Srikar Dronamraju | 2b14449 | 2012-02-09 14:56:42 +0530 | [diff] [blame^] | 1 | /* |
| 2 | * Userspace Probes (UProbes) |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 17 | * |
| 18 | * Copyright (C) IBM Corporation, 2008-2011 |
| 19 | * Authors: |
| 20 | * Srikar Dronamraju |
| 21 | * Jim Keniston |
| 22 | */ |
| 23 | |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/highmem.h> |
| 26 | #include <linux/pagemap.h> /* read_mapping_page */ |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/rmap.h> /* anon_vma_prepare */ |
| 30 | #include <linux/mmu_notifier.h> /* set_pte_at_notify */ |
| 31 | #include <linux/swap.h> /* try_to_free_swap */ |
| 32 | #include <linux/uprobes.h> |
| 33 | |
| 34 | static struct rb_root uprobes_tree = RB_ROOT; |
| 35 | static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ |
| 36 | |
| 37 | #define UPROBES_HASH_SZ 13 |
| 38 | /* serialize (un)register */ |
| 39 | static struct mutex uprobes_mutex[UPROBES_HASH_SZ]; |
| 40 | #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) %\ |
| 41 | UPROBES_HASH_SZ]) |
| 42 | |
| 43 | /* serialize uprobe->pending_list */ |
| 44 | static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; |
| 45 | #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) %\ |
| 46 | UPROBES_HASH_SZ]) |
| 47 | |
| 48 | /* |
| 49 | * uprobe_events allows us to skip the mmap_uprobe if there are no uprobe |
| 50 | * events active at this time. Probably a fine grained per inode count is |
| 51 | * better? |
| 52 | */ |
| 53 | static atomic_t uprobe_events = ATOMIC_INIT(0); |
| 54 | |
| 55 | /* |
| 56 | * Maintain a temporary per vma info that can be used to search if a vma |
| 57 | * has already been handled. This structure is introduced since extending |
| 58 | * vm_area_struct wasnt recommended. |
| 59 | */ |
| 60 | struct vma_info { |
| 61 | struct list_head probe_list; |
| 62 | struct mm_struct *mm; |
| 63 | loff_t vaddr; |
| 64 | }; |
| 65 | |
| 66 | /* |
| 67 | * valid_vma: Verify if the specified vma is an executable vma |
| 68 | * Relax restrictions while unregistering: vm_flags might have |
| 69 | * changed after breakpoint was inserted. |
| 70 | * - is_register: indicates if we are in register context. |
| 71 | * - Return 1 if the specified virtual address is in an |
| 72 | * executable vma. |
| 73 | */ |
| 74 | static bool valid_vma(struct vm_area_struct *vma, bool is_register) |
| 75 | { |
| 76 | if (!vma->vm_file) |
| 77 | return false; |
| 78 | |
| 79 | if (!is_register) |
| 80 | return true; |
| 81 | |
| 82 | if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == |
| 83 | (VM_READ|VM_EXEC)) |
| 84 | return true; |
| 85 | |
| 86 | return false; |
| 87 | } |
| 88 | |
| 89 | static loff_t vma_address(struct vm_area_struct *vma, loff_t offset) |
| 90 | { |
| 91 | loff_t vaddr; |
| 92 | |
| 93 | vaddr = vma->vm_start + offset; |
| 94 | vaddr -= vma->vm_pgoff << PAGE_SHIFT; |
| 95 | return vaddr; |
| 96 | } |
| 97 | |
| 98 | /** |
| 99 | * __replace_page - replace page in vma by new page. |
| 100 | * based on replace_page in mm/ksm.c |
| 101 | * |
| 102 | * @vma: vma that holds the pte pointing to page |
| 103 | * @page: the cowed page we are replacing by kpage |
| 104 | * @kpage: the modified page we replace page by |
| 105 | * |
| 106 | * Returns 0 on success, -EFAULT on failure. |
| 107 | */ |
| 108 | static int __replace_page(struct vm_area_struct *vma, struct page *page, |
| 109 | struct page *kpage) |
| 110 | { |
| 111 | struct mm_struct *mm = vma->vm_mm; |
| 112 | pgd_t *pgd; |
| 113 | pud_t *pud; |
| 114 | pmd_t *pmd; |
| 115 | pte_t *ptep; |
| 116 | spinlock_t *ptl; |
| 117 | unsigned long addr; |
| 118 | int err = -EFAULT; |
| 119 | |
| 120 | addr = page_address_in_vma(page, vma); |
| 121 | if (addr == -EFAULT) |
| 122 | goto out; |
| 123 | |
| 124 | pgd = pgd_offset(mm, addr); |
| 125 | if (!pgd_present(*pgd)) |
| 126 | goto out; |
| 127 | |
| 128 | pud = pud_offset(pgd, addr); |
| 129 | if (!pud_present(*pud)) |
