| Jesse Gross | ccb1352 | 2011-10-25 19:26:31 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (c) 2007-2011 Nicira Networks. | 
 | 3 |  * | 
 | 4 |  * This program is free software; you can redistribute it and/or | 
 | 5 |  * modify it under the terms of version 2 of the GNU General Public | 
 | 6 |  * License as published by the Free Software Foundation. | 
 | 7 |  * | 
 | 8 |  * This program is distributed in the hope that it will be useful, but | 
 | 9 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 10 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
 | 11 |  * General Public License for more details. | 
 | 12 |  * | 
 | 13 |  * You should have received a copy of the GNU General Public License | 
 | 14 |  * along with this program; if not, write to the Free Software | 
 | 15 |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
 | 16 |  * 02110-1301, USA | 
 | 17 |  */ | 
 | 18 |  | 
 | 19 | #include "flow.h" | 
 | 20 | #include "datapath.h" | 
 | 21 | #include <linux/uaccess.h> | 
 | 22 | #include <linux/netdevice.h> | 
 | 23 | #include <linux/etherdevice.h> | 
 | 24 | #include <linux/if_ether.h> | 
 | 25 | #include <linux/if_vlan.h> | 
 | 26 | #include <net/llc_pdu.h> | 
 | 27 | #include <linux/kernel.h> | 
 | 28 | #include <linux/jhash.h> | 
 | 29 | #include <linux/jiffies.h> | 
 | 30 | #include <linux/llc.h> | 
 | 31 | #include <linux/module.h> | 
 | 32 | #include <linux/in.h> | 
 | 33 | #include <linux/rcupdate.h> | 
 | 34 | #include <linux/if_arp.h> | 
| Jesse Gross | ccb1352 | 2011-10-25 19:26:31 -0700 | [diff] [blame] | 35 | #include <linux/ip.h> | 
 | 36 | #include <linux/ipv6.h> | 
 | 37 | #include <linux/tcp.h> | 
 | 38 | #include <linux/udp.h> | 
 | 39 | #include <linux/icmp.h> | 
 | 40 | #include <linux/icmpv6.h> | 
 | 41 | #include <linux/rculist.h> | 
 | 42 | #include <net/ip.h> | 
 | 43 | #include <net/ipv6.h> | 
 | 44 | #include <net/ndisc.h> | 
 | 45 |  | 
 | 46 | static struct kmem_cache *flow_cache; | 
 | 47 |  | 
 | 48 | static int check_header(struct sk_buff *skb, int len) | 
 | 49 | { | 
 | 50 | 	if (unlikely(skb->len < len)) | 
 | 51 | 		return -EINVAL; | 
 | 52 | 	if (unlikely(!pskb_may_pull(skb, len))) | 
 | 53 | 		return -ENOMEM; | 
 | 54 | 	return 0; | 
 | 55 | } | 
 | 56 |  | 
 | 57 | static bool arphdr_ok(struct sk_buff *skb) | 
 | 58 | { | 
 | 59 | 	return pskb_may_pull(skb, skb_network_offset(skb) + | 
 | 60 | 				  sizeof(struct arp_eth_header)); | 
 | 61 | } | 
 | 62 |  | 
 | 63 | static int check_iphdr(struct sk_buff *skb) | 
 | 64 | { | 
 | 65 | 	unsigned int nh_ofs = skb_network_offset(skb); | 
 | 66 | 	unsigned int ip_len; | 
 | 67 | 	int err; | 
 | 68 |  | 
 | 69 | 	err = check_header(skb, nh_ofs + sizeof(struct iphdr)); | 
 | 70 | 	if (unlikely(err)) | 
 | 71 | 		return err; | 
 | 72 |  | 
 | 73 | 	ip_len = ip_hdrlen(skb); | 
 | 74 | 	if (unlikely(ip_len < sizeof(struct iphdr) || | 
 | 75 | 		     skb->len < nh_ofs + ip_len)) | 
 | 76 | 		return -EINVAL; | 
 | 77 |  | 
 | 78 | 	skb_set_transport_header(skb, nh_ofs + ip_len); | 
 | 79 | 	return 0; | 
 | 80 | } | 
 | 81 |  | 
 | 82 | static bool tcphdr_ok(struct sk_buff *skb) | 
 | 83 | { | 
 | 84 | 	int th_ofs = skb_transport_offset(skb); | 
 | 85 | 	int tcp_len; | 
 | 86 |  | 
 | 87 | 	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) | 
 | 88 | 		return false; | 
 | 89 |  | 
 | 90 | 	tcp_len = tcp_hdrlen(skb); | 
 | 91 | 	if (unlikely(tcp_len < sizeof(struct tcphdr) || | 
 | 92 | 		     skb->len < th_ofs + tcp_len)) | 
 | 93 | 		return false; | 
 | 94 |  | 
 | 95 | 	return true; | 
 | 96 | } | 
 | 97 |  | 
 | 98 | static bool udphdr_ok(struct sk_buff *skb) | 
 | 99 | { | 
 | 100 | 	return pskb_may_pull(skb, skb_transport_offset(skb) + | 
 | 101 | 				  sizeof(struct udphdr)); | 
 | 102 | } | 
 | 103 |  | 
 | 104 | static bool icmphdr_ok(struct sk_buff *skb) | 
 | 105 | { | 
 | 106 | 	return pskb_may_pull(skb, skb_transport_offset(skb) + | 
 | 107 | 				  sizeof(struct icmphdr)); | 
 | 108 | } | 
 | 109 |  | 
 | 110 | u64 ovs_flow_used_time(unsigned long flow_jiffies) | 
 | 111 | { | 
 | 112 | 	struct timespec cur_ts; | 
 | 113 | 	u64 cur_ms, idle_ms; | 
 | 114 |  | 
 | 115 | 	ktime_get_ts(&cur_ts); | 
 | 116 | 	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); | 
 | 117 | 	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + | 
 | 118 | 		 cur_ts.tv_nsec / NSEC_PER_MSEC; | 
 | 119 |  | 
 | 120 | 	return cur_ms - idle_ms; | 
 | 121 | } | 
 | 122 |  | 
 | 123 | #define SW_FLOW_KEY_OFFSET(field)		\ | 
 | 124 | 	(offsetof(struct sw_flow_key, field) +	\ | 
 | 125 | 	 FIELD_SIZEOF(struct sw_flow_key, field)) | 
 | 126 |  | 
 | 127 | static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 128 | 			 int *key_lenp) | 
 | 129 | { | 
 | 130 | 	unsigned int nh_ofs = skb_network_offset(skb); | 
 | 131 | 	unsigned int nh_len; | 
 | 132 | 	int payload_ofs; | 
 | 133 | 	struct ipv6hdr *nh; | 
 | 134 | 	uint8_t nexthdr; | 
 | 135 | 	__be16 frag_off; | 
 | 136 | 	int err; | 
 | 137 |  | 
 | 138 | 	*key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); | 
 | 139 |  | 
 | 140 | 	err = check_header(skb, nh_ofs + sizeof(*nh)); | 
 | 141 | 	if (unlikely(err)) | 
 | 142 | 		return err; | 
 | 143 |  | 
 | 144 | 	nh = ipv6_hdr(skb); | 
 | 145 | 	nexthdr = nh->nexthdr; | 
 | 146 | 	payload_ofs = (u8 *)(nh + 1) - skb->data; | 
 | 147 |  | 
 | 148 | 	key->ip.proto = NEXTHDR_NONE; | 
 | 149 | 	key->ip.tos = ipv6_get_dsfield(nh); | 
 | 150 | 	key->ip.ttl = nh->hop_limit; | 
 | 151 | 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); | 
 | 152 | 	key->ipv6.addr.src = nh->saddr; | 
 | 153 | 	key->ipv6.addr.dst = nh->daddr; | 
 | 154 |  | 
 | 155 | 	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); | 
 | 156 | 	if (unlikely(payload_ofs < 0)) | 
 | 157 | 		return -EINVAL; | 
 | 158 |  | 
 | 159 | 	if (frag_off) { | 
 | 160 | 		if (frag_off & htons(~0x7)) | 
 | 161 | 			key->ip.frag = OVS_FRAG_TYPE_LATER; | 
 | 162 | 		else | 
 | 163 | 			key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
 | 164 | 	} | 
 | 165 |  | 
 | 166 | 	nh_len = payload_ofs - nh_ofs; | 
 | 167 | 	skb_set_transport_header(skb, nh_ofs + nh_len); | 
 | 168 | 	key->ip.proto = nexthdr; | 
 | 169 | 	return nh_len; | 
 | 170 | } | 
 | 171 |  | 
 | 172 | static bool icmp6hdr_ok(struct sk_buff *skb) | 
 | 173 | { | 
 | 174 | 	return pskb_may_pull(skb, skb_transport_offset(skb) + | 
 | 175 | 				  sizeof(struct icmp6hdr)); | 
 | 176 | } | 
 | 177 |  | 
 | 178 | #define TCP_FLAGS_OFFSET 13 | 
 | 179 | #define TCP_FLAG_MASK 0x3f | 
 | 180 |  | 
 | 181 | void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) | 
 | 182 | { | 
 | 183 | 	u8 tcp_flags = 0; | 
 | 184 |  | 
