blob: d8108465397d90ee32f44e94e901aeca28a961a3 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
Ingo Molnarcdd6c482009-09-21 12:02:48 +020059int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61/*
62 * max perf event sample rate
63 */
64int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66static atomic64_t perf_event_id;
67
68/*
69 * Lock for (sysadmin-configurable) event reservations:
70 */
71static DEFINE_SPINLOCK(perf_resource_lock);
72
73/*
74 * Architecture provided APIs - weak aliases:
75 */
76extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77{
78 return NULL;
79}
80
81void __weak hw_perf_disable(void) { barrier(); }
82void __weak hw_perf_enable(void) { barrier(); }
83
Ingo Molnarcdd6c482009-09-21 12:02:48 +020084int __weak
85hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +010087 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +020088{
89 return 0;
90}
91
92void __weak perf_event_print_debug(void) { }
93
94static DEFINE_PER_CPU(int, perf_disable_count);
95
Ingo Molnarcdd6c482009-09-21 12:02:48 +020096void perf_disable(void)
97{
Peter Zijlstra32975a42010-03-06 19:49:19 +010098 if (!__get_cpu_var(perf_disable_count)++)
99 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200100}
101
102void perf_enable(void)
103{
Peter Zijlstra32975a42010-03-06 19:49:19 +0100104 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200105 hw_perf_enable();
106}
107
108static void get_ctx(struct perf_event_context *ctx)
109{
110 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111}
112
113static void free_ctx(struct rcu_head *head)
114{
115 struct perf_event_context *ctx;
116
117 ctx = container_of(head, struct perf_event_context, rcu_head);
118 kfree(ctx);
119}
120
121static void put_ctx(struct perf_event_context *ctx)
122{
123 if (atomic_dec_and_test(&ctx->refcount)) {
124 if (ctx->parent_ctx)
125 put_ctx(ctx->parent_ctx);
126 if (ctx->task)
127 put_task_struct(ctx->task);
128 call_rcu(&ctx->rcu_head, free_ctx);
129 }
130}
131
132static void unclone_ctx(struct perf_event_context *ctx)
133{
134 if (ctx->parent_ctx) {
135 put_ctx(ctx->parent_ctx);
136 ctx->parent_ctx = NULL;
137 }
138}
139
140/*
141 * If we inherit events we want to return the parent event id
142 * to userspace.
143 */
144static u64 primary_event_id(struct perf_event *event)
145{
146 u64 id = event->id;
147
148 if (event->parent)
149 id = event->parent->id;
150
151 return id;
152}
153
154/*
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
158 */
159static struct perf_event_context *
160perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161{
162 struct perf_event_context *ctx;
163
164 rcu_read_lock();
165 retry:
166 ctx = rcu_dereference(task->perf_event_ctxp);
167 if (ctx) {
168 /*
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
177 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100178 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200179 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200181 goto retry;
182 }
183
184 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100185 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200186 ctx = NULL;
187 }
188 }
189 rcu_read_unlock();
190 return ctx;
191}
192
193/*
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
197 */
198static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199{
200 struct perf_event_context *ctx;
201 unsigned long flags;
202
203 ctx = perf_lock_task_context(task, &flags);
204 if (ctx) {
205 ++ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100206 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200207 }
208 return ctx;
209}
210
211static void perf_unpin_context(struct perf_event_context *ctx)
212{
213 unsigned long flags;
214
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100215 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200216 --ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100217 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200218 put_ctx(ctx);
219}
220
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100221static inline u64 perf_clock(void)
222{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100223 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100224}
225
226/*
227 * Update the record of the current time in a context.
228 */
229static void update_context_time(struct perf_event_context *ctx)
230{
231 u64 now = perf_clock();
232
233 ctx->time += now - ctx->timestamp;
234 ctx->timestamp = now;
235}
236
237/*
238 * Update the total_time_enabled and total_time_running fields for a event.
239 */
240static void update_event_times(struct perf_event *event)
241{
242 struct perf_event_context *ctx = event->ctx;
243 u64 run_end;
244
245 if (event->state < PERF_EVENT_STATE_INACTIVE ||
246 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247 return;
248
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100249 if (ctx->is_active)
250 run_end = ctx->time;
251 else
252 run_end = event->tstamp_stopped;
253
254 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100255
256 if (event->state == PERF_EVENT_STATE_INACTIVE)
257 run_end = event->tstamp_stopped;
258 else
259 run_end = ctx->time;
260
261 event->total_time_running = run_end - event->tstamp_running;
262}
263
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100264static struct list_head *
265ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
266{
267 if (event->attr.pinned)
268 return &ctx->pinned_groups;
269 else
270 return &ctx->flexible_groups;
271}
272
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200273/*
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277static void
278list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279{
280 struct perf_event *group_leader = event->group_leader;
281
282 /*
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
286 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100287 if (group_leader == event) {
288 struct list_head *list;
289
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100290 if (is_software_event(event))
291 event->group_flags |= PERF_GROUP_SOFTWARE;
292
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100293 list = ctx_group_list(event, ctx);
294 list_add_tail(&event->group_entry, list);
295 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100296 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297 !is_software_event(event))
298 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
299
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200300 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301 group_leader->nr_siblings++;
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308}
309
310/*
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
313 */
314static void
315list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316{
317 struct perf_event *sibling, *tmp;
318
319 if (list_empty(&event->group_entry))
320 return;
321 ctx->nr_events--;
322 if (event->attr.inherit_stat)
323 ctx->nr_stat--;
324
325 list_del_init(&event->group_entry);
326 list_del_rcu(&event->event_entry);
327
328 if (event->group_leader != event)
329 event->group_leader->nr_siblings--;
330
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100331 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800332
333 /*
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
339 */
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100342
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200343 /*
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
347 */
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100349 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200350
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100351 list = ctx_group_list(event, ctx);
352 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200353 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100354
355 /* Inherit group flags from the previous leader */
356 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200357 }
358}
359
360static void
361event_sched_out(struct perf_event *event,
362 struct perf_cpu_context *cpuctx,
363 struct perf_event_context *ctx)
364{
365 if (event->state != PERF_EVENT_STATE_ACTIVE)
366 return;
367
368 event->state = PERF_EVENT_STATE_INACTIVE;
369 if (event->pending_disable) {
370 event->pending_disable = 0;
371 event->state = PERF_EVENT_STATE_OFF;
372 }
373 event->tstamp_stopped = ctx->time;
374 event->pmu->disable(event);
375 event->oncpu = -1;
376
377 if (!is_software_event(event))
378 cpuctx->active_oncpu--;
379 ctx->nr_active--;
380 if (event->attr.exclusive || !cpuctx->active_oncpu)
381 cpuctx->exclusive = 0;
382}
383
384static void
385group_sched_out(struct perf_event *group_event,
386 struct perf_cpu_context *cpuctx,
387 struct perf_event_context *ctx)
388{
389 struct perf_event *event;
390
391 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 return;
393
394 event_sched_out(group_event, cpuctx, ctx);
395
396 /*
397 * Schedule out siblings (if any):
398 */
399 list_for_each_entry(event, &group_event->sibling_list, group_entry)
400 event_sched_out(event, cpuctx, ctx);
401
402 if (group_event->attr.exclusive)
403 cpuctx->exclusive = 0;
404}
405
406/*
407 * Cross CPU call to remove a performance event
408 *
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
411 */
412static void __perf_event_remove_from_context(void *info)
413{
414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 struct perf_event *event = info;
416 struct perf_event_context *ctx = event->ctx;
417
418 /*
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
422 */
423 if (ctx->task && cpuctx->task_ctx != ctx)
424 return;
425
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100426 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200427 /*
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
430 */
431 perf_disable();
432
433 event_sched_out(event, cpuctx, ctx);
434
435 list_del_event(event, ctx);
436
437 if (!ctx->task) {
438 /*
439 * Allow more per task events with respect to the
440 * reservation:
441 */
442 cpuctx->max_pertask =
443 min(perf_max_events - ctx->nr_events,
444 perf_max_events - perf_reserved_percpu);
445 }
446
447 perf_enable();
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100448 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200449}
450
451
452/*
453 * Remove the event from a task's (or a CPU's) list of events.
454 *
455 * Must be called with ctx->mutex held.
456 *
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
459 *
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
466 */
467static void perf_event_remove_from_context(struct perf_event *event)
468{
469 struct perf_event_context *ctx = event->ctx;
470 struct task_struct *task = ctx->task;
471
472 if (!task) {
473 /*
474 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200475 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200476 */
477 smp_call_function_single(event->cpu,
478 __perf_event_remove_from_context,
479 event, 1);
480 return;
481 }
482
483retry:
484 task_oncpu_function_call(task, __perf_event_remove_from_context,
485 event);
486
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100487 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200488 /*
489 * If the context is active we need to retry the smp call.
490 */
491 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100492 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200493 goto retry;
494 }
495
496 /*
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
499 * succeed.
500 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100501 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200502 list_del_event(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100503 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200504}
505
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200506/*
507 * Update total_time_enabled and total_time_running for all events in a group.
508 */
509static void update_group_times(struct perf_event *leader)
510{
511 struct perf_event *event;
512
513 update_event_times(leader);
514 list_for_each_entry(event, &leader->sibling_list, group_entry)
515 update_event_times(event);
516}
517
518/*
519 * Cross CPU call to disable a performance event
520 */
521static void __perf_event_disable(void *info)
522{
523 struct perf_event *event = info;
524 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525 struct perf_event_context *ctx = event->ctx;
526
527 /*
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
530 */
531 if (ctx->task && cpuctx->task_ctx != ctx)
532 return;
533
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100534 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200535
536 /*
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
539 */
540 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541 update_context_time(ctx);
542 update_group_times(event);
543 if (event == event->group_leader)
544 group_sched_out(event, cpuctx, ctx);
545 else
546 event_sched_out(event, cpuctx, ctx);
547 event->state = PERF_EVENT_STATE_OFF;
548 }
549
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100550 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200551}
552
553/*
554 * Disable a event.
555 *
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
565 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100566void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200567{
568 struct perf_event_context *ctx = event->ctx;
569 struct task_struct *task = ctx->task;
570
571 if (!task) {
572 /*
573 * Disable the event on the cpu that it's on
574 */
575 smp_call_function_single(event->cpu, __perf_event_disable,
576 event, 1);
577 return;
578 }
579
580 retry:
581 task_oncpu_function_call(task, __perf_event_disable, event);
582
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100583 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200584 /*
585 * If the event is still active, we need to retry the cross-call.
