're calling it only when
238 * our clock is externally synchronized using NTP, this shouldn't be a problem.
239 */
240
241 real_seconds = nowtime % 60;
242 real_minutes = nowtime / 60;
243 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
244 real_minutes += 30; /* correct for half hour time zone */
245 real_minutes %= 60;
246
Linus Torvalds1da177e2005-04-16 15:20:36 -0700247 if (abs(real_minutes - cmos_minutes) >= 30) {
248 printk(KERN_WARNING "time.c: can't update CMOS clock "
249 "from %d to %d\n", cmos_minutes, real_minutes);
Andi Kleen28456ed2006-03-25 16:30:37 +0100250 } else {
Andi Kleen0b913172006-01-11 22:45:33 +0100251 BIN_TO_BCD(real_seconds);
252 BIN_TO_BCD(real_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 CMOS_WRITE(real_seconds, RTC_SECONDS);
254 CMOS_WRITE(real_minutes, RTC_MINUTES);
255 }
256
257/*
258 * The following flags have to be released exactly in this order, otherwise the
259 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
260 * not reset the oscillator and will not update precisely 500 ms later. You
261 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
262 * believes data sheets anyway ... -- Markus Kuhn
263 */
264
265 CMOS_WRITE(control, RTC_CONTROL);
266 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
267
268 spin_unlock(&rtc_lock);
269}
270
271
272/* monotonic_clock(): returns # of nanoseconds passed since time_init()
273 * Note: This function is required to return accurate
274 * time even in the absence of multiple timer ticks.
275 */
276unsigned long long monotonic_clock(void)
277{
278 unsigned long seq;
279 u32 last_offset, this_offset, offset;
280 unsigned long long base;
281
282 if (vxtime.mode == VXTIME_HPET) {
283 do {
284 seq = read_seqbegin(&xtime_lock);
285
286 last_offset = vxtime.last;
287 base = monotonic_base;
john stultza3a00752005-06-23 00:08:36 -0700288 this_offset = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 } while (read_seqretry(&xtime_lock, seq));
290 offset = (this_offset - last_offset);
Andi Kleen7351c0b2006-03-25 16:30:34 +0100291 offset *= (NSEC_PER_SEC/HZ) / hpet_tick;
Andi Kleen0b913172006-01-11 22:45:33 +0100292 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293 do {
294 seq = read_seqbegin(&xtime_lock);
295
296 last_offset = vxtime.last_tsc;
297 base = monotonic_base;
298 } while (read_seqretry(&xtime_lock, seq));
Andi Kleenc818a182006-01-11 22:45:24 +0100299 this_offset = get_cycles_sync();
Andi Kleen7351c0b2006-03-25 16:30:34 +0100300 offset = (this_offset - last_offset)*1000 / cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301 }
Andi Kleen7351c0b2006-03-25 16:30:34 +0100302 return base + offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700303}
304EXPORT_SYMBOL(monotonic_clock);
305
306static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
307{
Andi Kleen7351c0b2006-03-25 16:30:34 +0100308 static long lost_count;
309 static int warned;
310 if (report_lost_ticks) {
311 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
312 print_symbol("rip %s)\n", regs->rip);
313 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314
Andi Kleen7351c0b2006-03-25 16:30:34 +0100315 if (lost_count == 1000 && !warned) {
316 printk(KERN_WARNING "warning: many lost ticks.\n"
317 KERN_WARNING "Your time source seems to be instable or "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700318 "some driver is hogging interupts\n");
Andi Kleen7351c0b2006-03-25 16:30:34 +0100319 print_symbol("rip %s\n", regs->rip);
320 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
321 printk(KERN_WARNING "Falling back to HPET\n");
322 if (hpet_use_timer)
323 vxtime.last = hpet_readl(HPET_T0_CMP) -
324 hpet_tick;
325 else
326 vxtime.last = hpet_readl(HPET_COUNTER);
327 vxtime.mode = VXTIME_HPET;
328 do_gettimeoffset = do_gettimeoffset_hpet;
329 }
330 /* else should fall back to PIT, but code missing. */
331 warned = 1;
332 } else
333 lost_count++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700334
335#ifdef CONFIG_CPU_FREQ
Andi Kleen7351c0b2006-03-25 16:30:34 +0100336 /* In some cases the CPU can change frequency without us noticing
337 Give cpufreq a change to catch up. */
338 if ((lost_count+1) % 25 == 0)
339 cpufreq_delayed_get();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700340#endif
341}
342
Andi Kleen73dea472006-02-03 21:50:50 +0100343void main_timer_handler(struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700344{
345 static unsigned long rtc_update = 0;
346 unsigned long tsc;
Andi Kleen9ede6b02006-03-25 16:29:31 +0100347 int delay = 0, offset = 0, lost = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700348
349/*
350 * Here we are in the timer irq handler. We have irqs locally disabled (so we
351 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
352 * on the other CPU, so we need a lock. We also need to lock the vsyscall
353 * variables, because both do_timer() and us change them -arca+vojtech
354 */
355
356 write_seqlock(&xtime_lock);
357
john stultza3a00752005-06-23 00:08:36 -0700358 if (vxtime.hpet_address)
359 offset = hpet_readl(HPET_COUNTER);
360
361 if (hpet_use_timer) {
362 /* if we're using the hpet timer functionality,
363 * we can more accurately know the counter value
364 * when the timer interrupt occured.