 | 185 | 	if (flow->key.eth.type == htons(ETH_P_IP) && | 
 | 186 | 	    flow->key.ip.proto == IPPROTO_TCP) { | 
 | 187 | 		u8 *tcp = (u8 *)tcp_hdr(skb); | 
 | 188 | 		tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; | 
 | 189 | 	} | 
 | 190 |  | 
 | 191 | 	spin_lock(&flow->lock); | 
 | 192 | 	flow->used = jiffies; | 
 | 193 | 	flow->packet_count++; | 
 | 194 | 	flow->byte_count += skb->len; | 
 | 195 | 	flow->tcp_flags |= tcp_flags; | 
 | 196 | 	spin_unlock(&flow->lock); | 
 | 197 | } | 
 | 198 |  | 
 | 199 | struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) | 
 | 200 | { | 
 | 201 | 	int actions_len = nla_len(actions); | 
 | 202 | 	struct sw_flow_actions *sfa; | 
 | 203 |  | 
 | 204 | 	/* At least DP_MAX_PORTS actions are required to be able to flood a | 
 | 205 | 	 * packet to every port.  Factor of 2 allows for setting VLAN tags, | 
 | 206 | 	 * etc. */ | 
 | 207 | 	if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4)) | 
 | 208 | 		return ERR_PTR(-EINVAL); | 
 | 209 |  | 
 | 210 | 	sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); | 
 | 211 | 	if (!sfa) | 
 | 212 | 		return ERR_PTR(-ENOMEM); | 
 | 213 |  | 
 | 214 | 	sfa->actions_len = actions_len; | 
 | 215 | 	memcpy(sfa->actions, nla_data(actions), actions_len); | 
 | 216 | 	return sfa; | 
 | 217 | } | 
 | 218 |  | 
 | 219 | struct sw_flow *ovs_flow_alloc(void) | 
 | 220 | { | 
 | 221 | 	struct sw_flow *flow; | 
 | 222 |  | 
 | 223 | 	flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); | 
 | 224 | 	if (!flow) | 
 | 225 | 		return ERR_PTR(-ENOMEM); | 
 | 226 |  | 
 | 227 | 	spin_lock_init(&flow->lock); | 
 | 228 | 	flow->sf_acts = NULL; | 
 | 229 |  | 
 | 230 | 	return flow; | 
 | 231 | } | 
 | 232 |  | 
 | 233 | static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) | 
 | 234 | { | 
 | 235 | 	hash = jhash_1word(hash, table->hash_seed); | 
 | 236 | 	return flex_array_get(table->buckets, | 
 | 237 | 				(hash & (table->n_buckets - 1))); | 
 | 238 | } | 
 | 239 |  | 
 | 240 | static struct flex_array *alloc_buckets(unsigned int n_buckets) | 
 | 241 | { | 
 | 242 | 	struct flex_array *buckets; | 
 | 243 | 	int i, err; | 
 | 244 |  | 
 | 245 | 	buckets = flex_array_alloc(sizeof(struct hlist_head *), | 
 | 246 | 				   n_buckets, GFP_KERNEL); | 
 | 247 | 	if (!buckets) | 
 | 248 | 		return NULL; | 
 | 249 |  | 
 | 250 | 	err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); | 
 | 251 | 	if (err) { | 
 | 252 | 		flex_array_free(buckets); | 
 | 253 | 		return NULL; | 
 | 254 | 	} | 
 | 255 |  | 
 | 256 | 	for (i = 0; i < n_buckets; i++) | 
 | 257 | 		INIT_HLIST_HEAD((struct hlist_head *) | 
 | 258 | 					flex_array_get(buckets, i)); | 
 | 259 |  | 
 | 260 | 	return buckets; | 
 | 261 | } | 
 | 262 |  | 
 | 263 | static void free_buckets(struct flex_array *buckets) | 
 | 264 | { | 
 | 265 | 	flex_array_free(buckets); | 
 | 266 | } | 
 | 267 |  | 
 | 268 | struct flow_table *ovs_flow_tbl_alloc(int new_size) | 
 | 269 | { | 
 | 270 | 	struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); | 
 | 271 |  | 
 | 272 | 	if (!table) | 
 | 273 | 		return NULL; | 
 | 274 |  | 
 | 275 | 	table->buckets = alloc_buckets(new_size); | 
 | 276 |  | 
 | 277 | 	if (!table->buckets) { | 
 | 278 | 		kfree(table); | 
 | 279 | 		return NULL; | 
 | 280 | 	} | 
 | 281 | 	table->n_buckets = new_size; | 
 | 282 | 	table->count = 0; | 
 | 283 | 	table->node_ver = 0; | 
 | 284 | 	table->keep_flows = false; | 
 | 285 | 	get_random_bytes(&table->hash_seed, sizeof(u32)); | 
 | 286 |  | 
 | 287 | 	return table; | 
 | 288 | } | 
 | 289 |  | 
 | 290 | void ovs_flow_tbl_destroy(struct flow_table *table) | 
 | 291 | { | 
 | 292 | 	int i; | 
 | 293 |  | 
 | 294 | 	if (!table) | 
 | 295 | 		return; | 
 | 296 |  | 
 | 297 | 	if (table->keep_flows) | 
 | 298 | 		goto skip_flows; | 
 | 299 |  | 
 | 300 | 	for (i = 0; i < table->n_buckets; i++) { | 
 | 301 | 		struct sw_flow *flow; | 
 | 302 | 		struct hlist_head *head = flex_array_get(table->buckets, i); | 
 | 303 | 		struct hlist_node *node, *n; | 
 | 304 | 		int ver = table->node_ver; | 
 | 305 |  | 
 | 306 | 		hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) { | 
 | 307 | 			hlist_del_rcu(&flow->hash_node[ver]); | 
 | 308 | 			ovs_flow_free(flow); | 
 | 309 | 		} | 
 | 310 | 	} | 
 | 311 |  | 
 | 312 | skip_flows: | 
 | 313 | 	free_buckets(table->buckets); | 
 | 314 | 	kfree(table); | 
 | 315 | } | 
 | 316 |  | 
 | 317 | static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) | 
 | 318 | { | 
 | 319 | 	struct flow_table *table = container_of(rcu, struct flow_table, rcu); | 
 | 320 |  | 
 | 321 | 	ovs_flow_tbl_destroy(table); | 
 | 322 | } | 
 | 323 |  | 
 | 324 | void ovs_flow_tbl_deferred_destroy(struct flow_table *table) | 
 | 325 | { | 
 | 326 | 	if (!table) | 
 | 327 | 		return; | 
 | 328 |  | 
 | 329 | 	call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); | 
 | 330 | } | 
 | 331 |  | 
 | 332 | struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) | 
 | 333 | { | 
 | 334 | 	struct sw_flow *flow; | 
 | 335 | 	struct hlist_head *head; | 
 | 336 | 	struct hlist_node *n; | 
 | 337 | 	int ver; | 
 | 338 | 	int i; | 
 | 339 |  | 
 | 340 | 	ver = table->node_ver; | 
 | 341 | 	while (*bucket < table->n_buckets) { | 
 | 342 | 		i = 0; | 
 | 343 | 		head = flex_array_get(table->buckets, *bucket); | 
 | 344 | 		hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) { | 
 | 345 | 			if (i < *last) { | 
 | 346 | 				i++; | 
 | 347 | 				continue; | 
 | 348 | 			} | 
 | 349 | 			*last = i + 1; | 
 | 350 | 			return flow; | 
 | 351 | 		} | 
 | 352 | 		(*bucket)++; | 
 | 353 | 		*last = 0; | 
 | 354 | 	} | 
 | 355 |  | 
 | 356 | 	return NULL; | 
 | 357 | } | 
 | 358 |  | 
 | 359 | static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) | 
 | 360 | { | 
 | 361 | 	int old_ver; | 
 | 362 | 	int i; | 
 | 363 |  | 
 | 364 | 	old_ver = old->node_ver; | 
 | 365 | 	new->node_ver = !old_ver; | 
 | 366 |  | 
 | 367 | 	/* Insert in new table. */ | 
 | 368 | 	for (i = 0; i < old->n_buckets; i++) { | 
 | 369 | 		struct sw_flow *flow; | 
 | 370 | 		struct hlist_head *head; | 
 | 371 | 		struct hlist_node *n; | 
 | 372 |  | 
 | 373 | 		head = flex_array_get(old->buckets, i); | 
 | 374 |  | 
 | 375 | 		hlist_for_each_entry(flow, n, head, hash_node[old_ver]) | 
 | 376 | 			ovs_flow_tbl_insert(new, flow); | 
 | 377 | 	} | 
 | 378 | 	old->keep_flows = true; | 
 | 379 | } | 
 | 380 |  | 
 | 381 | static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) | 
 | 382 | { | 
 | 383 | 	struct flow_table *new_table; | 
 | 384 |  | 
 | 385 | 	new_table = ovs_flow_tbl_alloc(n_buckets); | 
 | 386 | 	if (!new_table) | 
 | 387 | 		return ERR_PTR(-ENOMEM); | 
