Srikar Dronamraju | 2b14449 | 2012-02-09 14:56:42 +0530 | [diff] [blame^] | 1 | /* |
| 2 | * Userspace Probes (UProbes) for x86 |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 17 | * |
| 18 | * Copyright (C) IBM Corporation, 2008-2011 |
| 19 | * Authors: |
| 20 | * Srikar Dronamraju |
| 21 | * Jim Keniston |
| 22 | */ |
| 23 | |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/sched.h> |
| 26 | #include <linux/ptrace.h> |
| 27 | #include <linux/uprobes.h> |
| 28 | |
| 29 | #include <linux/kdebug.h> |
| 30 | #include <asm/insn.h> |
| 31 | |
| 32 | /* Post-execution fixups. */ |
| 33 | |
| 34 | /* No fixup needed */ |
| 35 | #define UPROBES_FIX_NONE 0x0 |
| 36 | /* Adjust IP back to vicinity of actual insn */ |
| 37 | #define UPROBES_FIX_IP 0x1 |
| 38 | /* Adjust the return address of a call insn */ |
| 39 | #define UPROBES_FIX_CALL 0x2 |
| 40 | |
| 41 | #define UPROBES_FIX_RIP_AX 0x8000 |
| 42 | #define UPROBES_FIX_RIP_CX 0x4000 |
| 43 | |
| 44 | /* Adaptations for mhiramat x86 decoder v14. */ |
| 45 | #define OPCODE1(insn) ((insn)->opcode.bytes[0]) |
| 46 | #define OPCODE2(insn) ((insn)->opcode.bytes[1]) |
| 47 | #define OPCODE3(insn) ((insn)->opcode.bytes[2]) |
| 48 | #define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value) |
| 49 | |
| 50 | #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ |
| 51 | (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ |
| 52 | (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ |
| 53 | (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ |
| 54 | (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ |
| 55 | << (row % 32)) |
| 56 | |
| 57 | #ifdef CONFIG_X86_64 |
| 58 | static volatile u32 good_insns_64[256 / 32] = { |
| 59 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 60 | /* ---------------------------------------------- */ |
| 61 | W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */ |
| 62 | W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ |
| 63 | W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */ |
| 64 | W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */ |
| 65 | W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */ |
| 66 | W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| 67 | W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ |
| 68 | W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ |
| 69 | W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| 70 | W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| 71 | W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ |
| 72 | W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| 73 | W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ |
| 74 | W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| 75 | W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ |
| 76 | W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ |
| 77 | /* ---------------------------------------------- */ |
| 78 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 79 | }; |
| 80 | #endif |
| 81 | |
| 82 | /* Good-instruction tables for 32-bit apps */ |
| 83 | |
| 84 | static volatile u32 good_insns_32[256 / 32] = { |
| 85 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 86 | /* ---------------------------------------------- */ |
| 87 | W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */ |
| 88 | W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ |
| 89 | W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */ |
| 90 | W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */ |
| 91 | W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| 92 | W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| 93 | W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ |
| 94 | W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ |
| 95 | W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| 96 | W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| 97 | W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ |
| 98 | W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| 99 | W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ |
| 100 | W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| 101 | W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ |
| 102 | W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ |
| 103 | /* ---------------------------------------------- */ |
| 104 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 105 | }; |
| 106 | |
| 107 | /* Using this for both 64-bit and 32-bit apps */ |
| 108 | static volatile u32 good_2byte_insns[256 / 32] = { |
| 109 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 110 | /* ---------------------------------------------- */ |
| 111 | W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */ |
| 112 | W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ |
| 113 | W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ |
| 114 | W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ |
| 115 | W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| 116 | W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| 117 | W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ |
| 118 | W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ |
| 119 | W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| 120 | W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| 121 | W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ |
| 122 | W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| 123 | W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ |
| 124 | W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| 125 | W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ |
| 126 | W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */ |
| 127 | /* ---------------------------------------------- */ |
| 128 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 129 | }; |
| 130 | |
| 131 | #undef W |
| 132 | |
| 133 | /* |
| 134 | * opcodes we'll probably never support: |
| 135 | * 6c-6d, e4-e5, ec-ed - in |
| 136 | * 6e-6f, e6-e7, ee-ef - out |
| 137 | * cc, cd - int3, int |
| 138 | * cf - iret |
| 139 | * d6 - illegal instruction |
| 140 | * f1 - int1/icebp |
| 141 | * f4 - hlt |
| 142 | * fa, fb - cli, sti |
| 143 | * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2 |
| 144 | * |
| 145 | * invalid opcodes in 64-bit mode: |
| 146 | * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5 |
| 147 | * |
| 148 | * 63 - we support this opcode in x86_64 but not in i386. |
| 149 | * |
| 150 | * opcodes we may need to refine support for: |
| 151 | * 0f - 2-byte instructions: For many of these instructions, the validity |
| 152 | * depends on the prefix and/or the reg field. On such instructions, we |
| 153 | * just consider the opcode combination valid if it corresponds to any |
| 154 | * valid instruction. |
| 155 | * 8f - Group 1 - only reg = 0 is OK |
| 156 | * c6-c7 - Group 11 - only reg = 0 is OK |
| 157 | * d9-df - fpu insns with some illegal encodings |
| 158 | * f2, f3 - repnz, repz prefixes. These are also the first byte for |
| 159 | * certain floating-point instructions, such as addsd. |
| 160 | * fe - Group 4 - only reg = 0 or 1 is OK |
| 161 | * ff - Group 5 - only reg = 0-6 is OK |
| 162 | * |
| 163 | * others -- Do we need to support these? |
| 164 | * 0f - (floating-point?) prefetch instructions |
| 165 | * 07, 17, 1f - pop es, pop ss, pop ds |
| 166 | * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- |
| 167 | * but 64 and 65 (fs: and gs:) seem to be used, so we support them |
| 168 | * 67 - addr16 prefix |
| 169 | * ce - into |
| 170 | * f0 - lock prefix |
| 171 | */ |
| 172 | |
| 173 | /* |
| 174 | * TODO: |
| 175 | * - Where necessary, examine the modrm byte and allow only valid instructions |
| 176 | * in the different Groups and fpu instructions. |
| 177 | */ |
| 178 | |
| 179 | static bool is_prefix_bad(struct insn *insn) |
| 180 | { |
| 181 | int i; |
| 182 | |
| 183 | for (i = 0; i < insn->prefixes.nbytes; i++) { |
| 184 | switch (insn->prefixes.bytes[i]) { |
| 185 | case 0x26: /*INAT_PFX_ES */ |
| 186 | case 0x2E: /*INAT_PFX_CS */ |
| 187 | case 0x36: /*INAT_PFX_DS */ |
| 188 | case 0x3E: /*INAT_PFX_SS */ |
| 189 | case 0xF0: /*INAT_PFX_LOCK */ |