365 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
367 delay = hpet_readl(HPET_COUNTER) - offset;
Andi Kleen9ede6b02006-03-25 16:29:31 +0100368 } else if (!pmtmr_ioport) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369 spin_lock(&i8253_lock);
370 outb_p(0x00, 0x43);
371 delay = inb_p(0x40);
372 delay |= inb(0x40) << 8;
373 spin_unlock(&i8253_lock);
374 delay = LATCH - 1 - delay;
375 }
376
Andi Kleenc818a182006-01-11 22:45:24 +0100377 tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378
379 if (vxtime.mode == VXTIME_HPET) {
380 if (offset - vxtime.last > hpet_tick) {
381 lost = (offset - vxtime.last) / hpet_tick - 1;
382 }
383
384 monotonic_base +=
385 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
386
387 vxtime.last = offset;
Andi Kleen312df5f2005-05-16 21:53:28 -0700388#ifdef CONFIG_X86_PM_TIMER
389 } else if (vxtime.mode == VXTIME_PMTMR) {
390 lost = pmtimer_mark_offset();
391#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392 } else {
393 offset = (((tsc - vxtime.last_tsc) *
394 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
395
396 if (offset < 0)
397 offset = 0;
398
399 if (offset > (USEC_PER_SEC / HZ)) {
400 lost = offset / (USEC_PER_SEC / HZ);
401 offset %= (USEC_PER_SEC / HZ);
402 }
403
404 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
405
406 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
407
408 if ((((tsc - vxtime.last_tsc) *
409 vxtime.tsc_quot) >> 32) < offset)
410 vxtime.last_tsc = tsc -
411 (((long) offset << 32) / vxtime.tsc_quot) - 1;
412 }
413
414 if (lost > 0) {
415 handle_lost_ticks(lost, regs);
416 jiffies += lost;
417 }
418
419/*
420 * Do the timer stuff.
421 */
422
423 do_timer(regs);
424#ifndef CONFIG_SMP
425 update_process_times(user_mode(regs));
426#endif
427
428/*
429 * In the SMP case we use the local APIC timer interrupt to do the profiling,
430 * except when we simulate SMP mode on a uniprocessor system, in that case we
431 * have to call the local interrupt handler.
432 */
433
434#ifndef CONFIG_X86_LOCAL_APIC
435 profile_tick(CPU_PROFILING, regs);
436#else
437 if (!using_apic_timer)
438 smp_local_timer_interrupt(regs);
439#endif
440
441/*
442 * If we have an externally synchronized Linux clock, then update CMOS clock
443 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
444 * closest to exactly 500 ms before the next second. If the update fails, we
445 * don't care, as it'll be updated on the next turn, and the problem (time way
446 * off) isn't likely to go away much sooner anyway.
447 */
448
john stultzb149ee22005-09-06 15:17:46 -0700449 if (ntp_synced() && xtime.tv_sec > rtc_update &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
451 set_rtc_mmss(xtime.tv_sec);
452 rtc_update = xtime.tv_sec + 660;
453 }
454
455 write_sequnlock(&xtime_lock);
Andi Kleen73dea472006-02-03 21:50:50 +0100456}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457
Andi Kleen73dea472006-02-03 21:50:50 +0100458static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
459{
460 if (apic_runs_main_timer > 1)
461 return IRQ_HANDLED;
462 main_timer_handler(regs);
Venkatesh Pallipadid25bf7e2006-01-11 22:44:24 +0100463#ifdef CONFIG_X86_LOCAL_APIC
464 if (using_apic_timer)
465 smp_send_timer_broadcast_ipi();
466#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467 return IRQ_HANDLED;
468}
469
Ravikiran G Thirumalai68ed0042006-03-22 00:07:38 -0800470static unsigned int cyc2ns_scale __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
472
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800473static inline void set_cyc2ns_scale(unsigned long cpu_khz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474{
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800475 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476}
477
478static inline unsigned long long cycles_2_ns(unsigned long long cyc)
479{
480 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
481}
482
483unsigned long long sched_clock(void)
484{
485 unsigned long a = 0;
486
487#if 0
488 /* Don't do a HPET read here. Using TSC always is much faster
489 and HPET may not be mapped yet when the scheduler first runs.