 | 388 |  | 
 | 389 | 	flow_table_copy_flows(table, new_table); | 
 | 390 |  | 
 | 391 | 	return new_table; | 
 | 392 | } | 
 | 393 |  | 
 | 394 | struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) | 
 | 395 | { | 
 | 396 | 	return __flow_tbl_rehash(table, table->n_buckets); | 
 | 397 | } | 
 | 398 |  | 
 | 399 | struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) | 
 | 400 | { | 
 | 401 | 	return __flow_tbl_rehash(table, table->n_buckets * 2); | 
 | 402 | } | 
 | 403 |  | 
 | 404 | void ovs_flow_free(struct sw_flow *flow) | 
 | 405 | { | 
 | 406 | 	if (unlikely(!flow)) | 
 | 407 | 		return; | 
 | 408 |  | 
 | 409 | 	kfree((struct sf_flow_acts __force *)flow->sf_acts); | 
 | 410 | 	kmem_cache_free(flow_cache, flow); | 
 | 411 | } | 
 | 412 |  | 
 | 413 | /* RCU callback used by ovs_flow_deferred_free. */ | 
 | 414 | static void rcu_free_flow_callback(struct rcu_head *rcu) | 
 | 415 | { | 
 | 416 | 	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); | 
 | 417 |  | 
 | 418 | 	ovs_flow_free(flow); | 
 | 419 | } | 
 | 420 |  | 
 | 421 | /* Schedules 'flow' to be freed after the next RCU grace period. | 
 | 422 |  * The caller must hold rcu_read_lock for this to be sensible. */ | 
 | 423 | void ovs_flow_deferred_free(struct sw_flow *flow) | 
 | 424 | { | 
 | 425 | 	call_rcu(&flow->rcu, rcu_free_flow_callback); | 
 | 426 | } | 
 | 427 |  | 
 | 428 | /* RCU callback used by ovs_flow_deferred_free_acts. */ | 
 | 429 | static void rcu_free_acts_callback(struct rcu_head *rcu) | 
 | 430 | { | 
 | 431 | 	struct sw_flow_actions *sf_acts = container_of(rcu, | 
 | 432 | 			struct sw_flow_actions, rcu); | 
 | 433 | 	kfree(sf_acts); | 
 | 434 | } | 
 | 435 |  | 
 | 436 | /* Schedules 'sf_acts' to be freed after the next RCU grace period. | 
 | 437 |  * The caller must hold rcu_read_lock for this to be sensible. */ | 
 | 438 | void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) | 
 | 439 | { | 
 | 440 | 	call_rcu(&sf_acts->rcu, rcu_free_acts_callback); | 
 | 441 | } | 
 | 442 |  | 
 | 443 | static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) | 
 | 444 | { | 
 | 445 | 	struct qtag_prefix { | 
 | 446 | 		__be16 eth_type; /* ETH_P_8021Q */ | 
 | 447 | 		__be16 tci; | 
 | 448 | 	}; | 
 | 449 | 	struct qtag_prefix *qp; | 
 | 450 |  | 
 | 451 | 	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) | 
 | 452 | 		return 0; | 
 | 453 |  | 
 | 454 | 	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + | 
 | 455 | 					 sizeof(__be16)))) | 
 | 456 | 		return -ENOMEM; | 
 | 457 |  | 
 | 458 | 	qp = (struct qtag_prefix *) skb->data; | 
 | 459 | 	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); | 
 | 460 | 	__skb_pull(skb, sizeof(struct qtag_prefix)); | 
 | 461 |  | 
 | 462 | 	return 0; | 
 | 463 | } | 
 | 464 |  | 
 | 465 | static __be16 parse_ethertype(struct sk_buff *skb) | 
 | 466 | { | 
 | 467 | 	struct llc_snap_hdr { | 
 | 468 | 		u8  dsap;  /* Always 0xAA */ | 
 | 469 | 		u8  ssap;  /* Always 0xAA */ | 
 | 470 | 		u8  ctrl; | 
 | 471 | 		u8  oui[3]; | 
 | 472 | 		__be16 ethertype; | 
 | 473 | 	}; | 
 | 474 | 	struct llc_snap_hdr *llc; | 
 | 475 | 	__be16 proto; | 
 | 476 |  | 
 | 477 | 	proto = *(__be16 *) skb->data; | 
 | 478 | 	__skb_pull(skb, sizeof(__be16)); | 
 | 479 |  | 
 | 480 | 	if (ntohs(proto) >= 1536) | 
 | 481 | 		return proto; | 
 | 482 |  | 
 | 483 | 	if (skb->len < sizeof(struct llc_snap_hdr)) | 
 | 484 | 		return htons(ETH_P_802_2); | 
 | 485 |  | 
 | 486 | 	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) | 
 | 487 | 		return htons(0); | 
 | 488 |  | 
 | 489 | 	llc = (struct llc_snap_hdr *) skb->data; | 
 | 490 | 	if (llc->dsap != LLC_SAP_SNAP || | 
 | 491 | 	    llc->ssap != LLC_SAP_SNAP || | 
 | 492 | 	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) | 
 | 493 | 		return htons(ETH_P_802_2); | 
 | 494 |  | 
 | 495 | 	__skb_pull(skb, sizeof(struct llc_snap_hdr)); | 
 | 496 | 	return llc->ethertype; | 
 | 497 | } | 
 | 498 |  | 
 | 499 | static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 500 | 			int *key_lenp, int nh_len) | 
 | 501 | { | 
 | 502 | 	struct icmp6hdr *icmp = icmp6_hdr(skb); | 
 | 503 | 	int error = 0; | 
 | 504 | 	int key_len; | 
 | 505 |  | 
 | 506 | 	/* The ICMPv6 type and code fields use the 16-bit transport port | 
 | 507 | 	 * fields, so we need to store them in 16-bit network byte order. | 
 | 508 | 	 */ | 
 | 509 | 	key->ipv6.tp.src = htons(icmp->icmp6_type); | 
 | 510 | 	key->ipv6.tp.dst = htons(icmp->icmp6_code); | 
 | 511 | 	key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
 | 512 |  | 
 | 513 | 	if (icmp->icmp6_code == 0 && | 
 | 514 | 	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || | 
 | 515 | 	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { | 
 | 516 | 		int icmp_len = skb->len - skb_transport_offset(skb); | 
 | 517 | 		struct nd_msg *nd; | 
 | 518 | 		int offset; | 
 | 519 |  | 
 | 520 | 		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | 
 | 521 |  | 
 | 522 | 		/* In order to process neighbor discovery options, we need the | 
 | 523 | 		 * entire packet. | 
 | 524 | 		 */ | 
 | 525 | 		if (unlikely(icmp_len < sizeof(*nd))) | 
 | 526 | 			goto out; | 
 | 527 | 		if (unlikely(skb_linearize(skb))) { | 
 | 528 | 			error = -ENOMEM; | 
 | 529 | 			goto out; | 
 | 530 | 		} | 
 | 531 |  | 
 | 532 | 		nd = (struct nd_msg *)skb_transport_header(skb); | 
 | 533 | 		key->ipv6.nd.target = nd->target; | 
 | 534 | 		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | 
 | 535 |  | 
 | 536 | 		icmp_len -= sizeof(*nd); | 
 | 537 | 		offset = 0; | 
 | 538 | 		while (icmp_len >= 8) { | 
 | 539 | 			struct nd_opt_hdr *nd_opt = | 
 | 540 | 				 (struct nd_opt_hdr *)(nd->opt + offset); | 
 | 541 | 			int opt_len = nd_opt->nd_opt_len * 8; | 
 | 542 |  | 
 | 543 | 			if (unlikely(!opt_len || opt_len > icmp_len)) | 
 | 544 | 				goto invalid; | 
 | 545 |  | 
 | 546 | 			/* Store the link layer address if the appropriate | 
 | 547 | 			 * option is provided.  It is considered an error if | 
 | 548 | 			 * the same link layer option is specified twice. | 
 | 549 | 			 */ | 
 | 550 | 			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR | 
 | 551 | 			    && opt_len == 8) { | 
 | 552 | 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) | 
 | 553 | 					goto invalid; | 
 | 554 | 				memcpy(key->ipv6.nd.sll, | 
 | 555 | 				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); | 
 | 556 | 			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR | 
 | 557 | 				   && opt_len == 8) { | 
 | 558 | 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) | 
 | 559 | 					goto invalid; | 
 | 560 | 				memcpy(key->ipv6.nd.tll, | 