586 */
587 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100588 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200589 goto retry;
590 }
591
592 /*
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
595 */
596 if (event->state == PERF_EVENT_STATE_INACTIVE) {
597 update_group_times(event);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100601 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200602}
603
604static int
605event_sched_in(struct perf_event *event,
606 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100607 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200608{
609 if (event->state <= PERF_EVENT_STATE_OFF)
610 return 0;
611
612 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100613 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200614 /*
615 * The new state must be visible before we turn it on in the hardware:
616 */
617 smp_wmb();
618
619 if (event->pmu->enable(event)) {
620 event->state = PERF_EVENT_STATE_INACTIVE;
621 event->oncpu = -1;
622 return -EAGAIN;
623 }
624
625 event->tstamp_running += ctx->time - event->tstamp_stopped;
626
627 if (!is_software_event(event))
628 cpuctx->active_oncpu++;
629 ctx->nr_active++;
630
631 if (event->attr.exclusive)
632 cpuctx->exclusive = 1;
633
634 return 0;
635}
636
637static int
638group_sched_in(struct perf_event *group_event,
639 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100640 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200641{
642 struct perf_event *event, *partial_group;
643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
Peter Zijlstra6e377382010-02-11 13:21:58 +0100648 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200649 if (ret)
650 return ret < 0 ? ret : 0;
651
Peter Zijlstra6e377382010-02-11 13:21:58 +0100652 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200653 return -EAGAIN;
654
655 /*
656 * Schedule in siblings as one group (if any):
657 */
658 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100659 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200660 partial_group = event;
661 goto group_error;
662 }
663 }
664
665 return 0;
666
667group_error:
668 /*
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
671 */
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event == partial_group)
674 break;
675 event_sched_out(event, cpuctx, ctx);
676 }
677 event_sched_out(group_event, cpuctx, ctx);
678
679 return -EAGAIN;
680}
681
682/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200683 * Work out whether we can put this event group on the CPU now.
684 */
685static int group_can_go_on(struct perf_event *event,
686 struct perf_cpu_context *cpuctx,
687 int can_add_hw)
688{
689 /*
690 * Groups consisting entirely of software events can always go on.
691 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100692 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200693 return 1;
694 /*
695 * If an exclusive group is already on, no other hardware
696 * events can go on.
697 */
698 if (cpuctx->exclusive)
699 return 0;
700 /*
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
703 */
704 if (event->attr.exclusive && cpuctx->active_oncpu)
705 return 0;
706 /*
707 * Otherwise, try to add it if all previous groups were able
708 * to go on.
709 */
710 return can_add_hw;
711}
712
713static void add_event_to_ctx(struct perf_event *event,
714 struct perf_event_context *ctx)
715{
716 list_add_event(event, ctx);
717 event->tstamp_enabled = ctx->time;
718 event->tstamp_running = ctx->time;
719 event->tstamp_stopped = ctx->time;
720}
721
722/*
723 * Cross CPU call to install and enable a performance event
724 *
725 * Must be called with ctx->mutex held
726 */
727static void __perf_install_in_context(void *info)
728{
729 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 struct perf_event *event = info;
731 struct perf_event_context *ctx = event->ctx;
732 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200733 int err;
734
735 /*
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
741 */
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
746 }
747
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100748 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200749 ctx->is_active = 1;
750 update_context_time(ctx);
751
752 /*
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
755 */
756 perf_disable();
757
758 add_event_to_ctx(event, ctx);
759
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100760 if (event->cpu != -1 && event->cpu != smp_processor_id())
761 goto unlock;
762
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200763 /*
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
766 */
767 if (event->state != PERF_EVENT_STATE_INACTIVE ||
768 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 goto unlock;
770
771 /*
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
775 */
776 if (!group_can_go_on(event, cpuctx, 1))
777 err = -EEXIST;
778 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100779 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200780
781 if (err) {
782 /*
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
786 */
787 if (leader != event)
788 group_sched_out(leader, cpuctx, ctx);
789 if (leader->attr.pinned) {
790 update_group_times(leader);
791 leader->state = PERF_EVENT_STATE_ERROR;
792 }
793 }
794
795 if (!err && !ctx->task && cpuctx->max_pertask)
796 cpuctx->max_pertask--;
797
798 unlock:
799 perf_enable();
800
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100801 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200802}
803
804/*
805 * Attach a performance event to a context
806 *
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
809 *
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
813 *
814 * Must be called with ctx->mutex held.
815 */
816static void
817perf_install_in_context(struct perf_event_context *ctx,
818 struct perf_event *event,
819 int cpu)
820{
821 struct task_struct *task = ctx->task;
822
823 if (!task) {
824 /*
825 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200826 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200827 */
828 smp_call_function_single(cpu, __perf_install_in_context,
829 event, 1);
830 return;
831 }
832
833retry:
834 task_oncpu_function_call(task, __perf_install_in_context,
835 event);
836
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100837 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200838 /*
839 * we need to retry the smp call.
840 */
841 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100842 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200843 goto retry;
844 }
845
846 /*
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
849 * succeed.
850 */
851 if (list_empty(&event->group_entry))
852 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100853 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200854}
855
856/*
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
863 */
864static void __perf_event_mark_enabled(struct perf_event *event,
865 struct perf_event_context *ctx)
866{
867 struct perf_event *sub;
868
869 event->state = PERF_EVENT_STATE_INACTIVE;
870 event->tstamp_enabled = ctx->time - event->total_time_enabled;
871 list_for_each_entry(sub, &event->sibling_list, group_entry)
872 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 sub->tstamp_enabled =
874 ctx->time - sub->total_time_enabled;
875}
876
877/*
878 * Cross CPU call to enable a performance event
879 */
880static void __perf_event_enable(void *info)
881{
882 struct perf_event *event = info;
883 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 struct perf_event_context *ctx = event->ctx;
885 struct perf_event *leader = event->group_leader;
886 int err;
887
888 /*
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
891 */
892 if (ctx->task && cpuctx->task_ctx != ctx) {
893 if (cpuctx->task_ctx || ctx->task != current)
894 return;
895 cpuctx->task_ctx = ctx;
896 }
897
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100898 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200899 ctx->is_active = 1;
900 update_context_time(ctx);
901
902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
903 goto unlock;
904 __perf_event_mark_enabled(event, ctx);
905
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100906 if (event->cpu != -1 && event->cpu != smp_processor_id())
907 goto unlock;
908
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200909 /*
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
912 */
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
915
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100921 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200922 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100923 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200924 perf_enable();
925 }
926
927 if (err) {
928 /*
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
931 */
932 if (leader != event)
933 group_sched_out(leader, cpuctx, ctx);
934 if (leader->attr.pinned) {
935 update_group_times(leader);
936 leader->state = PERF_EVENT_STATE_ERROR;
937 }
938 }
939
940 unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100941 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200942}
943
944/*
945 * Enable a event.
946 *
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
952 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100953void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200954{
955 struct perf_event_context *ctx = event->ctx;
956 struct task_struct *task = ctx->task;
957
958 if (!task) {
959 /*
960 * Enable the event on the cpu that it's on
961 */
962 smp_call_function_single(event->cpu, __perf_event_enable,
963 event, 1);
964 return;
965 }
966
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100967 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 goto out;
970
971 /*
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
977 */
978 if (event->state == PERF_EVENT_STATE_ERROR)
979 event->state = PERF_EVENT_STATE_OFF;
980
981 retry:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100982 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200983 task_oncpu_function_call(task, __perf_event_enable, event);
984
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100985 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200986
987 /*
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
990 */
991 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 goto retry;
993
994 /*
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
997 */
998 if (event->state == PERF_EVENT_STATE_OFF)
999 __perf_event_mark_enabled(event, ctx);
1000
1001 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001002 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001003}
1004
1005static int perf_event_refresh(struct perf_event *event, int refresh)
1006{
1007 /*
1008 * not supported on inherited events
1009 */
1010 if (event->attr.inherit)
1011 return -EINVAL;
1012
1013 atomic_add(refresh, &event->event_limit);
1014 perf_event_enable(event);
1015
1016 return 0;
1017}
1018
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001019enum event_type_t {
1020 EVENT_FLEXIBLE = 0x1,
1021 EVENT_PINNED = 0x2,
1022 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1023};
1024
1025static void ctx_sched_out(struct perf_event_context *ctx,
1026 struct perf_cpu_context *cpuctx,
1027 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001028{
1029 struct perf_event *event;
1030
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001031 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1036
1037 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001038 if (!ctx->nr_active)
1039 goto out_enable;
1040
1041 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001042 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043 group_sched_out(event, cpuctx, ctx);
1044
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001045 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001046 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001047 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001048
1049 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001050 perf_enable();
1051 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001052 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001053}
1054
1055/*
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1065 */
1066static int context_equiv(struct perf_event_context *ctx1,
1067 struct perf_event_context *ctx2)
1068{
1069 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070 && ctx1->parent_gen == ctx2->parent_gen
1071 && !ctx1->pin_count && !ctx2->pin_count;
1072}
1073
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001074static void __perf_event_sync_stat(struct perf_event *event,
1075 struct perf_event *next_event)
1076{
1077 u64 value;
1078
1079 if (!event->attr.inherit_stat)
1080 return;
1081
1082 /*
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1088 */
1089 switch (event->state) {
1090 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001091 event->pmu->read(event);
1092 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001093
1094 case PERF_EVENT_STATE_INACTIVE:
1095 update_event_times(event);
1096 break;
1097
1098 default:
1099 break;
1100 }
1101
1102 /*
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1105 */
1106 value = atomic64_read(&next_event->count);
1107 value = atomic64_xchg(&event->count, value);
1108 atomic64_set(&next_event->count, value);
1109
1110 swap(event->total_time_enabled, next_event->total_time_enabled);
1111 swap(event->total_time_running, next_event->total_time_running);
1112
1113 /*
1114 * Since we swizzled the values, update the user visible data too.
1115 */
1116 perf_event_update_userpage(event);
1117 perf_event_update_userpage(next_event);
1118}
1119
1120#define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1122
1123static void perf_event_sync_stat(struct perf_event_context *ctx,
1124 struct perf_event_context *next_ctx)
1125{
1126 struct perf_event *event, *next_event;
1127
1128 if (!ctx->nr_stat)
1129 return;
1130
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001131 update_context_time(ctx);
1132
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001133 event = list_first_entry(&ctx->event_list,
1134 struct perf_event, event_entry);
1135
1136 next_event = list_first_entry(&next_ctx->event_list,
1137 struct perf_event, event_entry);
1138
1139 while (&event->event_entry != &ctx->event_list &&
1140 &next_event->event_entry != &next_ctx->event_list) {
1141
1142 __perf_event_sync_stat(event, next_event);
1143
1144 event = list_next_entry(event, event_entry);
1145 next_event = list_next_entry(next_event, event_entry);
1146 }
1147}
1148
1149/*
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1152 *
1153 * We stop each event and update the event value in event->count.
