| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Linux/PA-RISC Project (http://www.parisc-linux.org/) | 
|  | 3 | * | 
|  | 4 | * Floating-point emulation code | 
|  | 5 | *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | 
|  | 6 | * | 
|  | 7 | *    This program is free software; you can redistribute it and/or modify | 
|  | 8 | *    it under the terms of the GNU General Public License as published by | 
|  | 9 | *    the Free Software Foundation; either version 2, or (at your option) | 
|  | 10 | *    any later version. | 
|  | 11 | * | 
|  | 12 | *    This program is distributed in the hope that it will be useful, | 
|  | 13 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 14 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 15 | *    GNU General Public License for more details. | 
|  | 16 | * | 
|  | 17 | *    You should have received a copy of the GNU General Public License | 
|  | 18 | *    along with this program; if not, write to the Free Software | 
|  | 19 | *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | 20 | */ | 
|  | 21 | /* | 
|  | 22 | * BEGIN_DESC | 
|  | 23 | * | 
|  | 24 | *  File: | 
|  | 25 | *	@(#)	pa/spmath/fmpyfadd.c		$Revision: 1.1 $ | 
|  | 26 | * | 
|  | 27 | *  Purpose: | 
|  | 28 | *	Double Floating-point Multiply Fused Add | 
|  | 29 | *	Double Floating-point Multiply Negate Fused Add | 
|  | 30 | *	Single Floating-point Multiply Fused Add | 
|  | 31 | *	Single Floating-point Multiply Negate Fused Add | 
|  | 32 | * | 
|  | 33 | *  External Interfaces: | 
|  | 34 | *	dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | 35 | *	dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | 36 | *	sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | 37 | *	sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | 38 | * | 
|  | 39 | *  Internal Interfaces: | 
|  | 40 | * | 
|  | 41 | *  Theory: | 
|  | 42 | *	<<please update with a overview of the operation of this file>> | 
|  | 43 | * | 
|  | 44 | * END_DESC | 
|  | 45 | */ | 
|  | 46 |  | 
|  | 47 |  | 
|  | 48 | #include "float.h" | 
|  | 49 | #include "sgl_float.h" | 
|  | 50 | #include "dbl_float.h" | 
|  | 51 |  | 
|  | 52 |  | 
|  | 53 | /* | 
|  | 54 | *  Double Floating-point Multiply Fused Add | 
|  | 55 | */ | 
|  | 56 |  | 
|  | 57 | int | 
|  | 58 | dbl_fmpyfadd( | 
|  | 59 | dbl_floating_point *src1ptr, | 
|  | 60 | dbl_floating_point *src2ptr, | 
|  | 61 | dbl_floating_point *src3ptr, | 
|  | 62 | unsigned int *status, | 
|  | 63 | dbl_floating_point *dstptr) | 
|  | 64 | { | 
|  | 65 | unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; | 
|  | 66 | register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; | 
|  | 67 | unsigned int rightp1, rightp2, rightp3, rightp4; | 
|  | 68 | unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; | 
|  | 69 | register int mpy_exponent, add_exponent, count; | 
|  | 70 | boolean inexact = FALSE, is_tiny = FALSE; | 
|  | 71 |  | 
|  | 72 | unsigned int signlessleft1, signlessright1, save; | 
|  | 73 | register int result_exponent, diff_exponent; | 
|  | 74 | int sign_save, jumpsize; | 
|  | 75 |  | 
|  | 76 | Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); | 
|  | 77 | Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); | 
|  | 78 | Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); | 
|  | 79 |  | 
|  | 80 | /* | 
|  | 81 | * set sign bit of result of multiply | 
|  | 82 | */ | 
|  | 83 | if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) | 
|  | 84 | Dbl_setnegativezerop1(resultp1); | 
|  | 85 | else Dbl_setzerop1(resultp1); | 
|  | 86 |  | 
|  | 87 | /* | 
|  | 88 | * Generate multiply exponent | 
|  | 89 | */ | 
|  | 90 | mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; | 
|  | 91 |  | 
|  | 92 | /* | 
|  | 93 | * check first operand for NaN's or infinity | 
|  | 94 | */ | 
|  | 95 | if (Dbl_isinfinity_exponent(opnd1p1)) { | 
|  | 96 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | 
|  | 97 | if (Dbl_isnotnan(opnd2p1,opnd2p2) && | 
|  | 98 | Dbl_isnotnan(opnd3p1,opnd3p2)) { | 
|  | 99 | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { | 
|  | 100 | /* | 
|  | 101 | * invalid since operands are infinity | 
|  | 102 | * and zero | 
|  | 103 | */ | 
|  | 104 | if (Is_invalidtrap_enabled()) | 
|  | 105 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 106 | Set_invalidflag(); | 
|  | 107 | Dbl_makequietnan(resultp1,resultp2); | 
|  | 108 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 109 | return(NOEXCEPTION); | 
|  | 110 | } | 
|  | 111 | /* | 
|  | 112 | * Check third operand for infinity with a | 
|  | 113 | *  sign opposite of the multiply result | 
|  | 114 | */ | 
|  | 115 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && | 
|  | 116 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | 
|  | 117 | /* | 
|  | 118 | * invalid since attempting a magnitude | 
|  | 119 | * subtraction of infinities | 
|  | 120 | */ | 
|  | 121 | if (Is_invalidtrap_enabled()) | 
|  | 122 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 123 | Set_invalidflag(); | 
|  | 124 | Dbl_makequietnan(resultp1,resultp2); | 
|  | 125 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 126 | return(NOEXCEPTION); | 
|  | 127 | } | 
|  | 128 |  | 
|  | 129 | /* | 
|  | 130 | * return infinity | 
|  | 131 | */ | 
|  | 132 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | 
|  | 133 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 134 | return(NOEXCEPTION); | 
|  | 135 | } | 
|  | 136 | } | 
|  | 137 | else { | 
|  | 138 | /* | 
|  | 139 | * is NaN; signaling or quiet? | 
|  | 140 | */ | 
|  | 141 | if (Dbl_isone_signaling(opnd1p1)) { | 
|  | 142 | /* trap if INVALIDTRAP enabled */ | 
|  | 143 | if (Is_invalidtrap_enabled()) | 
|  | 144 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 145 | /* make NaN quiet */ | 
|  | 146 | Set_invalidflag(); | 
|  | 147 | Dbl_set_quiet(opnd1p1); | 
|  | 148 | } | 
|  | 149 | /* | 
|  | 150 | * is second operand a signaling NaN? | 
|  | 151 | */ | 
|  | 152 | else if (Dbl_is_signalingnan(opnd2p1)) { | 
|  | 153 | /* trap if INVALIDTRAP enabled */ | 
|  | 154 | if (Is_invalidtrap_enabled()) | 
|  | 155 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 156 | /* make NaN quiet */ | 
|  | 157 | Set_invalidflag(); | 
|  | 158 | Dbl_set_quiet(opnd2p1); | 
|  | 159 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | 160 | return(NOEXCEPTION); | 
|  | 161 | } | 
|  | 162 | /* | 
|  | 163 | * is third operand a signaling NaN? | 
|  | 164 | */ | 
|  | 165 | else if (Dbl_is_signalingnan(opnd3p1)) { | 
|  | 166 | /* trap if INVALIDTRAP enabled */ | 
|  | 167 | if (Is_invalidtrap_enabled()) | 
|  | 168 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 169 | /* make NaN quiet */ | 
|  | 170 | Set_invalidflag(); | 
|  | 171 | Dbl_set_quiet(opnd3p1); | 
|  | 172 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 173 | return(NOEXCEPTION); | 
|  | 174 | } | 
|  | 175 | /* | 
|  | 176 | * return quiet NaN | 
|  | 177 | */ | 
|  | 178 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); | 
|  | 179 | return(NOEXCEPTION); | 
|  | 180 | } | 
|  | 181 | } | 
|  | 182 |  | 
|  | 183 | /* | 
|  | 184 | * check second operand for NaN's or infinity | 
|  | 185 | */ | 
|  | 186 | if (Dbl_isinfinity_exponent(opnd2p1)) { | 
|  | 187 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | 
|  | 188 | if (Dbl_isnotnan(opnd3p1,opnd3p2)) { | 
|  | 189 | if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { | 
|  | 190 | /* | 
|  | 191 | * invalid since multiply operands are | 
|  | 192 | * zero & infinity | 
|  | 193 | */ | 
|  | 194 | if (Is_invalidtrap_enabled()) | 
|  | 195 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 196 | Set_invalidflag(); | 
|  | 197 | Dbl_makequietnan(opnd2p1,opnd2p2); | 
|  | 198 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | 199 | return(NOEXCEPTION); | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | /* | 
|  | 203 | * Check third operand for infinity with a | 
|  | 204 | *  sign opposite of the multiply result | 
|  | 205 | */ | 
|  | 206 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && | 
|  | 207 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | 
|  | 208 | /* | 
|  | 209 | * invalid since attempting a magnitude | 
|  | 210 | * subtraction of infinities | 
|  | 211 | */ | 
|  | 212 | if (Is_invalidtrap_enabled()) | 
|  | 213 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 214 | Set_invalidflag(); | 
|  | 215 | Dbl_makequietnan(resultp1,resultp2); | 
|  | 216 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 217 | return(NOEXCEPTION); | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | /* | 
|  | 221 | * return infinity | 
|  | 222 | */ | 
|  | 223 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | 
|  | 224 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 225 | return(NOEXCEPTION); | 
|  | 226 | } | 
|  | 227 | } | 
|  | 228 | else { | 
|  | 229 | /* | 
|  | 230 | * is NaN; signaling or quiet? | 
|  | 231 | */ | 
|  | 232 | if (Dbl_isone_signaling(opnd2p1)) { | 
|  | 233 | /* trap if INVALIDTRAP enabled */ | 
|  | 234 | if (Is_invalidtrap_enabled()) | 
|  | 235 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 236 | /* make NaN quiet */ | 
|  | 237 | Set_invalidflag(); | 
|  | 238 | Dbl_set_quiet(opnd2p1); | 
|  | 239 | } | 
|  | 240 | /* | 
|  | 241 | * is third operand a signaling NaN? | 
|  | 242 | */ | 
|  | 243 | else if (Dbl_is_signalingnan(opnd3p1)) { | 
|  | 244 | /* trap if INVALIDTRAP enabled */ | 
|  | 245 | if (Is_invalidtrap_enabled()) | 
|  | 246 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 247 | /* make NaN quiet */ | 
|  | 248 | Set_invalidflag(); | 
|  | 249 | Dbl_set_quiet(opnd3p1); | 
|  | 250 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 251 | return(NOEXCEPTION); | 
|  | 252 | } | 
|  | 253 | /* | 
|  | 254 | * return quiet NaN | 
|  | 255 | */ | 
|  | 256 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | 257 | return(NOEXCEPTION); | 
|  | 258 | } | 
|  | 259 | } | 
|  | 260 |  | 
|  | 261 | /* | 
|  | 262 | * check third operand for NaN's or infinity | 
|  | 263 | */ | 
|  | 264 | if (Dbl_isinfinity_exponent(opnd3p1)) { | 
|  | 265 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | 
|  | 266 | /* return infinity */ | 
|  | 267 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 268 | return(NOEXCEPTION); | 
|  | 269 | } else { | 
|  | 270 | /* | 
|  | 271 | * is NaN; signaling or quiet? | 
|  | 272 | */ | 
|  | 273 | if (Dbl_isone_signaling(opnd3p1)) { | 
|  | 274 | /* trap if INVALIDTRAP enabled */ | 
|  | 275 | if (Is_invalidtrap_enabled()) | 
|  | 276 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 277 | /* make NaN quiet */ | 
|  | 278 | Set_invalidflag(); | 
|  | 279 | Dbl_set_quiet(opnd3p1); | 
|  | 280 | } | 
|  | 281 | /* | 
|  | 282 | * return quiet NaN | 
|  | 283 | */ | 
|  | 284 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 285 | return(NOEXCEPTION); | 
|  | 286 | } | 
|  | 287 | } | 
|  | 288 |  | 
|  | 289 | /* | 
|  | 290 | * Generate multiply mantissa | 
|  | 291 | */ | 
|  | 292 | if (Dbl_isnotzero_exponent(opnd1p1)) { | 
|  | 293 | /* set hidden bit */ | 
|  | 294 | Dbl_clear_signexponent_set_hidden(opnd1p1); | 
|  | 295 | } | 
|  | 296 | else { | 
|  | 297 | /* check for zero */ | 
|  | 298 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | 
|  | 299 | /* | 
|  | 300 | * Perform the add opnd3 with zero here. | 
|  | 301 | */ | 
|  | 302 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | 
|  | 303 | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | 304 | Dbl_or_signs(opnd3p1,resultp1); | 
|  | 305 | } else { | 
|  | 306 | Dbl_and_signs(opnd3p1,resultp1); | 
|  | 307 | } | 
|  | 308 | } | 
|  | 309 | /* | 
|  | 310 | * Now let's check for trapped underflow case. | 
|  | 311 | */ | 
|  | 312 | else if (Dbl_iszero_exponent(opnd3p1) && | 
|  | 313 | Is_underflowtrap_enabled()) { | 
|  | 314 | /* need to normalize results mantissa */ | 
|  | 315 | sign_save = Dbl_signextendedsign(opnd3p1); | 
|  | 316 | result_exponent = 0; | 
|  | 317 | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | 318 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | 
|  | 319 | Dbl_set_sign(opnd3p1,/*using*/sign_save); | 
|  | 320 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, | 
|  | 321 | unfl); | 
|  | 322 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 323 | /* inexact = FALSE */ | 
|  | 324 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 325 | } | 
|  | 326 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 327 | return(NOEXCEPTION); | 
|  | 328 | } | 
|  | 329 | /* is denormalized, adjust exponent */ | 
|  | 330 | Dbl_clear_signexponent(opnd1p1); | 
|  | 331 | Dbl_leftshiftby1(opnd1p1,opnd1p2); | 
|  | 332 | Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); | 
|  | 333 | } | 
|  | 334 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | 
|  | 335 | if (Dbl_isnotzero_exponent(opnd2p1)) { | 
|  | 336 | Dbl_clear_signexponent_set_hidden(opnd2p1); | 
|  | 337 | } | 
|  | 338 | else { | 
|  | 339 | /* check for zero */ | 
|  | 340 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | 
|  | 341 | /* | 
|  | 342 | * Perform the add opnd3 with zero here. | 
|  | 343 | */ | 
|  | 344 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | 
|  | 345 | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | 346 | Dbl_or_signs(opnd3p1,resultp1); | 
|  | 347 | } else { | 
|  | 348 | Dbl_and_signs(opnd3p1,resultp1); | 
|  | 349 | } | 
|  | 350 | } | 
|  | 351 | /* | 
|  | 352 | * Now let's check for trapped underflow case. | 
|  | 353 | */ | 
|  | 354 | else if (Dbl_iszero_exponent(opnd3p1) && | 