 | 561 | 				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); | 
 | 562 | 			} | 
 | 563 |  | 
 | 564 | 			icmp_len -= opt_len; | 
 | 565 | 			offset += opt_len; | 
 | 566 | 		} | 
 | 567 | 	} | 
 | 568 |  | 
 | 569 | 	goto out; | 
 | 570 |  | 
 | 571 | invalid: | 
 | 572 | 	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); | 
 | 573 | 	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); | 
 | 574 | 	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); | 
 | 575 |  | 
 | 576 | out: | 
 | 577 | 	*key_lenp = key_len; | 
 | 578 | 	return error; | 
 | 579 | } | 
 | 580 |  | 
 | 581 | /** | 
 | 582 |  * ovs_flow_extract - extracts a flow key from an Ethernet frame. | 
 | 583 |  * @skb: sk_buff that contains the frame, with skb->data pointing to the | 
 | 584 |  * Ethernet header | 
 | 585 |  * @in_port: port number on which @skb was received. | 
 | 586 |  * @key: output flow key | 
 | 587 |  * @key_lenp: length of output flow key | 
 | 588 |  * | 
 | 589 |  * The caller must ensure that skb->len >= ETH_HLEN. | 
 | 590 |  * | 
 | 591 |  * Returns 0 if successful, otherwise a negative errno value. | 
 | 592 |  * | 
 | 593 |  * Initializes @skb header pointers as follows: | 
 | 594 |  * | 
 | 595 |  *    - skb->mac_header: the Ethernet header. | 
 | 596 |  * | 
 | 597 |  *    - skb->network_header: just past the Ethernet header, or just past the | 
 | 598 |  *      VLAN header, to the first byte of the Ethernet payload. | 
 | 599 |  * | 
 | 600 |  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 | 
 | 601 |  *      on output, then just past the IP header, if one is present and | 
 | 602 |  *      of a correct length, otherwise the same as skb->network_header. | 
 | 603 |  *      For other key->dl_type values it is left untouched. | 
 | 604 |  */ | 
 | 605 | int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, | 
 | 606 | 		 int *key_lenp) | 
 | 607 | { | 
 | 608 | 	int error = 0; | 
 | 609 | 	int key_len = SW_FLOW_KEY_OFFSET(eth); | 
 | 610 | 	struct ethhdr *eth; | 
 | 611 |  | 
 | 612 | 	memset(key, 0, sizeof(*key)); | 
 | 613 |  | 
 | 614 | 	key->phy.priority = skb->priority; | 
 | 615 | 	key->phy.in_port = in_port; | 
 | 616 |  | 
 | 617 | 	skb_reset_mac_header(skb); | 
 | 618 |  | 
 | 619 | 	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet | 
 | 620 | 	 * header in the linear data area. | 
 | 621 | 	 */ | 
 | 622 | 	eth = eth_hdr(skb); | 
 | 623 | 	memcpy(key->eth.src, eth->h_source, ETH_ALEN); | 
 | 624 | 	memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); | 
 | 625 |  | 
 | 626 | 	__skb_pull(skb, 2 * ETH_ALEN); | 
 | 627 |  | 
 | 628 | 	if (vlan_tx_tag_present(skb)) | 
 | 629 | 		key->eth.tci = htons(skb->vlan_tci); | 
 | 630 | 	else if (eth->h_proto == htons(ETH_P_8021Q)) | 
 | 631 | 		if (unlikely(parse_vlan(skb, key))) | 
 | 632 | 			return -ENOMEM; | 
 | 633 |  | 
 | 634 | 	key->eth.type = parse_ethertype(skb); | 
 | 635 | 	if (unlikely(key->eth.type == htons(0))) | 
 | 636 | 		return -ENOMEM; | 
 | 637 |  | 
 | 638 | 	skb_reset_network_header(skb); | 
 | 639 | 	__skb_push(skb, skb->data - skb_mac_header(skb)); | 
 | 640 |  | 
 | 641 | 	/* Network layer. */ | 
 | 642 | 	if (key->eth.type == htons(ETH_P_IP)) { | 
 | 643 | 		struct iphdr *nh; | 
 | 644 | 		__be16 offset; | 
 | 645 |  | 
 | 646 | 		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); | 
 | 647 |  | 
 | 648 | 		error = check_iphdr(skb); | 
 | 649 | 		if (unlikely(error)) { | 
 | 650 | 			if (error == -EINVAL) { | 
 | 651 | 				skb->transport_header = skb->network_header; | 
 | 652 | 				error = 0; | 
 | 653 | 			} | 
 | 654 | 			goto out; | 
 | 655 | 		} | 
 | 656 |  | 
 | 657 | 		nh = ip_hdr(skb); | 
 | 658 | 		key->ipv4.addr.src = nh->saddr; | 
 | 659 | 		key->ipv4.addr.dst = nh->daddr; | 
 | 660 |  | 
 | 661 | 		key->ip.proto = nh->protocol; | 
 | 662 | 		key->ip.tos = nh->tos; | 
 | 663 | 		key->ip.ttl = nh->ttl; | 
 | 664 |  | 
 | 665 | 		offset = nh->frag_off & htons(IP_OFFSET); | 
 | 666 | 		if (offset) { | 
 | 667 | 			key->ip.frag = OVS_FRAG_TYPE_LATER; | 
 | 668 | 			goto out; | 
 | 669 | 		} | 
 | 670 | 		if (nh->frag_off & htons(IP_MF) || | 
 | 671 | 			 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) | 
 | 672 | 			key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
 | 673 |  | 
 | 674 | 		/* Transport layer. */ | 
 | 675 | 		if (key->ip.proto == IPPROTO_TCP) { | 
 | 676 | 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
 | 677 | 			if (tcphdr_ok(skb)) { | 
 | 678 | 				struct tcphdr *tcp = tcp_hdr(skb); | 
 | 679 | 				key->ipv4.tp.src = tcp->source; | 
 | 680 | 				key->ipv4.tp.dst = tcp->dest; | 
 | 681 | 			} | 
 | 682 | 		} else if (key->ip.proto == IPPROTO_UDP) { | 
 | 683 | 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
 | 684 | 			if (udphdr_ok(skb)) { | 
 | 685 | 				struct udphdr *udp = udp_hdr(skb); | 
 | 686 | 				key->ipv4.tp.src = udp->source; | 
 | 687 | 				key->ipv4.tp.dst = udp->dest; | 
 | 688 | 			} | 
 | 689 | 		} else if (key->ip.proto == IPPROTO_ICMP) { | 
 | 690 | 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
 | 691 | 			if (icmphdr_ok(skb)) { | 
 | 692 | 				struct icmphdr *icmp = icmp_hdr(skb); | 
 | 693 | 				/* The ICMP type and code fields use the 16-bit | 
 | 694 | 				 * transport port fields, so we need to store | 
 | 695 | 				 * them in 16-bit network byte order. */ | 
 | 696 | 				key->ipv4.tp.src = htons(icmp->type); | 
 | 697 | 				key->ipv4.tp.dst = htons(icmp->code); | 
 | 698 | 			} | 
 | 699 | 		} | 
 | 700 |  | 
 | 701 | 	} else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) { | 
 | 702 | 		struct arp_eth_header *arp; | 
 | 703 |  | 
 | 704 | 		arp = (struct arp_eth_header *)skb_network_header(skb); | 
 | 705 |  | 
 | 706 | 		if (arp->ar_hrd == htons(ARPHRD_ETHER) | 
 | 707 | 				&& arp->ar_pro == htons(ETH_P_IP) | 
 | 708 | 				&& arp->ar_hln == ETH_ALEN | 
 | 709 | 				&& arp->ar_pln == 4) { | 
 | 710 |  | 
 | 711 | 			/* We only match on the lower 8 bits of the opcode. */ | 
 | 712 | 			if (ntohs(arp->ar_op) <= 0xff) | 
 | 713 | 				key->ip.proto = ntohs(arp->ar_op); | 
 | 714 |  | 
 | 715 | 			if (key->ip.proto == ARPOP_REQUEST | 
 | 716 | 					|| key->ip.proto == ARPOP_REPLY) { | 
 | 717 | 				memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); | 
 | 718 | 				memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); | 
 | 719 | 				memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); | 
 | 720 | 				memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); | 
 | 721 | 				key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); | 
 | 722 | 			} | 
 | 723 | 		} | 
 | 724 | 	} else if (key->eth.type == htons(ETH_P_IPV6)) { | 