1154 *
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1159 */
1160void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001161 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001162{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001163 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001164 struct perf_event_context *ctx = task->perf_event_ctxp;
1165 struct perf_event_context *next_ctx;
1166 struct perf_event_context *parent;
1167 struct pt_regs *regs;
1168 int do_switch = 1;
1169
1170 regs = task_pt_regs(task);
1171 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1172
1173 if (likely(!ctx || !cpuctx->task_ctx))
1174 return;
1175
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001176 rcu_read_lock();
1177 parent = rcu_dereference(ctx->parent_ctx);
1178 next_ctx = next->perf_event_ctxp;
1179 if (parent && next_ctx &&
1180 rcu_dereference(next_ctx->parent_ctx) == parent) {
1181 /*
1182 * Looks like the two contexts are clones, so we might be
1183 * able to optimize the context switch. We lock both
1184 * contexts and check that they are clones under the
1185 * lock (including re-checking that neither has been
1186 * uncloned in the meantime). It doesn't matter which
1187 * order we take the locks because no other cpu could
1188 * be trying to lock both of these tasks.
1189 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001190 raw_spin_lock(&ctx->lock);
1191 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001192 if (context_equiv(ctx, next_ctx)) {
1193 /*
1194 * XXX do we need a memory barrier of sorts
1195 * wrt to rcu_dereference() of perf_event_ctxp
1196 */
1197 task->perf_event_ctxp = next_ctx;
1198 next->perf_event_ctxp = ctx;
1199 ctx->task = next;
1200 next_ctx->task = task;
1201 do_switch = 0;
1202
1203 perf_event_sync_stat(ctx, next_ctx);
1204 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001205 raw_spin_unlock(&next_ctx->lock);
1206 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001207 }
1208 rcu_read_unlock();
1209
1210 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001211 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001212 cpuctx->task_ctx = NULL;
1213 }
1214}
1215
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001216static void task_ctx_sched_out(struct perf_event_context *ctx,
1217 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001218{
1219 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1220
1221 if (!cpuctx->task_ctx)
1222 return;
1223
1224 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1225 return;
1226
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001227 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001228 cpuctx->task_ctx = NULL;
1229}
1230
1231/*
1232 * Called with IRQs disabled
1233 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001234static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001235{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001236 task_ctx_sched_out(ctx, EVENT_ALL);
1237}
1238
1239/*
1240 * Called with IRQs disabled
1241 */
1242static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1243 enum event_type_t event_type)
1244{
1245 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001246}
1247
1248static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001249ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001250 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001251{
1252 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001253
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001254 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1255 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001256 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001257 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001258 continue;
1259
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001260 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001261 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262
1263 /*
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1266 */
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1270 }
1271 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001272}
1273
1274static void
1275ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001276 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001277{
1278 struct perf_event *event;
1279 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001280
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001281 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1282 /* Ignore events in OFF or ERROR state */
1283 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001284 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001285 /*
1286 * Listen to the 'cpu' scheduling filter constraint
1287 * of events:
1288 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001289 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 continue;
1291
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001292 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001293 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001294 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001295 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001296}
1297
1298static void
1299ctx_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx,
1301 enum event_type_t event_type)
1302{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001303 raw_spin_lock(&ctx->lock);
1304 ctx->is_active = 1;
1305 if (likely(!ctx->nr_events))
1306 goto out;
1307
1308 ctx->timestamp = perf_clock();
1309
1310 perf_disable();
1311
1312 /*
1313 * First go through the list and put on any pinned groups
1314 * in order to give them the best chance of going on.
1315 */
1316 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001317 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001318
1319 /* Then walk through the lower prio flexible groups */
1320 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001321 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001322
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001323 perf_enable();
1324 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001325 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001326}
1327
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001328static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1329 enum event_type_t event_type)
1330{
1331 struct perf_event_context *ctx = &cpuctx->ctx;
1332
1333 ctx_sched_in(ctx, cpuctx, event_type);
1334}
1335
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001336static void task_ctx_sched_in(struct task_struct *task,
1337 enum event_type_t event_type)
1338{
1339 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1340 struct perf_event_context *ctx = task->perf_event_ctxp;
1341
1342 if (likely(!ctx))
1343 return;
1344 if (cpuctx->task_ctx == ctx)
1345 return;
1346 ctx_sched_in(ctx, cpuctx, event_type);
1347 cpuctx->task_ctx = ctx;
1348}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001349/*
1350 * Called from scheduler to add the events of the current task
1351 * with interrupts disabled.
1352 *
1353 * We restore the event value and then enable it.
1354 *
1355 * This does not protect us against NMI, but enable()
1356 * sets the enabled bit in the control field of event _before_
1357 * accessing the event control register. If a NMI hits, then it will
1358 * keep the event running.
1359 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001360void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001361{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001362 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1363 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001364
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001365 if (likely(!ctx))
1366 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001367
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001368 if (cpuctx->task_ctx == ctx)
1369 return;
1370
1371 /*
1372 * We want to keep the following priority order:
1373 * cpu pinned (that don't need to move), task pinned,
1374 * cpu flexible, task flexible.
1375 */
1376 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1377
1378 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1379 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1380 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1381
1382 cpuctx->task_ctx = ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001383}
1384
1385#define MAX_INTERRUPTS (~0ULL)
1386
1387static void perf_log_throttle(struct perf_event *event, int enable);
1388
Peter Zijlstraabd50712010-01-26 18:50:16 +01001389static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1390{
1391 u64 frequency = event->attr.sample_freq;
1392 u64 sec = NSEC_PER_SEC;
1393 u64 divisor, dividend;
1394
1395 int count_fls, nsec_fls, frequency_fls, sec_fls;
1396
1397 count_fls = fls64(count);
1398 nsec_fls = fls64(nsec);
1399 frequency_fls = fls64(frequency);
1400 sec_fls = 30;
1401
1402 /*
1403 * We got @count in @nsec, with a target of sample_freq HZ
1404 * the target period becomes:
1405 *
1406 * @count * 10^9
1407 * period = -------------------
1408 * @nsec * sample_freq
1409 *
1410 */
1411
1412 /*
1413 * Reduce accuracy by one bit such that @a and @b converge
1414 * to a similar magnitude.
1415 */
1416#define REDUCE_FLS(a, b) \
1417do { \
1418 if (a##_fls > b##_fls) { \
1419 a >>= 1; \
1420 a##_fls--; \
1421 } else { \
1422 b >>= 1; \
1423 b##_fls--; \
1424 } \
1425} while (0)
1426
1427 /*
1428 * Reduce accuracy until either term fits in a u64, then proceed with
1429 * the other, so that finally we can do a u64/u64 division.
1430 */
1431 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1432 REDUCE_FLS(nsec, frequency);
1433 REDUCE_FLS(sec, count);
1434 }
1435
1436 if (count_fls + sec_fls > 64) {
1437 divisor = nsec * frequency;
1438
1439 while (count_fls + sec_fls > 64) {
1440 REDUCE_FLS(count, sec);
1441 divisor >>= 1;
1442 }
1443
1444 dividend = count * sec;
1445 } else {
1446 dividend = count * sec;
1447
1448 while (nsec_fls + frequency_fls > 64) {
1449 REDUCE_FLS(nsec, frequency);
1450 dividend >>= 1;
1451 }
1452
1453 divisor = nsec * frequency;
1454 }
1455
1456 return div64_u64(dividend, divisor);
1457}
1458
Stephane Eraniand76a0812010-02-08 17:06:01 +02001459static void perf_event_stop(struct perf_event *event)
1460{
1461 if (!event->pmu->stop)
1462 return event->pmu->disable(event);
1463
1464 return event->pmu->stop(event);
1465}
1466
1467static int perf_event_start(struct perf_event *event)
1468{
1469 if (!event->pmu->start)
1470 return event->pmu->enable(event);
1471
1472 return event->pmu->start(event);
1473}
1474
Peter Zijlstraabd50712010-01-26 18:50:16 +01001475static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001476{
1477 struct hw_perf_event *hwc = &event->hw;
1478 u64 period, sample_period;
1479 s64 delta;
1480
Peter Zijlstraabd50712010-01-26 18:50:16 +01001481 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001482
1483 delta = (s64)(period - hwc->sample_period);
1484 delta = (delta + 7) / 8; /* low pass filter */
1485
1486 sample_period = hwc->sample_period + delta;
1487
1488 if (!sample_period)
1489 sample_period = 1;
1490
1491 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001492
1493 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1494 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001495 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001496 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001497 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001498 perf_enable();
1499 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001500}
1501
1502static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1503{
1504 struct perf_event *event;
1505 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001506 u64 interrupts, now;
1507 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001508
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001509 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001510 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001511 if (event->state != PERF_EVENT_STATE_ACTIVE)
1512 continue;
1513
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001514 if (event->cpu != -1 && event->cpu != smp_processor_id())
1515 continue;
1516
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001517 hwc = &event->hw;
1518
1519 interrupts = hwc->interrupts;
1520 hwc->interrupts = 0;
1521
1522 /*
1523 * unthrottle events on the tick
1524 */
1525 if (interrupts == MAX_INTERRUPTS) {
1526 perf_log_throttle(event, 1);
1527 event->pmu->unthrottle(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001528 }
1529
1530 if (!event->attr.freq || !event->attr.sample_freq)
1531 continue;
1532
Peter Zijlstraabd50712010-01-26 18:50:16 +01001533 event->pmu->read(event);
1534 now = atomic64_read(&event->count);
1535 delta = now - hwc->freq_count_stamp;
1536 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001537
Peter Zijlstraabd50712010-01-26 18:50:16 +01001538 if (delta > 0)
1539 perf_adjust_period(event, TICK_NSEC, delta);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001540 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001541 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001542}
1543
1544/*
1545 * Round-robin a context's events:
1546 */
1547static void rotate_ctx(struct perf_event_context *ctx)
1548{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001549 if (!ctx->nr_events)
1550 return;
1551
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001552 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001553
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001554 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001555 list_rotate_left(&ctx->flexible_groups);
1556
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001557 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001558}
1559
Peter Zijlstra49f47432009-12-27 11:51:52 +01001560void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561{
1562 struct perf_cpu_context *cpuctx;
1563 struct perf_event_context *ctx;
1564
1565 if (!atomic_read(&nr_events))
1566 return;
1567
Peter Zijlstra49f47432009-12-27 11:51:52 +01001568 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001569 ctx = curr->perf_event_ctxp;
1570
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001571 perf_disable();
1572
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001573 perf_ctx_adjust_freq(&cpuctx->ctx);
1574 if (ctx)
1575 perf_ctx_adjust_freq(ctx);
1576
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001577 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001578 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001579 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001580
1581 rotate_ctx(&cpuctx->ctx);
1582 if (ctx)
1583 rotate_ctx(ctx);
1584
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001585 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001586 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001587 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001588
1589 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001590}
1591
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001592static int event_enable_on_exec(struct perf_event *event,
1593 struct perf_event_context *ctx)
1594{
1595 if (!event->attr.enable_on_exec)
1596 return 0;
1597
1598 event->attr.enable_on_exec = 0;
1599 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1600 return 0;
1601
1602 __perf_event_mark_enabled(event, ctx);
1603
1604 return 1;
1605}
1606
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001607/*
1608 * Enable all of a task's events that have been marked enable-on-exec.
1609 * This expects task == current.