| 130 | goto out; |
| 131 | |
| 132 | pmd = pmd_offset(pud, addr); |
| 133 | if (!pmd_present(*pmd)) |
| 134 | goto out; |
| 135 | |
| 136 | ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); |
| 137 | if (!ptep) |
| 138 | goto out; |
| 139 | |
| 140 | get_page(kpage); |
| 141 | page_add_new_anon_rmap(kpage, vma, addr); |
| 142 | |
| 143 | flush_cache_page(vma, addr, pte_pfn(*ptep)); |
| 144 | ptep_clear_flush(vma, addr, ptep); |
| 145 | set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); |
| 146 | |
| 147 | page_remove_rmap(page); |
| 148 | if (!page_mapped(page)) |
| 149 | try_to_free_swap(page); |
| 150 | put_page(page); |
| 151 | pte_unmap_unlock(ptep, ptl); |
| 152 | err = 0; |
| 153 | |
| 154 | out: |
| 155 | return err; |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * is_bkpt_insn - check if instruction is breakpoint instruction. |
| 160 | * @insn: instruction to be checked. |
| 161 | * Default implementation of is_bkpt_insn |
| 162 | * Returns true if @insn is a breakpoint instruction. |
| 163 | */ |
| 164 | bool __weak is_bkpt_insn(uprobe_opcode_t *insn) |
| 165 | { |
| 166 | return (*insn == UPROBES_BKPT_INSN); |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * NOTE: |
| 171 | * Expect the breakpoint instruction to be the smallest size instruction for |
| 172 | * the architecture. If an arch has variable length instruction and the |
| 173 | * breakpoint instruction is not of the smallest length instruction |
| 174 | * supported by that architecture then we need to modify read_opcode / |
| 175 | * write_opcode accordingly. This would never be a problem for archs that |
| 176 | * have fixed length instructions. |
| 177 | */ |
| 178 | |
| 179 | /* |
| 180 | * write_opcode - write the opcode at a given virtual address. |
| 181 | * @mm: the probed process address space. |
| 182 | * @uprobe: the breakpointing information. |
| 183 | * @vaddr: the virtual address to store the opcode. |
| 184 | * @opcode: opcode to be written at @vaddr. |
| 185 | * |
| 186 | * Called with mm->mmap_sem held (for read and with a reference to |
| 187 | * mm). |
| 188 | * |
| 189 | * For mm @mm, write the opcode at @vaddr. |
| 190 | * Return 0 (success) or a negative errno. |
| 191 | */ |
| 192 | static int write_opcode(struct mm_struct *mm, struct uprobe *uprobe, |
| 193 | unsigned long vaddr, uprobe_opcode_t opcode) |
| 194 | { |
| 195 | struct page *old_page, *new_page; |
| 196 | struct address_space *mapping; |
| 197 | void *vaddr_old, *vaddr_new; |
| 198 | struct vm_area_struct *vma; |
| 199 | loff_t addr; |
| 200 | int ret; |
| 201 | |
| 202 | /* Read the page with vaddr into memory */ |
| 203 | ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma); |
| 204 | if (ret <= 0) |
| 205 | return ret; |
| 206 | ret = -EINVAL; |
| 207 | |
| 208 | /* |
| 209 | * We are interested in text pages only. Our pages of interest |
| 210 | * should be mapped for read and execute only. We desist from |
| 211 | * adding probes in write mapped pages since the breakpoints |
| 212 | * might end up in the file copy. |
| 213 | */ |
| 214 | if (!valid_vma(vma, is_bkpt_insn(&opcode))) |
| 215 | goto put_out; |
| 216 | |
| 217 | mapping = uprobe->inode->i_mapping; |
| 218 | if (mapping != vma->vm_file->f_mapping) |
| 219 | goto put_out; |
| 220 | |
| 221 | addr = vma_address(vma, uprobe->offset); |
| 222 | if (vaddr != (unsigned long)addr) |
| 223 | goto put_out; |
| 224 | |
| 225 | ret = -ENOMEM; |
| 226 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); |
| 227 | if (!new_page) |
| 228 | goto put_out; |
| 229 | |
| 230 | __SetPageUptodate(new_page); |
| 231 | |
| 232 | /* |
| 233 | * lock page will serialize against do_wp_page()'s |
| 234 | * PageAnon() handling |
| 235 | */ |
| 236 | lock_page(old_page); |
| 237 | /* copy the page now that we've got it stable */ |
| 238 | vaddr_old = kmap_atomic(old_page); |
| 239 | vaddr_new = kmap_atomic(new_page); |
| 240 | |