 | 725 | 		int nh_len;             /* IPv6 Header + Extensions */ | 
 | 726 |  | 
 | 727 | 		nh_len = parse_ipv6hdr(skb, key, &key_len); | 
 | 728 | 		if (unlikely(nh_len < 0)) { | 
 | 729 | 			if (nh_len == -EINVAL) | 
 | 730 | 				skb->transport_header = skb->network_header; | 
 | 731 | 			else | 
 | 732 | 				error = nh_len; | 
 | 733 | 			goto out; | 
 | 734 | 		} | 
 | 735 |  | 
 | 736 | 		if (key->ip.frag == OVS_FRAG_TYPE_LATER) | 
 | 737 | 			goto out; | 
 | 738 | 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) | 
 | 739 | 			key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
 | 740 |  | 
 | 741 | 		/* Transport layer. */ | 
 | 742 | 		if (key->ip.proto == NEXTHDR_TCP) { | 
 | 743 | 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
 | 744 | 			if (tcphdr_ok(skb)) { | 
 | 745 | 				struct tcphdr *tcp = tcp_hdr(skb); | 
 | 746 | 				key->ipv6.tp.src = tcp->source; | 
 | 747 | 				key->ipv6.tp.dst = tcp->dest; | 
 | 748 | 			} | 
 | 749 | 		} else if (key->ip.proto == NEXTHDR_UDP) { | 
 | 750 | 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
 | 751 | 			if (udphdr_ok(skb)) { | 
 | 752 | 				struct udphdr *udp = udp_hdr(skb); | 
 | 753 | 				key->ipv6.tp.src = udp->source; | 
 | 754 | 				key->ipv6.tp.dst = udp->dest; | 
 | 755 | 			} | 
 | 756 | 		} else if (key->ip.proto == NEXTHDR_ICMP) { | 
 | 757 | 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
 | 758 | 			if (icmp6hdr_ok(skb)) { | 
 | 759 | 				error = parse_icmpv6(skb, key, &key_len, nh_len); | 
 | 760 | 				if (error < 0) | 
 | 761 | 					goto out; | 
 | 762 | 			} | 
 | 763 | 		} | 
 | 764 | 	} | 
 | 765 |  | 
 | 766 | out: | 
 | 767 | 	*key_lenp = key_len; | 
 | 768 | 	return error; | 
 | 769 | } | 
 | 770 |  | 
 | 771 | u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) | 
 | 772 | { | 
 | 773 | 	return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); | 
 | 774 | } | 
 | 775 |  | 
 | 776 | struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, | 
 | 777 | 				struct sw_flow_key *key, int key_len) | 
 | 778 | { | 
 | 779 | 	struct sw_flow *flow; | 
 | 780 | 	struct hlist_node *n; | 
 | 781 | 	struct hlist_head *head; | 
 | 782 | 	u32 hash; | 
 | 783 |  | 
 | 784 | 	hash = ovs_flow_hash(key, key_len); | 
 | 785 |  | 
 | 786 | 	head = find_bucket(table, hash); | 
 | 787 | 	hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) { | 
 | 788 |  | 
 | 789 | 		if (flow->hash == hash && | 
 | 790 | 		    !memcmp(&flow->key, key, key_len)) { | 
 | 791 | 			return flow; | 
 | 792 | 		} | 
 | 793 | 	} | 
 | 794 | 	return NULL; | 
 | 795 | } | 
 | 796 |  | 
 | 797 | void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) | 
 | 798 | { | 
 | 799 | 	struct hlist_head *head; | 
 | 800 |  | 
 | 801 | 	head = find_bucket(table, flow->hash); | 
 | 802 | 	hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); | 
 | 803 | 	table->count++; | 
 | 804 | } | 
 | 805 |  | 
 | 806 | void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) | 
 | 807 | { | 
 | 808 | 	hlist_del_rcu(&flow->hash_node[table->node_ver]); | 
 | 809 | 	table->count--; | 
 | 810 | 	BUG_ON(table->count < 0); | 
 | 811 | } | 
 | 812 |  | 
 | 813 | /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */ | 
 | 814 | const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { | 
 | 815 | 	[OVS_KEY_ATTR_ENCAP] = -1, | 
 | 816 | 	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32), | 
 | 817 | 	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32), | 
 | 818 | 	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), | 
 | 819 | 	[OVS_KEY_ATTR_VLAN] = sizeof(__be16), | 
 | 820 | 	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), | 
 | 821 | 	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), | 
 | 822 | 	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), | 
 | 823 | 	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), | 
 | 824 | 	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), | 
 | 825 | 	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), | 
 | 826 | 	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), | 
 | 827 | 	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), | 
 | 828 | 	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), | 
 | 829 | }; | 
 | 830 |  | 
 | 831 | static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, | 
 | 832 | 				  const struct nlattr *a[], u32 *attrs) | 
 | 833 | { | 
 | 834 | 	const struct ovs_key_icmp *icmp_key; | 
 | 835 | 	const struct ovs_key_tcp *tcp_key; | 
 | 836 | 	const struct ovs_key_udp *udp_key; | 
 | 837 |  | 
 | 838 | 	switch (swkey->ip.proto) { | 
 | 839 | 	case IPPROTO_TCP: | 
 | 840 | 		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) | 
 | 841 | 			return -EINVAL; | 
 | 842 | 		*attrs &= ~(1 << OVS_KEY_ATTR_TCP); | 
 | 843 |  | 
 | 844 | 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
 | 845 | 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | 
 | 846 | 		swkey->ipv4.tp.src = tcp_key->tcp_src; | 
 | 847 | 		swkey->ipv4.tp.dst = tcp_key->tcp_dst; | 
 | 848 | 		break; | 
 | 849 |  | 
 | 850 | 	case IPPROTO_UDP: | 
 | 851 | 		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) | 
 | 852 | 			return -EINVAL; | 
 | 853 | 		*attrs &= ~(1 << OVS_KEY_ATTR_UDP); | 
 | 854 |  | 
 | 855 | 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
 | 856 | 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | 
 | 857 | 		swkey->ipv4.tp.src = udp_key->udp_src; | 
 | 858 | 		swkey->ipv4.tp.dst = udp_key->udp_dst; | 
 | 859 | 		break; | 
 | 860 |  | 
 | 861 | 	case IPPROTO_ICMP: | 
 | 862 | 		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) | 
 | 863 | 			return -EINVAL; | 
 | 864 | 		*attrs &= ~(1 << OVS_KEY_ATTR_ICMP); | 
 | 865 |  | 
 | 866 | 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
 | 867 | 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); | 
 | 868 | 		swkey->ipv4.tp.src = htons(icmp_key->icmp_type); | 
 | 869 | 		swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); | 
 | 870 | 		break; | 
 | 871 | 	} | 
 | 872 |  | 
 | 873 | 	return 0; | 
 | 874 | } | 
 | 875 |  | 
 | 876 | static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, | 
 | 877 | 				  const struct nlattr *a[], u32 *attrs) | 
 | 878 | { | 
 | 879 | 	const struct ovs_key_icmpv6 *icmpv6_key; | 
 | 880 | 	const struct ovs_key_tcp *tcp_key; | 
 | 881 | 	const struct ovs_key_udp *udp_key; | 
 | 882 |  | 
 | 883 | 	switch (swkey->ip.proto) { | 
 | 884 | 	case IPPROTO_TCP: | 
 | 885 | 		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) | 
 | 886 | 			return -EINVAL; | 
 | 887 | 		*attrs &= ~(1 << OVS_KEY_ATTR_TCP); | 
 | 888 |  | 
 | 889 | 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