1610 */
1611static void perf_event_enable_on_exec(struct task_struct *task)
1612{
1613 struct perf_event_context *ctx;
1614 struct perf_event *event;
1615 unsigned long flags;
1616 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001617 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001618
1619 local_irq_save(flags);
1620 ctx = task->perf_event_ctxp;
1621 if (!ctx || !ctx->nr_events)
1622 goto out;
1623
1624 __perf_event_task_sched_out(ctx);
1625
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001626 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001627
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001628 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1629 ret = event_enable_on_exec(event, ctx);
1630 if (ret)
1631 enabled = 1;
1632 }
1633
1634 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1635 ret = event_enable_on_exec(event, ctx);
1636 if (ret)
1637 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001638 }
1639
1640 /*
1641 * Unclone this context if we enabled any event.
1642 */
1643 if (enabled)
1644 unclone_ctx(ctx);
1645
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001646 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001647
Peter Zijlstra49f47432009-12-27 11:51:52 +01001648 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001649 out:
1650 local_irq_restore(flags);
1651}
1652
1653/*
1654 * Cross CPU call to read the hardware event
1655 */
1656static void __perf_event_read(void *info)
1657{
1658 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1659 struct perf_event *event = info;
1660 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001661
1662 /*
1663 * If this is a task context, we need to check whether it is
1664 * the current task context of this cpu. If not it has been
1665 * scheduled out before the smp call arrived. In that case
1666 * event->count would have been updated to a recent sample
1667 * when the event was scheduled out.
1668 */
1669 if (ctx->task && cpuctx->task_ctx != ctx)
1670 return;
1671
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001672 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001673 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001674 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001675 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001676
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001677 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001678}
1679
1680static u64 perf_event_read(struct perf_event *event)
1681{
1682 /*
1683 * If event is enabled and currently active on a CPU, update the
1684 * value in the event structure:
1685 */
1686 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1687 smp_call_function_single(event->oncpu,
1688 __perf_event_read, event, 1);
1689 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001690 struct perf_event_context *ctx = event->ctx;
1691 unsigned long flags;
1692
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001693 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001694 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001695 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001696 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001697 }
1698
1699 return atomic64_read(&event->count);
1700}
1701
1702/*
1703 * Initialize the perf_event context in a task_struct:
1704 */
1705static void
1706__perf_event_init_context(struct perf_event_context *ctx,
1707 struct task_struct *task)
1708{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001709 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001710 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001711 INIT_LIST_HEAD(&ctx->pinned_groups);
1712 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001713 INIT_LIST_HEAD(&ctx->event_list);
1714 atomic_set(&ctx->refcount, 1);
1715 ctx->task = task;
1716}
1717
1718static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1719{
1720 struct perf_event_context *ctx;
1721 struct perf_cpu_context *cpuctx;
1722 struct task_struct *task;
1723 unsigned long flags;
1724 int err;
1725
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001726 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001727 /* Must be root to operate on a CPU event: */
1728 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1729 return ERR_PTR(-EACCES);
1730
Paul Mackerras0f624e72009-12-15 19:40:32 +11001731 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001732 return ERR_PTR(-EINVAL);
1733
1734 /*
1735 * We could be clever and allow to attach a event to an
1736 * offline CPU and activate it when the CPU comes up, but
1737 * that's for later.
1738 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001739 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001740 return ERR_PTR(-ENODEV);
1741
1742 cpuctx = &per_cpu(perf_cpu_context, cpu);
1743 ctx = &cpuctx->ctx;
1744 get_ctx(ctx);
1745
1746 return ctx;
1747 }
1748
1749 rcu_read_lock();
1750 if (!pid)
1751 task = current;
1752 else
1753 task = find_task_by_vpid(pid);
1754 if (task)
1755 get_task_struct(task);
1756 rcu_read_unlock();
1757
1758 if (!task)
1759 return ERR_PTR(-ESRCH);
1760
1761 /*
1762 * Can't attach events to a dying task.
1763 */
1764 err = -ESRCH;
1765 if (task->flags & PF_EXITING)
1766 goto errout;
1767
1768 /* Reuse ptrace permission checks for now. */
1769 err = -EACCES;
1770 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1771 goto errout;
1772
1773 retry:
1774 ctx = perf_lock_task_context(task, &flags);
1775 if (ctx) {
1776 unclone_ctx(ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001777 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001778 }
1779
1780 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001781 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001782 err = -ENOMEM;
1783 if (!ctx)
1784 goto errout;
1785 __perf_event_init_context(ctx, task);
1786 get_ctx(ctx);
1787 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1788 /*
1789 * We raced with some other task; use
1790 * the context they set.
1791 */
1792 kfree(ctx);
1793 goto retry;
1794 }
1795 get_task_struct(task);
1796 }
1797
1798 put_task_struct(task);
1799 return ctx;
1800
1801 errout:
1802 put_task_struct(task);
1803 return ERR_PTR(err);
1804}
1805
Li Zefan6fb29152009-10-15 11:21:42 +08001806static void perf_event_free_filter(struct perf_event *event);
1807
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001808static void free_event_rcu(struct rcu_head *head)
1809{
1810 struct perf_event *event;
1811
1812 event = container_of(head, struct perf_event, rcu_head);
1813 if (event->ns)
1814 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001815 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001816 kfree(event);
1817}
1818
1819static void perf_pending_sync(struct perf_event *event);
1820
1821static void free_event(struct perf_event *event)
1822{
1823 perf_pending_sync(event);
1824
1825 if (!event->parent) {
1826 atomic_dec(&nr_events);
1827 if (event->attr.mmap)
1828 atomic_dec(&nr_mmap_events);
1829 if (event->attr.comm)
1830 atomic_dec(&nr_comm_events);
1831 if (event->attr.task)
1832 atomic_dec(&nr_task_events);
1833 }
1834
1835 if (event->output) {
1836 fput(event->output->filp);
1837 event->output = NULL;
1838 }
1839
1840 if (event->destroy)
1841 event->destroy(event);
1842
1843 put_ctx(event->ctx);
1844 call_rcu(&event->rcu_head, free_event_rcu);
1845}
1846
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001847int perf_event_release_kernel(struct perf_event *event)
1848{
1849 struct perf_event_context *ctx = event->ctx;
1850
1851 WARN_ON_ONCE(ctx->parent_ctx);
1852 mutex_lock(&ctx->mutex);
1853 perf_event_remove_from_context(event);
1854 mutex_unlock(&ctx->mutex);
1855
1856 mutex_lock(&event->owner->perf_event_mutex);
1857 list_del_init(&event->owner_entry);
1858 mutex_unlock(&event->owner->perf_event_mutex);
1859 put_task_struct(event->owner);
1860
1861 free_event(event);
1862
1863 return 0;
1864}
1865EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1866
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001867/*
1868 * Called when the last reference to the file is gone.
1869 */
1870static int perf_release(struct inode *inode, struct file *file)
1871{
1872 struct perf_event *event = file->private_data;
1873
1874 file->private_data = NULL;
1875
1876 return perf_event_release_kernel(event);
1877}
1878
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001879static int perf_event_read_size(struct perf_event *event)
1880{
1881 int entry = sizeof(u64); /* value */
1882 int size = 0;
1883 int nr = 1;
1884
1885 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1886 size += sizeof(u64);
1887
1888 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1889 size += sizeof(u64);
1890
1891 if (event->attr.read_format & PERF_FORMAT_ID)
1892 entry += sizeof(u64);
1893
1894 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1895 nr += event->group_leader->nr_siblings;
1896 size += sizeof(u64);
1897 }
1898
1899 size += entry * nr;
1900
1901 return size;
1902}
1903
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001904u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001905{
1906 struct perf_event *child;
1907 u64 total = 0;
1908
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001909 *enabled = 0;
1910 *running = 0;
1911
Peter Zijlstra6f105812009-11-20 22:19:56 +01001912 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001913 total += perf_event_read(event);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001914 *enabled += event->total_time_enabled +
1915 atomic64_read(&event->child_total_time_enabled);
1916 *running += event->total_time_running +
1917 atomic64_read(&event->child_total_time_running);
1918
1919 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001920 total += perf_event_read(child);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001921 *enabled += child->total_time_enabled;
1922 *running += child->total_time_running;
1923 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001924 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001925
1926 return total;
1927}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001928EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001929
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001930static int perf_event_read_group(struct perf_event *event,
1931 u64 read_format, char __user *buf)
1932{
1933 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001934 int n = 0, size = 0, ret = -EFAULT;
1935 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001936 u64 values[5];
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001937 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001938
Peter Zijlstra6f105812009-11-20 22:19:56 +01001939 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001940 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001941
1942 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001943 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1944 values[n++] = enabled;
1945 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1946 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001947 values[n++] = count;
1948 if (read_format & PERF_FORMAT_ID)
1949 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001950
1951 size = n * sizeof(u64);
1952
1953 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001954 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001955
Peter Zijlstra6f105812009-11-20 22:19:56 +01001956 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001957
1958 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001959 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001960
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001961 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001962 if (read_format & PERF_FORMAT_ID)
1963 values[n++] = primary_event_id(sub);
1964
1965 size = n * sizeof(u64);
1966
Stephane Eranian184d3da2009-11-23 21:40:49 -08001967 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001968 ret = -EFAULT;
1969 goto unlock;
1970 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001971
1972 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001973 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001974unlock:
1975 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001976
Peter Zijlstraabf48682009-11-20 22:19:49 +01001977 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001978}
1979
1980static int perf_event_read_one(struct perf_event *event,
1981 u64 read_format, char __user *buf)
1982{
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001983 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001984 u64 values[4];
1985 int n = 0;
1986
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001987 values[n++] = perf_event_read_value(event, &enabled, &running);
1988 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989 values[n++] = enabled;
1990 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001992 if (read_format & PERF_FORMAT_ID)
1993 values[n++] = primary_event_id(event);
1994
1995 if (copy_to_user(buf, values, n * sizeof(u64)))
1996 return -EFAULT;
1997
1998 return n * sizeof(u64);
1999}
2000
2001/*
2002 * Read the performance event - simple non blocking version for now
2003 */
2004static ssize_t
2005perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2006{
2007 u64 read_format = event->attr.read_format;
2008 int ret;
2009
2010 /*
2011 * Return end-of-file for a read on a event that is in
2012 * error state (i.e. because it was pinned but it couldn't be
2013 * scheduled on to the CPU at some point).
