blob: 4f93d031875a12b22727e2daacb2716282e705a0 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
Peter Zijlstra391e43d2011-11-15 17:14:39 +01007#include "cpupri.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +02008
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020039 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020040
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
Mike Galbraith35cf4e52012-08-07 05:00:13 +020083extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +020084
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115#endif
116
117#ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122#endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131#ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133#endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136};
137
138#ifdef CONFIG_FAIR_GROUP_SCHED
139#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141/*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149#define MIN_SHARES (1UL << 1)
150#define MAX_SHARES (1UL << 18)
151#endif
152
153/* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156extern struct task_group root_task_group;
157
158typedef int (*tg_visitor)(struct task_group *, void *);
159
160extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163/*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
169static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170{
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172}
173
174extern int tg_nop(struct task_group *tg, void *data);
175
176extern void free_fair_sched_group(struct task_group *tg);
177extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189extern void free_rt_sched_group(struct task_group *tg);
190extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195#else /* CONFIG_CGROUP_SCHED */
196
197struct cfs_bandwidth { };
198
199#endif /* CONFIG_CGROUP_SCHED */
200
201/* CFS-related fields in a runqueue */
202struct cfs_rq {
203 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200204 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200205
206 u64 exec_clock;
207 u64 min_vruntime;
208#ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210#endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
Peter Zijlstra029632f2011-10-25 10:00:11 +0200215 /*
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
218 */
219 struct sched_entity *curr, *next, *last, *skip;
220
221#ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over;
223#endif
224
225#ifdef CONFIG_FAIR_GROUP_SCHED
226 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
227
228 /*
229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 * (like users, containers etc.)
232 *
233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 * list is used during load balance.
235 */
236 int on_list;
237 struct list_head leaf_cfs_rq_list;
238 struct task_group *tg; /* group that "owns" this runqueue */
239
240#ifdef CONFIG_SMP
241 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200242 * h_load = weight * f(tg)
243 *
244 * Where f(tg) is the recursive weight fraction assigned to
245 * this group.
246 */
247 unsigned long h_load;
248
249 /*
250 * Maintaining per-cpu shares distribution for group scheduling
251 *
252 * load_stamp is the last time we updated the load average
253 * load_last is the last time we updated the load average and saw load
254 * load_unacc_exec_time is currently unaccounted execution time
255 */
256 u64 load_avg;
257 u64 load_period;
258 u64 load_stamp, load_last, load_unacc_exec_time;
259
260 unsigned long load_contribution;
261#endif /* CONFIG_SMP */
262#ifdef CONFIG_CFS_BANDWIDTH
263 int runtime_enabled;
264 u64 runtime_expires;
265 s64 runtime_remaining;
266
267 u64 throttled_timestamp;
268 int throttled, throttle_count;
269 struct list_head throttled_list;
270#endif /* CONFIG_CFS_BANDWIDTH */
271#endif /* CONFIG_FAIR_GROUP_SCHED */
272};
273
274static inline int rt_bandwidth_enabled(void)
275{
276 return sysctl_sched_rt_runtime >= 0;
277}
278
279/* Real-Time classes' related field in a runqueue: */
280struct rt_rq {
281 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200282 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200283#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 struct {
285 int curr; /* highest queued rt task prio */
286#ifdef CONFIG_SMP
287 int next; /* next highest */
288#endif
289 } highest_prio;
290#endif
291#ifdef CONFIG_SMP
292 unsigned long rt_nr_migratory;
293 unsigned long rt_nr_total;
294 int overloaded;
295 struct plist_head pushable_tasks;
296#endif
297 int rt_throttled;
298 u64 rt_time;
299 u64 rt_runtime;
300 /* Nests inside the rq lock: */
301 raw_spinlock_t rt_runtime_lock;
302
303#ifdef CONFIG_RT_GROUP_SCHED
304 unsigned long rt_nr_boosted;
305
306 struct rq *rq;
307 struct list_head leaf_rt_rq_list;
308 struct task_group *tg;
309#endif
310};
311
312#ifdef CONFIG_SMP
313
314/*
315 * We add the notion of a root-domain which will be used to define per-domain
316 * variables. Each exclusive cpuset essentially defines an island domain by
317 * fully partitioning the member cpus from any other cpuset. Whenever a new
318 * exclusive cpuset is created, we also create and attach a new root-domain
319 * object.