490 Disadvantage is a small drift between CPUs in some configurations,
491 but that should be tolerable. */
492 if (__vxtime.mode == VXTIME_HPET)
493 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
494#endif
495
496 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
497 which means it is not completely exact and may not be monotonous between
498 CPUs. But the errors should be too small to matter for scheduling
499 purposes. */
500
501 rdtscll(a);
502 return cycles_2_ns(a);
503}
504
Andi Kleenbdf2b1c2006-01-11 22:46:39 +0100505static unsigned long get_cmos_time(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506{
Jan Beulich5329e13d2006-01-11 22:46:42 +0100507 unsigned int timeout = 1000000, year, mon, day, hour, min, sec;
508 unsigned char uip = 0, this = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 unsigned long flags;
Andi Kleen6954bee2006-03-25 16:30:31 +0100510 unsigned extyear = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511
512/*
513 * The Linux interpretation of the CMOS clock register contents: When the
514 * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
515 * second which has precisely just started. Waiting for this can take up to 1
516 * second, we timeout approximately after 2.4 seconds on a machine with
517 * standard 8.3 MHz ISA bus.
518 */
519
520 spin_lock_irqsave(&rtc_lock, flags);
521
Jan Beulich5329e13d2006-01-11 22:46:42 +0100522 while (timeout && (!uip || this)) {
523 uip |= this;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524 this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
525 timeout--;
526 }
527
Andi Kleen0b913172006-01-11 22:45:33 +0100528 /*
529 * Here we are safe to assume the registers won't change for a whole
530 * second, so we just go ahead and read them.
531 */
532 sec = CMOS_READ(RTC_SECONDS);
533 min = CMOS_READ(RTC_MINUTES);
534 hour = CMOS_READ(RTC_HOURS);
535 day = CMOS_READ(RTC_DAY_OF_MONTH);
536 mon = CMOS_READ(RTC_MONTH);
537 year = CMOS_READ(RTC_YEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700538
Andi Kleen6954bee2006-03-25 16:30:31 +0100539#ifdef CONFIG_ACPI
540 if (acpi_fadt.revision >= FADT2_REVISION_ID && acpi_fadt.century)
541 extyear = CMOS_READ(acpi_fadt.century);
542#endif
543
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544 spin_unlock_irqrestore(&rtc_lock, flags);
545
Andi Kleen0b913172006-01-11 22:45:33 +0100546 /*
547 * We know that x86-64 always uses BCD format, no need to check the
548 * config register.
Andi Kleen7351c0b2006-03-25 16:30:34 +0100549 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700550
Andi Kleen0b913172006-01-11 22:45:33 +0100551 BCD_TO_BIN(sec);
552 BCD_TO_BIN(min);
553 BCD_TO_BIN(hour);
554 BCD_TO_BIN(day);
555 BCD_TO_BIN(mon);
556 BCD_TO_BIN(year);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557
Andi Kleen6954bee2006-03-25 16:30:31 +0100558 if (extyear) {
559 BCD_TO_BIN(extyear);
560 year += extyear;
561 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
562 } else {
563 /*
564 * x86-64 systems only exists since 2002.
565 * This will work up to Dec 31, 2100
566 */
567 year += 2000;
568 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569
570 return mktime(year, mon, day, hour, min, sec);
571}
572
573#ifdef CONFIG_CPU_FREQ
574
575/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
576 changes.
577
578 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
579 not that important because current Opteron setups do not support
580 scaling on SMP anyroads.
581
582 Should fix up last_tsc too. Currently gettimeofday in the
583 first tick after the change will be slightly wrong. */
584
585#include <linux/workqueue.h>
586
587static unsigned int cpufreq_delayed_issched = 0;
588static unsigned int cpufreq_init = 0;
589static struct work_struct cpufreq_delayed_get_work;
590
591static void handle_cpufreq_delayed_get(void *v)
592{
593 unsigned int cpu;
594 for_each_online_cpu(cpu) {
595 cpufreq_get(cpu);
596 }
597 cpufreq_delayed_issched = 0;
598}
599
600/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
601 * to verify the CPU frequency the timing core thinks the CPU is running
602 * at is still correct.