|  | 355 | Is_underflowtrap_enabled()) { | 
|  | 356 | /* need to normalize results mantissa */ | 
|  | 357 | sign_save = Dbl_signextendedsign(opnd3p1); | 
|  | 358 | result_exponent = 0; | 
|  | 359 | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | 360 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | 
|  | 361 | Dbl_set_sign(opnd3p1,/*using*/sign_save); | 
|  | 362 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, | 
|  | 363 | unfl); | 
|  | 364 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 365 | /* inexact = FALSE */ | 
|  | 366 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 367 | } | 
|  | 368 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 369 | return(NOEXCEPTION); | 
|  | 370 | } | 
|  | 371 | /* is denormalized; want to normalize */ | 
|  | 372 | Dbl_clear_signexponent(opnd2p1); | 
|  | 373 | Dbl_leftshiftby1(opnd2p1,opnd2p2); | 
|  | 374 | Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | /* Multiply the first two source mantissas together */ | 
|  | 378 |  | 
|  | 379 | /* | 
|  | 380 | * The intermediate result will be kept in tmpres, | 
|  | 381 | * which needs enough room for 106 bits of mantissa, | 
|  | 382 | * so lets call it a Double extended. | 
|  | 383 | */ | 
|  | 384 | Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | 385 |  | 
|  | 386 | /* | 
|  | 387 | * Four bits at a time are inspected in each loop, and a | 
|  | 388 | * simple shift and add multiply algorithm is used. | 
|  | 389 | */ | 
|  | 390 | for (count = DBL_P-1; count >= 0; count -= 4) { | 
|  | 391 | Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | 392 | if (Dbit28p2(opnd1p2)) { | 
|  | 393 | /* Fourword_add should be an ADD followed by 3 ADDC's */ | 
|  | 394 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | 395 | opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); | 
|  | 396 | } | 
|  | 397 | if (Dbit29p2(opnd1p2)) { | 
|  | 398 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | 399 | opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); | 
|  | 400 | } | 
|  | 401 | if (Dbit30p2(opnd1p2)) { | 
|  | 402 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | 403 | opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); | 
|  | 404 | } | 
|  | 405 | if (Dbit31p2(opnd1p2)) { | 
|  | 406 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | 407 | opnd2p1, opnd2p2, 0, 0); | 
|  | 408 | } | 
|  | 409 | Dbl_rightshiftby4(opnd1p1,opnd1p2); | 
|  | 410 | } | 
|  | 411 | if (Is_dexthiddenoverflow(tmpresp1)) { | 
|  | 412 | /* result mantissa >= 2 (mantissa overflow) */ | 
|  | 413 | mpy_exponent++; | 
|  | 414 | Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | /* | 
|  | 418 | * Restore the sign of the mpy result which was saved in resultp1. | 
|  | 419 | * The exponent will continue to be kept in mpy_exponent. | 
|  | 420 | */ | 
|  | 421 | Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); | 
|  | 422 |  | 
|  | 423 | /* | 
|  | 424 | * No rounding is required, since the result of the multiply | 
|  | 425 | * is exact in the extended format. | 
|  | 426 | */ | 
|  | 427 |  | 
|  | 428 | /* | 
|  | 429 | * Now we are ready to perform the add portion of the operation. | 
|  | 430 | * | 
|  | 431 | * The exponents need to be kept as integers for now, since the | 
|  | 432 | * multiply result might not fit into the exponent field.  We | 
|  | 433 | * can't overflow or underflow because of this yet, since the | 
|  | 434 | * add could bring the final result back into range. | 
|  | 435 | */ | 
|  | 436 | add_exponent = Dbl_exponent(opnd3p1); | 
|  | 437 |  | 
|  | 438 | /* | 
|  | 439 | * Check for denormalized or zero add operand. | 
|  | 440 | */ | 
|  | 441 | if (add_exponent == 0) { | 
|  | 442 | /* check for zero */ | 
|  | 443 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | 
|  | 444 | /* right is zero */ | 
|  | 445 | /* Left can't be zero and must be result. | 
|  | 446 | * | 
|  | 447 | * The final result is now in tmpres and mpy_exponent, | 
|  | 448 | * and needs to be rounded and squeezed back into | 
|  | 449 | * double precision format from double extended. | 
|  | 450 | */ | 
|  | 451 | result_exponent = mpy_exponent; | 
|  | 452 | Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | 453 | resultp1,resultp2,resultp3,resultp4); | 
|  | 454 | sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ | 
|  | 455 | goto round; | 
|  | 456 | } | 
|  | 457 |  | 
|  | 458 | /* | 
|  | 459 | * Neither are zeroes. | 
|  | 460 | * Adjust exponent and normalize add operand. | 
|  | 461 | */ | 
|  | 462 | sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */ | 
|  | 463 | Dbl_clear_signexponent(opnd3p1); | 
|  | 464 | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | 465 | Dbl_normalize(opnd3p1,opnd3p2,add_exponent); | 
|  | 466 | Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */ | 
|  | 467 | } else { | 
|  | 468 | Dbl_clear_exponent_set_hidden(opnd3p1); | 
|  | 469 | } | 
|  | 470 | /* | 
|  | 471 | * Copy opnd3 to the double extended variable called right. | 
|  | 472 | */ | 
|  | 473 | Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); | 
|  | 474 |  | 
|  | 475 | /* | 
|  | 476 | * A zero "save" helps discover equal operands (for later), | 
|  | 477 | * and is used in swapping operands (if needed). | 
|  | 478 | */ | 
|  | 479 | Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); | 
|  | 480 |  | 
|  | 481 | /* | 
|  | 482 | * Compare magnitude of operands. | 
|  | 483 | */ | 
|  | 484 | Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); | 
|  | 485 | Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); | 
|  | 486 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | 
|  | 487 | Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ | 
|  | 488 | /* | 
|  | 489 | * Set the left operand to the larger one by XOR swap. | 
|  | 490 | * First finish the first word "save". | 
|  | 491 | */ | 
|  | 492 | Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | 493 | Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | 
|  | 494 | Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, | 
|  | 495 | rightp2,rightp3,rightp4); | 
|  | 496 | /* also setup exponents used in rest of routine */ | 
|  | 497 | diff_exponent = add_exponent - mpy_exponent; | 
|  | 498 | result_exponent = add_exponent; | 
|  | 499 | } else { | 
|  | 500 | /* also setup exponents used in rest of routine */ | 
|  | 501 | diff_exponent = mpy_exponent - add_exponent; | 
|  | 502 | result_exponent = mpy_exponent; | 
|  | 503 | } | 
|  | 504 | /* Invariant: left is not smaller than right. */ | 
|  | 505 |  | 
|  | 506 | /* | 
|  | 507 | * Special case alignment of operands that would force alignment | 
|  | 508 | * beyond the extent of the extension.  A further optimization | 
|  | 509 | * could special case this but only reduces the path length for | 
|  | 510 | * this infrequent case. | 
|  | 511 | */ | 
|  | 512 | if (diff_exponent > DBLEXT_THRESHOLD) { | 
|  | 513 | diff_exponent = DBLEXT_THRESHOLD; | 
|  | 514 | } | 
|  | 515 |  | 
|  | 516 | /* Align right operand by shifting it to the right */ | 
|  | 517 | Dblext_clear_sign(rightp1); | 
|  | 518 | Dblext_right_align(rightp1,rightp2,rightp3,rightp4, | 
|  | 519 | /*shifted by*/diff_exponent); | 
|  | 520 |  | 
|  | 521 | /* Treat sum and difference of the operands separately. */ | 
|  | 522 | if ((int)save < 0) { | 
|  | 523 | /* | 
|  | 524 | * Difference of the two operands.  Overflow can occur if the | 
|  | 525 | * multiply overflowed.  A borrow can occur out of the hidden | 
|  | 526 | * bit and force a post normalization phase. | 
|  | 527 | */ | 
|  | 528 | Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | 529 | rightp1,rightp2,rightp3,rightp4, | 
|  | 530 | resultp1,resultp2,resultp3,resultp4); | 
|  | 531 | sign_save = Dbl_signextendedsign(resultp1); | 
|  | 532 | if (Dbl_iszero_hidden(resultp1)) { | 
|  | 533 | /* Handle normalization */ | 
| Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 534 | /* A straightforward algorithm would now shift the | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 535 | * result and extension left until the hidden bit | 
|  | 536 | * becomes one.  Not all of the extension bits need | 
|  | 537 | * participate in the shift.  Only the two most | 
|  | 538 | * significant bits (round and guard) are needed. | 
|  | 539 | * If only a single shift is needed then the guard | 
|  | 540 | * bit becomes a significant low order bit and the | 
|  | 541 | * extension must participate in the rounding. | 
|  | 542 | * If more than a single shift is needed, then all | 
|  | 543 | * bits to the right of the guard bit are zeros, | 
|  | 544 | * and the guard bit may or may not be zero. */ | 
|  | 545 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, | 
|  | 546 | resultp4); | 
|  | 547 |  | 
|  | 548 | /* Need to check for a zero result.  The sign and | 
|  | 549 | * exponent fields have already been zeroed.  The more | 
|  | 550 | * efficient test of the full object can be used. | 
|  | 551 | */ | 
|  | 552 | if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){ | 
|  | 553 | /* Must have been "x-x" or "x+(-x)". */ | 
|  | 554 | if (Is_rounding_mode(ROUNDMINUS)) | 
|  | 555 | Dbl_setone_sign(resultp1); | 
|  | 556 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 557 | return(NOEXCEPTION); | 
|  | 558 | } | 
|  | 559 | result_exponent--; | 
|  | 560 |  | 
|  | 561 | /* Look to see if normalization is finished. */ | 
|  | 562 | if (Dbl_isone_hidden(resultp1)) { | 
|  | 563 | /* No further normalization is needed */ | 
|  | 564 | goto round; | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | /* Discover first one bit to determine shift amount. | 
|  | 568 | * Use a modified binary search.  We have already | 
|  | 569 | * shifted the result one position right and still | 
|  | 570 | * not found a one so the remainder of the extension | 
|  | 571 | * must be zero and simplifies rounding. */ | 
|  | 572 | /* Scan bytes */ | 
|  | 573 | while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { | 
|  | 574 | Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); | 
|  | 575 | result_exponent -= 8; | 
|  | 576 | } | 
|  | 577 | /* Now narrow it down to the nibble */ | 
|  | 578 | if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { | 
|  | 579 | /* The lower nibble contains the | 
|  | 580 | * normalizing one */ | 
|  | 581 | Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); | 
|  | 582 | result_exponent -= 4; | 
|  | 583 | } | 
|  | 584 | /* Select case where first bit is set (already | 
|  | 585 | * normalized) otherwise select the proper shift. */ | 
|  | 586 | jumpsize = Dbl_hiddenhigh3mantissa(resultp1); | 
|  | 587 | if (jumpsize <= 7) switch(jumpsize) { | 
|  | 588 | case 1: | 
|  | 589 | Dblext_leftshiftby3(resultp1,resultp2,resultp3, | 
|  | 590 | resultp4); | 
|  | 591 | result_exponent -= 3; | 
|  | 592 | break; | 
|  | 593 | case 2: | 
|  | 594 | case 3: | 
|  | 595 | Dblext_leftshiftby2(resultp1,resultp2,resultp3, | 
|  | 596 | resultp4); | 
|  | 597 | result_exponent -= 2; | 
|  | 598 | break; | 
|  | 599 | case 4: | 
|  | 600 | case 5: | 
|  | 601 | case 6: | 
|  | 602 | case 7: | 
|  | 603 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, | 
|  | 604 | resultp4); | 
|  | 605 | result_exponent -= 1; | 
|  | 606 | break; | 
|  | 607 | } | 
|  | 608 | } /* end if (hidden...)... */ | 
|  | 609 | /* Fall through and round */ | 
|  | 610 | } /* end if (save < 0)... */ | 
|  | 611 | else { | 
|  | 612 | /* Add magnitudes */ | 
|  | 613 | Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | 614 | rightp1,rightp2,rightp3,rightp4, | 
|  | 615 | /*to*/resultp1,resultp2,resultp3,resultp4); | 
|  | 616 | sign_save = Dbl_signextendedsign(resultp1); | 
|  | 617 | if (Dbl_isone_hiddenoverflow(resultp1)) { | 
|  | 618 | /* Prenormalization required. */ | 
|  | 619 | Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, | 
|  | 620 | resultp4); | 
|  | 621 | result_exponent++; | 
|  | 622 | } /* end if hiddenoverflow... */ | 
|  | 623 | } /* end else ...add magnitudes... */ | 
|  | 624 |  | 
|  | 625 | /* Round the result.  If the extension and lower two words are | 
|  | 626 | * all zeros, then the result is exact.  Otherwise round in the | 
|  | 627 | * correct direction.  Underflow is possible. If a postnormalization | 
|  | 628 | * is necessary, then the mantissa is all zeros so no shift is needed. | 
|  | 629 | */ | 
|  | 630 | round: | 
|  | 631 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | 
|  | 632 | Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, | 
|  | 633 | result_exponent,is_tiny); | 
|  | 634 | } | 
|  | 635 | Dbl_set_sign(resultp1,/*using*/sign_save); | 
|  | 636 | if (Dblext_isnotzero_mantissap3(resultp3) || | 
|  | 637 | Dblext_isnotzero_mantissap4(resultp4)) { | 
|  | 638 | inexact = TRUE; | 
|  | 639 | switch(Rounding_mode()) { | 
|  | 640 | case ROUNDNEAREST: /* The default. */ | 
|  | 641 | if (Dblext_isone_highp3(resultp3)) { | 
|  | 642 | /* at least 1/2 ulp */ | 
|  | 643 | if (Dblext_isnotzero_low31p3(resultp3) || | 
|  | 644 | Dblext_isnotzero_mantissap4(resultp4) || | 
|  | 645 | Dblext_isone_lowp2(resultp2)) { | 
|  | 646 | /* either exactly half way and odd or | 
|  | 647 | * more than 1/2ulp */ | 
|  | 648 | Dbl_increment(resultp1,resultp2); | 
|  | 649 | } | 
|  | 650 | } | 
|  | 651 | break; | 
|  | 652 |  | 
|  | 653 | case ROUNDPLUS: | 
|  | 654 | if (Dbl_iszero_sign(resultp1)) { | 
|  | 655 | /* Round up positive results */ | 
|  | 656 | Dbl_increment(resultp1,resultp2); | 
|  | 657 | } | 
|  | 658 | break; | 
|  | 659 |  | 
|  | 660 | case ROUNDMINUS: | 
|  | 661 | if (Dbl_isone_sign(resultp1)) { | 