320 *
321 */
322struct root_domain {
323 atomic_t refcount;
324 atomic_t rto_count;
325 struct rcu_head rcu;
326 cpumask_var_t span;
327 cpumask_var_t online;
328
329 /*
330 * The "RT overload" flag: it gets set if a CPU has more than
331 * one runnable RT task.
332 */
333 cpumask_var_t rto_mask;
334 struct cpupri cpupri;
335};
336
337extern struct root_domain def_root_domain;
338
339#endif /* CONFIG_SMP */
340
341/*
342 * This is the main, per-CPU runqueue data structure.
343 *
344 * Locking rule: those places that want to lock multiple runqueues
345 * (such as the load balancing or the thread migration code), lock
346 * acquire operations must be ordered by ascending &runqueue.
347 */
348struct rq {
349 /* runqueue lock: */
350 raw_spinlock_t lock;
351
352 /*
353 * nr_running and cpu_load should be in the same cacheline because
354 * remote CPUs use both these fields when doing load calculation.
355 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200356 unsigned int nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200357 #define CPU_LOAD_IDX_MAX 5
358 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 unsigned long last_load_update_tick;
360#ifdef CONFIG_NO_HZ
361 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800362 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200363#endif
364 int skip_clock_update;
365
366 /* capture load from *all* tasks on this cpu: */
367 struct load_weight load;
368 unsigned long nr_load_updates;
369 u64 nr_switches;
370
371 struct cfs_rq cfs;
372 struct rt_rq rt;
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375 /* list of leaf cfs_rq on this cpu: */
376 struct list_head leaf_cfs_rq_list;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200377#ifdef CONFIG_SMP
378 unsigned long h_load_throttle;
379#endif /* CONFIG_SMP */
380#endif /* CONFIG_FAIR_GROUP_SCHED */
381
Peter Zijlstra029632f2011-10-25 10:00:11 +0200382#ifdef CONFIG_RT_GROUP_SCHED
383 struct list_head leaf_rt_rq_list;
384#endif
385
386 /*
387 * This is part of a global counter where only the total sum
388 * over all CPUs matters. A task can increase this counter on
389 * one CPU and if it got migrated afterwards it may decrease
390 * it on another CPU. Always updated under the runqueue lock:
391 */
392 unsigned long nr_uninterruptible;
393
394 struct task_struct *curr, *idle, *stop;
395 unsigned long next_balance;
396 struct mm_struct *prev_mm;
397
398 u64 clock;
399 u64 clock_task;
400
401 atomic_t nr_iowait;
402
403#ifdef CONFIG_SMP
404 struct root_domain *rd;
405 struct sched_domain *sd;
406
407 unsigned long cpu_power;
408
409 unsigned char idle_balance;
410 /* For active balancing */
411 int post_schedule;
412 int active_balance;
413 int push_cpu;
414 struct cpu_stop_work active_balance_work;
415 /* cpu of this runqueue: */
416 int cpu;
417 int online;
418
Peter Zijlstra367456c2012-02-20 21:49:09 +0100419 struct list_head cfs_tasks;
420
Peter Zijlstra029632f2011-10-25 10:00:11 +0200421 u64 rt_avg;
422 u64 age_stamp;
423 u64 idle_stamp;
424 u64 avg_idle;
425#endif
426
427#ifdef CONFIG_IRQ_TIME_ACCOUNTING
428 u64 prev_irq_time;
429#endif
430#ifdef CONFIG_PARAVIRT
431 u64 prev_steal_time;
432#endif
433#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
434 u64 prev_steal_time_rq;
435#endif
436
437 /* calc_load related fields */
438 unsigned long calc_load_update;
439 long calc_load_active;
440
441#ifdef CONFIG_SCHED_HRTICK
442#ifdef CONFIG_SMP