603 */
604static void cpufreq_delayed_get(void)
605{
606 static int warned;
607 if (cpufreq_init && !cpufreq_delayed_issched) {
608 cpufreq_delayed_issched = 1;
609 if (!warned) {
610 warned = 1;
Andi Kleen7351c0b2006-03-25 16:30:34 +0100611 printk(KERN_DEBUG
612 "Losing some ticks... checking if CPU frequency changed.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700613 }
614 schedule_work(&cpufreq_delayed_get_work);
615 }
616}
617
618static unsigned int ref_freq = 0;
619static unsigned long loops_per_jiffy_ref = 0;
620
621static unsigned long cpu_khz_ref = 0;
622
623static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
624 void *data)
625{
626 struct cpufreq_freqs *freq = data;
627 unsigned long *lpj, dummy;
628
Andi Kleenc29601e2005-04-16 15:25:05 -0700629 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
630 return 0;
631
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 lpj = &dummy;
633 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
634#ifdef CONFIG_SMP
Andi Kleen7351c0b2006-03-25 16:30:34 +0100635 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636#else
Andi Kleen7351c0b2006-03-25 16:30:34 +0100637 lpj = &boot_cpu_data.loops_per_jiffy;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638#endif
639
Linus Torvalds1da177e2005-04-16 15:20:36 -0700640 if (!ref_freq) {
641 ref_freq = freq->old;
642 loops_per_jiffy_ref = *lpj;
643 cpu_khz_ref = cpu_khz;
644 }
645 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
646 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
647 (val == CPUFREQ_RESUMECHANGE)) {
648 *lpj =
649 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
650
651 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
652 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
653 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
654 }
655
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800656 set_cyc2ns_scale(cpu_khz_ref);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657
658 return 0;
659}
660
661static struct notifier_block time_cpufreq_notifier_block = {
662 .notifier_call = time_cpufreq_notifier
663};
664
665static int __init cpufreq_tsc(void)
666{
667 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
668 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
669 CPUFREQ_TRANSITION_NOTIFIER))
670 cpufreq_init = 1;
671 return 0;
672}
673
674core_initcall(cpufreq_tsc);
675
676#endif
677
678/*
679 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
680 * it to the HPET timer of known frequency.
681 */
682
683#define TICK_COUNT 100000000
684
685static unsigned int __init hpet_calibrate_tsc(void)
686{
687 int tsc_start, hpet_start;
688 int tsc_now, hpet_now;
689 unsigned long flags;
690
691 local_irq_save(flags);
692 local_irq_disable();
693
694 hpet_start = hpet_readl(HPET_COUNTER);
695 rdtscl(tsc_start);
696
697 do {
698 local_irq_disable();
699 hpet_now = hpet_readl(HPET_COUNTER);
Andi Kleenc818a182006-01-11 22:45:24 +0100700 tsc_now = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701 local_irq_restore(flags);
702 } while ((tsc_now - tsc_start) < TICK_COUNT &&
703 (hpet_now - hpet_start) < TICK_COUNT);
704
705 return (tsc_now - tsc_start) * 1000000000L
706 / ((hpet_now - hpet_start) * hpet_period / 1000);
707}
708
709
710/*
711 * pit_calibrate_tsc() uses the speaker output (channel 2) of
712 * the PIT. This is better than using the timer interrupt output,
713 * because we can read the value of the speaker with just one inb(),
714 * where we need three i/o operations for the interrupt channel.
715 * We count how many ticks the TSC does in 50 ms.
716 */
717
718static unsigned int __init pit_calibrate_tsc(void)
719{
720 unsigned long start, end;
721 unsigned long flags;
722
723 spin_lock_irqsave(&i8253_lock, flags);
724
725 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
726
727 outb(0xb0, 0x43);
728 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
729 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
Andi Kleenc818a182006-01-11 22:45:24 +0100730 start = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700731 while ((inb(0x61) & 0x20) == 0);
Andi Kleenc818a182006-01-11 22:45:24 +0100732 end = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700733
734 spin_unlock_irqrestore(&i8253_lock, flags);
735
736 return (end - start) / 50;
737}
738
739#ifdef CONFIG_HPET
740static __init int late_hpet_init(void)
741{
742 struct hpet_data hd;
743 unsigned int ntimer;
744
745 if (!vxtime.hpet_address)
Andi Kleen0b913172006-01-11 22:45:33 +0100746 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700747
748 memset(&hd, 0, sizeof (hd));
749
750 ntimer = hpet_readl(HPET_ID);
751 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
752 ntimer++;
753
754 /*
755 * Register with driver.
756 * Timer0 and Timer1 is used by platform.
757 */
758 hd.hd_phys_address = vxtime.hpet_address;
Al Virodd42b152006-02-01 07:30:33 -0500759 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700760 hd.hd_nirqs = ntimer;
761 hd.hd_flags = HPET_DATA_PLATFORM;
762 hpet_reserve_timer(&hd, 0);
763#ifdef CONFIG_HPET_EMULATE_RTC
764 hpet_reserve_timer(&hd, 1);
765#endif
766 hd.hd_irq[0] = HPET_LEGACY_8254;
767 hd.hd_irq[1] = HPET_LEGACY_RTC;
768 if (ntimer > 2) {
769 struct hpet *hpet;
770 struct hpet_timer *timer;
771 int i;
772
773 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
Andi Kleen7351c0b2006-03-25 16:30:34 +0100774 timer = &hpet->hpet_timers[2];
775 for (i = 2; i < ntimer; timer++, i++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776 hd.hd_irq[i] = (timer->hpet_config &
777 Tn_INT_ROUTE_CNF_MASK) >>
778 Tn_INT_ROUTE_CNF_SHIFT;
779
780 }
781
782 hpet_alloc(&hd);
783 return 0;
784}
785fs_initcall(late_hpet_init);
786#endif
787
788static int hpet_timer_stop_set_go(unsigned long tick)
789{
790 unsigned int cfg;
791
792/*
793 * Stop the timers and reset the main counter.