2014 */
2015 if (event->state == PERF_EVENT_STATE_ERROR)
2016 return 0;
2017
2018 if (count < perf_event_read_size(event))
2019 return -ENOSPC;
2020
2021 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002022 if (read_format & PERF_FORMAT_GROUP)
2023 ret = perf_event_read_group(event, read_format, buf);
2024 else
2025 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002026
2027 return ret;
2028}
2029
2030static ssize_t
2031perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2032{
2033 struct perf_event *event = file->private_data;
2034
2035 return perf_read_hw(event, buf, count);
2036}
2037
2038static unsigned int perf_poll(struct file *file, poll_table *wait)
2039{
2040 struct perf_event *event = file->private_data;
2041 struct perf_mmap_data *data;
2042 unsigned int events = POLL_HUP;
2043
2044 rcu_read_lock();
2045 data = rcu_dereference(event->data);
2046 if (data)
2047 events = atomic_xchg(&data->poll, 0);
2048 rcu_read_unlock();
2049
2050 poll_wait(file, &event->waitq, wait);
2051
2052 return events;
2053}
2054
2055static void perf_event_reset(struct perf_event *event)
2056{
2057 (void)perf_event_read(event);
2058 atomic64_set(&event->count, 0);
2059 perf_event_update_userpage(event);
2060}
2061
2062/*
2063 * Holding the top-level event's child_mutex means that any
2064 * descendant process that has inherited this event will block
2065 * in sync_child_event if it goes to exit, thus satisfying the
2066 * task existence requirements of perf_event_enable/disable.
2067 */
2068static void perf_event_for_each_child(struct perf_event *event,
2069 void (*func)(struct perf_event *))
2070{
2071 struct perf_event *child;
2072
2073 WARN_ON_ONCE(event->ctx->parent_ctx);
2074 mutex_lock(&event->child_mutex);
2075 func(event);
2076 list_for_each_entry(child, &event->child_list, child_list)
2077 func(child);
2078 mutex_unlock(&event->child_mutex);
2079}
2080
2081static void perf_event_for_each(struct perf_event *event,
2082 void (*func)(struct perf_event *))
2083{
2084 struct perf_event_context *ctx = event->ctx;
2085 struct perf_event *sibling;
2086
2087 WARN_ON_ONCE(ctx->parent_ctx);
2088 mutex_lock(&ctx->mutex);
2089 event = event->group_leader;
2090
2091 perf_event_for_each_child(event, func);
2092 func(event);
2093 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2094 perf_event_for_each_child(event, func);
2095 mutex_unlock(&ctx->mutex);
2096}
2097
2098static int perf_event_period(struct perf_event *event, u64 __user *arg)
2099{
2100 struct perf_event_context *ctx = event->ctx;
2101 unsigned long size;
2102 int ret = 0;
2103 u64 value;
2104
2105 if (!event->attr.sample_period)
2106 return -EINVAL;
2107
2108 size = copy_from_user(&value, arg, sizeof(value));
2109 if (size != sizeof(value))
2110 return -EFAULT;
2111
2112 if (!value)
2113 return -EINVAL;
2114
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002115 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002116 if (event->attr.freq) {
2117 if (value > sysctl_perf_event_sample_rate) {
2118 ret = -EINVAL;
2119 goto unlock;
2120 }
2121
2122 event->attr.sample_freq = value;
2123 } else {
2124 event->attr.sample_period = value;
2125 event->hw.sample_period = value;
2126 }
2127unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002128 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002129
2130 return ret;
2131}
2132
Li Zefan6fb29152009-10-15 11:21:42 +08002133static int perf_event_set_output(struct perf_event *event, int output_fd);
2134static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002135
2136static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2137{
2138 struct perf_event *event = file->private_data;
2139 void (*func)(struct perf_event *);
2140 u32 flags = arg;
2141
2142 switch (cmd) {
2143 case PERF_EVENT_IOC_ENABLE:
2144 func = perf_event_enable;
2145 break;
2146 case PERF_EVENT_IOC_DISABLE:
2147 func = perf_event_disable;
2148 break;
2149 case PERF_EVENT_IOC_RESET:
2150 func = perf_event_reset;
2151 break;
2152
2153 case PERF_EVENT_IOC_REFRESH:
2154 return perf_event_refresh(event, arg);
2155
2156 case PERF_EVENT_IOC_PERIOD:
2157 return perf_event_period(event, (u64 __user *)arg);
2158
2159 case PERF_EVENT_IOC_SET_OUTPUT:
2160 return perf_event_set_output(event, arg);
2161
Li Zefan6fb29152009-10-15 11:21:42 +08002162 case PERF_EVENT_IOC_SET_FILTER:
2163 return perf_event_set_filter(event, (void __user *)arg);
2164
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002165 default:
2166 return -ENOTTY;
2167 }
2168
2169 if (flags & PERF_IOC_FLAG_GROUP)
2170 perf_event_for_each(event, func);
2171 else
2172 perf_event_for_each_child(event, func);
2173
2174 return 0;
2175}
2176
2177int perf_event_task_enable(void)
2178{
2179 struct perf_event *event;
2180
2181 mutex_lock(&current->perf_event_mutex);
2182 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2183 perf_event_for_each_child(event, perf_event_enable);
2184 mutex_unlock(&current->perf_event_mutex);
2185
2186 return 0;
2187}
2188
2189int perf_event_task_disable(void)
2190{
2191 struct perf_event *event;
2192
2193 mutex_lock(&current->perf_event_mutex);
2194 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2195 perf_event_for_each_child(event, perf_event_disable);
2196 mutex_unlock(&current->perf_event_mutex);
2197
2198 return 0;
2199}
2200
2201#ifndef PERF_EVENT_INDEX_OFFSET
2202# define PERF_EVENT_INDEX_OFFSET 0
2203#endif
2204
2205static int perf_event_index(struct perf_event *event)
2206{
2207 if (event->state != PERF_EVENT_STATE_ACTIVE)
2208 return 0;
2209
2210 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2211}
2212
2213/*
2214 * Callers need to ensure there can be no nesting of this function, otherwise
2215 * the seqlock logic goes bad. We can not serialize this because the arch
2216 * code calls this from NMI context.
2217 */
2218void perf_event_update_userpage(struct perf_event *event)
2219{
2220 struct perf_event_mmap_page *userpg;
2221 struct perf_mmap_data *data;
2222
2223 rcu_read_lock();
2224 data = rcu_dereference(event->data);
2225 if (!data)
2226 goto unlock;
2227
2228 userpg = data->user_page;
2229
2230 /*
2231 * Disable preemption so as to not let the corresponding user-space
2232 * spin too long if we get preempted.
2233 */
2234 preempt_disable();
2235 ++userpg->lock;
2236 barrier();
2237 userpg->index = perf_event_index(event);
2238 userpg->offset = atomic64_read(&event->count);
2239 if (event->state == PERF_EVENT_STATE_ACTIVE)
2240 userpg->offset -= atomic64_read(&event->hw.prev_count);
2241
2242 userpg->time_enabled = event->total_time_enabled +
2243 atomic64_read(&event->child_total_time_enabled);
2244
2245 userpg->time_running = event->total_time_running +
2246 atomic64_read(&event->child_total_time_running);
2247
2248 barrier();
2249 ++userpg->lock;
2250 preempt_enable();
2251unlock:
2252 rcu_read_unlock();
2253}
2254
Peter Zijlstra906010b2009-09-21 16:08:49 +02002255static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002256{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002257 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002258}
2259
Peter Zijlstra906010b2009-09-21 16:08:49 +02002260#ifndef CONFIG_PERF_USE_VMALLOC
2261
2262/*
2263 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2264 */
2265
2266static struct page *
2267perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2268{
2269 if (pgoff > data->nr_pages)
2270 return NULL;
2271
2272 if (pgoff == 0)
2273 return virt_to_page(data->user_page);
2274
2275 return virt_to_page(data->data_pages[pgoff - 1]);
2276}
2277
2278static struct perf_mmap_data *
2279perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002280{
2281 struct perf_mmap_data *data;
2282 unsigned long size;
2283 int i;
2284
2285 WARN_ON(atomic_read(&event->mmap_count));
2286
2287 size = sizeof(struct perf_mmap_data);
2288 size += nr_pages * sizeof(void *);
2289
2290 data = kzalloc(size, GFP_KERNEL);
2291 if (!data)
2292 goto fail;
2293
2294 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2295 if (!data->user_page)
2296 goto fail_user_page;
2297
2298 for (i = 0; i < nr_pages; i++) {
2299 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2300 if (!data->data_pages[i])
2301 goto fail_data_pages;
2302 }
2303
Peter Zijlstra906010b2009-09-21 16:08:49 +02002304 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002305 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002306
Peter Zijlstra906010b2009-09-21 16:08:49 +02002307 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002308
2309fail_data_pages:
2310 for (i--; i >= 0; i--)
2311 free_page((unsigned long)data->data_pages[i]);
2312
2313 free_page((unsigned long)data->user_page);
2314
2315fail_user_page:
2316 kfree(data);
2317
2318fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002319 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002320}
2321
2322static void perf_mmap_free_page(unsigned long addr)
2323{
2324 struct page *page = virt_to_page((void *)addr);
2325
2326 page->mapping = NULL;
2327 __free_page(page);
2328}
2329
Peter Zijlstra906010b2009-09-21 16:08:49 +02002330static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002331{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002332 int i;
2333
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002334 perf_mmap_free_page((unsigned long)data->user_page);
2335 for (i = 0; i < data->nr_pages; i++)
2336 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002337 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002338}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002339
Peter Zijlstra906010b2009-09-21 16:08:49 +02002340#else
2341
2342/*
2343 * Back perf_mmap() with vmalloc memory.
2344 *
2345 * Required for architectures that have d-cache aliasing issues.