| 241 | memcpy(vaddr_new, vaddr_old, PAGE_SIZE); |
| 242 | /* poke the new insn in, ASSUMES we don't cross page boundary */ |
| 243 | vaddr &= ~PAGE_MASK; |
| 244 | BUG_ON(vaddr + uprobe_opcode_sz > PAGE_SIZE); |
| 245 | memcpy(vaddr_new + vaddr, &opcode, uprobe_opcode_sz); |
| 246 | |
| 247 | kunmap_atomic(vaddr_new); |
| 248 | kunmap_atomic(vaddr_old); |
| 249 | |
| 250 | ret = anon_vma_prepare(vma); |
| 251 | if (ret) |
| 252 | goto unlock_out; |
| 253 | |
| 254 | lock_page(new_page); |
| 255 | ret = __replace_page(vma, old_page, new_page); |
| 256 | unlock_page(new_page); |
| 257 | |
| 258 | unlock_out: |
| 259 | unlock_page(old_page); |
| 260 | page_cache_release(new_page); |
| 261 | |
| 262 | put_out: |
| 263 | put_page(old_page); /* we did a get_page in the beginning */ |
| 264 | return ret; |
| 265 | } |
| 266 | |
| 267 | /** |
| 268 | * read_opcode - read the opcode at a given virtual address. |
| 269 | * @mm: the probed process address space. |
| 270 | * @vaddr: the virtual address to read the opcode. |
| 271 | * @opcode: location to store the read opcode. |
| 272 | * |
| 273 | * Called with mm->mmap_sem held (for read and with a reference to |
| 274 | * mm. |
| 275 | * |
| 276 | * For mm @mm, read the opcode at @vaddr and store it in @opcode. |
| 277 | * Return 0 (success) or a negative errno. |
| 278 | */ |
| 279 | static int read_opcode(struct mm_struct *mm, unsigned long vaddr, |
| 280 | uprobe_opcode_t *opcode) |
| 281 | { |
| 282 | struct page *page; |
| 283 | void *vaddr_new; |
| 284 | int ret; |
| 285 | |
| 286 | ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL); |
| 287 | if (ret <= 0) |
| 288 | return ret; |
| 289 | |
| 290 | lock_page(page); |
| 291 | vaddr_new = kmap_atomic(page); |
| 292 | vaddr &= ~PAGE_MASK; |
| 293 | memcpy(opcode, vaddr_new + vaddr, uprobe_opcode_sz); |
| 294 | kunmap_atomic(vaddr_new); |
| 295 | unlock_page(page); |
| 296 | put_page(page); /* we did a get_user_pages in the beginning */ |
| 297 | return 0; |
| 298 | } |
| 299 | |
| 300 | static int is_bkpt_at_addr(struct mm_struct *mm, unsigned long vaddr) |
| 301 | { |
| 302 | uprobe_opcode_t opcode; |
| 303 | int result = read_opcode(mm, vaddr, &opcode); |
| 304 | |
| 305 | if (result) |
| 306 | return result; |
| 307 | |
| 308 | if (is_bkpt_insn(&opcode)) |
| 309 | return 1; |
| 310 | |
| 311 | return 0; |
| 312 | } |
| 313 | |
| 314 | /** |
| 315 | * set_bkpt - store breakpoint at a given address. |
| 316 | * @mm: the probed process address space. |
| 317 | * @uprobe: the probepoint information. |
| 318 | * @vaddr: the virtual address to insert the opcode. |
| 319 | * |
| 320 | * For mm @mm, store the breakpoint instruction at @vaddr. |
| 321 | * Return 0 (success) or a negative errno. |
| 322 | */ |
| 323 | int __weak set_bkpt(struct mm_struct *mm, struct uprobe *uprobe, |
| 324 | unsigned long vaddr) |
| 325 | { |
| 326 | int result = is_bkpt_at_addr(mm, vaddr); |
| 327 | |
| 328 | if (result == 1) |
| 329 | return -EEXIST; |
| 330 | |
| 331 | if (result) |
| 332 | return result; |
| 333 | |
| 334 | return write_opcode(mm, uprobe, vaddr, UPROBES_BKPT_INSN); |
| 335 | } |
| 336 | |
| 337 | /** |
| 338 | * set_orig_insn - Restore the original instruction. |
| 339 | * @mm: the probed process address space. |
| 340 | * @uprobe: the probepoint information. |
| 341 | * @vaddr: the virtual address to insert the opcode. |
| 342 | * @verify: if true, verify existance of breakpoint instruction. |
| 343 | * |
| 344 | * For mm @mm, restore the original opcode (opcode) at @vaddr. |
| 345 | * Return 0 (success) or a negative errno. |
| 346 | */ |
| 347 | int __weak set_orig_insn(struct mm_struct *mm, struct uprobe *uprobe, |
| 348 | unsigned long vaddr, bool verify) |
| 349 | { |
| 350 | if (verify) { |
| 351 | int result = is_bkpt_at_addr(mm, vaddr); |
| 352 | |
| 353 | if (!result) |
| 354 | return -EINVAL; |
| 355 | |
| 356 | if (result != 1) |
| 357 | return result; |
| 358 | } |
| 359 | return write_opcode(mm, uprobe, vaddr, |