794 */
795
796 cfg = hpet_readl(HPET_CFG);
797 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
798 hpet_writel(cfg, HPET_CFG);
799 hpet_writel(0, HPET_COUNTER);
800 hpet_writel(0, HPET_COUNTER + 4);
801
802/*
803 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
804 * and period also hpet_tick.
805 */
john stultza3a00752005-06-23 00:08:36 -0700806 if (hpet_use_timer) {
807 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
Linus Torvalds1da177e2005-04-16 15:20:36 -0700808 HPET_TN_32BIT, HPET_T0_CFG);
john stultza3a00752005-06-23 00:08:36 -0700809 hpet_writel(hpet_tick, HPET_T0_CMP);
810 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
811 cfg |= HPET_CFG_LEGACY;
812 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700813/*
814 * Go!
815 */
816
john stultza3a00752005-06-23 00:08:36 -0700817 cfg |= HPET_CFG_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700818 hpet_writel(cfg, HPET_CFG);
819
820 return 0;
821}
822
823static int hpet_init(void)
824{
825 unsigned int id;
826
827 if (!vxtime.hpet_address)
828 return -1;
829 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
830 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
831
832/*
833 * Read the period, compute tick and quotient.
834 */
835
836 id = hpet_readl(HPET_ID);
837
john stultza3a00752005-06-23 00:08:36 -0700838 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700839 return -1;
840
841 hpet_period = hpet_readl(HPET_PERIOD);
842 if (hpet_period < 100000 || hpet_period > 100000000)
843 return -1;
844
845 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
846 hpet_period;
847
john stultza3a00752005-06-23 00:08:36 -0700848 hpet_use_timer = (id & HPET_ID_LEGSUP);
849
Linus Torvalds1da177e2005-04-16 15:20:36 -0700850 return hpet_timer_stop_set_go(hpet_tick);
851}
852
853static int hpet_reenable(void)
854{
855 return hpet_timer_stop_set_go(hpet_tick);
856}
857
Andi Kleen73dea472006-02-03 21:50:50 +0100858#define PIT_MODE 0x43
859#define PIT_CH0 0x40
860
861static void __init __pit_init(int val, u8 mode)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700862{
863 unsigned long flags;
864
865 spin_lock_irqsave(&i8253_lock, flags);
Andi Kleen73dea472006-02-03 21:50:50 +0100866 outb_p(mode, PIT_MODE);
867 outb_p(val & 0xff, PIT_CH0); /* LSB */
868 outb_p(val >> 8, PIT_CH0); /* MSB */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869 spin_unlock_irqrestore(&i8253_lock, flags);
870}
871
Andi Kleen73dea472006-02-03 21:50:50 +0100872void __init pit_init(void)
873{
874 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
875}
876
877void __init pit_stop_interrupt(void)
878{
879 __pit_init(0, 0x30); /* mode 0 */
880}
881
882void __init stop_timer_interrupt(void)
883{
884 char *name;
885 if (vxtime.hpet_address) {
886 name = "HPET";
887 hpet_timer_stop_set_go(0);
888 } else {
889 name = "PIT";
890 pit_stop_interrupt();
891 }
892 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
893}
894
Linus Torvalds1da177e2005-04-16 15:20:36 -0700895int __init time_setup(char *str)
896{
897 report_lost_ticks = 1;
898 return 1;
899}
900
901static struct irqaction irq0 = {
902 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
903};
904
Linus Torvalds1da177e2005-04-16 15:20:36 -0700905void __init time_init(void)
906{
907 char *timename;
Andi Kleene8b91772006-02-26 04:18:49 +0100908 char *gtod;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700909
910#ifdef HPET_HACK_ENABLE_DANGEROUS
911 if (!vxtime.hpet_address) {
912 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
913 "manually!\n");
914 outl(0x800038a0, 0xcf8);
915 outl(0xff000001, 0xcfc);
916 outl(0x800038a0, 0xcf8);
917 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
918 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
919 "at %#lx.\n", vxtime.hpet_address);
920 }
921#endif
922 if (nohpet)
923 vxtime.hpet_address = 0;
924
925 xtime.tv_sec = get_cmos_time();
926 xtime.tv_nsec = 0;
927
928 set_normalized_timespec(&wall_to_monotonic,
929 -xtime.tv_sec, -xtime.tv_nsec);
930
john stultza3a00752005-06-23 00:08:36 -0700931 if (!hpet_init())
Andi Kleen7351c0b2006-03-25 16:30:34 +0100932 vxtime_hz = (1000000000000000L + hpet_period / 2) / hpet_period;