|  | 662 | /* Round down negative results */ | 
|  | 663 | Dbl_increment(resultp1,resultp2); | 
|  | 664 | } | 
|  | 665 |  | 
|  | 666 | case ROUNDZERO:; | 
|  | 667 | /* truncate is simple */ | 
|  | 668 | } /* end switch... */ | 
|  | 669 | if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | 670 | } | 
|  | 671 | if (result_exponent >= DBL_INFINITY_EXPONENT) { | 
|  | 672 | /* trap if OVERFLOWTRAP enabled */ | 
|  | 673 | if (Is_overflowtrap_enabled()) { | 
|  | 674 | /* | 
|  | 675 | * Adjust bias of result | 
|  | 676 | */ | 
|  | 677 | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | 678 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 679 | if (inexact) | 
|  | 680 | if (Is_inexacttrap_enabled()) | 
|  | 681 | return (OPC_2E_OVERFLOWEXCEPTION | | 
|  | 682 | OPC_2E_INEXACTEXCEPTION); | 
|  | 683 | else Set_inexactflag(); | 
|  | 684 | return (OPC_2E_OVERFLOWEXCEPTION); | 
|  | 685 | } | 
|  | 686 | inexact = TRUE; | 
|  | 687 | Set_overflowflag(); | 
|  | 688 | /* set result to infinity or largest number */ | 
|  | 689 | Dbl_setoverflow(resultp1,resultp2); | 
|  | 690 |  | 
|  | 691 | } else if (result_exponent <= 0) {	/* underflow case */ | 
|  | 692 | if (Is_underflowtrap_enabled()) { | 
|  | 693 | /* | 
|  | 694 | * Adjust bias of result | 
|  | 695 | */ | 
|  | 696 | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | 697 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 698 | if (inexact) | 
|  | 699 | if (Is_inexacttrap_enabled()) | 
|  | 700 | return (OPC_2E_UNDERFLOWEXCEPTION | | 
|  | 701 | OPC_2E_INEXACTEXCEPTION); | 
|  | 702 | else Set_inexactflag(); | 
|  | 703 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 704 | } | 
|  | 705 | else if (inexact && is_tiny) Set_underflowflag(); | 
|  | 706 | } | 
|  | 707 | else Dbl_set_exponent(resultp1,result_exponent); | 
|  | 708 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 709 | if (inexact) | 
|  | 710 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | 
|  | 711 | else Set_inexactflag(); | 
|  | 712 | return(NOEXCEPTION); | 
|  | 713 | } | 
|  | 714 |  | 
|  | 715 | /* | 
|  | 716 | *  Double Floating-point Multiply Negate Fused Add | 
|  | 717 | */ | 
|  | 718 |  | 
|  | 719 | dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | 720 |  | 
|  | 721 | dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | 
|  | 722 | unsigned int *status; | 
|  | 723 | { | 
|  | 724 | unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; | 
|  | 725 | register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; | 
|  | 726 | unsigned int rightp1, rightp2, rightp3, rightp4; | 
|  | 727 | unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; | 
|  | 728 | register int mpy_exponent, add_exponent, count; | 
|  | 729 | boolean inexact = FALSE, is_tiny = FALSE; | 
|  | 730 |  | 
|  | 731 | unsigned int signlessleft1, signlessright1, save; | 
|  | 732 | register int result_exponent, diff_exponent; | 
|  | 733 | int sign_save, jumpsize; | 
|  | 734 |  | 
|  | 735 | Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); | 
|  | 736 | Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); | 
|  | 737 | Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); | 
|  | 738 |  | 
|  | 739 | /* | 
|  | 740 | * set sign bit of result of multiply | 
|  | 741 | */ | 
|  | 742 | if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) | 
|  | 743 | Dbl_setzerop1(resultp1); | 
|  | 744 | else | 
|  | 745 | Dbl_setnegativezerop1(resultp1); | 
|  | 746 |  | 
|  | 747 | /* | 
|  | 748 | * Generate multiply exponent | 
|  | 749 | */ | 
|  | 750 | mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; | 
|  | 751 |  | 
|  | 752 | /* | 
|  | 753 | * check first operand for NaN's or infinity | 
|  | 754 | */ | 
|  | 755 | if (Dbl_isinfinity_exponent(opnd1p1)) { | 
|  | 756 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | 
|  | 757 | if (Dbl_isnotnan(opnd2p1,opnd2p2) && | 
|  | 758 | Dbl_isnotnan(opnd3p1,opnd3p2)) { | 
|  | 759 | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { | 
|  | 760 | /* | 
|  | 761 | * invalid since operands are infinity | 
|  | 762 | * and zero | 
|  | 763 | */ | 
|  | 764 | if (Is_invalidtrap_enabled()) | 
|  | 765 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 766 | Set_invalidflag(); | 
|  | 767 | Dbl_makequietnan(resultp1,resultp2); | 
|  | 768 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 769 | return(NOEXCEPTION); | 
|  | 770 | } | 
|  | 771 | /* | 
|  | 772 | * Check third operand for infinity with a | 
|  | 773 | *  sign opposite of the multiply result | 
|  | 774 | */ | 
|  | 775 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && | 
|  | 776 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | 
|  | 777 | /* | 
|  | 778 | * invalid since attempting a magnitude | 
|  | 779 | * subtraction of infinities | 
|  | 780 | */ | 
|  | 781 | if (Is_invalidtrap_enabled()) | 
|  | 782 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 783 | Set_invalidflag(); | 
|  | 784 | Dbl_makequietnan(resultp1,resultp2); | 
|  | 785 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 786 | return(NOEXCEPTION); | 
|  | 787 | } | 
|  | 788 |  | 
|  | 789 | /* | 
|  | 790 | * return infinity | 
|  | 791 | */ | 
|  | 792 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | 
|  | 793 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 794 | return(NOEXCEPTION); | 
|  | 795 | } | 
|  | 796 | } | 
|  | 797 | else { | 
|  | 798 | /* | 
|  | 799 | * is NaN; signaling or quiet? | 
|  | 800 | */ | 
|  | 801 | if (Dbl_isone_signaling(opnd1p1)) { | 
|  | 802 | /* trap if INVALIDTRAP enabled */ | 
|  | 803 | if (Is_invalidtrap_enabled()) | 
|  | 804 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 805 | /* make NaN quiet */ | 
|  | 806 | Set_invalidflag(); | 
|  | 807 | Dbl_set_quiet(opnd1p1); | 
|  | 808 | } | 
|  | 809 | /* | 
|  | 810 | * is second operand a signaling NaN? | 
|  | 811 | */ | 
|  | 812 | else if (Dbl_is_signalingnan(opnd2p1)) { | 
|  | 813 | /* trap if INVALIDTRAP enabled */ | 
|  | 814 | if (Is_invalidtrap_enabled()) | 
|  | 815 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 816 | /* make NaN quiet */ | 
|  | 817 | Set_invalidflag(); | 
|  | 818 | Dbl_set_quiet(opnd2p1); | 
|  | 819 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | 820 | return(NOEXCEPTION); | 
|  | 821 | } | 
|  | 822 | /* | 
|  | 823 | * is third operand a signaling NaN? | 
|  | 824 | */ | 
|  | 825 | else if (Dbl_is_signalingnan(opnd3p1)) { | 
|  | 826 | /* trap if INVALIDTRAP enabled */ | 
|  | 827 | if (Is_invalidtrap_enabled()) | 
|  | 828 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 829 | /* make NaN quiet */ | 
|  | 830 | Set_invalidflag(); | 
|  | 831 | Dbl_set_quiet(opnd3p1); | 
|  | 832 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 833 | return(NOEXCEPTION); | 
|  | 834 | } | 
|  | 835 | /* | 
|  | 836 | * return quiet NaN | 
|  | 837 | */ | 
|  | 838 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); | 
|  | 839 | return(NOEXCEPTION); | 
|  | 840 | } | 
|  | 841 | } | 
|  | 842 |  | 
|  | 843 | /* | 
|  | 844 | * check second operand for NaN's or infinity | 
|  | 845 | */ | 
|  | 846 | if (Dbl_isinfinity_exponent(opnd2p1)) { | 
|  | 847 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | 
|  | 848 | if (Dbl_isnotnan(opnd3p1,opnd3p2)) { | 
|  | 849 | if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { | 
|  | 850 | /* | 
|  | 851 | * invalid since multiply operands are | 
|  | 852 | * zero & infinity | 
|  | 853 | */ | 
|  | 854 | if (Is_invalidtrap_enabled()) | 
|  | 855 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 856 | Set_invalidflag(); | 
|  | 857 | Dbl_makequietnan(opnd2p1,opnd2p2); | 
|  | 858 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | 859 | return(NOEXCEPTION); | 
|  | 860 | } | 
|  | 861 |  | 
|  | 862 | /* | 
|  | 863 | * Check third operand for infinity with a | 
|  | 864 | *  sign opposite of the multiply result | 
|  | 865 | */ | 
|  | 866 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && | 
|  | 867 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | 
|  | 868 | /* | 
|  | 869 | * invalid since attempting a magnitude | 
|  | 870 | * subtraction of infinities | 
|  | 871 | */ | 
|  | 872 | if (Is_invalidtrap_enabled()) | 
|  | 873 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 874 | Set_invalidflag(); | 
|  | 875 | Dbl_makequietnan(resultp1,resultp2); | 
|  | 876 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 877 | return(NOEXCEPTION); | 
|  | 878 | } | 
|  | 879 |  | 
|  | 880 | /* | 
|  | 881 | * return infinity | 
|  | 882 | */ | 
|  | 883 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | 
|  | 884 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 885 | return(NOEXCEPTION); | 
|  | 886 | } | 
|  | 887 | } | 
|  | 888 | else { | 
|  | 889 | /* | 
|  | 890 | * is NaN; signaling or quiet? | 
|  | 891 | */ | 
|  | 892 | if (Dbl_isone_signaling(opnd2p1)) { | 
|  | 893 | /* trap if INVALIDTRAP enabled */ | 
|  | 894 | if (Is_invalidtrap_enabled()) | 
|  | 895 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 896 | /* make NaN quiet */ | 
|  | 897 | Set_invalidflag(); | 
|  | 898 | Dbl_set_quiet(opnd2p1); | 
|  | 899 | } | 
|  | 900 | /* | 
|  | 901 | * is third operand a signaling NaN? | 
|  | 902 | */ | 
|  | 903 | else if (Dbl_is_signalingnan(opnd3p1)) { | 
|  | 904 | /* trap if INVALIDTRAP enabled */ | 
|  | 905 | if (Is_invalidtrap_enabled()) | 
|  | 906 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 907 | /* make NaN quiet */ | 
|  | 908 | Set_invalidflag(); | 
|  | 909 | Dbl_set_quiet(opnd3p1); | 
|  | 910 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 911 | return(NOEXCEPTION); | 
|  | 912 | } | 
|  | 913 | /* | 
|  | 914 | * return quiet NaN | 
|  | 915 | */ | 
|  | 916 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | 
|  | 917 | return(NOEXCEPTION); | 
|  | 918 | } | 
|  | 919 | } | 
|  | 920 |  | 
|  | 921 | /* | 
|  | 922 | * check third operand for NaN's or infinity | 
|  | 923 | */ | 
|  | 924 | if (Dbl_isinfinity_exponent(opnd3p1)) { | 
|  | 925 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | 
|  | 926 | /* return infinity */ | 
|  | 927 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 928 | return(NOEXCEPTION); | 
|  | 929 | } else { | 
|  | 930 | /* | 
|  | 931 | * is NaN; signaling or quiet? | 
|  | 932 | */ | 
|  | 933 | if (Dbl_isone_signaling(opnd3p1)) { | 
|  | 934 | /* trap if INVALIDTRAP enabled */ | 
|  | 935 | if (Is_invalidtrap_enabled()) | 
|  | 936 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 937 | /* make NaN quiet */ | 
|  | 938 | Set_invalidflag(); | 
|  | 939 | Dbl_set_quiet(opnd3p1); | 
|  | 940 | } | 
|  | 941 | /* | 
|  | 942 | * return quiet NaN | 
|  | 943 | */ | 
|  | 944 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 945 | return(NOEXCEPTION); | 
|  | 946 | } | 
|  | 947 | } | 
|  | 948 |  | 
|  | 949 | /* | 
|  | 950 | * Generate multiply mantissa | 
|  | 951 | */ | 
|  | 952 | if (Dbl_isnotzero_exponent(opnd1p1)) { | 
|  | 953 | /* set hidden bit */ | 
|  | 954 | Dbl_clear_signexponent_set_hidden(opnd1p1); | 
|  | 955 | } | 
|  | 956 | else { | 
|  | 957 | /* check for zero */ | 
|  | 958 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | 
|  | 959 | /* | 
|  | 960 | * Perform the add opnd3 with zero here. | 
|  | 961 | */ | 
|  | 962 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | 
|  | 963 | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | 964 | Dbl_or_signs(opnd3p1,resultp1); | 
|  | 965 | } else { | 
|  | 966 | Dbl_and_signs(opnd3p1,resultp1); | 
|  | 967 | } | 
|  | 968 | } | 
|  | 969 | /* | 
|  | 970 | * Now let's check for trapped underflow case. | 
|  | 971 | */ | 
|  | 972 | else if (Dbl_iszero_exponent(opnd3p1) && | 
|  | 973 | Is_underflowtrap_enabled()) { | 
|  | 974 | /* need to normalize results mantissa */ | 
|  | 975 | sign_save = Dbl_signextendedsign(opnd3p1); | 
|  | 976 | result_exponent = 0; | 
|  | 977 | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | 978 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | 
|  | 979 | Dbl_set_sign(opnd3p1,/*using*/sign_save); | 
|  | 980 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, | 
|  | 981 | unfl); | 
|  | 982 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 983 | /* inexact = FALSE */ | 
|  | 984 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 985 | } | 
|  | 986 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 987 | return(NOEXCEPTION); | 
|  | 988 | } | 
|  | 989 | /* is denormalized, adjust exponent */ | 
|  | 990 | Dbl_clear_signexponent(opnd1p1); | 
|  | 991 | Dbl_leftshiftby1(opnd1p1,opnd1p2); | 
|  | 992 | Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); | 
|  | 993 | } | 
|  | 994 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | 
|  | 995 | if (Dbl_isnotzero_exponent(opnd2p1)) { | 
|  | 996 | Dbl_clear_signexponent_set_hidden(opnd2p1); | 
|  | 997 | } | 
|  | 998 | else { | 
|  | 999 | /* check for zero */ | 
|  | 1000 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | 
|  | 1001 | /* | 
|  | 1002 | * Perform the add opnd3 with zero here. | 
|  | 1003 | */ | 
|  | 1004 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | 
|  | 1005 | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | 1006 | Dbl_or_signs(opnd3p1,resultp1); | 
|  | 1007 | } else { | 
|  | 1008 | Dbl_and_signs(opnd3p1,resultp1); | 
|  | 1009 | } | 
|  | 1010 | } | 
|  | 1011 | /* | 
|  | 1012 | * Now let's check for trapped underflow case. | 
|  | 1013 | */ | 
|  | 1014 | else if (Dbl_iszero_exponent(opnd3p1) && | 
|  | 1015 | Is_underflowtrap_enabled()) { | 
|  | 1016 | /* need to normalize results mantissa */ | 