443 int hrtick_csd_pending;
444 struct call_single_data hrtick_csd;
445#endif
446 struct hrtimer hrtick_timer;
447#endif
448
449#ifdef CONFIG_SCHEDSTATS
450 /* latency stats */
451 struct sched_info rq_sched_info;
452 unsigned long long rq_cpu_time;
453 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
454
455 /* sys_sched_yield() stats */
456 unsigned int yld_count;
457
458 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200459 unsigned int sched_count;
460 unsigned int sched_goidle;
461
462 /* try_to_wake_up() stats */
463 unsigned int ttwu_count;
464 unsigned int ttwu_local;
465#endif
466
467#ifdef CONFIG_SMP
468 struct llist_head wake_list;
469#endif
470};
471
472static inline int cpu_of(struct rq *rq)
473{
474#ifdef CONFIG_SMP
475 return rq->cpu;
476#else
477 return 0;
478#endif
479}
480
481DECLARE_PER_CPU(struct rq, runqueues);
482
Peter Zijlstra518cd622011-12-07 15:07:31 +0100483#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
484#define this_rq() (&__get_cpu_var(runqueues))
485#define task_rq(p) cpu_rq(task_cpu(p))
486#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
487#define raw_rq() (&__raw_get_cpu_var(runqueues))
488
489#ifdef CONFIG_SMP
490
Peter Zijlstra029632f2011-10-25 10:00:11 +0200491#define rcu_dereference_check_sched_domain(p) \
492 rcu_dereference_check((p), \
493 lockdep_is_held(&sched_domains_mutex))
494
495/*
496 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
497 * See detach_destroy_domains: synchronize_sched for details.
498 *
499 * The domain tree of any CPU may only be accessed from within
500 * preempt-disabled sections.
501 */
502#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100503 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
504 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200505
Suresh Siddha77e81362011-11-17 11:08:23 -0800506#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
507
Peter Zijlstra518cd622011-12-07 15:07:31 +0100508/**
509 * highest_flag_domain - Return highest sched_domain containing flag.
510 * @cpu: The cpu whose highest level of sched domain is to
511 * be returned.
512 * @flag: The flag to check for the highest sched_domain
513 * for the given cpu.
514 *
515 * Returns the highest sched_domain of a cpu which contains the given flag.
516 */
517static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
518{
519 struct sched_domain *sd, *hsd = NULL;
520
521 for_each_domain(cpu, sd) {
522 if (!(sd->flags & flag))
523 break;
524 hsd = sd;
525 }
526
527 return hsd;
528}
529
530DECLARE_PER_CPU(struct sched_domain *, sd_llc);
531DECLARE_PER_CPU(int, sd_llc_id);
532
Peter Zijlstrac1174872012-05-31 14:47:33 +0200533extern int group_balance_cpu(struct sched_group *sg);
534
Peter Zijlstra518cd622011-12-07 15:07:31 +0100535#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200536
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100537#include "stats.h"
538#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200539
540#ifdef CONFIG_CGROUP_SCHED
541
542/*
543 * Return the group to which this tasks belongs.
544 *
Peter Zijlstra8323f262012-06-22 13:36:05 +0200545 * We cannot use task_subsys_state() and friends because the cgroup
546 * subsystem changes that value before the cgroup_subsys::attach() method
547 * is called, therefore we cannot pin it and might observe the wrong value.
548 *
549 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
550 * core changes this before calling sched_move_task().