2346 */
2347
2348static struct page *
2349perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2350{
2351 if (pgoff > (1UL << data->data_order))
2352 return NULL;
2353
2354 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2355}
2356
2357static void perf_mmap_unmark_page(void *addr)
2358{
2359 struct page *page = vmalloc_to_page(addr);
2360
2361 page->mapping = NULL;
2362}
2363
2364static void perf_mmap_data_free_work(struct work_struct *work)
2365{
2366 struct perf_mmap_data *data;
2367 void *base;
2368 int i, nr;
2369
2370 data = container_of(work, struct perf_mmap_data, work);
2371 nr = 1 << data->data_order;
2372
2373 base = data->user_page;
2374 for (i = 0; i < nr + 1; i++)
2375 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2376
2377 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002378 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002379}
2380
2381static void perf_mmap_data_free(struct perf_mmap_data *data)
2382{
2383 schedule_work(&data->work);
2384}
2385
2386static struct perf_mmap_data *
2387perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2388{
2389 struct perf_mmap_data *data;
2390 unsigned long size;
2391 void *all_buf;
2392
2393 WARN_ON(atomic_read(&event->mmap_count));
2394
2395 size = sizeof(struct perf_mmap_data);
2396 size += sizeof(void *);
2397
2398 data = kzalloc(size, GFP_KERNEL);
2399 if (!data)
2400 goto fail;
2401
2402 INIT_WORK(&data->work, perf_mmap_data_free_work);
2403
2404 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2405 if (!all_buf)
2406 goto fail_all_buf;
2407
2408 data->user_page = all_buf;
2409 data->data_pages[0] = all_buf + PAGE_SIZE;
2410 data->data_order = ilog2(nr_pages);
2411 data->nr_pages = 1;
2412
2413 return data;
2414
2415fail_all_buf:
2416 kfree(data);
2417
2418fail:
2419 return NULL;
2420}
2421
2422#endif
2423
2424static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2425{
2426 struct perf_event *event = vma->vm_file->private_data;
2427 struct perf_mmap_data *data;
2428 int ret = VM_FAULT_SIGBUS;
2429
2430 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2431 if (vmf->pgoff == 0)
2432 ret = 0;
2433 return ret;
2434 }
2435
2436 rcu_read_lock();
2437 data = rcu_dereference(event->data);
2438 if (!data)
2439 goto unlock;
2440
2441 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2442 goto unlock;
2443
2444 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2445 if (!vmf->page)
2446 goto unlock;
2447
2448 get_page(vmf->page);
2449 vmf->page->mapping = vma->vm_file->f_mapping;
2450 vmf->page->index = vmf->pgoff;
2451
2452 ret = 0;
2453unlock:
2454 rcu_read_unlock();
2455
2456 return ret;
2457}
2458
2459static void
2460perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2461{
2462 long max_size = perf_data_size(data);
2463
2464 atomic_set(&data->lock, -1);
2465
2466 if (event->attr.watermark) {
2467 data->watermark = min_t(long, max_size,
2468 event->attr.wakeup_watermark);
2469 }
2470
2471 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002472 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002473
2474
2475 rcu_assign_pointer(event->data, data);
2476}
2477
2478static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2479{
2480 struct perf_mmap_data *data;
2481
2482 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2483 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002484}
2485
Peter Zijlstra906010b2009-09-21 16:08:49 +02002486static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002487{
2488 struct perf_mmap_data *data = event->data;
2489
2490 WARN_ON(atomic_read(&event->mmap_count));
2491
2492 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002493 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002494}
2495
2496static void perf_mmap_open(struct vm_area_struct *vma)
2497{
2498 struct perf_event *event = vma->vm_file->private_data;
2499
2500 atomic_inc(&event->mmap_count);
2501}
2502
2503static void perf_mmap_close(struct vm_area_struct *vma)
2504{
2505 struct perf_event *event = vma->vm_file->private_data;
2506
2507 WARN_ON_ONCE(event->ctx->parent_ctx);
2508 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002509 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002510 struct user_struct *user = current_user();
2511
Peter Zijlstra906010b2009-09-21 16:08:49 +02002512 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002513 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002514 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002515 mutex_unlock(&event->mmap_mutex);
2516 }
2517}
2518
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002519static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002520 .open = perf_mmap_open,
2521 .close = perf_mmap_close,
2522 .fault = perf_mmap_fault,
2523 .page_mkwrite = perf_mmap_fault,
2524};
2525
2526static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2527{
2528 struct perf_event *event = file->private_data;
2529 unsigned long user_locked, user_lock_limit;
2530 struct user_struct *user = current_user();
2531 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002532 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002533 unsigned long vma_size;
2534 unsigned long nr_pages;
2535 long user_extra, extra;
2536 int ret = 0;
2537
2538 if (!(vma->vm_flags & VM_SHARED))
2539 return -EINVAL;
2540
2541 vma_size = vma->vm_end - vma->vm_start;
2542 nr_pages = (vma_size / PAGE_SIZE) - 1;
2543
2544 /*
2545 * If we have data pages ensure they're a power-of-two number, so we
2546 * can do bitmasks instead of modulo.
2547 */
2548 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2549 return -EINVAL;
2550
2551 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2552 return -EINVAL;
2553
2554 if (vma->vm_pgoff != 0)
2555 return -EINVAL;
2556
2557 WARN_ON_ONCE(event->ctx->parent_ctx);
2558 mutex_lock(&event->mmap_mutex);
2559 if (event->output) {
2560 ret = -EINVAL;
2561 goto unlock;
2562 }
2563
2564 if (atomic_inc_not_zero(&event->mmap_count)) {
2565 if (nr_pages != event->data->nr_pages)
2566 ret = -EINVAL;
2567 goto unlock;
2568 }
2569
2570 user_extra = nr_pages + 1;
2571 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2572
2573 /*
2574 * Increase the limit linearly with more CPUs:
2575 */
2576 user_lock_limit *= num_online_cpus();
2577
2578 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2579
2580 extra = 0;
2581 if (user_locked > user_lock_limit)
2582 extra = user_locked - user_lock_limit;
2583
Jiri Slaby78d7d402010-03-05 13:42:54 -08002584 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002585 lock_limit >>= PAGE_SHIFT;
2586 locked = vma->vm_mm->locked_vm + extra;
2587
2588 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2589 !capable(CAP_IPC_LOCK)) {
2590 ret = -EPERM;
2591 goto unlock;
2592 }
2593
2594 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002595
2596 data = perf_mmap_data_alloc(event, nr_pages);
2597 ret = -ENOMEM;
2598 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002599 goto unlock;
2600
Peter Zijlstra906010b2009-09-21 16:08:49 +02002601 ret = 0;
2602 perf_mmap_data_init(event, data);
2603
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002604 atomic_set(&event->mmap_count, 1);
2605 atomic_long_add(user_extra, &user->locked_vm);
2606 vma->vm_mm->locked_vm += extra;
2607 event->data->nr_locked = extra;
2608 if (vma->vm_flags & VM_WRITE)
2609 event->data->writable = 1;
2610
2611unlock:
2612 mutex_unlock(&event->mmap_mutex);
2613
2614 vma->vm_flags |= VM_RESERVED;
2615 vma->vm_ops = &perf_mmap_vmops;
2616
2617 return ret;
2618}
2619
2620static int perf_fasync(int fd, struct file *filp, int on)
2621{
2622 struct inode *inode = filp->f_path.dentry->d_inode;
2623 struct perf_event *event = filp->private_data;
2624 int retval;
2625
2626 mutex_lock(&inode->i_mutex);
2627 retval = fasync_helper(fd, filp, on, &event->fasync);
2628 mutex_unlock(&inode->i_mutex);
2629
2630 if (retval < 0)
2631 return retval;
2632
2633 return 0;
2634}
2635
2636static const struct file_operations perf_fops = {
2637 .release = perf_release,
2638 .read = perf_read,
2639 .poll = perf_poll,
2640 .unlocked_ioctl = perf_ioctl,
2641 .compat_ioctl = perf_ioctl,
2642 .mmap = perf_mmap,
2643 .fasync = perf_fasync,
2644};
2645
2646/*
2647 * Perf event wakeup
2648 *
2649 * If there's data, ensure we set the poll() state and publish everything
2650 * to user-space before waking everybody up.
2651 */
2652
2653void perf_event_wakeup(struct perf_event *event)
2654{
2655 wake_up_all(&event->waitq);
2656
2657 if (event->pending_kill) {
2658 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2659 event->pending_kill = 0;
2660 }
2661}
2662
2663/*
2664 * Pending wakeups
2665 *
2666 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2667 *
2668 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2669 * single linked list and use cmpxchg() to add entries lockless.
2670 */
2671
2672static void perf_pending_event(struct perf_pending_entry *entry)
2673{
2674 struct perf_event *event = container_of(entry,
2675 struct perf_event, pending);
2676
2677 if (event->pending_disable) {
2678 event->pending_disable = 0;
2679 __perf_event_disable(event);
2680 }
2681
2682 if (event->pending_wakeup) {
2683 event->pending_wakeup = 0;
2684 perf_event_wakeup(event);
2685 }
2686}
2687
2688#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2689
2690static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2691 PENDING_TAIL,
2692};
2693
2694static void perf_pending_queue(struct perf_pending_entry *entry,
2695 void (*func)(struct perf_pending_entry *))
2696{
2697 struct perf_pending_entry **head;
2698
2699 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2700 return;
2701
2702 entry->func = func;
2703
2704 head = &get_cpu_var(perf_pending_head);
2705
2706 do {
2707 entry->next = *head;
2708 } while (cmpxchg(head, entry->next, entry) != entry->next);
2709
2710 set_perf_event_pending();
2711
2712 put_cpu_var(perf_pending_head);
2713}
2714
2715static int __perf_pending_run(void)
2716{
2717 struct perf_pending_entry *list;
2718 int nr = 0;
2719
2720 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2721 while (list != PENDING_TAIL) {
2722 void (*func)(struct perf_pending_entry *);
2723 struct perf_pending_entry *entry = list;
2724
2725 list = list->next;
2726
2727 func = entry->func;
2728 entry->next = NULL;
2729 /*
2730 * Ensure we observe the unqueue before we issue the wakeup,
2731 * so that we won't be waiting forever.
2732 * -- see perf_not_pending().
2733 */
2734 smp_wmb();
2735
2736 func(entry);
2737 nr++;
2738 }
2739
2740 return nr;
2741}
2742
2743static inline int perf_not_pending(struct perf_event *event)
2744{
2745 /*
2746 * If we flush on whatever cpu we run, there is a chance we don't
2747 * need to wait.
2748 */
2749 get_cpu();
2750 __perf_pending_run();
2751 put_cpu();
2752
2753 /*
2754 * Ensure we see the proper queue state before going to sleep
2755 * so that we do not miss the wakeup. -- see perf_pending_handle()
2756 */
2757 smp_rmb();
2758 return event->pending.next == NULL;
2759}
2760
2761static void perf_pending_sync(struct perf_event *event)
2762{
2763 wait_event(event->waitq, perf_not_pending(event));
2764}
2765
2766void perf_event_do_pending(void)
2767{
2768 __perf_pending_run();
2769}
2770
2771/*
2772 * Callchain support -- arch specific
2773 */
2774
2775__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2776{
2777 return NULL;
2778}
2779
2780/*
2781 * Output
2782 */
2783static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2784 unsigned long offset, unsigned long head)
2785{
2786 unsigned long mask;
2787
2788 if (!data->writable)
2789 return true;
2790
Peter Zijlstra906010b2009-09-21 16:08:49 +02002791 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002792
2793 offset = (offset - tail) & mask;
2794 head = (head - tail) & mask;
2795
2796 if ((int)(head - offset) < 0)
2797 return false;
2798
2799 return true;
2800}
2801
2802static void perf_output_wakeup(struct perf_output_handle *handle)
2803{
2804 atomic_set(&handle->data->poll, POLL_IN);
2805
2806 if (handle->nmi) {
2807 handle->event->pending_wakeup = 1;
2808 perf_pending_queue(&handle->event->pending,
2809 perf_pending_event);
2810 } else
2811 perf_event_wakeup(handle->event);
2812}
2813
2814/*
2815 * Curious locking construct.
2816 *
2817 * We need to ensure a later event_id doesn't publish a head when a former
2818 * event_id isn't done writing. However since we need to deal with NMIs we
2819 * cannot fully serialize things.
2820 *
2821 * What we do is serialize between CPUs so we only have to deal with NMI
2822 * nesting on a single CPU.
2823 *
2824 * We only publish the head (and generate a wakeup) when the outer-most
2825 * event_id completes.