| 360 | *(uprobe_opcode_t *)uprobe->insn); |
| 361 | } |
| 362 | |
| 363 | static int match_uprobe(struct uprobe *l, struct uprobe *r) |
| 364 | { |
| 365 | if (l->inode < r->inode) |
| 366 | return -1; |
| 367 | if (l->inode > r->inode) |
| 368 | return 1; |
| 369 | else { |
| 370 | if (l->offset < r->offset) |
| 371 | return -1; |
| 372 | |
| 373 | if (l->offset > r->offset) |
| 374 | return 1; |
| 375 | } |
| 376 | |
| 377 | return 0; |
| 378 | } |
| 379 | |
| 380 | static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) |
| 381 | { |
| 382 | struct uprobe u = { .inode = inode, .offset = offset }; |
| 383 | struct rb_node *n = uprobes_tree.rb_node; |
| 384 | struct uprobe *uprobe; |
| 385 | int match; |
| 386 | |
| 387 | while (n) { |
| 388 | uprobe = rb_entry(n, struct uprobe, rb_node); |
| 389 | match = match_uprobe(&u, uprobe); |
| 390 | if (!match) { |
| 391 | atomic_inc(&uprobe->ref); |
| 392 | return uprobe; |
| 393 | } |
| 394 | if (match < 0) |
| 395 | n = n->rb_left; |
| 396 | else |
| 397 | n = n->rb_right; |
| 398 | } |
| 399 | return NULL; |
| 400 | } |
| 401 | |
| 402 | /* |
| 403 | * Find a uprobe corresponding to a given inode:offset |
| 404 | * Acquires uprobes_treelock |
| 405 | */ |
| 406 | static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) |
| 407 | { |
| 408 | struct uprobe *uprobe; |
| 409 | unsigned long flags; |
| 410 | |
| 411 | spin_lock_irqsave(&uprobes_treelock, flags); |
| 412 | uprobe = __find_uprobe(inode, offset); |
| 413 | spin_unlock_irqrestore(&uprobes_treelock, flags); |
| 414 | return uprobe; |
| 415 | } |
| 416 | |
| 417 | static struct uprobe *__insert_uprobe(struct uprobe *uprobe) |
| 418 | { |
| 419 | struct rb_node **p = &uprobes_tree.rb_node; |
| 420 | struct rb_node *parent = NULL; |
| 421 | struct uprobe *u; |
| 422 | int match; |
| 423 | |
| 424 | while (*p) { |
| 425 | parent = *p; |
| 426 | u = rb_entry(parent, struct uprobe, rb_node); |
| 427 | match = match_uprobe(uprobe, u); |
| 428 | if (!match) { |
| 429 | atomic_inc(&u->ref); |
| 430 | return u; |
| 431 | } |
| 432 | |
| 433 | if (match < 0) |
| 434 | p = &parent->rb_left; |
| 435 | else |
| 436 | p = &parent->rb_right; |
| 437 | |
| 438 | } |
| 439 | u = NULL; |
| 440 | rb_link_node(&uprobe->rb_node, parent, p); |
| 441 | rb_insert_color(&uprobe->rb_node, &uprobes_tree); |
| 442 | /* get access + creation ref */ |
| 443 | atomic_set(&uprobe->ref, 2); |
| 444 | return u; |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * Acquires uprobes_treelock. |
| 449 | * Matching uprobe already exists in rbtree; |
| 450 | * increment (access refcount) and return the matching uprobe. |
| 451 | * |
| 452 | * No matching uprobe; insert the uprobe in rb_tree; |
| 453 | * get a double refcount (access + creation) and return NULL. |
| 454 | */ |
| 455 | static struct uprobe *insert_uprobe(struct uprobe *uprobe) |
| 456 | { |
| 457 | unsigned long flags; |
| 458 | struct uprobe *u; |
| 459 | |
| 460 | spin_lock_irqsave(&uprobes_treelock, flags); |
| 461 | u = __insert_uprobe(uprobe); |
| 462 | spin_unlock_irqrestore(&uprobes_treelock, flags); |
| 463 | return u; |
| 464 | } |
| 465 | |
| 466 | static void put_uprobe(struct uprobe *uprobe) |
| 467 | { |
| 468 | if (atomic_dec_and_test(&uprobe->ref)) |
| 469 | kfree(uprobe); |
| 470 | } |
| 471 | |
| 472 | static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) |
| 473 | { |
| 474 | struct uprobe *uprobe, *cur_uprobe; |
| 475 | |
| 476 | uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); |
| 477 | if (!uprobe) |
| 478 | return NULL; |
| 479 | |
| 480 | uprobe->inode = igrab(inode); |
| 481 | uprobe->offset = offset; |
| 482 | init_rwsem(&uprobe->consumer_rwsem); |
| 483 | INIT_LIST_HEAD(&uprobe->pending_list); |
| 484 | |
| 485 | /* add to uprobes_tree, sorted on inode:offset */ |
| 486 | cur_uprobe = insert_uprobe(uprobe); |
| 487 | |
| 488 | /* a uprobe exists for this inode:offset combination */ |