551 *
552 * Instead we use a 'copy' which is updated from sched_move_task() while
553 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200554 */
555static inline struct task_group *task_group(struct task_struct *p)
556{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200557 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200558}
559
560/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
561static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
562{
563#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
564 struct task_group *tg = task_group(p);
565#endif
566
567#ifdef CONFIG_FAIR_GROUP_SCHED
568 p->se.cfs_rq = tg->cfs_rq[cpu];
569 p->se.parent = tg->se[cpu];
570#endif
571
572#ifdef CONFIG_RT_GROUP_SCHED
573 p->rt.rt_rq = tg->rt_rq[cpu];
574 p->rt.parent = tg->rt_se[cpu];
575#endif
576}
577
578#else /* CONFIG_CGROUP_SCHED */
579
580static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
581static inline struct task_group *task_group(struct task_struct *p)
582{
583 return NULL;
584}
585
586#endif /* CONFIG_CGROUP_SCHED */
587
588static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
589{
590 set_task_rq(p, cpu);
591#ifdef CONFIG_SMP
592 /*
593 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
594 * successfuly executed on another CPU. We must ensure that updates of
595 * per-task data have been completed by this moment.
596 */
597 smp_wmb();
598 task_thread_info(p)->cpu = cpu;
599#endif
600}
601
602/*
603 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
604 */
605#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100606# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200607# define const_debug __read_mostly
608#else
609# define const_debug const
610#endif
611
612extern const_debug unsigned int sysctl_sched_features;
613
614#define SCHED_FEAT(name, enabled) \
615 __SCHED_FEAT_##name ,
616
617enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100618#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200619 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200620};
621
622#undef SCHED_FEAT
623
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200624#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Ingo Molnarc5905af2012-02-24 08:31:31 +0100625static __always_inline bool static_branch__true(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200626{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100627 return static_key_true(key); /* Not out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200628}
629
Ingo Molnarc5905af2012-02-24 08:31:31 +0100630static __always_inline bool static_branch__false(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200631{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100632 return static_key_false(key); /* Out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200633}
634
635#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100636static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200637{ \
638 return static_branch__##enabled(key); \
639}
640
641#include "features.h"
642
643#undef SCHED_FEAT
644
Ingo Molnarc5905af2012-02-24 08:31:31 +0100645extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200646#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
647#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200648#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200649#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200650
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200651#ifdef CONFIG_NUMA_BALANCING
652#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000653#ifdef CONFIG_SCHED_DEBUG
654#define numabalancing_enabled sched_feat_numa(NUMA)
655#else
656extern bool numabalancing_enabled;
657#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200658#else
659#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000660#define numabalancing_enabled (0)
661#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200662
Peter Zijlstra029632f2011-10-25 10:00:11 +0200663static inline u64 global_rt_period(void)
664{
665 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
666}
667
668static inline u64 global_rt_runtime(void)
669{
670 if (sysctl_sched_rt_runtime < 0)
671 return RUNTIME_INF;
672
673 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
674}
675
676
677
678static inline int task_current(struct rq *rq, struct task_struct *p)
679{
680 return rq->curr == p;
681}
682
683static inline int task_running(struct rq *rq, struct task_struct *p)
684{
685#ifdef CONFIG_SMP
686 return p->on_cpu;
687#else
688 return task_current(rq, p);
689#endif
690}
691
692
693#ifndef prepare_arch_switch
694# define prepare_arch_switch(next) do { } while (0)
695#endif
696#ifndef finish_arch_switch
697# define finish_arch_switch(prev) do { } while (0)
698#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000699#ifndef finish_arch_post_lock_switch
700# define finish_arch_post_lock_switch() do { } while (0)
701#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200702
703#ifndef __ARCH_WANT_UNLOCKED_CTXSW
704static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
705{
706#ifdef CONFIG_SMP
707 /*
708 * We can optimise this out completely for !SMP, because the
709 * SMP rebalancing from interrupt is the only thing that cares
710 * here.