2826 */
2827static void perf_output_lock(struct perf_output_handle *handle)
2828{
2829 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002830 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002831
2832 handle->locked = 0;
2833
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002834 for (;;) {
2835 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2836 if (cur == -1) {
2837 handle->locked = 1;
2838 break;
2839 }
2840 if (cur == cpu)
2841 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002842
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002843 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002844 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002845}
2846
2847static void perf_output_unlock(struct perf_output_handle *handle)
2848{
2849 struct perf_mmap_data *data = handle->data;
2850 unsigned long head;
2851 int cpu;
2852
2853 data->done_head = data->head;
2854
2855 if (!handle->locked)
2856 goto out;
2857
2858again:
2859 /*
2860 * The xchg implies a full barrier that ensures all writes are done
2861 * before we publish the new head, matched by a rmb() in userspace when
2862 * reading this position.
2863 */
2864 while ((head = atomic_long_xchg(&data->done_head, 0)))
2865 data->user_page->data_head = head;
2866
2867 /*
2868 * NMI can happen here, which means we can miss a done_head update.
2869 */
2870
2871 cpu = atomic_xchg(&data->lock, -1);
2872 WARN_ON_ONCE(cpu != smp_processor_id());
2873
2874 /*
2875 * Therefore we have to validate we did not indeed do so.
2876 */
2877 if (unlikely(atomic_long_read(&data->done_head))) {
2878 /*
2879 * Since we had it locked, we can lock it again.
2880 */
2881 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2882 cpu_relax();
2883
2884 goto again;
2885 }
2886
2887 if (atomic_xchg(&data->wakeup, 0))
2888 perf_output_wakeup(handle);
2889out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002890 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002891}
2892
2893void perf_output_copy(struct perf_output_handle *handle,
2894 const void *buf, unsigned int len)
2895{
2896 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002897 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002898 unsigned int size;
2899 void **pages;
2900
2901 offset = handle->offset;
2902 pages_mask = handle->data->nr_pages - 1;
2903 pages = handle->data->data_pages;
2904
2905 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002906 unsigned long page_offset;
2907 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002908 int nr;
2909
2910 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002911 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2912 page_offset = offset & (page_size - 1);
2913 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002914
2915 memcpy(pages[nr] + page_offset, buf, size);
2916
2917 len -= size;
2918 buf += size;
2919 offset += size;
2920 } while (len);
2921
2922 handle->offset = offset;
2923
2924 /*
2925 * Check we didn't copy past our reservation window, taking the
2926 * possible unsigned int wrap into account.
2927 */
2928 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2929}
2930
2931int perf_output_begin(struct perf_output_handle *handle,
2932 struct perf_event *event, unsigned int size,
2933 int nmi, int sample)
2934{
2935 struct perf_event *output_event;
2936 struct perf_mmap_data *data;
2937 unsigned long tail, offset, head;
2938 int have_lost;
2939 struct {
2940 struct perf_event_header header;
2941 u64 id;
2942 u64 lost;
2943 } lost_event;
2944
2945 rcu_read_lock();
2946 /*
2947 * For inherited events we send all the output towards the parent.
2948 */
2949 if (event->parent)
2950 event = event->parent;
2951
2952 output_event = rcu_dereference(event->output);
2953 if (output_event)
2954 event = output_event;
2955
2956 data = rcu_dereference(event->data);
2957 if (!data)
2958 goto out;
2959
2960 handle->data = data;
2961 handle->event = event;
2962 handle->nmi = nmi;
2963 handle->sample = sample;
2964
2965 if (!data->nr_pages)
2966 goto fail;
2967
2968 have_lost = atomic_read(&data->lost);
2969 if (have_lost)
2970 size += sizeof(lost_event);
2971
2972 perf_output_lock(handle);
2973
2974 do {
2975 /*
2976 * Userspace could choose to issue a mb() before updating the
2977 * tail pointer. So that all reads will be completed before the
2978 * write is issued.
2979 */
2980 tail = ACCESS_ONCE(data->user_page->data_tail);
2981 smp_rmb();
2982 offset = head = atomic_long_read(&data->head);
2983 head += size;
2984 if (unlikely(!perf_output_space(data, tail, offset, head)))
2985 goto fail;
2986 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2987
2988 handle->offset = offset;
2989 handle->head = head;
2990
2991 if (head - tail > data->watermark)
2992 atomic_set(&data->wakeup, 1);
2993
2994 if (have_lost) {
2995 lost_event.header.type = PERF_RECORD_LOST;
2996 lost_event.header.misc = 0;
2997 lost_event.header.size = sizeof(lost_event);
2998 lost_event.id = event->id;
2999 lost_event.lost = atomic_xchg(&data->lost, 0);
3000
3001 perf_output_put(handle, lost_event);
3002 }
3003
3004 return 0;
3005
3006fail:
3007 atomic_inc(&data->lost);
3008 perf_output_unlock(handle);
3009out:
3010 rcu_read_unlock();
3011
3012 return -ENOSPC;
3013}
3014
3015void perf_output_end(struct perf_output_handle *handle)
3016{
3017 struct perf_event *event = handle->event;
3018 struct perf_mmap_data *data = handle->data;
3019
3020 int wakeup_events = event->attr.wakeup_events;
3021
3022 if (handle->sample && wakeup_events) {
3023 int events = atomic_inc_return(&data->events);
3024 if (events >= wakeup_events) {
3025 atomic_sub(wakeup_events, &data->events);
3026 atomic_set(&data->wakeup, 1);
3027 }
3028 }
3029
3030 perf_output_unlock(handle);
3031 rcu_read_unlock();
3032}
3033
3034static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3035{
3036 /*
3037 * only top level events have the pid namespace they were created in
3038 */
3039 if (event->parent)
3040 event = event->parent;
3041
3042 return task_tgid_nr_ns(p, event->ns);
3043}
3044
3045static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3046{
3047 /*
3048 * only top level events have the pid namespace they were created in
3049 */
3050 if (event->parent)
3051 event = event->parent;
3052
3053 return task_pid_nr_ns(p, event->ns);
3054}
3055
3056static void perf_output_read_one(struct perf_output_handle *handle,
3057 struct perf_event *event)
3058{
3059 u64 read_format = event->attr.read_format;
3060 u64 values[4];
3061 int n = 0;
3062
3063 values[n++] = atomic64_read(&event->count);
3064 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3065 values[n++] = event->total_time_enabled +
3066 atomic64_read(&event->child_total_time_enabled);
3067 }
3068 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3069 values[n++] = event->total_time_running +
3070 atomic64_read(&event->child_total_time_running);
3071 }
3072 if (read_format & PERF_FORMAT_ID)
3073 values[n++] = primary_event_id(event);
3074
3075 perf_output_copy(handle, values, n * sizeof(u64));
3076}
3077
3078/*
3079 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3080 */
3081static void perf_output_read_group(struct perf_output_handle *handle,
3082 struct perf_event *event)
3083{
3084 struct perf_event *leader = event->group_leader, *sub;
3085 u64 read_format = event->attr.read_format;
3086 u64 values[5];
3087 int n = 0;
3088
3089 values[n++] = 1 + leader->nr_siblings;
3090
3091 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3092 values[n++] = leader->total_time_enabled;
3093
3094 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3095 values[n++] = leader->total_time_running;
3096
3097 if (leader != event)
3098 leader->pmu->read(leader);
3099
3100 values[n++] = atomic64_read(&leader->count);
3101 if (read_format & PERF_FORMAT_ID)
3102 values[n++] = primary_event_id(leader);
3103
3104 perf_output_copy(handle, values, n * sizeof(u64));
3105
3106 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3107 n = 0;
3108
3109 if (sub != event)
3110 sub->pmu->read(sub);
3111
3112 values[n++] = atomic64_read(&sub->count);
3113 if (read_format & PERF_FORMAT_ID)
3114 values[n++] = primary_event_id(sub);
3115
3116 perf_output_copy(handle, values, n * sizeof(u64));
3117 }
3118}
3119
3120static void perf_output_read(struct perf_output_handle *handle,
3121 struct perf_event *event)
3122{
3123 if (event->attr.read_format & PERF_FORMAT_GROUP)
3124 perf_output_read_group(handle, event);
3125 else
3126 perf_output_read_one(handle, event);
3127}
3128
3129void perf_output_sample(struct perf_output_handle *handle,
3130 struct perf_event_header *header,
3131 struct perf_sample_data *data,
3132 struct perf_event *event)
3133{
3134 u64 sample_type = data->type;
3135
3136 perf_output_put(handle, *header);
3137
3138 if (sample_type & PERF_SAMPLE_IP)
3139 perf_output_put(handle, data->ip);
3140
3141 if (sample_type & PERF_SAMPLE_TID)
3142 perf_output_put(handle, data->tid_entry);
3143
3144 if (sample_type & PERF_SAMPLE_TIME)
3145 perf_output_put(handle, data->time);
3146
3147 if (sample_type & PERF_SAMPLE_ADDR)
3148 perf_output_put(handle, data->addr);
3149
3150 if (sample_type & PERF_SAMPLE_ID)
3151 perf_output_put(handle, data->id);
3152
3153 if (sample_type & PERF_SAMPLE_STREAM_ID)
3154 perf_output_put(handle, data->stream_id);
3155
3156 if (sample_type & PERF_SAMPLE_CPU)
3157 perf_output_put(handle, data->cpu_entry);
3158
3159 if (sample_type & PERF_SAMPLE_PERIOD)
3160 perf_output_put(handle, data->period);
3161
3162 if (sample_type & PERF_SAMPLE_READ)
3163 perf_output_read(handle, event);
3164
3165 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3166 if (data->callchain) {
3167 int size = 1;
3168
3169 if (data->callchain)
3170 size += data->callchain->nr;
3171
3172 size *= sizeof(u64);
3173
3174 perf_output_copy(handle, data->callchain, size);
3175 } else {
3176 u64 nr = 0;
3177 perf_output_put(handle, nr);
3178 }
3179 }
3180
3181 if (sample_type & PERF_SAMPLE_RAW) {
3182 if (data->raw) {
3183 perf_output_put(handle, data->raw->size);
3184 perf_output_copy(handle, data->raw->data,
3185 data->raw->size);
3186 } else {
3187 struct {
3188 u32 size;
3189 u32 data;
3190 } raw = {
3191 .size = sizeof(u32),
3192 .data = 0,
3193 };
3194 perf_output_put(handle, raw);
3195 }
3196 }
3197}
3198
3199void perf_prepare_sample(struct perf_event_header *header,
3200 struct perf_sample_data *data,
3201 struct perf_event *event,
3202 struct pt_regs *regs)
3203{
3204 u64 sample_type = event->attr.sample_type;
3205
3206 data->type = sample_type;
3207
3208 header->type = PERF_RECORD_SAMPLE;
3209 header->size = sizeof(*header);
3210
3211 header->misc = 0;
3212 header->misc |= perf_misc_flags(regs);
3213
3214 if (sample_type & PERF_SAMPLE_IP) {
3215 data->ip = perf_instruction_pointer(regs);
3216
3217 header->size += sizeof(data->ip);
3218 }
3219
3220 if (sample_type & PERF_SAMPLE_TID) {
3221 /* namespace issues */
3222 data->tid_entry.pid = perf_event_pid(event, current);