| 489 | if (cur_uprobe) { |
| 490 | kfree(uprobe); |
| 491 | uprobe = cur_uprobe; |
| 492 | iput(inode); |
| 493 | } else |
| 494 | atomic_inc(&uprobe_events); |
| 495 | return uprobe; |
| 496 | } |
| 497 | |
| 498 | /* Returns the previous consumer */ |
| 499 | static struct uprobe_consumer *add_consumer(struct uprobe *uprobe, |
| 500 | struct uprobe_consumer *consumer) |
| 501 | { |
| 502 | down_write(&uprobe->consumer_rwsem); |
| 503 | consumer->next = uprobe->consumers; |
| 504 | uprobe->consumers = consumer; |
| 505 | up_write(&uprobe->consumer_rwsem); |
| 506 | return consumer->next; |
| 507 | } |
| 508 | |
| 509 | /* |
| 510 | * For uprobe @uprobe, delete the consumer @consumer. |
| 511 | * Return true if the @consumer is deleted successfully |
| 512 | * or return false. |
| 513 | */ |
| 514 | static bool del_consumer(struct uprobe *uprobe, |
| 515 | struct uprobe_consumer *consumer) |
| 516 | { |
| 517 | struct uprobe_consumer **con; |
| 518 | bool ret = false; |
| 519 | |
| 520 | down_write(&uprobe->consumer_rwsem); |
| 521 | for (con = &uprobe->consumers; *con; con = &(*con)->next) { |
| 522 | if (*con == consumer) { |
| 523 | *con = consumer->next; |
| 524 | ret = true; |
| 525 | break; |
| 526 | } |
| 527 | } |
| 528 | up_write(&uprobe->consumer_rwsem); |
| 529 | return ret; |
| 530 | } |
| 531 | |
| 532 | static int __copy_insn(struct address_space *mapping, |
| 533 | struct vm_area_struct *vma, char *insn, |
| 534 | unsigned long nbytes, unsigned long offset) |
| 535 | { |
| 536 | struct file *filp = vma->vm_file; |
| 537 | struct page *page; |
| 538 | void *vaddr; |
| 539 | unsigned long off1; |
| 540 | unsigned long idx; |
| 541 | |
| 542 | if (!filp) |
| 543 | return -EINVAL; |
| 544 | |
| 545 | idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT); |
| 546 | off1 = offset &= ~PAGE_MASK; |
| 547 | |
| 548 | /* |
| 549 | * Ensure that the page that has the original instruction is |
| 550 | * populated and in page-cache. |
| 551 | */ |
| 552 | page = read_mapping_page(mapping, idx, filp); |
| 553 | if (IS_ERR(page)) |
| 554 | return PTR_ERR(page); |
| 555 | |
| 556 | vaddr = kmap_atomic(page); |
| 557 | memcpy(insn, vaddr + off1, nbytes); |
| 558 | kunmap_atomic(vaddr); |
| 559 | page_cache_release(page); |
| 560 | return 0; |
| 561 | } |
| 562 | |
| 563 | static int copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, |
| 564 | unsigned long addr) |
| 565 | { |
| 566 | struct address_space *mapping; |
| 567 | int bytes; |
| 568 | unsigned long nbytes; |
| 569 | |
| 570 | addr &= ~PAGE_MASK; |
| 571 | nbytes = PAGE_SIZE - addr; |
| 572 | mapping = uprobe->inode->i_mapping; |
| 573 | |
| 574 | /* Instruction at end of binary; copy only available bytes */ |
| 575 | if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) |
| 576 | bytes = uprobe->inode->i_size - uprobe->offset; |
| 577 | else |
| 578 | bytes = MAX_UINSN_BYTES; |
| 579 | |
| 580 | /* Instruction at the page-boundary; copy bytes in second page */ |
| 581 | if (nbytes < bytes) { |
| 582 | if (__copy_insn(mapping, vma, uprobe->insn + nbytes, |
| 583 | bytes - nbytes, uprobe->offset + nbytes)) |
| 584 | return -ENOMEM; |
| 585 | |
| 586 | bytes = nbytes; |
| 587 | } |
| 588 | return __copy_insn(mapping, vma, uprobe->insn, bytes, uprobe->offset); |
| 589 | } |
| 590 | |
| 591 | static int install_breakpoint(struct mm_struct *mm, struct uprobe *uprobe, |
| 592 | struct vm_area_struct *vma, loff_t vaddr) |
| 593 | { |
| 594 | unsigned long addr; |
| 595 | int ret; |
| 596 | |
| 597 | /* |
| 598 | * If probe is being deleted, unregister thread could be done with |
| 599 | * the vma-rmap-walk through. Adding a probe now can be fatal since |
| 600 | * nobody will be able to cleanup. Also we could be from fork or |
| 601 | * mremap path, where the probe might have already been inserted. |
| 602 | * Hence behave as if probe already existed. |
| 603 | */ |
| 604 | if (!uprobe->consumers) |
| 605 | return -EEXIST; |