711 */
712 next->on_cpu = 1;
713#endif
714}
715
716static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
717{
718#ifdef CONFIG_SMP
719 /*
720 * After ->on_cpu is cleared, the task can be moved to a different CPU.
721 * We must ensure this doesn't happen until the switch is completely
722 * finished.
723 */
724 smp_wmb();
725 prev->on_cpu = 0;
726#endif
727#ifdef CONFIG_DEBUG_SPINLOCK
728 /* this is a valid case when another task releases the spinlock */
729 rq->lock.owner = current;
730#endif
731 /*
732 * If we are tracking spinlock dependencies then we have to
733 * fix up the runqueue lock - which gets 'carried over' from
734 * prev into current:
735 */
736 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
737
738 raw_spin_unlock_irq(&rq->lock);
739}
740
741#else /* __ARCH_WANT_UNLOCKED_CTXSW */
742static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
743{
744#ifdef CONFIG_SMP
745 /*
746 * We can optimise this out completely for !SMP, because the
747 * SMP rebalancing from interrupt is the only thing that cares
748 * here.
749 */
750 next->on_cpu = 1;
751#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200752 raw_spin_unlock(&rq->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200753}
754
755static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
756{
757#ifdef CONFIG_SMP
758 /*
759 * After ->on_cpu is cleared, the task can be moved to a different CPU.
760 * We must ensure this doesn't happen until the switch is completely
761 * finished.
762 */
763 smp_wmb();
764 prev->on_cpu = 0;
765#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200766 local_irq_enable();
Peter Zijlstra029632f2011-10-25 10:00:11 +0200767}
768#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
769
770
771static inline void update_load_add(struct load_weight *lw, unsigned long inc)
772{
773 lw->weight += inc;
774 lw->inv_weight = 0;
775}
776
777static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
778{
779 lw->weight -= dec;
780 lw->inv_weight = 0;
781}
782
783static inline void update_load_set(struct load_weight *lw, unsigned long w)
784{
785 lw->weight = w;
786 lw->inv_weight = 0;
787}
788
789/*
790 * To aid in avoiding the subversion of "niceness" due to uneven distribution
791 * of tasks with abnormal "nice" values across CPUs the contribution that
792 * each task makes to its run queue's load is weighted according to its
793 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
794 * scaled version of the new time slice allocation that they receive on time
795 * slice expiry etc.
796 */
797
798#define WEIGHT_IDLEPRIO 3
799#define WMULT_IDLEPRIO 1431655765
800
801/*
802 * Nice levels are multiplicative, with a gentle 10% change for every
803 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
804 * nice 1, it will get ~10% less CPU time than another CPU-bound task
805 * that remained on nice 0.
806 *
807 * The "10% effect" is relative and cumulative: from _any_ nice level,
808 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
809 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
810 * If a task goes up by ~10% and another task goes down by ~10% then
811 * the relative distance between them is ~25%.)