 | 890 | 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | 
 | 891 | 		swkey->ipv6.tp.src = tcp_key->tcp_src; | 
 | 892 | 		swkey->ipv6.tp.dst = tcp_key->tcp_dst; | 
 | 893 | 		break; | 
 | 894 |  | 
 | 895 | 	case IPPROTO_UDP: | 
 | 896 | 		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) | 
 | 897 | 			return -EINVAL; | 
 | 898 | 		*attrs &= ~(1 << OVS_KEY_ATTR_UDP); | 
 | 899 |  | 
 | 900 | 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
 | 901 | 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | 
 | 902 | 		swkey->ipv6.tp.src = udp_key->udp_src; | 
 | 903 | 		swkey->ipv6.tp.dst = udp_key->udp_dst; | 
 | 904 | 		break; | 
 | 905 |  | 
 | 906 | 	case IPPROTO_ICMPV6: | 
 | 907 | 		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) | 
 | 908 | 			return -EINVAL; | 
 | 909 | 		*attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); | 
 | 910 |  | 
 | 911 | 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
 | 912 | 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); | 
 | 913 | 		swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); | 
 | 914 | 		swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); | 
 | 915 |  | 
 | 916 | 		if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || | 
 | 917 | 		    swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { | 
 | 918 | 			const struct ovs_key_nd *nd_key; | 
 | 919 |  | 
 | 920 | 			if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) | 
 | 921 | 				return -EINVAL; | 
 | 922 | 			*attrs &= ~(1 << OVS_KEY_ATTR_ND); | 
 | 923 |  | 
 | 924 | 			*key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | 
 | 925 | 			nd_key = nla_data(a[OVS_KEY_ATTR_ND]); | 
 | 926 | 			memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, | 
 | 927 | 			       sizeof(swkey->ipv6.nd.target)); | 
 | 928 | 			memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); | 
 | 929 | 			memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); | 
 | 930 | 		} | 
 | 931 | 		break; | 
 | 932 | 	} | 
 | 933 |  | 
 | 934 | 	return 0; | 
 | 935 | } | 
 | 936 |  | 
 | 937 | static int parse_flow_nlattrs(const struct nlattr *attr, | 
 | 938 | 			      const struct nlattr *a[], u32 *attrsp) | 
 | 939 | { | 
 | 940 | 	const struct nlattr *nla; | 
 | 941 | 	u32 attrs; | 
 | 942 | 	int rem; | 
 | 943 |  | 
 | 944 | 	attrs = 0; | 
 | 945 | 	nla_for_each_nested(nla, attr, rem) { | 
 | 946 | 		u16 type = nla_type(nla); | 
 | 947 | 		int expected_len; | 
 | 948 |  | 
 | 949 | 		if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) | 
 | 950 | 			return -EINVAL; | 
 | 951 |  | 
 | 952 | 		expected_len = ovs_key_lens[type]; | 
 | 953 | 		if (nla_len(nla) != expected_len && expected_len != -1) | 
 | 954 | 			return -EINVAL; | 
 | 955 |  | 
 | 956 | 		attrs |= 1 << type; | 
 | 957 | 		a[type] = nla; | 
 | 958 | 	} | 
 | 959 | 	if (rem) | 
 | 960 | 		return -EINVAL; | 
 | 961 |  | 
 | 962 | 	*attrsp = attrs; | 
 | 963 | 	return 0; | 
 | 964 | } | 
 | 965 |  | 
 | 966 | /** | 
 | 967 |  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. | 
 | 968 |  * @swkey: receives the extracted flow key. | 
 | 969 |  * @key_lenp: number of bytes used in @swkey. | 
 | 970 |  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
 | 971 |  * sequence. | 
 | 972 |  */ | 
 | 973 | int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, | 
 | 974 | 		      const struct nlattr *attr) | 
 | 975 | { | 
 | 976 | 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; | 
 | 977 | 	const struct ovs_key_ethernet *eth_key; | 
 | 978 | 	int key_len; | 
 | 979 | 	u32 attrs; | 
 | 980 | 	int err; | 
 | 981 |  | 
 | 982 | 	memset(swkey, 0, sizeof(struct sw_flow_key)); | 
 | 983 | 	key_len = SW_FLOW_KEY_OFFSET(eth); | 
 | 984 |  | 
 | 985 | 	err = parse_flow_nlattrs(attr, a, &attrs); | 
 | 986 | 	if (err) | 
 | 987 | 		return err; | 
 | 988 |  | 
 | 989 | 	/* Metadata attributes. */ | 
 | 990 | 	if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { | 
 | 991 | 		swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); | 
 | 992 | 		attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); | 
 | 993 | 	} | 
 | 994 | 	if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { | 
 | 995 | 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); | 
 | 996 | 		if (in_port >= DP_MAX_PORTS) | 
 | 997 | 			return -EINVAL; | 
 | 998 | 		swkey->phy.in_port = in_port; | 
 | 999 | 		attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); | 
 | 1000 | 	} else { | 
 | 1001 | 		swkey->phy.in_port = USHRT_MAX; | 
 | 1002 | 	} | 
 | 1003 |  | 
 | 1004 | 	/* Data attributes. */ | 
 | 1005 | 	if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) | 
 | 1006 | 		return -EINVAL; | 
 | 1007 | 	attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); | 
 | 1008 |  | 
 | 1009 | 	eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); | 
 | 1010 | 	memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); | 
 | 1011 | 	memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); | 
 | 1012 |  | 
 | 1013 | 	if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && | 
 | 1014 | 	    nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { | 
 | 1015 | 		const struct nlattr *encap; | 
 | 1016 | 		__be16 tci; | 
 | 1017 |  | 
 | 1018 | 		if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | | 
 | 1019 | 			      (1 << OVS_KEY_ATTR_ETHERTYPE) | | 
 | 1020 | 			      (1 << OVS_KEY_ATTR_ENCAP))) | 
 | 1021 | 			return -EINVAL; | 
 | 1022 |  | 
 | 1023 | 		encap = a[OVS_KEY_ATTR_ENCAP]; | 
 | 1024 | 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
 | 1025 | 		if (tci & htons(VLAN_TAG_PRESENT)) { | 
 | 1026 | 			swkey->eth.tci = tci; | 
 | 1027 |  | 
 | 1028 | 			err = parse_flow_nlattrs(encap, a, &attrs); | 
 | 1029 | 			if (err) | 
 | 1030 | 				return err; | 
 | 1031 | 		} else if (!tci) { | 
 | 1032 | 			/* Corner case for truncated 802.1Q header. */ | 
 | 1033 | 			if (nla_len(encap)) | 
 | 1034 | 				return -EINVAL; | 
 | 1035 |  | 
 | 1036 | 			swkey->eth.type = htons(ETH_P_8021Q); | 
 | 1037 | 			*key_lenp = key_len; | 
 | 1038 | 			return 0; | 
 | 1039 | 		} else { | 
 | 1040 | 			return -EINVAL; | 
 | 1041 | 		} | 
 | 1042 | 	} | 
 | 1043 |  | 
 | 1044 | 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { | 
 | 1045 | 		swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
 | 1046 | 		if (ntohs(swkey->eth.type) < 1536) | 
 | 1047 | 			return -EINVAL; | 
 | 1048 | 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
 | 1049 | 	} else { | 
 | 1050 | 		swkey->eth.type = htons(ETH_P_802_2); | 
 | 1051 | 	} | 
 | 1052 |  | 
 | 1053 | 	if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 1054 | 		const struct ovs_key_ipv4 *ipv4_key; | 
 | 1055 |  | 