| 606 | |
| 607 | addr = (unsigned long)vaddr; |
| 608 | if (!(uprobe->flags & UPROBES_COPY_INSN)) { |
| 609 | ret = copy_insn(uprobe, vma, addr); |
| 610 | if (ret) |
| 611 | return ret; |
| 612 | |
| 613 | if (is_bkpt_insn((uprobe_opcode_t *)uprobe->insn)) |
| 614 | return -EEXIST; |
| 615 | |
| 616 | ret = analyze_insn(mm, uprobe); |
| 617 | if (ret) |
| 618 | return ret; |
| 619 | |
| 620 | uprobe->flags |= UPROBES_COPY_INSN; |
| 621 | } |
| 622 | ret = set_bkpt(mm, uprobe, addr); |
| 623 | |
| 624 | return ret; |
| 625 | } |
| 626 | |
| 627 | static void remove_breakpoint(struct mm_struct *mm, struct uprobe *uprobe, |
| 628 | loff_t vaddr) |
| 629 | { |
| 630 | set_orig_insn(mm, uprobe, (unsigned long)vaddr, true); |
| 631 | } |
| 632 | |
| 633 | static void delete_uprobe(struct uprobe *uprobe) |
| 634 | { |
| 635 | unsigned long flags; |
| 636 | |
| 637 | spin_lock_irqsave(&uprobes_treelock, flags); |
| 638 | rb_erase(&uprobe->rb_node, &uprobes_tree); |
| 639 | spin_unlock_irqrestore(&uprobes_treelock, flags); |
| 640 | iput(uprobe->inode); |
| 641 | put_uprobe(uprobe); |
| 642 | atomic_dec(&uprobe_events); |
| 643 | } |
| 644 | |
| 645 | static struct vma_info *__find_next_vma_info(struct list_head *head, |
| 646 | loff_t offset, struct address_space *mapping, |
| 647 | struct vma_info *vi, bool is_register) |
| 648 | { |
| 649 | struct prio_tree_iter iter; |
| 650 | struct vm_area_struct *vma; |
| 651 | struct vma_info *tmpvi; |
| 652 | loff_t vaddr; |
| 653 | unsigned long pgoff = offset >> PAGE_SHIFT; |
| 654 | int existing_vma; |
| 655 | |
| 656 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
| 657 | if (!valid_vma(vma, is_register)) |
| 658 | continue; |
| 659 | |
| 660 | existing_vma = 0; |
| 661 | vaddr = vma_address(vma, offset); |
| 662 | list_for_each_entry(tmpvi, head, probe_list) { |
| 663 | if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) { |
| 664 | existing_vma = 1; |
| 665 | break; |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | /* |
| 670 | * Another vma needs a probe to be installed. However skip |
| 671 | * installing the probe if the vma is about to be unlinked. |
| 672 | */ |
| 673 | if (!existing_vma && |
| 674 | atomic_inc_not_zero(&vma->vm_mm->mm_users)) { |
| 675 | vi->mm = vma->vm_mm; |
| 676 | vi->vaddr = vaddr; |
| 677 | list_add(&vi->probe_list, head); |
| 678 | return vi; |
| 679 | } |
| 680 | } |
| 681 | return NULL; |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * Iterate in the rmap prio tree and find a vma where a probe has not |
| 686 | * yet been inserted. |
| 687 | */ |
| 688 | static struct vma_info *find_next_vma_info(struct list_head *head, |
| 689 | loff_t offset, struct address_space *mapping, |
| 690 | bool is_register) |
| 691 | { |
| 692 | struct vma_info *vi, *retvi; |
| 693 | vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL); |
| 694 | if (!vi) |
| 695 | return ERR_PTR(-ENOMEM); |
| 696 | |
| 697 | mutex_lock(&mapping->i_mmap_mutex); |
| 698 | retvi = __find_next_vma_info(head, offset, mapping, vi, is_register); |
| 699 | mutex_unlock(&mapping->i_mmap_mutex); |
| 700 | |
| 701 | if (!retvi) |
| 702 | kfree(vi); |
| 703 | return retvi; |
| 704 | } |
| 705 | |
| 706 | static int register_for_each_vma(struct uprobe *uprobe, bool is_register) |
| 707 | { |
| 708 | struct list_head try_list; |
| 709 | struct vm_area_struct *vma; |
| 710 | struct address_space *mapping; |
| 711 | struct vma_info *vi, *tmpvi; |
| 712 | struct mm_struct *mm; |
| 713 | loff_t vaddr; |
| 714 | int ret = 0; |
| 715 | |
| 716 | mapping = uprobe->inode->i_mapping; |
| 717 | INIT_LIST_HEAD(&try_list); |
| 718 | while ((vi = find_next_vma_info(&try_list, uprobe->offset, |
| 719 | mapping, is_register)) != NULL) { |
| 720 | if (IS_ERR(vi)) { |
| 721 | ret = PTR_ERR(vi); |
| 722 | break; |
| 723 | } |
| 724 | mm = vi->mm; |
| 725 | down_read(&mm->mmap_sem); |
| 726 | vma = find_vma(mm, (unsigned long)vi->vaddr); |