812 */
813static const int prio_to_weight[40] = {
814 /* -20 */ 88761, 71755, 56483, 46273, 36291,
815 /* -15 */ 29154, 23254, 18705, 14949, 11916,
816 /* -10 */ 9548, 7620, 6100, 4904, 3906,
817 /* -5 */ 3121, 2501, 1991, 1586, 1277,
818 /* 0 */ 1024, 820, 655, 526, 423,
819 /* 5 */ 335, 272, 215, 172, 137,
820 /* 10 */ 110, 87, 70, 56, 45,
821 /* 15 */ 36, 29, 23, 18, 15,
822};
823
824/*
825 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
826 *
827 * In cases where the weight does not change often, we can use the
828 * precalculated inverse to speed up arithmetics by turning divisions
829 * into multiplications:
830 */
831static const u32 prio_to_wmult[40] = {
832 /* -20 */ 48388, 59856, 76040, 92818, 118348,
833 /* -15 */ 147320, 184698, 229616, 287308, 360437,
834 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
835 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
836 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
837 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
838 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
839 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
840};
841
842/* Time spent by the tasks of the cpu accounting group executing in ... */
843enum cpuacct_stat_index {
844 CPUACCT_STAT_USER, /* ... user mode */
845 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
846
847 CPUACCT_STAT_NSTATS,
848};
849
850
851#define sched_class_highest (&stop_sched_class)
852#define for_each_class(class) \
853 for (class = sched_class_highest; class; class = class->next)
854
855extern const struct sched_class stop_sched_class;
856extern const struct sched_class rt_sched_class;
857extern const struct sched_class fair_sched_class;
858extern const struct sched_class idle_sched_class;
859
860
861#ifdef CONFIG_SMP
862
863extern void trigger_load_balance(struct rq *rq, int cpu);
864extern void idle_balance(int this_cpu, struct rq *this_rq);
865
866#else /* CONFIG_SMP */
867
868static inline void idle_balance(int cpu, struct rq *rq)
869{
870}
871
872#endif
873
874extern void sysrq_sched_debug_show(void);
875extern void sched_init_granularity(void);
876extern void update_max_interval(void);
877extern void update_group_power(struct sched_domain *sd, int cpu);
878extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
879extern void init_sched_rt_class(void);
880extern void init_sched_fair_class(void);
881
882extern void resched_task(struct task_struct *p);
883extern void resched_cpu(int cpu);
884
885extern struct rt_bandwidth def_rt_bandwidth;
886extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
887
Peter Zijlstra556061b2012-05-11 17:31:26 +0200888extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200889
890#ifdef CONFIG_CGROUP_CPUACCT
Glauber Costa54c707e2011-11-28 14:45:19 -0200891#include <linux/cgroup.h>
892/* track cpu usage of a group of tasks and its child groups */
893struct cpuacct {
894 struct cgroup_subsys_state css;
895 /* cpuusage holds pointer to a u64-type object on every cpu */
896 u64 __percpu *cpuusage;
897 struct kernel_cpustat __percpu *cpustat;
898};
899
Frederic Weisbecker73fbec62012-06-16 15:57:37 +0200900extern struct cgroup_subsys cpuacct_subsys;
901extern struct cpuacct root_cpuacct;
902
Glauber Costa54c707e2011-11-28 14:45:19 -0200903/* return cpu accounting group corresponding to this container */
904static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
905{
906 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
907 struct cpuacct, css);
908}
909
910/* return cpu accounting group to which this task belongs */
911static inline struct cpuacct *task_ca(struct task_struct *tsk)
912{
913 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
914 struct cpuacct, css);
915}
916
917static inline struct cpuacct *parent_ca(struct cpuacct *ca)
918{
919 if (!ca || !ca->css.cgroup->parent)
920 return NULL;
921 return cgroup_ca(ca->css.cgroup->parent);
922}
923
Peter Zijlstra029632f2011-10-25 10:00:11 +0200924extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200925#else
926static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200927#endif
928
Frederic Weisbecker73fbec62012-06-16 15:57:37 +0200929#ifdef CONFIG_PARAVIRT
930static inline u64 steal_ticks(u64 steal)
931{
932 if (unlikely(steal > NSEC_PER_SEC))
933 return div_u64(steal, TICK_NSEC);
934
935 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
936}
937#endif