|  | 1017 | sign_save = Dbl_signextendedsign(opnd3p1); | 
|  | 1018 | result_exponent = 0; | 
|  | 1019 | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | 1020 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | 
|  | 1021 | Dbl_set_sign(opnd3p1,/*using*/sign_save); | 
|  | 1022 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, | 
|  | 1023 | unfl); | 
|  | 1024 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 1025 | /* inexact = FALSE */ | 
|  | 1026 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 1027 | } | 
|  | 1028 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | 
|  | 1029 | return(NOEXCEPTION); | 
|  | 1030 | } | 
|  | 1031 | /* is denormalized; want to normalize */ | 
|  | 1032 | Dbl_clear_signexponent(opnd2p1); | 
|  | 1033 | Dbl_leftshiftby1(opnd2p1,opnd2p2); | 
|  | 1034 | Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); | 
|  | 1035 | } | 
|  | 1036 |  | 
|  | 1037 | /* Multiply the first two source mantissas together */ | 
|  | 1038 |  | 
|  | 1039 | /* | 
|  | 1040 | * The intermediate result will be kept in tmpres, | 
|  | 1041 | * which needs enough room for 106 bits of mantissa, | 
|  | 1042 | * so lets call it a Double extended. | 
|  | 1043 | */ | 
|  | 1044 | Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | 1045 |  | 
|  | 1046 | /* | 
|  | 1047 | * Four bits at a time are inspected in each loop, and a | 
|  | 1048 | * simple shift and add multiply algorithm is used. | 
|  | 1049 | */ | 
|  | 1050 | for (count = DBL_P-1; count >= 0; count -= 4) { | 
|  | 1051 | Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | 1052 | if (Dbit28p2(opnd1p2)) { | 
|  | 1053 | /* Fourword_add should be an ADD followed by 3 ADDC's */ | 
|  | 1054 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | 1055 | opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); | 
|  | 1056 | } | 
|  | 1057 | if (Dbit29p2(opnd1p2)) { | 
|  | 1058 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | 1059 | opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); | 
|  | 1060 | } | 
|  | 1061 | if (Dbit30p2(opnd1p2)) { | 
|  | 1062 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | 1063 | opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); | 
|  | 1064 | } | 
|  | 1065 | if (Dbit31p2(opnd1p2)) { | 
|  | 1066 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | 
|  | 1067 | opnd2p1, opnd2p2, 0, 0); | 
|  | 1068 | } | 
|  | 1069 | Dbl_rightshiftby4(opnd1p1,opnd1p2); | 
|  | 1070 | } | 
|  | 1071 | if (Is_dexthiddenoverflow(tmpresp1)) { | 
|  | 1072 | /* result mantissa >= 2 (mantissa overflow) */ | 
|  | 1073 | mpy_exponent++; | 
|  | 1074 | Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | 
|  | 1075 | } | 
|  | 1076 |  | 
|  | 1077 | /* | 
|  | 1078 | * Restore the sign of the mpy result which was saved in resultp1. | 
|  | 1079 | * The exponent will continue to be kept in mpy_exponent. | 
|  | 1080 | */ | 
|  | 1081 | Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); | 
|  | 1082 |  | 
|  | 1083 | /* | 
|  | 1084 | * No rounding is required, since the result of the multiply | 
|  | 1085 | * is exact in the extended format. | 
|  | 1086 | */ | 
|  | 1087 |  | 
|  | 1088 | /* | 
|  | 1089 | * Now we are ready to perform the add portion of the operation. | 
|  | 1090 | * | 
|  | 1091 | * The exponents need to be kept as integers for now, since the | 
|  | 1092 | * multiply result might not fit into the exponent field.  We | 
|  | 1093 | * can't overflow or underflow because of this yet, since the | 
|  | 1094 | * add could bring the final result back into range. | 
|  | 1095 | */ | 
|  | 1096 | add_exponent = Dbl_exponent(opnd3p1); | 
|  | 1097 |  | 
|  | 1098 | /* | 
|  | 1099 | * Check for denormalized or zero add operand. | 
|  | 1100 | */ | 
|  | 1101 | if (add_exponent == 0) { | 
|  | 1102 | /* check for zero */ | 
|  | 1103 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | 
|  | 1104 | /* right is zero */ | 
|  | 1105 | /* Left can't be zero and must be result. | 
|  | 1106 | * | 
|  | 1107 | * The final result is now in tmpres and mpy_exponent, | 
|  | 1108 | * and needs to be rounded and squeezed back into | 
|  | 1109 | * double precision format from double extended. | 
|  | 1110 | */ | 
|  | 1111 | result_exponent = mpy_exponent; | 
|  | 1112 | Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | 1113 | resultp1,resultp2,resultp3,resultp4); | 
|  | 1114 | sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ | 
|  | 1115 | goto round; | 
|  | 1116 | } | 
|  | 1117 |  | 
|  | 1118 | /* | 
|  | 1119 | * Neither are zeroes. | 
|  | 1120 | * Adjust exponent and normalize add operand. | 
|  | 1121 | */ | 
|  | 1122 | sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */ | 
|  | 1123 | Dbl_clear_signexponent(opnd3p1); | 
|  | 1124 | Dbl_leftshiftby1(opnd3p1,opnd3p2); | 
|  | 1125 | Dbl_normalize(opnd3p1,opnd3p2,add_exponent); | 
|  | 1126 | Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */ | 
|  | 1127 | } else { | 
|  | 1128 | Dbl_clear_exponent_set_hidden(opnd3p1); | 
|  | 1129 | } | 
|  | 1130 | /* | 
|  | 1131 | * Copy opnd3 to the double extended variable called right. | 
|  | 1132 | */ | 
|  | 1133 | Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); | 
|  | 1134 |  | 
|  | 1135 | /* | 
|  | 1136 | * A zero "save" helps discover equal operands (for later), | 
|  | 1137 | * and is used in swapping operands (if needed). | 
|  | 1138 | */ | 
|  | 1139 | Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); | 
|  | 1140 |  | 
|  | 1141 | /* | 
|  | 1142 | * Compare magnitude of operands. | 
|  | 1143 | */ | 
|  | 1144 | Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); | 
|  | 1145 | Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); | 
|  | 1146 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | 
|  | 1147 | Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ | 
|  | 1148 | /* | 
|  | 1149 | * Set the left operand to the larger one by XOR swap. | 
|  | 1150 | * First finish the first word "save". | 
|  | 1151 | */ | 
|  | 1152 | Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | 1153 | Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | 
|  | 1154 | Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, | 
|  | 1155 | rightp2,rightp3,rightp4); | 
|  | 1156 | /* also setup exponents used in rest of routine */ | 
|  | 1157 | diff_exponent = add_exponent - mpy_exponent; | 
|  | 1158 | result_exponent = add_exponent; | 
|  | 1159 | } else { | 
|  | 1160 | /* also setup exponents used in rest of routine */ | 
|  | 1161 | diff_exponent = mpy_exponent - add_exponent; | 
|  | 1162 | result_exponent = mpy_exponent; | 
|  | 1163 | } | 
|  | 1164 | /* Invariant: left is not smaller than right. */ | 
|  | 1165 |  | 
|  | 1166 | /* | 
|  | 1167 | * Special case alignment of operands that would force alignment | 
|  | 1168 | * beyond the extent of the extension.  A further optimization | 
|  | 1169 | * could special case this but only reduces the path length for | 
|  | 1170 | * this infrequent case. | 
|  | 1171 | */ | 
|  | 1172 | if (diff_exponent > DBLEXT_THRESHOLD) { | 
|  | 1173 | diff_exponent = DBLEXT_THRESHOLD; | 
|  | 1174 | } | 
|  | 1175 |  | 
|  | 1176 | /* Align right operand by shifting it to the right */ | 
|  | 1177 | Dblext_clear_sign(rightp1); | 
|  | 1178 | Dblext_right_align(rightp1,rightp2,rightp3,rightp4, | 
|  | 1179 | /*shifted by*/diff_exponent); | 
|  | 1180 |  | 
|  | 1181 | /* Treat sum and difference of the operands separately. */ | 
|  | 1182 | if ((int)save < 0) { | 
|  | 1183 | /* | 
|  | 1184 | * Difference of the two operands.  Overflow can occur if the | 
|  | 1185 | * multiply overflowed.  A borrow can occur out of the hidden | 
|  | 1186 | * bit and force a post normalization phase. | 
|  | 1187 | */ | 
|  | 1188 | Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | 1189 | rightp1,rightp2,rightp3,rightp4, | 
|  | 1190 | resultp1,resultp2,resultp3,resultp4); | 
|  | 1191 | sign_save = Dbl_signextendedsign(resultp1); | 
|  | 1192 | if (Dbl_iszero_hidden(resultp1)) { | 
|  | 1193 | /* Handle normalization */ | 
| Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 1194 | /* A straightforward algorithm would now shift the | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1195 | * result and extension left until the hidden bit | 
|  | 1196 | * becomes one.  Not all of the extension bits need | 
|  | 1197 | * participate in the shift.  Only the two most | 
|  | 1198 | * significant bits (round and guard) are needed. | 
|  | 1199 | * If only a single shift is needed then the guard | 
|  | 1200 | * bit becomes a significant low order bit and the | 
|  | 1201 | * extension must participate in the rounding. | 
|  | 1202 | * If more than a single shift is needed, then all | 
|  | 1203 | * bits to the right of the guard bit are zeros, | 
|  | 1204 | * and the guard bit may or may not be zero. */ | 
|  | 1205 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, | 
|  | 1206 | resultp4); | 
|  | 1207 |  | 
|  | 1208 | /* Need to check for a zero result.  The sign and | 
|  | 1209 | * exponent fields have already been zeroed.  The more | 
|  | 1210 | * efficient test of the full object can be used. | 
|  | 1211 | */ | 
|  | 1212 | if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) { | 
|  | 1213 | /* Must have been "x-x" or "x+(-x)". */ | 
|  | 1214 | if (Is_rounding_mode(ROUNDMINUS)) | 
|  | 1215 | Dbl_setone_sign(resultp1); | 
|  | 1216 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 1217 | return(NOEXCEPTION); | 
|  | 1218 | } | 
|  | 1219 | result_exponent--; | 
|  | 1220 |  | 
|  | 1221 | /* Look to see if normalization is finished. */ | 
|  | 1222 | if (Dbl_isone_hidden(resultp1)) { | 
|  | 1223 | /* No further normalization is needed */ | 
|  | 1224 | goto round; | 
|  | 1225 | } | 
|  | 1226 |  | 
|  | 1227 | /* Discover first one bit to determine shift amount. | 
|  | 1228 | * Use a modified binary search.  We have already | 
|  | 1229 | * shifted the result one position right and still | 
|  | 1230 | * not found a one so the remainder of the extension | 
|  | 1231 | * must be zero and simplifies rounding. */ | 
|  | 1232 | /* Scan bytes */ | 
|  | 1233 | while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { | 
|  | 1234 | Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); | 
|  | 1235 | result_exponent -= 8; | 
|  | 1236 | } | 
|  | 1237 | /* Now narrow it down to the nibble */ | 
|  | 1238 | if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { | 
|  | 1239 | /* The lower nibble contains the | 
|  | 1240 | * normalizing one */ | 
|  | 1241 | Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); | 
|  | 1242 | result_exponent -= 4; | 
|  | 1243 | } | 
|  | 1244 | /* Select case where first bit is set (already | 
|  | 1245 | * normalized) otherwise select the proper shift. */ | 
|  | 1246 | jumpsize = Dbl_hiddenhigh3mantissa(resultp1); | 
|  | 1247 | if (jumpsize <= 7) switch(jumpsize) { | 
|  | 1248 | case 1: | 
|  | 1249 | Dblext_leftshiftby3(resultp1,resultp2,resultp3, | 
|  | 1250 | resultp4); | 
|  | 1251 | result_exponent -= 3; | 
|  | 1252 | break; | 
|  | 1253 | case 2: | 
|  | 1254 | case 3: | 
|  | 1255 | Dblext_leftshiftby2(resultp1,resultp2,resultp3, | 
|  | 1256 | resultp4); | 
|  | 1257 | result_exponent -= 2; | 
|  | 1258 | break; | 
|  | 1259 | case 4: | 
|  | 1260 | case 5: | 
|  | 1261 | case 6: | 
|  | 1262 | case 7: | 
|  | 1263 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, | 
|  | 1264 | resultp4); | 
|  | 1265 | result_exponent -= 1; | 
|  | 1266 | break; | 
|  | 1267 | } | 
|  | 1268 | } /* end if (hidden...)... */ | 
|  | 1269 | /* Fall through and round */ | 
|  | 1270 | } /* end if (save < 0)... */ | 
|  | 1271 | else { | 
|  | 1272 | /* Add magnitudes */ | 
|  | 1273 | Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | 
|  | 1274 | rightp1,rightp2,rightp3,rightp4, | 
|  | 1275 | /*to*/resultp1,resultp2,resultp3,resultp4); | 
|  | 1276 | sign_save = Dbl_signextendedsign(resultp1); | 
|  | 1277 | if (Dbl_isone_hiddenoverflow(resultp1)) { | 
|  | 1278 | /* Prenormalization required. */ | 
|  | 1279 | Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, | 
|  | 1280 | resultp4); | 
|  | 1281 | result_exponent++; | 
|  | 1282 | } /* end if hiddenoverflow... */ | 
|  | 1283 | } /* end else ...add magnitudes... */ | 
|  | 1284 |  | 
|  | 1285 | /* Round the result.  If the extension and lower two words are | 
|  | 1286 | * all zeros, then the result is exact.  Otherwise round in the | 
|  | 1287 | * correct direction.  Underflow is possible. If a postnormalization | 
|  | 1288 | * is necessary, then the mantissa is all zeros so no shift is needed. | 
|  | 1289 | */ | 
|  | 1290 | round: | 
|  | 1291 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | 
|  | 1292 | Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, | 
|  | 1293 | result_exponent,is_tiny); | 
|  | 1294 | } | 
|  | 1295 | Dbl_set_sign(resultp1,/*using*/sign_save); | 
|  | 1296 | if (Dblext_isnotzero_mantissap3(resultp3) || | 
|  | 1297 | Dblext_isnotzero_mantissap4(resultp4)) { | 
|  | 1298 | inexact = TRUE; | 
|  | 1299 | switch(Rounding_mode()) { | 
|  | 1300 | case ROUNDNEAREST: /* The default. */ | 
|  | 1301 | if (Dblext_isone_highp3(resultp3)) { | 
|  | 1302 | /* at least 1/2 ulp */ | 
|  | 1303 | if (Dblext_isnotzero_low31p3(resultp3) || | 
|  | 1304 | Dblext_isnotzero_mantissap4(resultp4) || | 
|  | 1305 | Dblext_isone_lowp2(resultp2)) { | 
|  | 1306 | /* either exactly half way and odd or | 
|  | 1307 | * more than 1/2ulp */ | 
|  | 1308 | Dbl_increment(resultp1,resultp2); | 
|  | 1309 | } | 
|  | 1310 | } | 
|  | 1311 | break; | 
|  | 1312 |  | 
|  | 1313 | case ROUNDPLUS: | 