Andi Kleen68e18892005-12-12 22:17:07 -0800933 else
934 vxtime.hpet_address = 0;
john stultza3a00752005-06-23 00:08:36 -0700935
936 if (hpet_use_timer) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937 cpu_khz = hpet_calibrate_tsc();
938 timename = "HPET";
Andi Kleen312df5f2005-05-16 21:53:28 -0700939#ifdef CONFIG_X86_PM_TIMER
john stultzfd495472005-12-12 22:17:13 -0800940 } else if (pmtmr_ioport && !vxtime.hpet_address) {
Andi Kleen312df5f2005-05-16 21:53:28 -0700941 vxtime_hz = PM_TIMER_FREQUENCY;
942 timename = "PM";
943 pit_init();
944 cpu_khz = pit_calibrate_tsc();
945#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946 } else {
947 pit_init();
948 cpu_khz = pit_calibrate_tsc();
949 timename = "PIT";
950 }
951
Andi Kleene8b91772006-02-26 04:18:49 +0100952 vxtime.mode = VXTIME_TSC;
953 gtod = time_init_gtod();
954
955 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
956 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, gtod);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
958 cpu_khz / 1000, cpu_khz % 1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700959 vxtime.quot = (1000000L << 32) / vxtime_hz;
960 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
Andi Kleenc818a182006-01-11 22:45:24 +0100961 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700962 setup_irq(0, &irq0);
963
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800964 set_cyc2ns_scale(cpu_khz);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965}
966
Andi Kleena8ab26f2005-04-16 15:25:19 -0700967/*
Andi Kleen312df5f2005-05-16 21:53:28 -0700968 * Make an educated guess if the TSC is trustworthy and synchronized
969 * over all CPUs.
970 */
Shaohua Li396bd502006-02-03 21:51:20 +0100971__cpuinit int unsynchronized_tsc(void)
Andi Kleen312df5f2005-05-16 21:53:28 -0700972{
973#ifdef CONFIG_SMP
974 if (oem_force_hpet_timer())
975 return 1;
976 /* Intel systems are normally all synchronized. Exceptions
977 are handled in the OEM check above. */
978 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
979 return 0;
Andi Kleen312df5f2005-05-16 21:53:28 -0700980#endif
981 /* Assume multi socket systems are not synchronized */
Andi Kleen737c5c32006-01-11 22:45:15 +0100982 return num_present_cpus() > 1;
Andi Kleen312df5f2005-05-16 21:53:28 -0700983}
984
985/*
Andi Kleene8b91772006-02-26 04:18:49 +0100986 * Decide what mode gettimeofday should use.
Andi Kleena8ab26f2005-04-16 15:25:19 -0700987 */
Andi Kleene8b91772006-02-26 04:18:49 +0100988__init static char *time_init_gtod(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989{
990 char *timetype;
991
Andi Kleen312df5f2005-05-16 21:53:28 -0700992 if (unsynchronized_tsc())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700993 notsc = 1;
994 if (vxtime.hpet_address && notsc) {
john stultza3a00752005-06-23 00:08:36 -0700995 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
Chris McDermott33042a92006-02-11 17:55:50 -0800996 if (hpet_use_timer)
997 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
998 else
999 vxtime.last = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000 vxtime.mode = VXTIME_HPET;
1001 do_gettimeoffset = do_gettimeoffset_hpet;
Andi Kleen312df5f2005-05-16 21:53:28 -07001002#ifdef CONFIG_X86_PM_TIMER
1003 /* Using PM for gettimeofday is quite slow, but we have no other
1004 choice because the TSC is too unreliable on some systems. */
1005 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
1006 timetype = "PM";
1007 do_gettimeoffset = do_gettimeoffset_pm;
1008 vxtime.mode = VXTIME_PMTMR;
1009 sysctl_vsyscall = 0;
1010 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1011#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012 } else {
john stultza3a00752005-06-23 00:08:36 -07001013 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014 vxtime.mode = VXTIME_TSC;
1015 }
Andi Kleene8b91772006-02-26 04:18:49 +01001016 return timetype;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017}
1018
1019__setup("report_lost_ticks", time_setup);
1020
1021static long clock_cmos_diff;
1022static unsigned long sleep_start;
1023
Andi Kleen0b913172006-01-11 22:45:33 +01001024/*
1025 * sysfs support for the timer.