938
Peter Zijlstra029632f2011-10-25 10:00:11 +0200939static inline void inc_nr_running(struct rq *rq)
940{
941 rq->nr_running++;
942}
943
944static inline void dec_nr_running(struct rq *rq)
945{
946 rq->nr_running--;
947}
948
949extern void update_rq_clock(struct rq *rq);
950
951extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
952extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
953
954extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
955
956extern const_debug unsigned int sysctl_sched_time_avg;
957extern const_debug unsigned int sysctl_sched_nr_migrate;
958extern const_debug unsigned int sysctl_sched_migration_cost;
959
960static inline u64 sched_avg_period(void)
961{
962 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
963}
964
Peter Zijlstra029632f2011-10-25 10:00:11 +0200965#ifdef CONFIG_SCHED_HRTICK
966
967/*
968 * Use hrtick when:
969 * - enabled by features
970 * - hrtimer is actually high res
971 */
972static inline int hrtick_enabled(struct rq *rq)
973{
974 if (!sched_feat(HRTICK))
975 return 0;
976 if (!cpu_active(cpu_of(rq)))
977 return 0;
978 return hrtimer_is_hres_active(&rq->hrtick_timer);
979}
980
981void hrtick_start(struct rq *rq, u64 delay);
982
Mike Galbraithb39e66e2011-11-22 15:20:07 +0100983#else
984
985static inline int hrtick_enabled(struct rq *rq)
986{
987 return 0;
988}
989
Peter Zijlstra029632f2011-10-25 10:00:11 +0200990#endif /* CONFIG_SCHED_HRTICK */
991
992#ifdef CONFIG_SMP
993extern void sched_avg_update(struct rq *rq);
994static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
995{
996 rq->rt_avg += rt_delta;
997 sched_avg_update(rq);
998}
999#else
1000static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1001static inline void sched_avg_update(struct rq *rq) { }
1002#endif
1003
1004extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1005
1006#ifdef CONFIG_SMP
1007#ifdef CONFIG_PREEMPT
1008
1009static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1010
1011/*
1012 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1013 * way at the expense of forcing extra atomic operations in all
1014 * invocations. This assures that the double_lock is acquired using the
1015 * same underlying policy as the spinlock_t on this architecture, which
1016 * reduces latency compared to the unfair variant below. However, it
1017 * also adds more overhead and therefore may reduce throughput.
1018 */
1019static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1020 __releases(this_rq->lock)
1021 __acquires(busiest->lock)
1022 __acquires(this_rq->lock)
1023{
1024 raw_spin_unlock(&this_rq->lock);
1025 double_rq_lock(this_rq, busiest);
1026
1027 return 1;
1028}
1029
1030#else
1031/*
1032 * Unfair double_lock_balance: Optimizes throughput at the expense of
1033 * latency by eliminating extra atomic operations when the locks are
1034 * already in proper order on entry. This favors lower cpu-ids and will
1035 * grant the double lock to lower cpus over higher ids under contention,
1036 * regardless of entry order into the function.
1037 */
1038static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1039 __releases(this_rq->lock)
1040 __acquires(busiest->lock)
1041 __acquires(this_rq->lock)
1042{
1043 int ret = 0;
1044
1045 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1046 if (busiest < this_rq) {
1047 raw_spin_unlock(&this_rq->lock);
1048 raw_spin_lock(&busiest->lock);
1049 raw_spin_lock_nested(&this_rq->lock,
1050 SINGLE_DEPTH_NESTING);
1051 ret = 1;
1052 } else
1053 raw_spin_lock_nested(&busiest->lock,
1054 SINGLE_DEPTH_NESTING);
1055 }
1056 return ret;
1057}
1058
1059#endif /* CONFIG_PREEMPT */
1060
1061/*
1062 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1063 */
1064static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1065{
1066 if (unlikely(!irqs_disabled())) {
1067 /* printk() doesn't work good under rq->lock */
1068 raw_spin_unlock(&this_rq->lock);
1069 BUG_ON(1);
1070 }
1071
1072 return _double_lock_balance(this_rq, busiest);
1073}
1074
1075static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1076 __releases(busiest->lock)
1077{
1078 raw_spin_unlock(&busiest->lock);
1079 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1080}
1081
1082/*
1083 * double_rq_lock - safely lock two runqueues
1084 *
1085 * Note this does not disable interrupts like task_rq_lock,
1086 * you need to do so manually before calling.