|  | 1314 | if (Dbl_iszero_sign(resultp1)) { | 
|  | 1315 | /* Round up positive results */ | 
|  | 1316 | Dbl_increment(resultp1,resultp2); | 
|  | 1317 | } | 
|  | 1318 | break; | 
|  | 1319 |  | 
|  | 1320 | case ROUNDMINUS: | 
|  | 1321 | if (Dbl_isone_sign(resultp1)) { | 
|  | 1322 | /* Round down negative results */ | 
|  | 1323 | Dbl_increment(resultp1,resultp2); | 
|  | 1324 | } | 
|  | 1325 |  | 
|  | 1326 | case ROUNDZERO:; | 
|  | 1327 | /* truncate is simple */ | 
|  | 1328 | } /* end switch... */ | 
|  | 1329 | if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | 1330 | } | 
|  | 1331 | if (result_exponent >= DBL_INFINITY_EXPONENT) { | 
|  | 1332 | /* Overflow */ | 
|  | 1333 | if (Is_overflowtrap_enabled()) { | 
|  | 1334 | /* | 
|  | 1335 | * Adjust bias of result | 
|  | 1336 | */ | 
|  | 1337 | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | 1338 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 1339 | if (inexact) | 
|  | 1340 | if (Is_inexacttrap_enabled()) | 
|  | 1341 | return (OPC_2E_OVERFLOWEXCEPTION | | 
|  | 1342 | OPC_2E_INEXACTEXCEPTION); | 
|  | 1343 | else Set_inexactflag(); | 
|  | 1344 | return (OPC_2E_OVERFLOWEXCEPTION); | 
|  | 1345 | } | 
|  | 1346 | inexact = TRUE; | 
|  | 1347 | Set_overflowflag(); | 
|  | 1348 | Dbl_setoverflow(resultp1,resultp2); | 
|  | 1349 | } else if (result_exponent <= 0) {	/* underflow case */ | 
|  | 1350 | if (Is_underflowtrap_enabled()) { | 
|  | 1351 | /* | 
|  | 1352 | * Adjust bias of result | 
|  | 1353 | */ | 
|  | 1354 | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | 1355 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 1356 | if (inexact) | 
|  | 1357 | if (Is_inexacttrap_enabled()) | 
|  | 1358 | return (OPC_2E_UNDERFLOWEXCEPTION | | 
|  | 1359 | OPC_2E_INEXACTEXCEPTION); | 
|  | 1360 | else Set_inexactflag(); | 
|  | 1361 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 1362 | } | 
|  | 1363 | else if (inexact && is_tiny) Set_underflowflag(); | 
|  | 1364 | } | 
|  | 1365 | else Dbl_set_exponent(resultp1,result_exponent); | 
|  | 1366 | Dbl_copytoptr(resultp1,resultp2,dstptr); | 
|  | 1367 | if (inexact) | 
|  | 1368 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | 
|  | 1369 | else Set_inexactflag(); | 
|  | 1370 | return(NOEXCEPTION); | 
|  | 1371 | } | 
|  | 1372 |  | 
|  | 1373 | /* | 
|  | 1374 | *  Single Floating-point Multiply Fused Add | 
|  | 1375 | */ | 
|  | 1376 |  | 
|  | 1377 | sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | 1378 |  | 
|  | 1379 | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | 
|  | 1380 | unsigned int *status; | 
|  | 1381 | { | 
|  | 1382 | unsigned int opnd1, opnd2, opnd3; | 
|  | 1383 | register unsigned int tmpresp1, tmpresp2; | 
|  | 1384 | unsigned int rightp1, rightp2; | 
|  | 1385 | unsigned int resultp1, resultp2 = 0; | 
|  | 1386 | register int mpy_exponent, add_exponent, count; | 
|  | 1387 | boolean inexact = FALSE, is_tiny = FALSE; | 
|  | 1388 |  | 
|  | 1389 | unsigned int signlessleft1, signlessright1, save; | 
|  | 1390 | register int result_exponent, diff_exponent; | 
|  | 1391 | int sign_save, jumpsize; | 
|  | 1392 |  | 
|  | 1393 | Sgl_copyfromptr(src1ptr,opnd1); | 
|  | 1394 | Sgl_copyfromptr(src2ptr,opnd2); | 
|  | 1395 | Sgl_copyfromptr(src3ptr,opnd3); | 
|  | 1396 |  | 
|  | 1397 | /* | 
|  | 1398 | * set sign bit of result of multiply | 
|  | 1399 | */ | 
|  | 1400 | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) | 
|  | 1401 | Sgl_setnegativezero(resultp1); | 
|  | 1402 | else Sgl_setzero(resultp1); | 
|  | 1403 |  | 
|  | 1404 | /* | 
|  | 1405 | * Generate multiply exponent | 
|  | 1406 | */ | 
|  | 1407 | mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; | 
|  | 1408 |  | 
|  | 1409 | /* | 
|  | 1410 | * check first operand for NaN's or infinity | 
|  | 1411 | */ | 
|  | 1412 | if (Sgl_isinfinity_exponent(opnd1)) { | 
|  | 1413 | if (Sgl_iszero_mantissa(opnd1)) { | 
|  | 1414 | if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { | 
|  | 1415 | if (Sgl_iszero_exponentmantissa(opnd2)) { | 
|  | 1416 | /* | 
|  | 1417 | * invalid since operands are infinity | 
|  | 1418 | * and zero | 
|  | 1419 | */ | 
|  | 1420 | if (Is_invalidtrap_enabled()) | 
|  | 1421 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1422 | Set_invalidflag(); | 
|  | 1423 | Sgl_makequietnan(resultp1); | 
|  | 1424 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 1425 | return(NOEXCEPTION); | 
|  | 1426 | } | 
|  | 1427 | /* | 
|  | 1428 | * Check third operand for infinity with a | 
|  | 1429 | *  sign opposite of the multiply result | 
|  | 1430 | */ | 
|  | 1431 | if (Sgl_isinfinity(opnd3) && | 
|  | 1432 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | 
|  | 1433 | /* | 
|  | 1434 | * invalid since attempting a magnitude | 
|  | 1435 | * subtraction of infinities | 
|  | 1436 | */ | 
|  | 1437 | if (Is_invalidtrap_enabled()) | 
|  | 1438 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1439 | Set_invalidflag(); | 
|  | 1440 | Sgl_makequietnan(resultp1); | 
|  | 1441 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 1442 | return(NOEXCEPTION); | 
|  | 1443 | } | 
|  | 1444 |  | 
|  | 1445 | /* | 
|  | 1446 | * return infinity | 
|  | 1447 | */ | 
|  | 1448 | Sgl_setinfinity_exponentmantissa(resultp1); | 
|  | 1449 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 1450 | return(NOEXCEPTION); | 
|  | 1451 | } | 
|  | 1452 | } | 
|  | 1453 | else { | 
|  | 1454 | /* | 
|  | 1455 | * is NaN; signaling or quiet? | 
|  | 1456 | */ | 
|  | 1457 | if (Sgl_isone_signaling(opnd1)) { | 
|  | 1458 | /* trap if INVALIDTRAP enabled */ | 
|  | 1459 | if (Is_invalidtrap_enabled()) | 
|  | 1460 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1461 | /* make NaN quiet */ | 
|  | 1462 | Set_invalidflag(); | 
|  | 1463 | Sgl_set_quiet(opnd1); | 
|  | 1464 | } | 
|  | 1465 | /* | 
|  | 1466 | * is second operand a signaling NaN? | 
|  | 1467 | */ | 
|  | 1468 | else if (Sgl_is_signalingnan(opnd2)) { | 
|  | 1469 | /* trap if INVALIDTRAP enabled */ | 
|  | 1470 | if (Is_invalidtrap_enabled()) | 
|  | 1471 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1472 | /* make NaN quiet */ | 
|  | 1473 | Set_invalidflag(); | 
|  | 1474 | Sgl_set_quiet(opnd2); | 
|  | 1475 | Sgl_copytoptr(opnd2,dstptr); | 
|  | 1476 | return(NOEXCEPTION); | 
|  | 1477 | } | 
|  | 1478 | /* | 
|  | 1479 | * is third operand a signaling NaN? | 
|  | 1480 | */ | 
|  | 1481 | else if (Sgl_is_signalingnan(opnd3)) { | 
|  | 1482 | /* trap if INVALIDTRAP enabled */ | 
|  | 1483 | if (Is_invalidtrap_enabled()) | 
|  | 1484 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1485 | /* make NaN quiet */ | 
|  | 1486 | Set_invalidflag(); | 
|  | 1487 | Sgl_set_quiet(opnd3); | 
|  | 1488 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 1489 | return(NOEXCEPTION); | 
|  | 1490 | } | 
|  | 1491 | /* | 
|  | 1492 | * return quiet NaN | 
|  | 1493 | */ | 
|  | 1494 | Sgl_copytoptr(opnd1,dstptr); | 
|  | 1495 | return(NOEXCEPTION); | 
|  | 1496 | } | 
|  | 1497 | } | 
|  | 1498 |  | 
|  | 1499 | /* | 
|  | 1500 | * check second operand for NaN's or infinity | 
|  | 1501 | */ | 
|  | 1502 | if (Sgl_isinfinity_exponent(opnd2)) { | 
|  | 1503 | if (Sgl_iszero_mantissa(opnd2)) { | 
|  | 1504 | if (Sgl_isnotnan(opnd3)) { | 
|  | 1505 | if (Sgl_iszero_exponentmantissa(opnd1)) { | 
|  | 1506 | /* | 
|  | 1507 | * invalid since multiply operands are | 
|  | 1508 | * zero & infinity | 
|  | 1509 | */ | 
|  | 1510 | if (Is_invalidtrap_enabled()) | 
|  | 1511 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1512 | Set_invalidflag(); | 
|  | 1513 | Sgl_makequietnan(opnd2); | 
|  | 1514 | Sgl_copytoptr(opnd2,dstptr); | 
|  | 1515 | return(NOEXCEPTION); | 
|  | 1516 | } | 
|  | 1517 |  | 
|  | 1518 | /* | 
|  | 1519 | * Check third operand for infinity with a | 
|  | 1520 | *  sign opposite of the multiply result | 
|  | 1521 | */ | 
|  | 1522 | if (Sgl_isinfinity(opnd3) && | 
|  | 1523 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | 
|  | 1524 | /* | 
|  | 1525 | * invalid since attempting a magnitude | 
|  | 1526 | * subtraction of infinities | 
|  | 1527 | */ | 
|  | 1528 | if (Is_invalidtrap_enabled()) | 
|  | 1529 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1530 | Set_invalidflag(); | 
|  | 1531 | Sgl_makequietnan(resultp1); | 
|  | 1532 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 1533 | return(NOEXCEPTION); | 
|  | 1534 | } | 
|  | 1535 |  | 
|  | 1536 | /* | 
|  | 1537 | * return infinity | 
|  | 1538 | */ | 
|  | 1539 | Sgl_setinfinity_exponentmantissa(resultp1); | 
|  | 1540 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 1541 | return(NOEXCEPTION); | 
|  | 1542 | } | 
|  | 1543 | } | 
|  | 1544 | else { | 
|  | 1545 | /* | 
|  | 1546 | * is NaN; signaling or quiet? | 
|  | 1547 | */ | 
|  | 1548 | if (Sgl_isone_signaling(opnd2)) { | 
|  | 1549 | /* trap if INVALIDTRAP enabled */ | 
|  | 1550 | if (Is_invalidtrap_enabled()) | 
|  | 1551 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1552 | /* make NaN quiet */ | 
|  | 1553 | Set_invalidflag(); | 
|  | 1554 | Sgl_set_quiet(opnd2); | 
|  | 1555 | } | 
|  | 1556 | /* | 
|  | 1557 | * is third operand a signaling NaN? | 
|  | 1558 | */ | 
|  | 1559 | else if (Sgl_is_signalingnan(opnd3)) { | 
|  | 1560 | /* trap if INVALIDTRAP enabled */ | 
|  | 1561 | if (Is_invalidtrap_enabled()) | 
|  | 1562 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1563 | /* make NaN quiet */ | 
|  | 1564 | Set_invalidflag(); | 
|  | 1565 | Sgl_set_quiet(opnd3); | 
|  | 1566 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 1567 | return(NOEXCEPTION); | 
|  | 1568 | } | 
|  | 1569 | /* | 
|  | 1570 | * return quiet NaN | 
|  | 1571 | */ | 
|  | 1572 | Sgl_copytoptr(opnd2,dstptr); | 
|  | 1573 | return(NOEXCEPTION); | 
|  | 1574 | } | 
|  | 1575 | } | 
|  | 1576 |  | 
|  | 1577 | /* | 
|  | 1578 | * check third operand for NaN's or infinity | 
|  | 1579 | */ | 
|  | 1580 | if (Sgl_isinfinity_exponent(opnd3)) { | 
|  | 1581 | if (Sgl_iszero_mantissa(opnd3)) { | 
|  | 1582 | /* return infinity */ | 
|  | 1583 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 1584 | return(NOEXCEPTION); | 
|  | 1585 | } else { | 
|  | 1586 | /* | 
|  | 1587 | * is NaN; signaling or quiet? | 
|  | 1588 | */ | 
|  | 1589 | if (Sgl_isone_signaling(opnd3)) { | 
|  | 1590 | /* trap if INVALIDTRAP enabled */ | 
|  | 1591 | if (Is_invalidtrap_enabled()) | 
|  | 1592 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 1593 | /* make NaN quiet */ | 
|  | 1594 | Set_invalidflag(); | 
|  | 1595 | Sgl_set_quiet(opnd3); | 
|  | 1596 | } | 
|  | 1597 | /* | 
|  | 1598 | * return quiet NaN | 
|  | 1599 | */ | 
|  | 1600 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 1601 | return(NOEXCEPTION); | 
|  | 1602 | } | 
|  | 1603 | } | 
|  | 1604 |  | 
|  | 1605 | /* | 
|  | 1606 | * Generate multiply mantissa | 
|  | 1607 | */ | 
|  | 1608 | if (Sgl_isnotzero_exponent(opnd1)) { | 
|  | 1609 | /* set hidden bit */ | 
|  | 1610 | Sgl_clear_signexponent_set_hidden(opnd1); | 
|  | 1611 | } | 
|  | 1612 | else { | 
|  | 1613 | /* check for zero */ | 
|  | 1614 | if (Sgl_iszero_mantissa(opnd1)) { | 
|  | 1615 | /* | 
|  | 1616 | * Perform the add opnd3 with zero here. | 
|  | 1617 | */ | 
|  | 1618 | if (Sgl_iszero_exponentmantissa(opnd3)) { | 
|  | 1619 | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | 1620 | Sgl_or_signs(opnd3,resultp1); | 
|  | 1621 | } else { | 
|  | 1622 | Sgl_and_signs(opnd3,resultp1); | 
|  | 1623 | } | 
|  | 1624 | } | 
|  | 1625 | /* | 
|  | 1626 | * Now let's check for trapped underflow case. | 
|  | 1627 | */ | 
|  | 1628 | else if (Sgl_iszero_exponent(opnd3) && | 
|  | 1629 | Is_underflowtrap_enabled()) { | 
|  | 1630 | /* need to normalize results mantissa */ | 
|  | 1631 | sign_save = Sgl_signextendedsign(opnd3); | 
|  | 1632 | result_exponent = 0; | 
|  | 1633 | Sgl_leftshiftby1(opnd3); | 
|  | 1634 | Sgl_normalize(opnd3,result_exponent); | 
|  | 1635 | Sgl_set_sign(opnd3,/*using*/sign_save); | 
|  | 1636 | Sgl_setwrapped_exponent(opnd3,result_exponent, | 
|  | 1637 | unfl); | 
|  | 1638 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 1639 | /* inexact = FALSE */ | 
|  | 1640 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 1641 | } | 
|  | 1642 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 1643 | return(NOEXCEPTION); | 
|  | 1644 | } | 
|  | 1645 | /* is denormalized, adjust exponent */ | 
|  | 1646 | Sgl_clear_signexponent(opnd1); | 
|  | 1647 | Sgl_leftshiftby1(opnd1); | 
|  | 1648 | Sgl_normalize(opnd1,mpy_exponent); | 
|  | 1649 | } | 
|  | 1650 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | 
|  | 1651 | if (Sgl_isnotzero_exponent(opnd2)) { | 
|  | 1652 | Sgl_clear_signexponent_set_hidden(opnd2); | 
|  | 1653 | } | 
|  | 1654 | else { | 
|  | 1655 | /* check for zero */ | 
|  | 1656 | if (Sgl_iszero_mantissa(opnd2)) { | 
|  | 1657 | /* | 
|  | 1658 | * Perform the add opnd3 with zero here. | 
|  | 1659 | */ | 
|  | 1660 | if (Sgl_iszero_exponentmantissa(opnd3)) { | 
|  | 1661 | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | 1662 | Sgl_or_signs(opnd3,resultp1); | 
|  | 1663 | } else { | 
|  | 1664 | Sgl_and_signs(opnd3,resultp1); | 
|  | 1665 | } | 
|  | 1666 | } | 
|  | 1667 | /* | 
|  | 1668 | * Now let's check for trapped underflow case. | 
|  | 1669 | */ | 
|  | 1670 | else if (Sgl_iszero_exponent(opnd3) && | 
|  | 1671 | Is_underflowtrap_enabled()) { | 
|  | 1672 | /* need to normalize results mantissa */ | 
|  | 1673 | sign_save = Sgl_signextendedsign(opnd3); | 
|  | 1674 | result_exponent = 0; | 
|  | 1675 | Sgl_leftshiftby1(opnd3); | 