| 727 | if (!vma || !valid_vma(vma, is_register)) { |
| 728 | list_del(&vi->probe_list); |
| 729 | kfree(vi); |
| 730 | up_read(&mm->mmap_sem); |
| 731 | mmput(mm); |
| 732 | continue; |
| 733 | } |
| 734 | vaddr = vma_address(vma, uprobe->offset); |
| 735 | if (vma->vm_file->f_mapping->host != uprobe->inode || |
| 736 | vaddr != vi->vaddr) { |
| 737 | list_del(&vi->probe_list); |
| 738 | kfree(vi); |
| 739 | up_read(&mm->mmap_sem); |
| 740 | mmput(mm); |
| 741 | continue; |
| 742 | } |
| 743 | |
| 744 | if (is_register) |
| 745 | ret = install_breakpoint(mm, uprobe, vma, vi->vaddr); |
| 746 | else |
| 747 | remove_breakpoint(mm, uprobe, vi->vaddr); |
| 748 | |
| 749 | up_read(&mm->mmap_sem); |
| 750 | mmput(mm); |
| 751 | if (is_register) { |
| 752 | if (ret && ret == -EEXIST) |
| 753 | ret = 0; |
| 754 | if (ret) |
| 755 | break; |
| 756 | } |
| 757 | } |
| 758 | list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) { |
| 759 | list_del(&vi->probe_list); |
| 760 | kfree(vi); |
| 761 | } |
| 762 | return ret; |
| 763 | } |
| 764 | |
| 765 | static int __register_uprobe(struct uprobe *uprobe) |
| 766 | { |
| 767 | return register_for_each_vma(uprobe, true); |
| 768 | } |
| 769 | |
| 770 | static void __unregister_uprobe(struct uprobe *uprobe) |
| 771 | { |
| 772 | if (!register_for_each_vma(uprobe, false)) |
| 773 | delete_uprobe(uprobe); |
| 774 | |
| 775 | /* TODO : cant unregister? schedule a worker thread */ |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * register_uprobe - register a probe |
| 780 | * @inode: the file in which the probe has to be placed. |
| 781 | * @offset: offset from the start of the file. |
| 782 | * @consumer: information on howto handle the probe.. |
| 783 | * |
| 784 | * Apart from the access refcount, register_uprobe() takes a creation |
| 785 | * refcount (thro alloc_uprobe) if and only if this @uprobe is getting |
| 786 | * inserted into the rbtree (i.e first consumer for a @inode:@offset |
| 787 | * tuple). Creation refcount stops unregister_uprobe from freeing the |
| 788 | * @uprobe even before the register operation is complete. Creation |
| 789 | * refcount is released when the last @consumer for the @uprobe |
| 790 | * unregisters. |
| 791 | * |
| 792 | * Return errno if it cannot successully install probes |
| 793 | * else return 0 (success) |
| 794 | */ |
| 795 | int register_uprobe(struct inode *inode, loff_t offset, |
| 796 | struct uprobe_consumer *consumer) |
| 797 | { |
| 798 | struct uprobe *uprobe; |
| 799 | int ret = -EINVAL; |
| 800 | |
| 801 | if (!inode || !consumer || consumer->next) |
| 802 | return ret; |
| 803 | |
| 804 | if (offset > i_size_read(inode)) |
| 805 | return ret; |
| 806 | |
| 807 | ret = 0; |
| 808 | mutex_lock(uprobes_hash(inode)); |
| 809 | uprobe = alloc_uprobe(inode, offset); |
| 810 | if (uprobe && !add_consumer(uprobe, consumer)) { |
| 811 | ret = __register_uprobe(uprobe); |
| 812 | if (ret) { |
| 813 | uprobe->consumers = NULL; |
| 814 | __unregister_uprobe(uprobe); |
| 815 | } else |
| 816 | uprobe->flags |= UPROBES_RUN_HANDLER; |
| 817 | } |
| 818 | |
| 819 | mutex_unlock(uprobes_hash(inode)); |
| 820 | put_uprobe(uprobe); |
| 821 | |
| 822 | return ret; |
| 823 | } |
| 824 | |
| 825 | /* |
| 826 | * unregister_uprobe - unregister a already registered probe. |
| 827 | * @inode: the file in which the probe has to be removed. |
| 828 | * @offset: offset from the start of the file. |
| 829 | * @consumer: identify which probe if multiple probes are colocated. |
| 830 | */ |
| 831 | void unregister_uprobe(struct inode *inode, loff_t offset, |
| 832 | struct uprobe_consumer *consumer) |
| 833 | { |
| 834 | struct uprobe *uprobe = NULL; |
| 835 | |
| 836 | if (!inode || !consumer) |
| 837 | return; |
| 838 | |
| 839 | uprobe = find_uprobe(inode, offset); |
| 840 | if (!uprobe) |
| 841 | return; |
| 842 | |
| 843 | mutex_lock(uprobes_hash(inode)); |
| 844 | if (!del_consumer(uprobe, consumer)) |
| 845 | goto unreg_out; |