1026 */
1027
Pavel Machek0b9c33a2005-04-16 15:25:31 -07001028static int timer_suspend(struct sys_device *dev, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029{
1030 /*
1031 * Estimate time zone so that set_time can update the clock
1032 */
1033 long cmos_time = get_cmos_time();
1034
1035 clock_cmos_diff = -cmos_time;
1036 clock_cmos_diff += get_seconds();
1037 sleep_start = cmos_time;
1038 return 0;
1039}
1040
1041static int timer_resume(struct sys_device *dev)
1042{
1043 unsigned long flags;
1044 unsigned long sec;
1045 unsigned long ctime = get_cmos_time();
1046 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1047
1048 if (vxtime.hpet_address)
1049 hpet_reenable();
1050 else
1051 i8254_timer_resume();
1052
1053 sec = ctime + clock_cmos_diff;
1054 write_seqlock_irqsave(&xtime_lock,flags);
1055 xtime.tv_sec = sec;
1056 xtime.tv_nsec = 0;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001057 if (vxtime.mode == VXTIME_HPET) {
1058 if (hpet_use_timer)
1059 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1060 else
1061 vxtime.last = hpet_readl(HPET_COUNTER);
1062#ifdef CONFIG_X86_PM_TIMER
1063 } else if (vxtime.mode == VXTIME_PMTMR) {
1064 pmtimer_resume();
1065#endif
1066 } else
1067 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001068 write_sequnlock_irqrestore(&xtime_lock,flags);
1069 jiffies += sleep_length;
1070 wall_jiffies += sleep_length;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001071 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
Ingo Molnar8446f1d2005-09-06 15:16:27 -07001072 touch_softlockup_watchdog();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001073 return 0;
1074}
1075
1076static struct sysdev_class timer_sysclass = {
1077 .resume = timer_resume,
1078 .suspend = timer_suspend,
1079 set_kset_name("timer"),
1080};
1081
Linus Torvalds1da177e2005-04-16 15:20:36 -07001082/* XXX this driverfs stuff should probably go elsewhere later -john */
1083static struct sys_device device_timer = {
1084 .id = 0,
1085 .cls = &timer_sysclass,
1086};
1087
1088static int time_init_device(void)
1089{
1090 int error = sysdev_class_register(&timer_sysclass);
1091 if (!error)
1092 error = sysdev_register(&device_timer);
1093 return error;
1094}
1095
1096device_initcall(time_init_device);
1097
1098#ifdef CONFIG_HPET_EMULATE_RTC
1099/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1100 * is enabled, we support RTC interrupt functionality in software.
1101 * RTC has 3 kinds of interrupts:
1102 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1103 * is updated
1104 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1105 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1106 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1107 * (1) and (2) above are implemented using polling at a frequency of
1108 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1109 * overhead. (DEFAULT_RTC_INT_FREQ)
1110 * For (3), we use interrupts at 64Hz or user specified periodic
1111 * frequency, whichever is higher.
1112 */
1113#include <linux/rtc.h>
1114
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115#define DEFAULT_RTC_INT_FREQ 64
1116#define RTC_NUM_INTS 1
1117
1118static unsigned long UIE_on;
1119static unsigned long prev_update_sec;
1120
1121static unsigned long AIE_on;
1122static struct rtc_time alarm_time;
1123
1124static unsigned long PIE_on;
1125static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1126static unsigned long PIE_count;
1127
1128static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001129static unsigned int hpet_t1_cmp; /* cached comparator register */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130
1131int is_hpet_enabled(void)
1132{
1133 return vxtime.hpet_address != 0;
1134}
1135
1136/*
1137 * Timer 1 for RTC, we do not use periodic interrupt feature,
1138 * even if HPET supports periodic interrupts on Timer 1.
1139 * The reason being, to set up a periodic interrupt in HPET, we need to
1140 * stop the main counter. And if we do that everytime someone diables/enables
1141 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1142 * So, for the time being, simulate the periodic interrupt in software.
1143 *
1144 * hpet_rtc_timer_init() is called for the first time and during subsequent
1145 * interuppts reinit happens through hpet_rtc_timer_reinit().
1146 */
1147int hpet_rtc_timer_init(void)
1148{
1149 unsigned int cfg, cnt;
1150 unsigned long flags;
1151
1152 if (!is_hpet_enabled())
1153 return 0;
1154 /*
1155 * Set the counter 1 and enable the interrupts.