|  | 1676 | Sgl_normalize(opnd3,result_exponent); | 
|  | 1677 | Sgl_set_sign(opnd3,/*using*/sign_save); | 
|  | 1678 | Sgl_setwrapped_exponent(opnd3,result_exponent, | 
|  | 1679 | unfl); | 
|  | 1680 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 1681 | /* inexact = FALSE */ | 
|  | 1682 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 1683 | } | 
|  | 1684 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 1685 | return(NOEXCEPTION); | 
|  | 1686 | } | 
|  | 1687 | /* is denormalized; want to normalize */ | 
|  | 1688 | Sgl_clear_signexponent(opnd2); | 
|  | 1689 | Sgl_leftshiftby1(opnd2); | 
|  | 1690 | Sgl_normalize(opnd2,mpy_exponent); | 
|  | 1691 | } | 
|  | 1692 |  | 
|  | 1693 | /* Multiply the first two source mantissas together */ | 
|  | 1694 |  | 
|  | 1695 | /* | 
|  | 1696 | * The intermediate result will be kept in tmpres, | 
|  | 1697 | * which needs enough room for 106 bits of mantissa, | 
|  | 1698 | * so lets call it a Double extended. | 
|  | 1699 | */ | 
|  | 1700 | Sglext_setzero(tmpresp1,tmpresp2); | 
|  | 1701 |  | 
|  | 1702 | /* | 
|  | 1703 | * Four bits at a time are inspected in each loop, and a | 
|  | 1704 | * simple shift and add multiply algorithm is used. | 
|  | 1705 | */ | 
|  | 1706 | for (count = SGL_P-1; count >= 0; count -= 4) { | 
|  | 1707 | Sglext_rightshiftby4(tmpresp1,tmpresp2); | 
|  | 1708 | if (Sbit28(opnd1)) { | 
|  | 1709 | /* Twoword_add should be an ADD followed by 2 ADDC's */ | 
|  | 1710 | Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); | 
|  | 1711 | } | 
|  | 1712 | if (Sbit29(opnd1)) { | 
|  | 1713 | Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); | 
|  | 1714 | } | 
|  | 1715 | if (Sbit30(opnd1)) { | 
|  | 1716 | Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); | 
|  | 1717 | } | 
|  | 1718 | if (Sbit31(opnd1)) { | 
|  | 1719 | Twoword_add(tmpresp1, tmpresp2, opnd2, 0); | 
|  | 1720 | } | 
|  | 1721 | Sgl_rightshiftby4(opnd1); | 
|  | 1722 | } | 
|  | 1723 | if (Is_sexthiddenoverflow(tmpresp1)) { | 
|  | 1724 | /* result mantissa >= 2 (mantissa overflow) */ | 
|  | 1725 | mpy_exponent++; | 
|  | 1726 | Sglext_rightshiftby4(tmpresp1,tmpresp2); | 
|  | 1727 | } else { | 
|  | 1728 | Sglext_rightshiftby3(tmpresp1,tmpresp2); | 
|  | 1729 | } | 
|  | 1730 |  | 
|  | 1731 | /* | 
|  | 1732 | * Restore the sign of the mpy result which was saved in resultp1. | 
|  | 1733 | * The exponent will continue to be kept in mpy_exponent. | 
|  | 1734 | */ | 
|  | 1735 | Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); | 
|  | 1736 |  | 
|  | 1737 | /* | 
|  | 1738 | * No rounding is required, since the result of the multiply | 
|  | 1739 | * is exact in the extended format. | 
|  | 1740 | */ | 
|  | 1741 |  | 
|  | 1742 | /* | 
|  | 1743 | * Now we are ready to perform the add portion of the operation. | 
|  | 1744 | * | 
|  | 1745 | * The exponents need to be kept as integers for now, since the | 
|  | 1746 | * multiply result might not fit into the exponent field.  We | 
|  | 1747 | * can't overflow or underflow because of this yet, since the | 
|  | 1748 | * add could bring the final result back into range. | 
|  | 1749 | */ | 
|  | 1750 | add_exponent = Sgl_exponent(opnd3); | 
|  | 1751 |  | 
|  | 1752 | /* | 
|  | 1753 | * Check for denormalized or zero add operand. | 
|  | 1754 | */ | 
|  | 1755 | if (add_exponent == 0) { | 
|  | 1756 | /* check for zero */ | 
|  | 1757 | if (Sgl_iszero_mantissa(opnd3)) { | 
|  | 1758 | /* right is zero */ | 
|  | 1759 | /* Left can't be zero and must be result. | 
|  | 1760 | * | 
|  | 1761 | * The final result is now in tmpres and mpy_exponent, | 
|  | 1762 | * and needs to be rounded and squeezed back into | 
|  | 1763 | * double precision format from double extended. | 
|  | 1764 | */ | 
|  | 1765 | result_exponent = mpy_exponent; | 
|  | 1766 | Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); | 
|  | 1767 | sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ | 
|  | 1768 | goto round; | 
|  | 1769 | } | 
|  | 1770 |  | 
|  | 1771 | /* | 
|  | 1772 | * Neither are zeroes. | 
|  | 1773 | * Adjust exponent and normalize add operand. | 
|  | 1774 | */ | 
|  | 1775 | sign_save = Sgl_signextendedsign(opnd3);	/* save sign */ | 
|  | 1776 | Sgl_clear_signexponent(opnd3); | 
|  | 1777 | Sgl_leftshiftby1(opnd3); | 
|  | 1778 | Sgl_normalize(opnd3,add_exponent); | 
|  | 1779 | Sgl_set_sign(opnd3,sign_save);		/* restore sign */ | 
|  | 1780 | } else { | 
|  | 1781 | Sgl_clear_exponent_set_hidden(opnd3); | 
|  | 1782 | } | 
|  | 1783 | /* | 
|  | 1784 | * Copy opnd3 to the double extended variable called right. | 
|  | 1785 | */ | 
|  | 1786 | Sgl_copyto_sglext(opnd3,rightp1,rightp2); | 
|  | 1787 |  | 
|  | 1788 | /* | 
|  | 1789 | * A zero "save" helps discover equal operands (for later), | 
|  | 1790 | * and is used in swapping operands (if needed). | 
|  | 1791 | */ | 
|  | 1792 | Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); | 
|  | 1793 |  | 
|  | 1794 | /* | 
|  | 1795 | * Compare magnitude of operands. | 
|  | 1796 | */ | 
|  | 1797 | Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); | 
|  | 1798 | Sglext_copytoint_exponentmantissa(rightp1,signlessright1); | 
|  | 1799 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | 
|  | 1800 | Sglext_ismagnitudeless(signlessleft1,signlessright1)) { | 
|  | 1801 | /* | 
|  | 1802 | * Set the left operand to the larger one by XOR swap. | 
|  | 1803 | * First finish the first word "save". | 
|  | 1804 | */ | 
|  | 1805 | Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | 1806 | Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | 
|  | 1807 | Sglext_swap_lower(tmpresp2,rightp2); | 
|  | 1808 | /* also setup exponents used in rest of routine */ | 
|  | 1809 | diff_exponent = add_exponent - mpy_exponent; | 
|  | 1810 | result_exponent = add_exponent; | 
|  | 1811 | } else { | 
|  | 1812 | /* also setup exponents used in rest of routine */ | 
|  | 1813 | diff_exponent = mpy_exponent - add_exponent; | 
|  | 1814 | result_exponent = mpy_exponent; | 
|  | 1815 | } | 
|  | 1816 | /* Invariant: left is not smaller than right. */ | 
|  | 1817 |  | 
|  | 1818 | /* | 
|  | 1819 | * Special case alignment of operands that would force alignment | 
|  | 1820 | * beyond the extent of the extension.  A further optimization | 
|  | 1821 | * could special case this but only reduces the path length for | 
|  | 1822 | * this infrequent case. | 
|  | 1823 | */ | 
|  | 1824 | if (diff_exponent > SGLEXT_THRESHOLD) { | 
|  | 1825 | diff_exponent = SGLEXT_THRESHOLD; | 
|  | 1826 | } | 
|  | 1827 |  | 
|  | 1828 | /* Align right operand by shifting it to the right */ | 
|  | 1829 | Sglext_clear_sign(rightp1); | 
|  | 1830 | Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); | 
|  | 1831 |  | 
|  | 1832 | /* Treat sum and difference of the operands separately. */ | 
|  | 1833 | if ((int)save < 0) { | 
|  | 1834 | /* | 
|  | 1835 | * Difference of the two operands.  Overflow can occur if the | 
|  | 1836 | * multiply overflowed.  A borrow can occur out of the hidden | 
|  | 1837 | * bit and force a post normalization phase. | 
|  | 1838 | */ | 
|  | 1839 | Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, | 
|  | 1840 | resultp1,resultp2); | 
|  | 1841 | sign_save = Sgl_signextendedsign(resultp1); | 
|  | 1842 | if (Sgl_iszero_hidden(resultp1)) { | 
|  | 1843 | /* Handle normalization */ | 
| Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 1844 | /* A straightforward algorithm would now shift the | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1845 | * result and extension left until the hidden bit | 
|  | 1846 | * becomes one.  Not all of the extension bits need | 
|  | 1847 | * participate in the shift.  Only the two most | 
|  | 1848 | * significant bits (round and guard) are needed. | 
|  | 1849 | * If only a single shift is needed then the guard | 
|  | 1850 | * bit becomes a significant low order bit and the | 
|  | 1851 | * extension must participate in the rounding. | 
|  | 1852 | * If more than a single shift is needed, then all | 
|  | 1853 | * bits to the right of the guard bit are zeros, | 
|  | 1854 | * and the guard bit may or may not be zero. */ | 
|  | 1855 | Sglext_leftshiftby1(resultp1,resultp2); | 
|  | 1856 |  | 
|  | 1857 | /* Need to check for a zero result.  The sign and | 
|  | 1858 | * exponent fields have already been zeroed.  The more | 
|  | 1859 | * efficient test of the full object can be used. | 
|  | 1860 | */ | 
|  | 1861 | if (Sglext_iszero(resultp1,resultp2)) { | 
|  | 1862 | /* Must have been "x-x" or "x+(-x)". */ | 
|  | 1863 | if (Is_rounding_mode(ROUNDMINUS)) | 
|  | 1864 | Sgl_setone_sign(resultp1); | 
|  | 1865 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 1866 | return(NOEXCEPTION); | 
|  | 1867 | } | 
|  | 1868 | result_exponent--; | 
|  | 1869 |  | 
|  | 1870 | /* Look to see if normalization is finished. */ | 
|  | 1871 | if (Sgl_isone_hidden(resultp1)) { | 
|  | 1872 | /* No further normalization is needed */ | 
|  | 1873 | goto round; | 
|  | 1874 | } | 
|  | 1875 |  | 
|  | 1876 | /* Discover first one bit to determine shift amount. | 
|  | 1877 | * Use a modified binary search.  We have already | 
|  | 1878 | * shifted the result one position right and still | 
|  | 1879 | * not found a one so the remainder of the extension | 
|  | 1880 | * must be zero and simplifies rounding. */ | 
|  | 1881 | /* Scan bytes */ | 
|  | 1882 | while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { | 
|  | 1883 | Sglext_leftshiftby8(resultp1,resultp2); | 
|  | 1884 | result_exponent -= 8; | 
|  | 1885 | } | 
|  | 1886 | /* Now narrow it down to the nibble */ | 
|  | 1887 | if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { | 
|  | 1888 | /* The lower nibble contains the | 
|  | 1889 | * normalizing one */ | 
|  | 1890 | Sglext_leftshiftby4(resultp1,resultp2); | 
|  | 1891 | result_exponent -= 4; | 
|  | 1892 | } | 
|  | 1893 | /* Select case where first bit is set (already | 
|  | 1894 | * normalized) otherwise select the proper shift. */ | 
|  | 1895 | jumpsize = Sgl_hiddenhigh3mantissa(resultp1); | 
|  | 1896 | if (jumpsize <= 7) switch(jumpsize) { | 
|  | 1897 | case 1: | 
|  | 1898 | Sglext_leftshiftby3(resultp1,resultp2); | 
|  | 1899 | result_exponent -= 3; | 
|  | 1900 | break; | 
|  | 1901 | case 2: | 
|  | 1902 | case 3: | 
|  | 1903 | Sglext_leftshiftby2(resultp1,resultp2); | 
|  | 1904 | result_exponent -= 2; | 
|  | 1905 | break; | 
|  | 1906 | case 4: | 
|  | 1907 | case 5: | 
|  | 1908 | case 6: | 
|  | 1909 | case 7: | 
|  | 1910 | Sglext_leftshiftby1(resultp1,resultp2); | 
|  | 1911 | result_exponent -= 1; | 
|  | 1912 | break; | 
|  | 1913 | } | 
|  | 1914 | } /* end if (hidden...)... */ | 
|  | 1915 | /* Fall through and round */ | 
|  | 1916 | } /* end if (save < 0)... */ | 
|  | 1917 | else { | 
|  | 1918 | /* Add magnitudes */ | 
|  | 1919 | Sglext_addition(tmpresp1,tmpresp2, | 
|  | 1920 | rightp1,rightp2, /*to*/resultp1,resultp2); | 
|  | 1921 | sign_save = Sgl_signextendedsign(resultp1); | 
|  | 1922 | if (Sgl_isone_hiddenoverflow(resultp1)) { | 
|  | 1923 | /* Prenormalization required. */ | 
|  | 1924 | Sglext_arithrightshiftby1(resultp1,resultp2); | 
|  | 1925 | result_exponent++; | 
|  | 1926 | } /* end if hiddenoverflow... */ | 
|  | 1927 | } /* end else ...add magnitudes... */ | 
|  | 1928 |  | 
|  | 1929 | /* Round the result.  If the extension and lower two words are | 
|  | 1930 | * all zeros, then the result is exact.  Otherwise round in the | 
|  | 1931 | * correct direction.  Underflow is possible. If a postnormalization | 
|  | 1932 | * is necessary, then the mantissa is all zeros so no shift is needed. | 
|  | 1933 | */ | 
|  | 1934 | round: | 
|  | 1935 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | 
|  | 1936 | Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); | 
|  | 1937 | } | 
|  | 1938 | Sgl_set_sign(resultp1,/*using*/sign_save); | 
|  | 1939 | if (Sglext_isnotzero_mantissap2(resultp2)) { | 
|  | 1940 | inexact = TRUE; | 
|  | 1941 | switch(Rounding_mode()) { | 
|  | 1942 | case ROUNDNEAREST: /* The default. */ | 
|  | 1943 | if (Sglext_isone_highp2(resultp2)) { | 
|  | 1944 | /* at least 1/2 ulp */ | 
|  | 1945 | if (Sglext_isnotzero_low31p2(resultp2) || | 
|  | 1946 | Sglext_isone_lowp1(resultp1)) { | 
|  | 1947 | /* either exactly half way and odd or | 
|  | 1948 | * more than 1/2ulp */ | 
|  | 1949 | Sgl_increment(resultp1); | 
|  | 1950 | } | 
|  | 1951 | } | 
|  | 1952 | break; | 
|  | 1953 |  | 
|  | 1954 | case ROUNDPLUS: | 
|  | 1955 | if (Sgl_iszero_sign(resultp1)) { | 
|  | 1956 | /* Round up positive results */ | 
|  | 1957 | Sgl_increment(resultp1); | 
|  | 1958 | } | 
|  | 1959 | break; | 
|  | 1960 |  | 
|  | 1961 | case ROUNDMINUS: | 
|  | 1962 | if (Sgl_isone_sign(resultp1)) { | 
|  | 1963 | /* Round down negative results */ | 
|  | 1964 | Sgl_increment(resultp1); | 
|  | 1965 | } | 
|  | 1966 |  | 
|  | 1967 | case ROUNDZERO:; | 
|  | 1968 | /* truncate is simple */ | 
|  | 1969 | } /* end switch... */ | 
|  | 1970 | if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | 1971 | } | 
|  | 1972 | if (result_exponent >= SGL_INFINITY_EXPONENT) { | 
|  | 1973 | /* Overflow */ | 
|  | 1974 | if (Is_overflowtrap_enabled()) { | 
|  | 1975 | /* | 
|  | 1976 | * Adjust bias of result | 
|  | 1977 | */ | 
|  | 1978 | Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | 1979 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 1980 | if (inexact) | 
|  | 1981 | if (Is_inexacttrap_enabled()) | 
|  | 1982 | return (OPC_2E_OVERFLOWEXCEPTION | | 
|  | 1983 | OPC_2E_INEXACTEXCEPTION); | 
|  | 1984 | else Set_inexactflag(); | 