| 190 | return true; |
| 191 | } |
| 192 | } |
| 193 | return false; |
| 194 | } |
| 195 | |
| 196 | static int validate_insn_32bits(struct uprobe *uprobe, struct insn *insn) |
| 197 | { |
| 198 | insn_init(insn, uprobe->insn, false); |
| 199 | |
| 200 | /* Skip good instruction prefixes; reject "bad" ones. */ |
| 201 | insn_get_opcode(insn); |
| 202 | if (is_prefix_bad(insn)) |
| 203 | return -ENOTSUPP; |
| 204 | if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32)) |
| 205 | return 0; |
| 206 | if (insn->opcode.nbytes == 2) { |
| 207 | if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) |
| 208 | return 0; |
| 209 | } |
| 210 | return -ENOTSUPP; |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * Figure out which fixups post_xol() will need to perform, and annotate |
| 215 | * uprobe->arch_info.fixups accordingly. To start with, |
| 216 | * uprobe->arch_info.fixups is either zero or it reflects rip-related |
| 217 | * fixups. |
| 218 | */ |
| 219 | static void prepare_fixups(struct uprobe *uprobe, struct insn *insn) |
| 220 | { |
| 221 | bool fix_ip = true, fix_call = false; /* defaults */ |
| 222 | int reg; |
| 223 | |
| 224 | insn_get_opcode(insn); /* should be a nop */ |
| 225 | |
| 226 | switch (OPCODE1(insn)) { |
| 227 | case 0xc3: /* ret/lret */ |
| 228 | case 0xcb: |
| 229 | case 0xc2: |
| 230 | case 0xca: |
| 231 | /* ip is correct */ |
| 232 | fix_ip = false; |
| 233 | break; |
| 234 | case 0xe8: /* call relative - Fix return addr */ |
| 235 | fix_call = true; |
| 236 | break; |
| 237 | case 0x9a: /* call absolute - Fix return addr, not ip */ |
| 238 | fix_call = true; |
| 239 | fix_ip = false; |
| 240 | break; |
| 241 | case 0xff: |
| 242 | insn_get_modrm(insn); |
| 243 | reg = MODRM_REG(insn); |
| 244 | if (reg == 2 || reg == 3) { |
| 245 | /* call or lcall, indirect */ |
| 246 | /* Fix return addr; ip is correct. */ |
| 247 | fix_call = true; |
| 248 | fix_ip = false; |
| 249 | } else if (reg == 4 || reg == 5) { |
| 250 | /* jmp or ljmp, indirect */ |
| 251 | /* ip is correct. */ |
| 252 | fix_ip = false; |
| 253 | } |
| 254 | break; |
| 255 | case 0xea: /* jmp absolute -- ip is correct */ |
| 256 | fix_ip = false; |
| 257 | break; |
| 258 | default: |
| 259 | break; |
| 260 | } |
| 261 | if (fix_ip) |
| 262 | uprobe->arch_info.fixups |= UPROBES_FIX_IP; |
| 263 | if (fix_call) |
| 264 | uprobe->arch_info.fixups |= UPROBES_FIX_CALL; |
| 265 | } |
| 266 | |
| 267 | #ifdef CONFIG_X86_64 |
| 268 | /* |
| 269 | * If uprobe->insn doesn't use rip-relative addressing, return |
| 270 | * immediately. Otherwise, rewrite the instruction so that it accesses |
| 271 | * its memory operand indirectly through a scratch register. Set |
| 272 | * uprobe->arch_info.fixups and uprobe->arch_info.rip_rela_target_address |
| 273 | * accordingly. (The contents of the scratch register will be saved |
| 274 | * before we single-step the modified instruction, and restored |
| 275 | * afterward.) |
| 276 | * |
| 277 | * We do this because a rip-relative instruction can access only a |
| 278 | * relatively small area (+/- 2 GB from the instruction), and the XOL |
| 279 | * area typically lies beyond that area. At least for instructions |
| 280 | * that store to memory, we can't execute the original instruction |
| 281 | * and "fix things up" later, because the misdirected store could be |
| 282 | * disastrous. |
| 283 | * |
| 284 | * Some useful facts about rip-relative instructions: |
| 285 | * - There's always a modrm byte. |
| 286 | * - There's never a SIB byte. |
| 287 | * - The displacement is always 4 bytes. |
| 288 | */ |
| 289 | static void handle_riprel_insn(struct mm_struct *mm, struct uprobe *uprobe, |
| 290 | struct insn *insn) |
| 291 | { |
| 292 | u8 *cursor; |
| 293 | u8 reg; |
| 294 | |
| 295 | if (mm->context.ia32_compat) |
| 296 | return; |
| 297 | |
| 298 | uprobe->arch_info.rip_rela_target_address = 0x0; |
| 299 | if (!insn_rip_relative(insn)) |
| 300 | return; |
| 301 | |
| 302 | /* |
| 303 | * insn_rip_relative() would have decoded rex_prefix, modrm. |