1156 */
1157 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1158 hpet_rtc_int_freq = PIE_freq;
1159 else
1160 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1161
1162 local_irq_save(flags);
1163 cnt = hpet_readl(HPET_COUNTER);
1164 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1165 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001166 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167 local_irq_restore(flags);
1168
1169 cfg = hpet_readl(HPET_T1_CFG);
Clemens Ladisch5f819942005-10-30 15:03:36 -08001170 cfg &= ~HPET_TN_PERIODIC;
1171 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172 hpet_writel(cfg, HPET_T1_CFG);
1173
1174 return 1;
1175}
1176
1177static void hpet_rtc_timer_reinit(void)
1178{
1179 unsigned int cfg, cnt;
1180
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001181 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1182 cfg = hpet_readl(HPET_T1_CFG);
1183 cfg &= ~HPET_TN_ENABLE;
1184 hpet_writel(cfg, HPET_T1_CFG);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001185 return;
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001186 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001187
1188 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1189 hpet_rtc_int_freq = PIE_freq;
1190 else
1191 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1192
1193 /* It is more accurate to use the comparator value than current count.*/
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001194 cnt = hpet_t1_cmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1196 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001197 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198}
1199
1200/*
1201 * The functions below are called from rtc driver.
1202 * Return 0 if HPET is not being used.
1203 * Otherwise do the necessary changes and return 1.
1204 */
1205int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1206{
1207 if (!is_hpet_enabled())
1208 return 0;
1209
1210 if (bit_mask & RTC_UIE)
1211 UIE_on = 0;
1212 if (bit_mask & RTC_PIE)
1213 PIE_on = 0;
1214 if (bit_mask & RTC_AIE)
1215 AIE_on = 0;
1216
1217 return 1;
1218}
1219
1220int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1221{
1222 int timer_init_reqd = 0;
1223
1224 if (!is_hpet_enabled())
1225 return 0;
1226
1227 if (!(PIE_on | AIE_on | UIE_on))
1228 timer_init_reqd = 1;
1229
1230 if (bit_mask & RTC_UIE) {
1231 UIE_on = 1;
1232 }
1233 if (bit_mask & RTC_PIE) {
1234 PIE_on = 1;
1235 PIE_count = 0;
1236 }
1237 if (bit_mask & RTC_AIE) {
1238 AIE_on = 1;
1239 }
1240
1241 if (timer_init_reqd)
1242 hpet_rtc_timer_init();
1243
1244 return 1;
1245}
1246
1247int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1248{
1249 if (!is_hpet_enabled())
1250 return 0;
1251
1252 alarm_time.tm_hour = hrs;
1253 alarm_time.tm_min = min;
1254 alarm_time.tm_sec = sec;
1255
1256 return 1;
1257}
1258
1259int hpet_set_periodic_freq(unsigned long freq)
1260{
1261 if (!is_hpet_enabled())
1262 return 0;
1263
1264 PIE_freq = freq;
1265 PIE_count = 0;
1266
1267 return 1;
1268}
1269
1270int hpet_rtc_dropped_irq(void)
1271{
1272 if (!is_hpet_enabled())
1273 return 0;
1274
1275 return 1;
1276}
1277
1278irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1279{
1280 struct rtc_time curr_time;
1281 unsigned long rtc_int_flag = 0;
1282 int call_rtc_interrupt = 0;
1283
1284 hpet_rtc_timer_reinit();
1285
1286 if (UIE_on | AIE_on) {
1287 rtc_get_rtc_time(&curr_time);
1288 }
1289 if (UIE_on) {
1290 if (curr_time.tm_sec != prev_update_sec) {
1291 /* Set update int info, call real rtc int routine */
1292 call_rtc_interrupt = 1;
1293 rtc_int_flag = RTC_UF;
1294 prev_update_sec = curr_time.tm_sec;
1295 }
1296 }
1297 if (PIE_on) {
1298 PIE_count++;
1299 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1300 /* Set periodic int info, call real rtc int routine */
1301 call_rtc_interrupt = 1;
1302 rtc_int_flag |= RTC_PF;
1303 PIE_count = 0;
1304 }
1305 }
1306 if (AIE_on) {
1307 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1308 (curr_time.tm_min == alarm_time.tm_min) &&
1309 (curr_time.tm_hour == alarm_time.tm_hour)) {
1310 /* Set alarm int info, call real rtc int routine */
1311 call_rtc_interrupt = 1;
1312 rtc_int_flag |= RTC_AF;
1313 }
1314 }
1315 if (call_rtc_interrupt) {
1316 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1317 rtc_interrupt(rtc_int_flag, dev_id, regs);
1318 }
1319 return IRQ_HANDLED;
1320}
1321#endif
1322
Linus Torvalds1da177e2005-04-16 15:20:36 -07001323static int __init nohpet_setup(char *s)
1324{
1325 nohpet = 1;
1326 return 0;
1327}
1328
1329__setup("nohpet", nohpet_setup);
1330
Andi Kleen7fd67842006-02-16 23:42:07 +01001331int __init notsc_setup(char *s)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001332{
1333 notsc = 1;
1334 return 0;
1335}
1336
1337__setup("notsc", notsc_setup);