|  | 1985 | return (OPC_2E_OVERFLOWEXCEPTION); | 
|  | 1986 | } | 
|  | 1987 | inexact = TRUE; | 
|  | 1988 | Set_overflowflag(); | 
|  | 1989 | Sgl_setoverflow(resultp1); | 
|  | 1990 | } else if (result_exponent <= 0) {	/* underflow case */ | 
|  | 1991 | if (Is_underflowtrap_enabled()) { | 
|  | 1992 | /* | 
|  | 1993 | * Adjust bias of result | 
|  | 1994 | */ | 
|  | 1995 | Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | 1996 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 1997 | if (inexact) | 
|  | 1998 | if (Is_inexacttrap_enabled()) | 
|  | 1999 | return (OPC_2E_UNDERFLOWEXCEPTION | | 
|  | 2000 | OPC_2E_INEXACTEXCEPTION); | 
|  | 2001 | else Set_inexactflag(); | 
|  | 2002 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 2003 | } | 
|  | 2004 | else if (inexact && is_tiny) Set_underflowflag(); | 
|  | 2005 | } | 
|  | 2006 | else Sgl_set_exponent(resultp1,result_exponent); | 
|  | 2007 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2008 | if (inexact) | 
|  | 2009 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | 
|  | 2010 | else Set_inexactflag(); | 
|  | 2011 | return(NOEXCEPTION); | 
|  | 2012 | } | 
|  | 2013 |  | 
|  | 2014 | /* | 
|  | 2015 | *  Single Floating-point Multiply Negate Fused Add | 
|  | 2016 | */ | 
|  | 2017 |  | 
|  | 2018 | sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | 
|  | 2019 |  | 
|  | 2020 | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | 
|  | 2021 | unsigned int *status; | 
|  | 2022 | { | 
|  | 2023 | unsigned int opnd1, opnd2, opnd3; | 
|  | 2024 | register unsigned int tmpresp1, tmpresp2; | 
|  | 2025 | unsigned int rightp1, rightp2; | 
|  | 2026 | unsigned int resultp1, resultp2 = 0; | 
|  | 2027 | register int mpy_exponent, add_exponent, count; | 
|  | 2028 | boolean inexact = FALSE, is_tiny = FALSE; | 
|  | 2029 |  | 
|  | 2030 | unsigned int signlessleft1, signlessright1, save; | 
|  | 2031 | register int result_exponent, diff_exponent; | 
|  | 2032 | int sign_save, jumpsize; | 
|  | 2033 |  | 
|  | 2034 | Sgl_copyfromptr(src1ptr,opnd1); | 
|  | 2035 | Sgl_copyfromptr(src2ptr,opnd2); | 
|  | 2036 | Sgl_copyfromptr(src3ptr,opnd3); | 
|  | 2037 |  | 
|  | 2038 | /* | 
|  | 2039 | * set sign bit of result of multiply | 
|  | 2040 | */ | 
|  | 2041 | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) | 
|  | 2042 | Sgl_setzero(resultp1); | 
|  | 2043 | else | 
|  | 2044 | Sgl_setnegativezero(resultp1); | 
|  | 2045 |  | 
|  | 2046 | /* | 
|  | 2047 | * Generate multiply exponent | 
|  | 2048 | */ | 
|  | 2049 | mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; | 
|  | 2050 |  | 
|  | 2051 | /* | 
|  | 2052 | * check first operand for NaN's or infinity | 
|  | 2053 | */ | 
|  | 2054 | if (Sgl_isinfinity_exponent(opnd1)) { | 
|  | 2055 | if (Sgl_iszero_mantissa(opnd1)) { | 
|  | 2056 | if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { | 
|  | 2057 | if (Sgl_iszero_exponentmantissa(opnd2)) { | 
|  | 2058 | /* | 
|  | 2059 | * invalid since operands are infinity | 
|  | 2060 | * and zero | 
|  | 2061 | */ | 
|  | 2062 | if (Is_invalidtrap_enabled()) | 
|  | 2063 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2064 | Set_invalidflag(); | 
|  | 2065 | Sgl_makequietnan(resultp1); | 
|  | 2066 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2067 | return(NOEXCEPTION); | 
|  | 2068 | } | 
|  | 2069 | /* | 
|  | 2070 | * Check third operand for infinity with a | 
|  | 2071 | *  sign opposite of the multiply result | 
|  | 2072 | */ | 
|  | 2073 | if (Sgl_isinfinity(opnd3) && | 
|  | 2074 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | 
|  | 2075 | /* | 
|  | 2076 | * invalid since attempting a magnitude | 
|  | 2077 | * subtraction of infinities | 
|  | 2078 | */ | 
|  | 2079 | if (Is_invalidtrap_enabled()) | 
|  | 2080 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2081 | Set_invalidflag(); | 
|  | 2082 | Sgl_makequietnan(resultp1); | 
|  | 2083 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2084 | return(NOEXCEPTION); | 
|  | 2085 | } | 
|  | 2086 |  | 
|  | 2087 | /* | 
|  | 2088 | * return infinity | 
|  | 2089 | */ | 
|  | 2090 | Sgl_setinfinity_exponentmantissa(resultp1); | 
|  | 2091 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2092 | return(NOEXCEPTION); | 
|  | 2093 | } | 
|  | 2094 | } | 
|  | 2095 | else { | 
|  | 2096 | /* | 
|  | 2097 | * is NaN; signaling or quiet? | 
|  | 2098 | */ | 
|  | 2099 | if (Sgl_isone_signaling(opnd1)) { | 
|  | 2100 | /* trap if INVALIDTRAP enabled */ | 
|  | 2101 | if (Is_invalidtrap_enabled()) | 
|  | 2102 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2103 | /* make NaN quiet */ | 
|  | 2104 | Set_invalidflag(); | 
|  | 2105 | Sgl_set_quiet(opnd1); | 
|  | 2106 | } | 
|  | 2107 | /* | 
|  | 2108 | * is second operand a signaling NaN? | 
|  | 2109 | */ | 
|  | 2110 | else if (Sgl_is_signalingnan(opnd2)) { | 
|  | 2111 | /* trap if INVALIDTRAP enabled */ | 
|  | 2112 | if (Is_invalidtrap_enabled()) | 
|  | 2113 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2114 | /* make NaN quiet */ | 
|  | 2115 | Set_invalidflag(); | 
|  | 2116 | Sgl_set_quiet(opnd2); | 
|  | 2117 | Sgl_copytoptr(opnd2,dstptr); | 
|  | 2118 | return(NOEXCEPTION); | 
|  | 2119 | } | 
|  | 2120 | /* | 
|  | 2121 | * is third operand a signaling NaN? | 
|  | 2122 | */ | 
|  | 2123 | else if (Sgl_is_signalingnan(opnd3)) { | 
|  | 2124 | /* trap if INVALIDTRAP enabled */ | 
|  | 2125 | if (Is_invalidtrap_enabled()) | 
|  | 2126 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2127 | /* make NaN quiet */ | 
|  | 2128 | Set_invalidflag(); | 
|  | 2129 | Sgl_set_quiet(opnd3); | 
|  | 2130 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 2131 | return(NOEXCEPTION); | 
|  | 2132 | } | 
|  | 2133 | /* | 
|  | 2134 | * return quiet NaN | 
|  | 2135 | */ | 
|  | 2136 | Sgl_copytoptr(opnd1,dstptr); | 
|  | 2137 | return(NOEXCEPTION); | 
|  | 2138 | } | 
|  | 2139 | } | 
|  | 2140 |  | 
|  | 2141 | /* | 
|  | 2142 | * check second operand for NaN's or infinity | 
|  | 2143 | */ | 
|  | 2144 | if (Sgl_isinfinity_exponent(opnd2)) { | 
|  | 2145 | if (Sgl_iszero_mantissa(opnd2)) { | 
|  | 2146 | if (Sgl_isnotnan(opnd3)) { | 
|  | 2147 | if (Sgl_iszero_exponentmantissa(opnd1)) { | 
|  | 2148 | /* | 
|  | 2149 | * invalid since multiply operands are | 
|  | 2150 | * zero & infinity | 
|  | 2151 | */ | 
|  | 2152 | if (Is_invalidtrap_enabled()) | 
|  | 2153 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2154 | Set_invalidflag(); | 
|  | 2155 | Sgl_makequietnan(opnd2); | 
|  | 2156 | Sgl_copytoptr(opnd2,dstptr); | 
|  | 2157 | return(NOEXCEPTION); | 
|  | 2158 | } | 
|  | 2159 |  | 
|  | 2160 | /* | 
|  | 2161 | * Check third operand for infinity with a | 
|  | 2162 | *  sign opposite of the multiply result | 
|  | 2163 | */ | 
|  | 2164 | if (Sgl_isinfinity(opnd3) && | 
|  | 2165 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | 
|  | 2166 | /* | 
|  | 2167 | * invalid since attempting a magnitude | 
|  | 2168 | * subtraction of infinities | 
|  | 2169 | */ | 
|  | 2170 | if (Is_invalidtrap_enabled()) | 
|  | 2171 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2172 | Set_invalidflag(); | 
|  | 2173 | Sgl_makequietnan(resultp1); | 
|  | 2174 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2175 | return(NOEXCEPTION); | 
|  | 2176 | } | 
|  | 2177 |  | 
|  | 2178 | /* | 
|  | 2179 | * return infinity | 
|  | 2180 | */ | 
|  | 2181 | Sgl_setinfinity_exponentmantissa(resultp1); | 
|  | 2182 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2183 | return(NOEXCEPTION); | 
|  | 2184 | } | 
|  | 2185 | } | 
|  | 2186 | else { | 
|  | 2187 | /* | 
|  | 2188 | * is NaN; signaling or quiet? | 
|  | 2189 | */ | 
|  | 2190 | if (Sgl_isone_signaling(opnd2)) { | 
|  | 2191 | /* trap if INVALIDTRAP enabled */ | 
|  | 2192 | if (Is_invalidtrap_enabled()) | 
|  | 2193 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2194 | /* make NaN quiet */ | 
|  | 2195 | Set_invalidflag(); | 
|  | 2196 | Sgl_set_quiet(opnd2); | 
|  | 2197 | } | 
|  | 2198 | /* | 
|  | 2199 | * is third operand a signaling NaN? | 
|  | 2200 | */ | 
|  | 2201 | else if (Sgl_is_signalingnan(opnd3)) { | 
|  | 2202 | /* trap if INVALIDTRAP enabled */ | 
|  | 2203 | if (Is_invalidtrap_enabled()) | 
|  | 2204 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2205 | /* make NaN quiet */ | 
|  | 2206 | Set_invalidflag(); | 
|  | 2207 | Sgl_set_quiet(opnd3); | 
|  | 2208 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 2209 | return(NOEXCEPTION); | 
|  | 2210 | } | 
|  | 2211 | /* | 
|  | 2212 | * return quiet NaN | 
|  | 2213 | */ | 
|  | 2214 | Sgl_copytoptr(opnd2,dstptr); | 
|  | 2215 | return(NOEXCEPTION); | 
|  | 2216 | } | 
|  | 2217 | } | 
|  | 2218 |  | 
|  | 2219 | /* | 
|  | 2220 | * check third operand for NaN's or infinity | 
|  | 2221 | */ | 
|  | 2222 | if (Sgl_isinfinity_exponent(opnd3)) { | 
|  | 2223 | if (Sgl_iszero_mantissa(opnd3)) { | 
|  | 2224 | /* return infinity */ | 
|  | 2225 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 2226 | return(NOEXCEPTION); | 
|  | 2227 | } else { | 
|  | 2228 | /* | 
|  | 2229 | * is NaN; signaling or quiet? | 
|  | 2230 | */ | 
|  | 2231 | if (Sgl_isone_signaling(opnd3)) { | 
|  | 2232 | /* trap if INVALIDTRAP enabled */ | 
|  | 2233 | if (Is_invalidtrap_enabled()) | 
|  | 2234 | return(OPC_2E_INVALIDEXCEPTION); | 
|  | 2235 | /* make NaN quiet */ | 
|  | 2236 | Set_invalidflag(); | 
|  | 2237 | Sgl_set_quiet(opnd3); | 
|  | 2238 | } | 
|  | 2239 | /* | 
|  | 2240 | * return quiet NaN | 
|  | 2241 | */ | 
|  | 2242 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 2243 | return(NOEXCEPTION); | 
|  | 2244 | } | 
|  | 2245 | } | 
|  | 2246 |  | 
|  | 2247 | /* | 
|  | 2248 | * Generate multiply mantissa | 
|  | 2249 | */ | 
|  | 2250 | if (Sgl_isnotzero_exponent(opnd1)) { | 
|  | 2251 | /* set hidden bit */ | 
|  | 2252 | Sgl_clear_signexponent_set_hidden(opnd1); | 
|  | 2253 | } | 
|  | 2254 | else { | 
|  | 2255 | /* check for zero */ | 
|  | 2256 | if (Sgl_iszero_mantissa(opnd1)) { | 
|  | 2257 | /* | 
|  | 2258 | * Perform the add opnd3 with zero here. | 
|  | 2259 | */ | 
|  | 2260 | if (Sgl_iszero_exponentmantissa(opnd3)) { | 
|  | 2261 | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | 2262 | Sgl_or_signs(opnd3,resultp1); | 
|  | 2263 | } else { | 
|  | 2264 | Sgl_and_signs(opnd3,resultp1); | 
|  | 2265 | } | 
|  | 2266 | } | 
|  | 2267 | /* | 
|  | 2268 | * Now let's check for trapped underflow case. | 
|  | 2269 | */ | 
|  | 2270 | else if (Sgl_iszero_exponent(opnd3) && | 
|  | 2271 | Is_underflowtrap_enabled()) { | 
|  | 2272 | /* need to normalize results mantissa */ | 
|  | 2273 | sign_save = Sgl_signextendedsign(opnd3); | 
|  | 2274 | result_exponent = 0; | 
|  | 2275 | Sgl_leftshiftby1(opnd3); | 
|  | 2276 | Sgl_normalize(opnd3,result_exponent); | 
|  | 2277 | Sgl_set_sign(opnd3,/*using*/sign_save); | 
|  | 2278 | Sgl_setwrapped_exponent(opnd3,result_exponent, | 
|  | 2279 | unfl); | 
|  | 2280 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 2281 | /* inexact = FALSE */ | 
|  | 2282 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 2283 | } | 
|  | 2284 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 2285 | return(NOEXCEPTION); | 
|  | 2286 | } | 
|  | 2287 | /* is denormalized, adjust exponent */ | 
|  | 2288 | Sgl_clear_signexponent(opnd1); | 
|  | 2289 | Sgl_leftshiftby1(opnd1); | 
|  | 2290 | Sgl_normalize(opnd1,mpy_exponent); | 
|  | 2291 | } | 
|  | 2292 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | 
|  | 2293 | if (Sgl_isnotzero_exponent(opnd2)) { | 
|  | 2294 | Sgl_clear_signexponent_set_hidden(opnd2); | 
|  | 2295 | } | 
|  | 2296 | else { | 
|  | 2297 | /* check for zero */ | 
|  | 2298 | if (Sgl_iszero_mantissa(opnd2)) { | 
|  | 2299 | /* | 
|  | 2300 | * Perform the add opnd3 with zero here. | 
|  | 2301 | */ | 
|  | 2302 | if (Sgl_iszero_exponentmantissa(opnd3)) { | 
|  | 2303 | if (Is_rounding_mode(ROUNDMINUS)) { | 
|  | 2304 | Sgl_or_signs(opnd3,resultp1); | 
|  | 2305 | } else { | 
|  | 2306 | Sgl_and_signs(opnd3,resultp1); | 
|  | 2307 | } | 
|  | 2308 | } | 
|  | 2309 | /* | 
|  | 2310 | * Now let's check for trapped underflow case. | 
|  | 2311 | */ | 
|  | 2312 | else if (Sgl_iszero_exponent(opnd3) && | 
|  | 2313 | Is_underflowtrap_enabled()) { | 
|  | 2314 | /* need to normalize results mantissa */ | 
|  | 2315 | sign_save = Sgl_signextendedsign(opnd3); | 
|  | 2316 | result_exponent = 0; | 
|  | 2317 | Sgl_leftshiftby1(opnd3); | 
|  | 2318 | Sgl_normalize(opnd3,result_exponent); | 
|  | 2319 | Sgl_set_sign(opnd3,/*using*/sign_save); | 
|  | 2320 | Sgl_setwrapped_exponent(opnd3,result_exponent, | 
|  | 2321 | unfl); | 
|  | 2322 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 2323 | /* inexact = FALSE */ | 
|  | 2324 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 2325 | } | 
|  | 2326 | Sgl_copytoptr(opnd3,dstptr); | 
|  | 2327 | return(NOEXCEPTION); | 
|  | 2328 | } | 
|  | 2329 | /* is denormalized; want to normalize */ | 
|  | 2330 | Sgl_clear_signexponent(opnd2); | 
|  | 2331 | Sgl_leftshiftby1(opnd2); | 
|  | 2332 | Sgl_normalize(opnd2,mpy_exponent); | 
|  | 2333 | } | 
|  | 2334 |  | 
|  | 2335 | /* Multiply the first two source mantissas together */ | 
|  | 2336 |  | 
|  | 2337 | /* | 
|  | 2338 | * The intermediate result will be kept in tmpres, | 
|  | 2339 | * which needs enough room for 106 bits of mantissa, | 
|  | 2340 | * so lets call it a Double extended. | 
|  | 2341 | */ | 
|  | 2342 | Sglext_setzero(tmpresp1,tmpresp2); | 
|  | 2343 |  | 
|  | 2344 | /* | 
|  | 2345 | * Four bits at a time are inspected in each loop, and a | 