 | 1056 | 		if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) | 
 | 1057 | 			return -EINVAL; | 
 | 1058 | 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4); | 
 | 1059 |  | 
 | 1060 | 		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); | 
 | 1061 | 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); | 
 | 1062 | 		if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) | 
 | 1063 | 			return -EINVAL; | 
 | 1064 | 		swkey->ip.proto = ipv4_key->ipv4_proto; | 
 | 1065 | 		swkey->ip.tos = ipv4_key->ipv4_tos; | 
 | 1066 | 		swkey->ip.ttl = ipv4_key->ipv4_ttl; | 
 | 1067 | 		swkey->ip.frag = ipv4_key->ipv4_frag; | 
 | 1068 | 		swkey->ipv4.addr.src = ipv4_key->ipv4_src; | 
 | 1069 | 		swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; | 
 | 1070 |  | 
 | 1071 | 		if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 | 1072 | 			err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); | 
 | 1073 | 			if (err) | 
 | 1074 | 				return err; | 
 | 1075 | 		} | 
 | 1076 | 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 1077 | 		const struct ovs_key_ipv6 *ipv6_key; | 
 | 1078 |  | 
 | 1079 | 		if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) | 
 | 1080 | 			return -EINVAL; | 
 | 1081 | 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6); | 
 | 1082 |  | 
 | 1083 | 		key_len = SW_FLOW_KEY_OFFSET(ipv6.label); | 
 | 1084 | 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); | 
 | 1085 | 		if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) | 
 | 1086 | 			return -EINVAL; | 
 | 1087 | 		swkey->ipv6.label = ipv6_key->ipv6_label; | 
 | 1088 | 		swkey->ip.proto = ipv6_key->ipv6_proto; | 
 | 1089 | 		swkey->ip.tos = ipv6_key->ipv6_tclass; | 
 | 1090 | 		swkey->ip.ttl = ipv6_key->ipv6_hlimit; | 
 | 1091 | 		swkey->ip.frag = ipv6_key->ipv6_frag; | 
 | 1092 | 		memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, | 
 | 1093 | 		       sizeof(swkey->ipv6.addr.src)); | 
 | 1094 | 		memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, | 
 | 1095 | 		       sizeof(swkey->ipv6.addr.dst)); | 
 | 1096 |  | 
 | 1097 | 		if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 | 1098 | 			err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); | 
 | 1099 | 			if (err) | 
 | 1100 | 				return err; | 
 | 1101 | 		} | 
 | 1102 | 	} else if (swkey->eth.type == htons(ETH_P_ARP)) { | 
 | 1103 | 		const struct ovs_key_arp *arp_key; | 
 | 1104 |  | 
 | 1105 | 		if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) | 
 | 1106 | 			return -EINVAL; | 
 | 1107 | 		attrs &= ~(1 << OVS_KEY_ATTR_ARP); | 
 | 1108 |  | 
 | 1109 | 		key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); | 
 | 1110 | 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); | 
 | 1111 | 		swkey->ipv4.addr.src = arp_key->arp_sip; | 
 | 1112 | 		swkey->ipv4.addr.dst = arp_key->arp_tip; | 
 | 1113 | 		if (arp_key->arp_op & htons(0xff00)) | 
 | 1114 | 			return -EINVAL; | 
 | 1115 | 		swkey->ip.proto = ntohs(arp_key->arp_op); | 
 | 1116 | 		memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); | 
 | 1117 | 		memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); | 
 | 1118 | 	} | 
 | 1119 |  | 
 | 1120 | 	if (attrs) | 
 | 1121 | 		return -EINVAL; | 
 | 1122 | 	*key_lenp = key_len; | 
 | 1123 |  | 
 | 1124 | 	return 0; | 
 | 1125 | } | 
 | 1126 |  | 
 | 1127 | /** | 
 | 1128 |  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. | 
 | 1129 |  * @in_port: receives the extracted input port. | 
 | 1130 |  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
 | 1131 |  * sequence. | 
 | 1132 |  * | 
 | 1133 |  * This parses a series of Netlink attributes that form a flow key, which must | 
 | 1134 |  * take the same form accepted by flow_from_nlattrs(), but only enough of it to | 
 | 1135 |  * get the metadata, that is, the parts of the flow key that cannot be | 
 | 1136 |  * extracted from the packet itself. | 
 | 1137 |  */ | 
 | 1138 | int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, | 
 | 1139 | 			       const struct nlattr *attr) | 
 | 1140 | { | 
 | 1141 | 	const struct nlattr *nla; | 
 | 1142 | 	int rem; | 
 | 1143 |  | 
 | 1144 | 	*in_port = USHRT_MAX; | 
 | 1145 | 	*priority = 0; | 
 | 1146 |  | 
 | 1147 | 	nla_for_each_nested(nla, attr, rem) { | 
 | 1148 | 		int type = nla_type(nla); | 
 | 1149 |  | 
 | 1150 | 		if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { | 
 | 1151 | 			if (nla_len(nla) != ovs_key_lens[type]) | 
 | 1152 | 				return -EINVAL; | 
 | 1153 |  | 
 | 1154 | 			switch (type) { | 
 | 1155 | 			case OVS_KEY_ATTR_PRIORITY: | 
 | 1156 | 				*priority = nla_get_u32(nla); | 
 | 1157 | 				break; | 
 | 1158 |  | 
 | 1159 | 			case OVS_KEY_ATTR_IN_PORT: | 
 | 1160 | 				if (nla_get_u32(nla) >= DP_MAX_PORTS) | 
 | 1161 | 					return -EINVAL; | 
 | 1162 | 				*in_port = nla_get_u32(nla); | 
 | 1163 | 				break; | 
 | 1164 | 			} | 
 | 1165 | 		} | 
 | 1166 | 	} | 
 | 1167 | 	if (rem) | 
 | 1168 | 		return -EINVAL; | 
 | 1169 | 	return 0; | 
 | 1170 | } | 
 | 1171 |  | 
 | 1172 | int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) | 
 | 1173 | { | 
 | 1174 | 	struct ovs_key_ethernet *eth_key; | 
 | 1175 | 	struct nlattr *nla, *encap; | 
 | 1176 |  | 
| David S. Miller | 028d6a6 | 2012-03-29 23:20:48 -0400 | [diff] [blame] | 1177 | 	if (swkey->phy.priority && | 
 | 1178 | 	    nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority)) | 
 | 1179 | 		goto nla_put_failure; | 
| Jesse Gross | ccb1352 | 2011-10-25 19:26:31 -0700 | [diff] [blame] | 1180 |  | 
| David S. Miller | 028d6a6 | 2012-03-29 23:20:48 -0400 | [diff] [blame] | 1181 | 	if (swkey->phy.in_port != USHRT_MAX && | 
 | 1182 | 	    nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port)) | 
 | 1183 | 		goto nla_put_failure; | 
| Jesse Gross | ccb1352 | 2011-10-25 19:26:31 -0700 | [diff] [blame] | 1184 |  | 
 | 1185 | 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); | 
 | 1186 | 	if (!nla) | 
 | 1187 | 		goto nla_put_failure; | 
 | 1188 | 	eth_key = nla_data(nla); | 
 | 1189 | 	memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); | 
 | 1190 | 	memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); | 
 | 1191 |  | 
 | 1192 | 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { | 
| David S. Miller | 028d6a6 | 2012-03-29 23:20:48 -0400 | [diff] [blame] | 1193 | 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) || | 
 | 1194 | 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci)) | 
 | 1195 | 			goto nla_put_failure; | 
| Jesse Gross | ccb1352 | 2011-10-25 19:26:31 -0700 | [diff] [blame] | 1196 | 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); | 
 | 1197 | 		if (!swkey->eth.tci) | 
 | 1198 | 			goto unencap; | 