1087 */
1088static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1089 __acquires(rq1->lock)
1090 __acquires(rq2->lock)
1091{
1092 BUG_ON(!irqs_disabled());
1093 if (rq1 == rq2) {
1094 raw_spin_lock(&rq1->lock);
1095 __acquire(rq2->lock); /* Fake it out ;) */
1096 } else {
1097 if (rq1 < rq2) {
1098 raw_spin_lock(&rq1->lock);
1099 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1100 } else {
1101 raw_spin_lock(&rq2->lock);
1102 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1103 }
1104 }
1105}
1106
1107/*
1108 * double_rq_unlock - safely unlock two runqueues
1109 *
1110 * Note this does not restore interrupts like task_rq_unlock,
1111 * you need to do so manually after calling.
1112 */
1113static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1114 __releases(rq1->lock)
1115 __releases(rq2->lock)
1116{
1117 raw_spin_unlock(&rq1->lock);
1118 if (rq1 != rq2)
1119 raw_spin_unlock(&rq2->lock);
1120 else
1121 __release(rq2->lock);
1122}
1123
1124#else /* CONFIG_SMP */
1125
1126/*
1127 * double_rq_lock - safely lock two runqueues
1128 *
1129 * Note this does not disable interrupts like task_rq_lock,
1130 * you need to do so manually before calling.
1131 */
1132static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1133 __acquires(rq1->lock)
1134 __acquires(rq2->lock)
1135{
1136 BUG_ON(!irqs_disabled());
1137 BUG_ON(rq1 != rq2);
1138 raw_spin_lock(&rq1->lock);
1139 __acquire(rq2->lock); /* Fake it out ;) */
1140}
1141
1142/*
1143 * double_rq_unlock - safely unlock two runqueues
1144 *
1145 * Note this does not restore interrupts like task_rq_unlock,
1146 * you need to do so manually after calling.
1147 */
1148static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1149 __releases(rq1->lock)
1150 __releases(rq2->lock)
1151{
1152 BUG_ON(rq1 != rq2);
1153 raw_spin_unlock(&rq1->lock);
1154 __release(rq2->lock);
1155}
1156
1157#endif
1158
1159extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1160extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1161extern void print_cfs_stats(struct seq_file *m, int cpu);
1162extern void print_rt_stats(struct seq_file *m, int cpu);
1163
1164extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1165extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001166
1167extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001168
1169#ifdef CONFIG_NO_HZ
1170enum rq_nohz_flag_bits {
1171 NOHZ_TICK_STOPPED,
1172 NOHZ_BALANCE_KICK,
Suresh Siddha69e1e812011-12-01 17:07:33 -08001173 NOHZ_IDLE,
Suresh Siddha1c792db2011-12-01 17:07:32 -08001174};
1175
1176#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1177#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001178
1179#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1180
1181DECLARE_PER_CPU(u64, cpu_hardirq_time);
1182DECLARE_PER_CPU(u64, cpu_softirq_time);
1183
1184#ifndef CONFIG_64BIT
1185DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1186
1187static inline void irq_time_write_begin(void)
1188{
1189 __this_cpu_inc(irq_time_seq.sequence);
1190 smp_wmb();
1191}
1192
1193static inline void irq_time_write_end(void)
1194{
1195 smp_wmb();
1196 __this_cpu_inc(irq_time_seq.sequence);
1197}
1198
1199static inline u64 irq_time_read(int cpu)
1200{
1201 u64 irq_time;
1202 unsigned seq;
1203
1204 do {
1205 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1206 irq_time = per_cpu(cpu_softirq_time, cpu) +
1207 per_cpu(cpu_hardirq_time, cpu);
1208 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1209
1210 return irq_time;
1211}
1212#else /* CONFIG_64BIT */
1213static inline void irq_time_write_begin(void)
1214{
1215}
1216
1217static inline void irq_time_write_end(void)
1218{
1219}
1220
1221static inline u64 irq_time_read(int cpu)
1222{
1223 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1224}
1225#endif /* CONFIG_64BIT */
1226#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1227