|  | 2346 | * simple shift and add multiply algorithm is used. | 
|  | 2347 | */ | 
|  | 2348 | for (count = SGL_P-1; count >= 0; count -= 4) { | 
|  | 2349 | Sglext_rightshiftby4(tmpresp1,tmpresp2); | 
|  | 2350 | if (Sbit28(opnd1)) { | 
|  | 2351 | /* Twoword_add should be an ADD followed by 2 ADDC's */ | 
|  | 2352 | Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); | 
|  | 2353 | } | 
|  | 2354 | if (Sbit29(opnd1)) { | 
|  | 2355 | Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); | 
|  | 2356 | } | 
|  | 2357 | if (Sbit30(opnd1)) { | 
|  | 2358 | Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); | 
|  | 2359 | } | 
|  | 2360 | if (Sbit31(opnd1)) { | 
|  | 2361 | Twoword_add(tmpresp1, tmpresp2, opnd2, 0); | 
|  | 2362 | } | 
|  | 2363 | Sgl_rightshiftby4(opnd1); | 
|  | 2364 | } | 
|  | 2365 | if (Is_sexthiddenoverflow(tmpresp1)) { | 
|  | 2366 | /* result mantissa >= 2 (mantissa overflow) */ | 
|  | 2367 | mpy_exponent++; | 
|  | 2368 | Sglext_rightshiftby4(tmpresp1,tmpresp2); | 
|  | 2369 | } else { | 
|  | 2370 | Sglext_rightshiftby3(tmpresp1,tmpresp2); | 
|  | 2371 | } | 
|  | 2372 |  | 
|  | 2373 | /* | 
|  | 2374 | * Restore the sign of the mpy result which was saved in resultp1. | 
|  | 2375 | * The exponent will continue to be kept in mpy_exponent. | 
|  | 2376 | */ | 
|  | 2377 | Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); | 
|  | 2378 |  | 
|  | 2379 | /* | 
|  | 2380 | * No rounding is required, since the result of the multiply | 
|  | 2381 | * is exact in the extended format. | 
|  | 2382 | */ | 
|  | 2383 |  | 
|  | 2384 | /* | 
|  | 2385 | * Now we are ready to perform the add portion of the operation. | 
|  | 2386 | * | 
|  | 2387 | * The exponents need to be kept as integers for now, since the | 
|  | 2388 | * multiply result might not fit into the exponent field.  We | 
|  | 2389 | * can't overflow or underflow because of this yet, since the | 
|  | 2390 | * add could bring the final result back into range. | 
|  | 2391 | */ | 
|  | 2392 | add_exponent = Sgl_exponent(opnd3); | 
|  | 2393 |  | 
|  | 2394 | /* | 
|  | 2395 | * Check for denormalized or zero add operand. | 
|  | 2396 | */ | 
|  | 2397 | if (add_exponent == 0) { | 
|  | 2398 | /* check for zero */ | 
|  | 2399 | if (Sgl_iszero_mantissa(opnd3)) { | 
|  | 2400 | /* right is zero */ | 
|  | 2401 | /* Left can't be zero and must be result. | 
|  | 2402 | * | 
|  | 2403 | * The final result is now in tmpres and mpy_exponent, | 
|  | 2404 | * and needs to be rounded and squeezed back into | 
|  | 2405 | * double precision format from double extended. | 
|  | 2406 | */ | 
|  | 2407 | result_exponent = mpy_exponent; | 
|  | 2408 | Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); | 
|  | 2409 | sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ | 
|  | 2410 | goto round; | 
|  | 2411 | } | 
|  | 2412 |  | 
|  | 2413 | /* | 
|  | 2414 | * Neither are zeroes. | 
|  | 2415 | * Adjust exponent and normalize add operand. | 
|  | 2416 | */ | 
|  | 2417 | sign_save = Sgl_signextendedsign(opnd3);	/* save sign */ | 
|  | 2418 | Sgl_clear_signexponent(opnd3); | 
|  | 2419 | Sgl_leftshiftby1(opnd3); | 
|  | 2420 | Sgl_normalize(opnd3,add_exponent); | 
|  | 2421 | Sgl_set_sign(opnd3,sign_save);		/* restore sign */ | 
|  | 2422 | } else { | 
|  | 2423 | Sgl_clear_exponent_set_hidden(opnd3); | 
|  | 2424 | } | 
|  | 2425 | /* | 
|  | 2426 | * Copy opnd3 to the double extended variable called right. | 
|  | 2427 | */ | 
|  | 2428 | Sgl_copyto_sglext(opnd3,rightp1,rightp2); | 
|  | 2429 |  | 
|  | 2430 | /* | 
|  | 2431 | * A zero "save" helps discover equal operands (for later), | 
|  | 2432 | * and is used in swapping operands (if needed). | 
|  | 2433 | */ | 
|  | 2434 | Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); | 
|  | 2435 |  | 
|  | 2436 | /* | 
|  | 2437 | * Compare magnitude of operands. | 
|  | 2438 | */ | 
|  | 2439 | Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); | 
|  | 2440 | Sglext_copytoint_exponentmantissa(rightp1,signlessright1); | 
|  | 2441 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | 
|  | 2442 | Sglext_ismagnitudeless(signlessleft1,signlessright1)) { | 
|  | 2443 | /* | 
|  | 2444 | * Set the left operand to the larger one by XOR swap. | 
|  | 2445 | * First finish the first word "save". | 
|  | 2446 | */ | 
|  | 2447 | Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); | 
|  | 2448 | Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | 
|  | 2449 | Sglext_swap_lower(tmpresp2,rightp2); | 
|  | 2450 | /* also setup exponents used in rest of routine */ | 
|  | 2451 | diff_exponent = add_exponent - mpy_exponent; | 
|  | 2452 | result_exponent = add_exponent; | 
|  | 2453 | } else { | 
|  | 2454 | /* also setup exponents used in rest of routine */ | 
|  | 2455 | diff_exponent = mpy_exponent - add_exponent; | 
|  | 2456 | result_exponent = mpy_exponent; | 
|  | 2457 | } | 
|  | 2458 | /* Invariant: left is not smaller than right. */ | 
|  | 2459 |  | 
|  | 2460 | /* | 
|  | 2461 | * Special case alignment of operands that would force alignment | 
|  | 2462 | * beyond the extent of the extension.  A further optimization | 
|  | 2463 | * could special case this but only reduces the path length for | 
|  | 2464 | * this infrequent case. | 
|  | 2465 | */ | 
|  | 2466 | if (diff_exponent > SGLEXT_THRESHOLD) { | 
|  | 2467 | diff_exponent = SGLEXT_THRESHOLD; | 
|  | 2468 | } | 
|  | 2469 |  | 
|  | 2470 | /* Align right operand by shifting it to the right */ | 
|  | 2471 | Sglext_clear_sign(rightp1); | 
|  | 2472 | Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); | 
|  | 2473 |  | 
|  | 2474 | /* Treat sum and difference of the operands separately. */ | 
|  | 2475 | if ((int)save < 0) { | 
|  | 2476 | /* | 
|  | 2477 | * Difference of the two operands.  Overflow can occur if the | 
|  | 2478 | * multiply overflowed.  A borrow can occur out of the hidden | 
|  | 2479 | * bit and force a post normalization phase. | 
|  | 2480 | */ | 
|  | 2481 | Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, | 
|  | 2482 | resultp1,resultp2); | 
|  | 2483 | sign_save = Sgl_signextendedsign(resultp1); | 
|  | 2484 | if (Sgl_iszero_hidden(resultp1)) { | 
|  | 2485 | /* Handle normalization */ | 
| Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 2486 | /* A straightforward algorithm would now shift the | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2487 | * result and extension left until the hidden bit | 
|  | 2488 | * becomes one.  Not all of the extension bits need | 
|  | 2489 | * participate in the shift.  Only the two most | 
|  | 2490 | * significant bits (round and guard) are needed. | 
|  | 2491 | * If only a single shift is needed then the guard | 
|  | 2492 | * bit becomes a significant low order bit and the | 
|  | 2493 | * extension must participate in the rounding. | 
|  | 2494 | * If more than a single shift is needed, then all | 
|  | 2495 | * bits to the right of the guard bit are zeros, | 
|  | 2496 | * and the guard bit may or may not be zero. */ | 
|  | 2497 | Sglext_leftshiftby1(resultp1,resultp2); | 
|  | 2498 |  | 
|  | 2499 | /* Need to check for a zero result.  The sign and | 
|  | 2500 | * exponent fields have already been zeroed.  The more | 
|  | 2501 | * efficient test of the full object can be used. | 
|  | 2502 | */ | 
|  | 2503 | if (Sglext_iszero(resultp1,resultp2)) { | 
|  | 2504 | /* Must have been "x-x" or "x+(-x)". */ | 
|  | 2505 | if (Is_rounding_mode(ROUNDMINUS)) | 
|  | 2506 | Sgl_setone_sign(resultp1); | 
|  | 2507 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2508 | return(NOEXCEPTION); | 
|  | 2509 | } | 
|  | 2510 | result_exponent--; | 
|  | 2511 |  | 
|  | 2512 | /* Look to see if normalization is finished. */ | 
|  | 2513 | if (Sgl_isone_hidden(resultp1)) { | 
|  | 2514 | /* No further normalization is needed */ | 
|  | 2515 | goto round; | 
|  | 2516 | } | 
|  | 2517 |  | 
|  | 2518 | /* Discover first one bit to determine shift amount. | 
|  | 2519 | * Use a modified binary search.  We have already | 
|  | 2520 | * shifted the result one position right and still | 
|  | 2521 | * not found a one so the remainder of the extension | 
|  | 2522 | * must be zero and simplifies rounding. */ | 
|  | 2523 | /* Scan bytes */ | 
|  | 2524 | while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { | 
|  | 2525 | Sglext_leftshiftby8(resultp1,resultp2); | 
|  | 2526 | result_exponent -= 8; | 
|  | 2527 | } | 
|  | 2528 | /* Now narrow it down to the nibble */ | 
|  | 2529 | if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { | 
|  | 2530 | /* The lower nibble contains the | 
|  | 2531 | * normalizing one */ | 
|  | 2532 | Sglext_leftshiftby4(resultp1,resultp2); | 
|  | 2533 | result_exponent -= 4; | 
|  | 2534 | } | 
|  | 2535 | /* Select case where first bit is set (already | 
|  | 2536 | * normalized) otherwise select the proper shift. */ | 
|  | 2537 | jumpsize = Sgl_hiddenhigh3mantissa(resultp1); | 
|  | 2538 | if (jumpsize <= 7) switch(jumpsize) { | 
|  | 2539 | case 1: | 
|  | 2540 | Sglext_leftshiftby3(resultp1,resultp2); | 
|  | 2541 | result_exponent -= 3; | 
|  | 2542 | break; | 
|  | 2543 | case 2: | 
|  | 2544 | case 3: | 
|  | 2545 | Sglext_leftshiftby2(resultp1,resultp2); | 
|  | 2546 | result_exponent -= 2; | 
|  | 2547 | break; | 
|  | 2548 | case 4: | 
|  | 2549 | case 5: | 
|  | 2550 | case 6: | 
|  | 2551 | case 7: | 
|  | 2552 | Sglext_leftshiftby1(resultp1,resultp2); | 
|  | 2553 | result_exponent -= 1; | 
|  | 2554 | break; | 
|  | 2555 | } | 
|  | 2556 | } /* end if (hidden...)... */ | 
|  | 2557 | /* Fall through and round */ | 
|  | 2558 | } /* end if (save < 0)... */ | 
|  | 2559 | else { | 
|  | 2560 | /* Add magnitudes */ | 
|  | 2561 | Sglext_addition(tmpresp1,tmpresp2, | 
|  | 2562 | rightp1,rightp2, /*to*/resultp1,resultp2); | 
|  | 2563 | sign_save = Sgl_signextendedsign(resultp1); | 
|  | 2564 | if (Sgl_isone_hiddenoverflow(resultp1)) { | 
|  | 2565 | /* Prenormalization required. */ | 
|  | 2566 | Sglext_arithrightshiftby1(resultp1,resultp2); | 
|  | 2567 | result_exponent++; | 
|  | 2568 | } /* end if hiddenoverflow... */ | 
|  | 2569 | } /* end else ...add magnitudes... */ | 
|  | 2570 |  | 
|  | 2571 | /* Round the result.  If the extension and lower two words are | 
|  | 2572 | * all zeros, then the result is exact.  Otherwise round in the | 
|  | 2573 | * correct direction.  Underflow is possible. If a postnormalization | 
|  | 2574 | * is necessary, then the mantissa is all zeros so no shift is needed. | 
|  | 2575 | */ | 
|  | 2576 | round: | 
|  | 2577 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | 
|  | 2578 | Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); | 
|  | 2579 | } | 
|  | 2580 | Sgl_set_sign(resultp1,/*using*/sign_save); | 
|  | 2581 | if (Sglext_isnotzero_mantissap2(resultp2)) { | 
|  | 2582 | inexact = TRUE; | 
|  | 2583 | switch(Rounding_mode()) { | 
|  | 2584 | case ROUNDNEAREST: /* The default. */ | 
|  | 2585 | if (Sglext_isone_highp2(resultp2)) { | 
|  | 2586 | /* at least 1/2 ulp */ | 
|  | 2587 | if (Sglext_isnotzero_low31p2(resultp2) || | 
|  | 2588 | Sglext_isone_lowp1(resultp1)) { | 
|  | 2589 | /* either exactly half way and odd or | 
|  | 2590 | * more than 1/2ulp */ | 
|  | 2591 | Sgl_increment(resultp1); | 
|  | 2592 | } | 
|  | 2593 | } | 
|  | 2594 | break; | 
|  | 2595 |  | 
|  | 2596 | case ROUNDPLUS: | 
|  | 2597 | if (Sgl_iszero_sign(resultp1)) { | 
|  | 2598 | /* Round up positive results */ | 
|  | 2599 | Sgl_increment(resultp1); | 
|  | 2600 | } | 
|  | 2601 | break; | 
|  | 2602 |  | 
|  | 2603 | case ROUNDMINUS: | 
|  | 2604 | if (Sgl_isone_sign(resultp1)) { | 
|  | 2605 | /* Round down negative results */ | 
|  | 2606 | Sgl_increment(resultp1); | 
|  | 2607 | } | 
|  | 2608 |  | 
|  | 2609 | case ROUNDZERO:; | 
|  | 2610 | /* truncate is simple */ | 
|  | 2611 | } /* end switch... */ | 
|  | 2612 | if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
|  | 2613 | } | 
|  | 2614 | if (result_exponent >= SGL_INFINITY_EXPONENT) { | 
|  | 2615 | /* Overflow */ | 
|  | 2616 | if (Is_overflowtrap_enabled()) { | 
|  | 2617 | /* | 
|  | 2618 | * Adjust bias of result | 
|  | 2619 | */ | 
|  | 2620 | Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
|  | 2621 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2622 | if (inexact) | 
|  | 2623 | if (Is_inexacttrap_enabled()) | 
|  | 2624 | return (OPC_2E_OVERFLOWEXCEPTION | | 
|  | 2625 | OPC_2E_INEXACTEXCEPTION); | 
|  | 2626 | else Set_inexactflag(); | 
|  | 2627 | return (OPC_2E_OVERFLOWEXCEPTION); | 
|  | 2628 | } | 
|  | 2629 | inexact = TRUE; | 
|  | 2630 | Set_overflowflag(); | 
|  | 2631 | Sgl_setoverflow(resultp1); | 
|  | 2632 | } else if (result_exponent <= 0) {	/* underflow case */ | 
|  | 2633 | if (Is_underflowtrap_enabled()) { | 
|  | 2634 | /* | 
|  | 2635 | * Adjust bias of result | 
|  | 2636 | */ | 
|  | 2637 | Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
|  | 2638 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2639 | if (inexact) | 
|  | 2640 | if (Is_inexacttrap_enabled()) | 
|  | 2641 | return (OPC_2E_UNDERFLOWEXCEPTION | | 
|  | 2642 | OPC_2E_INEXACTEXCEPTION); | 
|  | 2643 | else Set_inexactflag(); | 
|  | 2644 | return(OPC_2E_UNDERFLOWEXCEPTION); | 
|  | 2645 | } | 
|  | 2646 | else if (inexact && is_tiny) Set_underflowflag(); | 
|  | 2647 | } | 
|  | 2648 | else Sgl_set_exponent(resultp1,result_exponent); | 
|  | 2649 | Sgl_copytoptr(resultp1,dstptr); | 
|  | 2650 | if (inexact) | 
|  | 2651 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | 
|  | 2652 | else Set_inexactflag(); | 
|  | 2653 | return(NOEXCEPTION); | 
|  | 2654 | } | 
|  | 2655 |  |