 | 1199 | 	} else { | 
 | 1200 | 		encap = NULL; | 
 | 1201 | 	} | 
 | 1202 |  | 
 | 1203 | 	if (swkey->eth.type == htons(ETH_P_802_2)) | 
 | 1204 | 		goto unencap; | 
 | 1205 |  | 
| David S. Miller | 028d6a6 | 2012-03-29 23:20:48 -0400 | [diff] [blame] | 1206 | 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type)) | 
 | 1207 | 		goto nla_put_failure; | 
| Jesse Gross | ccb1352 | 2011-10-25 19:26:31 -0700 | [diff] [blame] | 1208 |  | 
 | 1209 | 	if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 1210 | 		struct ovs_key_ipv4 *ipv4_key; | 
 | 1211 |  | 
 | 1212 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); | 
 | 1213 | 		if (!nla) | 
 | 1214 | 			goto nla_put_failure; | 
 | 1215 | 		ipv4_key = nla_data(nla); | 
 | 1216 | 		ipv4_key->ipv4_src = swkey->ipv4.addr.src; | 
 | 1217 | 		ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; | 
 | 1218 | 		ipv4_key->ipv4_proto = swkey->ip.proto; | 
 | 1219 | 		ipv4_key->ipv4_tos = swkey->ip.tos; | 
 | 1220 | 		ipv4_key->ipv4_ttl = swkey->ip.ttl; | 
 | 1221 | 		ipv4_key->ipv4_frag = swkey->ip.frag; | 
 | 1222 | 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 1223 | 		struct ovs_key_ipv6 *ipv6_key; | 
 | 1224 |  | 
 | 1225 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); | 
 | 1226 | 		if (!nla) | 
 | 1227 | 			goto nla_put_failure; | 
 | 1228 | 		ipv6_key = nla_data(nla); | 
 | 1229 | 		memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, | 
 | 1230 | 				sizeof(ipv6_key->ipv6_src)); | 
 | 1231 | 		memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, | 
 | 1232 | 				sizeof(ipv6_key->ipv6_dst)); | 
 | 1233 | 		ipv6_key->ipv6_label = swkey->ipv6.label; | 
 | 1234 | 		ipv6_key->ipv6_proto = swkey->ip.proto; | 
 | 1235 | 		ipv6_key->ipv6_tclass = swkey->ip.tos; | 
 | 1236 | 		ipv6_key->ipv6_hlimit = swkey->ip.ttl; | 
 | 1237 | 		ipv6_key->ipv6_frag = swkey->ip.frag; | 
 | 1238 | 	} else if (swkey->eth.type == htons(ETH_P_ARP)) { | 
 | 1239 | 		struct ovs_key_arp *arp_key; | 
 | 1240 |  | 
 | 1241 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); | 
 | 1242 | 		if (!nla) | 
 | 1243 | 			goto nla_put_failure; | 
 | 1244 | 		arp_key = nla_data(nla); | 
 | 1245 | 		memset(arp_key, 0, sizeof(struct ovs_key_arp)); | 
 | 1246 | 		arp_key->arp_sip = swkey->ipv4.addr.src; | 
 | 1247 | 		arp_key->arp_tip = swkey->ipv4.addr.dst; | 
 | 1248 | 		arp_key->arp_op = htons(swkey->ip.proto); | 
 | 1249 | 		memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); | 
 | 1250 | 		memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); | 
 | 1251 | 	} | 
 | 1252 |  | 
 | 1253 | 	if ((swkey->eth.type == htons(ETH_P_IP) || | 
 | 1254 | 	     swkey->eth.type == htons(ETH_P_IPV6)) && | 
 | 1255 | 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 | 1256 |  | 
 | 1257 | 		if (swkey->ip.proto == IPPROTO_TCP) { | 
 | 1258 | 			struct ovs_key_tcp *tcp_key; | 
 | 1259 |  | 
 | 1260 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); | 
 | 1261 | 			if (!nla) | 
 | 1262 | 				goto nla_put_failure; | 
 | 1263 | 			tcp_key = nla_data(nla); | 
 | 1264 | 			if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 1265 | 				tcp_key->tcp_src = swkey->ipv4.tp.src; | 
 | 1266 | 				tcp_key->tcp_dst = swkey->ipv4.tp.dst; | 
 | 1267 | 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 1268 | 				tcp_key->tcp_src = swkey->ipv6.tp.src; | 
 | 1269 | 				tcp_key->tcp_dst = swkey->ipv6.tp.dst; | 
 | 1270 | 			} | 
 | 1271 | 		} else if (swkey->ip.proto == IPPROTO_UDP) { | 
 | 1272 | 			struct ovs_key_udp *udp_key; | 
 | 1273 |  | 
 | 1274 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); | 
 | 1275 | 			if (!nla) | 
 | 1276 | 				goto nla_put_failure; | 
 | 1277 | 			udp_key = nla_data(nla); | 
 | 1278 | 			if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 1279 | 				udp_key->udp_src = swkey->ipv4.tp.src; | 
 | 1280 | 				udp_key->udp_dst = swkey->ipv4.tp.dst; | 
 | 1281 | 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 1282 | 				udp_key->udp_src = swkey->ipv6.tp.src; | 
 | 1283 | 				udp_key->udp_dst = swkey->ipv6.tp.dst; | 
 | 1284 | 			} | 
 | 1285 | 		} else if (swkey->eth.type == htons(ETH_P_IP) && | 
 | 1286 | 			   swkey->ip.proto == IPPROTO_ICMP) { | 
 | 1287 | 			struct ovs_key_icmp *icmp_key; | 
 | 1288 |  | 
 | 1289 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); | 
 | 1290 | 			if (!nla) | 
 | 1291 | 				goto nla_put_failure; | 
 | 1292 | 			icmp_key = nla_data(nla); | 
 | 1293 | 			icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); | 
 | 1294 | 			icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); | 
 | 1295 | 		} else if (swkey->eth.type == htons(ETH_P_IPV6) && | 
 | 1296 | 			   swkey->ip.proto == IPPROTO_ICMPV6) { | 
 | 1297 | 			struct ovs_key_icmpv6 *icmpv6_key; | 
 | 1298 |  | 
 | 1299 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, | 
 | 1300 | 						sizeof(*icmpv6_key)); | 
 | 1301 | 			if (!nla) | 
 | 1302 | 				goto nla_put_failure; | 
 | 1303 | 			icmpv6_key = nla_data(nla); | 
 | 1304 | 			icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); | 
 | 1305 | 			icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); | 
 | 1306 |  | 
 | 1307 | 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || | 
 | 1308 | 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { | 
 | 1309 | 				struct ovs_key_nd *nd_key; | 
 | 1310 |  | 
 | 1311 | 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); | 
 | 1312 | 				if (!nla) | 
 | 1313 | 					goto nla_put_failure; | 
 | 1314 | 				nd_key = nla_data(nla); | 
 | 1315 | 				memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, | 
 | 1316 | 							sizeof(nd_key->nd_target)); | 
 | 1317 | 				memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); | 
 | 1318 | 				memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); | 
 | 1319 | 			} | 
 | 1320 | 		} | 
 | 1321 | 	} | 
 | 1322 |  | 
 | 1323 | unencap: | 
 | 1324 | 	if (encap) | 
 | 1325 | 		nla_nest_end(skb, encap); | 
 | 1326 |  | 
 | 1327 | 	return 0; | 
 | 1328 |  | 
 | 1329 | nla_put_failure: | 
 | 1330 | 	return -EMSGSIZE; | 
 | 1331 | } | 
 | 1332 |  | 
 | 1333 | /* Initializes the flow module. | 
 | 1334 |  * Returns zero if successful or a negative error code. */ | 
 | 1335 | int ovs_flow_init(void) | 
 | 1336 | { | 
 | 1337 | 	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, | 
 | 1338 | 					0, NULL); | 
 | 1339 | 	if (flow_cache == NULL) | 
 | 1340 | 		return -ENOMEM; | 
 | 1341 |  | 
 | 1342 | 	return 0; | 
 | 1343 | } | 
 | 1344 |  | 
 | 1345 | /* Uninitializes the flow module. */ | 
 | 1346 | void ovs_flow_exit(void) | 
 | 1347 | { | 
 | 1348 | 	kmem_cache_destroy(flow_cache); | 
 | 1349 | } |