| 846 | |
| 847 | if (!uprobe->consumers) { |
| 848 | __unregister_uprobe(uprobe); |
| 849 | uprobe->flags &= ~UPROBES_RUN_HANDLER; |
| 850 | } |
| 851 | |
| 852 | unreg_out: |
| 853 | mutex_unlock(uprobes_hash(inode)); |
| 854 | if (uprobe) |
| 855 | put_uprobe(uprobe); |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * Of all the nodes that correspond to the given inode, return the node |
| 860 | * with the least offset. |
| 861 | */ |
| 862 | static struct rb_node *find_least_offset_node(struct inode *inode) |
| 863 | { |
| 864 | struct uprobe u = { .inode = inode, .offset = 0}; |
| 865 | struct rb_node *n = uprobes_tree.rb_node; |
| 866 | struct rb_node *close_node = NULL; |
| 867 | struct uprobe *uprobe; |
| 868 | int match; |
| 869 | |
| 870 | while (n) { |
| 871 | uprobe = rb_entry(n, struct uprobe, rb_node); |
| 872 | match = match_uprobe(&u, uprobe); |
| 873 | if (uprobe->inode == inode) |
| 874 | close_node = n; |
| 875 | |
| 876 | if (!match) |
| 877 | return close_node; |
| 878 | |
| 879 | if (match < 0) |
| 880 | n = n->rb_left; |
| 881 | else |
| 882 | n = n->rb_right; |
| 883 | } |
| 884 | return close_node; |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * For a given inode, build a list of probes that need to be inserted. |
| 889 | */ |
| 890 | static void build_probe_list(struct inode *inode, struct list_head *head) |
| 891 | { |
| 892 | struct uprobe *uprobe; |
| 893 | struct rb_node *n; |
| 894 | unsigned long flags; |
| 895 | |
| 896 | spin_lock_irqsave(&uprobes_treelock, flags); |
| 897 | n = find_least_offset_node(inode); |
| 898 | for (; n; n = rb_next(n)) { |
| 899 | uprobe = rb_entry(n, struct uprobe, rb_node); |
| 900 | if (uprobe->inode != inode) |
| 901 | break; |
| 902 | |
| 903 | list_add(&uprobe->pending_list, head); |
| 904 | atomic_inc(&uprobe->ref); |
| 905 | } |
| 906 | spin_unlock_irqrestore(&uprobes_treelock, flags); |
| 907 | } |
| 908 | |
| 909 | /* |
| 910 | * Called from mmap_region. |
| 911 | * called with mm->mmap_sem acquired. |
| 912 | * |
| 913 | * Return -ve no if we fail to insert probes and we cannot |
| 914 | * bail-out. |
| 915 | * Return 0 otherwise. i.e : |
| 916 | * - successful insertion of probes |
| 917 | * - (or) no possible probes to be inserted. |
| 918 | * - (or) insertion of probes failed but we can bail-out. |
| 919 | */ |
| 920 | int mmap_uprobe(struct vm_area_struct *vma) |
| 921 | { |
| 922 | struct list_head tmp_list; |
| 923 | struct uprobe *uprobe, *u; |
| 924 | struct inode *inode; |
| 925 | int ret = 0; |
| 926 | |
| 927 | if (!atomic_read(&uprobe_events) || !valid_vma(vma, true)) |
| 928 | return ret; /* Bail-out */ |
| 929 | |
| 930 | inode = vma->vm_file->f_mapping->host; |
| 931 | if (!inode) |
| 932 | return ret; |
| 933 | |
| 934 | INIT_LIST_HEAD(&tmp_list); |
| 935 | mutex_lock(uprobes_mmap_hash(inode)); |
| 936 | build_probe_list(inode, &tmp_list); |
| 937 | list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { |
| 938 | loff_t vaddr; |
| 939 | |
| 940 | list_del(&uprobe->pending_list); |
| 941 | if (!ret) { |
| 942 | vaddr = vma_address(vma, uprobe->offset); |
| 943 | if (vaddr < vma->vm_start || vaddr >= vma->vm_end) { |
| 944 | put_uprobe(uprobe); |
| 945 | continue; |
| 946 | } |
| 947 | ret = install_breakpoint(vma->vm_mm, uprobe, vma, |
| 948 | vaddr); |
| 949 | if (ret == -EEXIST) |
| 950 | ret = 0; |
| 951 | } |
| 952 | put_uprobe(uprobe); |
| 953 | } |
| 954 | |
| 955 | mutex_unlock(uprobes_mmap_hash(inode)); |
| 956 | |
| 957 | return ret; |
| 958 | } |
| 959 | |
| 960 | static int __init init_uprobes(void) |
| 961 | { |
| 962 | int i; |
| 963 | |
| 964 | for (i = 0; i < UPROBES_HASH_SZ; i++) { |
| 965 | mutex_init(&uprobes_mutex[i]); |
| 966 | mutex_init(&uprobes_mmap_mutex[i]); |
| 967 | } |
| 968 | return 0; |
| 969 | } |
| 970 | |
| 971 | static void __exit exit_uprobes(void) |
| 972 | { |
| 973 | } |
| 974 | |
| 975 | module_init(init_uprobes); |
| 976 | module_exit(exit_uprobes); |