| 304 | * Clear REX.b bit (extension of MODRM.rm field): |
| 305 | * we want to encode rax/rcx, not r8/r9. |
| 306 | */ |
| 307 | if (insn->rex_prefix.nbytes) { |
| 308 | cursor = uprobe->insn + insn_offset_rex_prefix(insn); |
| 309 | *cursor &= 0xfe; /* Clearing REX.B bit */ |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * Point cursor at the modrm byte. The next 4 bytes are the |
| 314 | * displacement. Beyond the displacement, for some instructions, |
| 315 | * is the immediate operand. |
| 316 | */ |
| 317 | cursor = uprobe->insn + insn_offset_modrm(insn); |
| 318 | insn_get_length(insn); |
| 319 | |
| 320 | /* |
| 321 | * Convert from rip-relative addressing to indirect addressing |
| 322 | * via a scratch register. Change the r/m field from 0x5 (%rip) |
| 323 | * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field. |
| 324 | */ |
| 325 | reg = MODRM_REG(insn); |
| 326 | if (reg == 0) { |
| 327 | /* |
| 328 | * The register operand (if any) is either the A register |
| 329 | * (%rax, %eax, etc.) or (if the 0x4 bit is set in the |
| 330 | * REX prefix) %r8. In any case, we know the C register |
| 331 | * is NOT the register operand, so we use %rcx (register |
| 332 | * #1) for the scratch register. |
| 333 | */ |
| 334 | uprobe->arch_info.fixups = UPROBES_FIX_RIP_CX; |
| 335 | /* Change modrm from 00 000 101 to 00 000 001. */ |
| 336 | *cursor = 0x1; |
| 337 | } else { |
| 338 | /* Use %rax (register #0) for the scratch register. */ |
| 339 | uprobe->arch_info.fixups = UPROBES_FIX_RIP_AX; |
| 340 | /* Change modrm from 00 xxx 101 to 00 xxx 000 */ |
| 341 | *cursor = (reg << 3); |
| 342 | } |
| 343 | |
| 344 | /* Target address = address of next instruction + (signed) offset */ |
| 345 | uprobe->arch_info.rip_rela_target_address = (long)insn->length |
| 346 | + insn->displacement.value; |
| 347 | /* Displacement field is gone; slide immediate field (if any) over. */ |
| 348 | if (insn->immediate.nbytes) { |
| 349 | cursor++; |
| 350 | memmove(cursor, cursor + insn->displacement.nbytes, |
| 351 | insn->immediate.nbytes); |
| 352 | } |
| 353 | return; |
| 354 | } |
| 355 | |
| 356 | static int validate_insn_64bits(struct uprobe *uprobe, struct insn *insn) |
| 357 | { |
| 358 | insn_init(insn, uprobe->insn, true); |
| 359 | |
| 360 | /* Skip good instruction prefixes; reject "bad" ones. */ |
| 361 | insn_get_opcode(insn); |
| 362 | if (is_prefix_bad(insn)) |
| 363 | return -ENOTSUPP; |
| 364 | if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64)) |
| 365 | return 0; |
| 366 | if (insn->opcode.nbytes == 2) { |
| 367 | if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) |
| 368 | return 0; |
| 369 | } |
| 370 | return -ENOTSUPP; |
| 371 | } |
| 372 | |
| 373 | static int validate_insn_bits(struct mm_struct *mm, struct uprobe *uprobe, |
| 374 | struct insn *insn) |
| 375 | { |
| 376 | if (mm->context.ia32_compat) |
| 377 | return validate_insn_32bits(uprobe, insn); |
| 378 | return validate_insn_64bits(uprobe, insn); |
| 379 | } |
| 380 | #else |
| 381 | static void handle_riprel_insn(struct mm_struct *mm, struct uprobe *uprobe, |
| 382 | struct insn *insn) |
| 383 | { |
| 384 | return; |
| 385 | } |
| 386 | |
| 387 | static int validate_insn_bits(struct mm_struct *mm, struct uprobe *uprobe, |
| 388 | struct insn *insn) |
| 389 | { |
| 390 | return validate_insn_32bits(uprobe, insn); |
| 391 | } |
| 392 | #endif /* CONFIG_X86_64 */ |
| 393 | |
| 394 | /** |
| 395 | * analyze_insn - instruction analysis including validity and fixups. |
| 396 | * @mm: the probed address space. |
| 397 | * @uprobe: the probepoint information. |
| 398 | * Return 0 on success or a -ve number on error. |
| 399 | */ |
| 400 | int analyze_insn(struct mm_struct *mm, struct uprobe *uprobe) |
| 401 | { |
| 402 | int ret; |
| 403 | struct insn insn; |
| 404 | |
| 405 | uprobe->arch_info.fixups = 0; |
| 406 | ret = validate_insn_bits(mm, uprobe, &insn); |
| 407 | if (ret != 0) |
| 408 | return ret; |
| 409 | handle_riprel_insn(mm, uprobe, &insn); |
| 410 | prepare_fixups(uprobe, &insn); |
| 411 | return 0; |
| 412 | } |