3223 data->tid_entry.tid = perf_event_tid(event, current);
3224
3225 header->size += sizeof(data->tid_entry);
3226 }
3227
3228 if (sample_type & PERF_SAMPLE_TIME) {
3229 data->time = perf_clock();
3230
3231 header->size += sizeof(data->time);
3232 }
3233
3234 if (sample_type & PERF_SAMPLE_ADDR)
3235 header->size += sizeof(data->addr);
3236
3237 if (sample_type & PERF_SAMPLE_ID) {
3238 data->id = primary_event_id(event);
3239
3240 header->size += sizeof(data->id);
3241 }
3242
3243 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3244 data->stream_id = event->id;
3245
3246 header->size += sizeof(data->stream_id);
3247 }
3248
3249 if (sample_type & PERF_SAMPLE_CPU) {
3250 data->cpu_entry.cpu = raw_smp_processor_id();
3251 data->cpu_entry.reserved = 0;
3252
3253 header->size += sizeof(data->cpu_entry);
3254 }
3255
3256 if (sample_type & PERF_SAMPLE_PERIOD)
3257 header->size += sizeof(data->period);
3258
3259 if (sample_type & PERF_SAMPLE_READ)
3260 header->size += perf_event_read_size(event);
3261
3262 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3263 int size = 1;
3264
3265 data->callchain = perf_callchain(regs);
3266
3267 if (data->callchain)
3268 size += data->callchain->nr;
3269
3270 header->size += size * sizeof(u64);
3271 }
3272
3273 if (sample_type & PERF_SAMPLE_RAW) {
3274 int size = sizeof(u32);
3275
3276 if (data->raw)
3277 size += data->raw->size;
3278 else
3279 size += sizeof(u32);
3280
3281 WARN_ON_ONCE(size & (sizeof(u64)-1));
3282 header->size += size;
3283 }
3284}
3285
3286static void perf_event_output(struct perf_event *event, int nmi,
3287 struct perf_sample_data *data,
3288 struct pt_regs *regs)
3289{
3290 struct perf_output_handle handle;
3291 struct perf_event_header header;
3292
3293 perf_prepare_sample(&header, data, event, regs);
3294
3295 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3296 return;
3297
3298 perf_output_sample(&handle, &header, data, event);
3299
3300 perf_output_end(&handle);
3301}
3302
3303/*
3304 * read event_id
3305 */
3306
3307struct perf_read_event {
3308 struct perf_event_header header;
3309
3310 u32 pid;
3311 u32 tid;
3312};
3313
3314static void
3315perf_event_read_event(struct perf_event *event,
3316 struct task_struct *task)
3317{
3318 struct perf_output_handle handle;
3319 struct perf_read_event read_event = {
3320 .header = {
3321 .type = PERF_RECORD_READ,
3322 .misc = 0,
3323 .size = sizeof(read_event) + perf_event_read_size(event),
3324 },
3325 .pid = perf_event_pid(event, task),
3326 .tid = perf_event_tid(event, task),
3327 };
3328 int ret;
3329
3330 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3331 if (ret)
3332 return;
3333
3334 perf_output_put(&handle, read_event);
3335 perf_output_read(&handle, event);
3336
3337 perf_output_end(&handle);
3338}
3339
3340/*
3341 * task tracking -- fork/exit
3342 *
3343 * enabled by: attr.comm | attr.mmap | attr.task
3344 */
3345
3346struct perf_task_event {
3347 struct task_struct *task;
3348 struct perf_event_context *task_ctx;
3349
3350 struct {
3351 struct perf_event_header header;
3352
3353 u32 pid;
3354 u32 ppid;
3355 u32 tid;
3356 u32 ptid;
3357 u64 time;
3358 } event_id;
3359};
3360
3361static void perf_event_task_output(struct perf_event *event,
3362 struct perf_task_event *task_event)
3363{
3364 struct perf_output_handle handle;
3365 int size;
3366 struct task_struct *task = task_event->task;
3367 int ret;
3368
3369 size = task_event->event_id.header.size;
3370 ret = perf_output_begin(&handle, event, size, 0, 0);
3371
3372 if (ret)
3373 return;
3374
3375 task_event->event_id.pid = perf_event_pid(event, task);
3376 task_event->event_id.ppid = perf_event_pid(event, current);
3377
3378 task_event->event_id.tid = perf_event_tid(event, task);
3379 task_event->event_id.ptid = perf_event_tid(event, current);
3380
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003381 perf_output_put(&handle, task_event->event_id);
3382
3383 perf_output_end(&handle);
3384}
3385
3386static int perf_event_task_match(struct perf_event *event)
3387{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003388 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003389 return 0;
3390
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003391 if (event->cpu != -1 && event->cpu != smp_processor_id())
3392 return 0;
3393
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003394 if (event->attr.comm || event->attr.mmap || event->attr.task)
3395 return 1;
3396
3397 return 0;
3398}
3399
3400static void perf_event_task_ctx(struct perf_event_context *ctx,
3401 struct perf_task_event *task_event)
3402{
3403 struct perf_event *event;
3404
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003405 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3406 if (perf_event_task_match(event))
3407 perf_event_task_output(event, task_event);
3408 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003409}
3410
3411static void perf_event_task_event(struct perf_task_event *task_event)
3412{
3413 struct perf_cpu_context *cpuctx;
3414 struct perf_event_context *ctx = task_event->task_ctx;
3415
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003416 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003417 cpuctx = &get_cpu_var(perf_cpu_context);
3418 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003419 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003420 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003421 if (ctx)
3422 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003423 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003424 rcu_read_unlock();
3425}
3426
3427static void perf_event_task(struct task_struct *task,
3428 struct perf_event_context *task_ctx,
3429 int new)
3430{
3431 struct perf_task_event task_event;
3432
3433 if (!atomic_read(&nr_comm_events) &&
3434 !atomic_read(&nr_mmap_events) &&
3435 !atomic_read(&nr_task_events))
3436 return;
3437
3438 task_event = (struct perf_task_event){
3439 .task = task,
3440 .task_ctx = task_ctx,
3441 .event_id = {
3442 .header = {
3443 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3444 .misc = 0,
3445 .size = sizeof(task_event.event_id),
3446 },
3447 /* .pid */
3448 /* .ppid */
3449 /* .tid */
3450 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003451 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003452 },
3453 };
3454
3455 perf_event_task_event(&task_event);
3456}
3457
3458void perf_event_fork(struct task_struct *task)
3459{
3460 perf_event_task(task, NULL, 1);
3461}
3462
3463/*
3464 * comm tracking
3465 */
3466
3467struct perf_comm_event {
3468 struct task_struct *task;
3469 char *comm;
3470 int comm_size;
3471
3472 struct {
3473 struct perf_event_header header;
3474
3475 u32 pid;
3476 u32 tid;
3477 } event_id;
3478};
3479
3480static void perf_event_comm_output(struct perf_event *event,
3481 struct perf_comm_event *comm_event)
3482{
3483 struct perf_output_handle handle;
3484 int size = comm_event->event_id.header.size;
3485 int ret = perf_output_begin(&handle, event, size, 0, 0);
3486
3487 if (ret)
3488 return;
3489
3490 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3491 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3492
3493 perf_output_put(&handle, comm_event->event_id);
3494 perf_output_copy(&handle, comm_event->comm,
3495 comm_event->comm_size);
3496 perf_output_end(&handle);
3497}
3498
3499static int perf_event_comm_match(struct perf_event *event)
3500{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003501 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003502 return 0;
3503
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003504 if (event->cpu != -1 && event->cpu != smp_processor_id())
3505 return 0;
3506
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003507 if (event->attr.comm)
3508 return 1;
3509
3510 return 0;
3511}
3512
3513static void perf_event_comm_ctx(struct perf_event_context *ctx,
3514 struct perf_comm_event *comm_event)
3515{
3516 struct perf_event *event;
3517
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003518 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3519 if (perf_event_comm_match(event))
3520 perf_event_comm_output(event, comm_event);
3521 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003522}
3523
3524static void perf_event_comm_event(struct perf_comm_event *comm_event)
3525{
3526 struct perf_cpu_context *cpuctx;
3527 struct perf_event_context *ctx;
3528 unsigned int size;
3529 char comm[TASK_COMM_LEN];
3530
3531 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003532 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003533 size = ALIGN(strlen(comm)+1, sizeof(u64));
3534
3535 comm_event->comm = comm;
3536 comm_event->comm_size = size;
3537
3538 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3539
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003540 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003541 cpuctx = &get_cpu_var(perf_cpu_context);
3542 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003543 ctx = rcu_dereference(current->perf_event_ctxp);
3544 if (ctx)
3545 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003546 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003547 rcu_read_unlock();
3548}
3549
3550void perf_event_comm(struct task_struct *task)
3551{
3552 struct perf_comm_event comm_event;
3553
3554 if (task->perf_event_ctxp)
3555 perf_event_enable_on_exec(task);
3556
3557 if (!atomic_read(&nr_comm_events))
3558 return;
3559
3560 comm_event = (struct perf_comm_event){
3561 .task = task,
3562 /* .comm */
3563 /* .comm_size */
3564 .event_id = {
3565 .header = {
3566 .type = PERF_RECORD_COMM,
3567 .misc = 0,
3568 /* .size */
3569 },
3570 /* .pid */
3571 /* .tid */
3572 },
3573 };
3574
3575 perf_event_comm_event(&comm_event);
3576}
3577
3578/*
3579 * mmap tracking
3580 */
3581
3582struct perf_mmap_event {
3583 struct vm_area_struct *vma;
3584
3585 const char *file_name;
3586 int file_size;
3587
3588 struct {
3589 struct perf_event_header header;
3590
3591 u32 pid;
3592 u32 tid;
3593 u64 start;
3594 u64 len;
3595 u64 pgoff;
3596 } event_id;
3597};
3598
3599static void perf_event_mmap_output(struct perf_event *event,
3600 struct perf_mmap_event *mmap_event)
3601{
3602 struct perf_output_handle handle;
3603 int size = mmap_event->event_id.header.size;
3604 int ret = perf_output_begin(&handle, event, size, 0, 0);
3605
3606 if (ret)
3607 return;
3608
3609 mmap_event->event_id.pid = perf_event_pid(event, current);
3610 mmap_event->event_id.tid = perf_event_tid(event, current);
3611
3612 perf_output_put(&handle, mmap_event->event_id);
3613 perf_output_copy(&handle, mmap_event->file_name,
3614 mmap_event->file_size);
3615 perf_output_end(&handle);
3616}
3617
3618static int perf_event_mmap_match(struct perf_event *event,
3619 struct perf_mmap_event *mmap_event)
3620{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003621 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003622 return 0;
3623
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003624 if (event->cpu != -1 && event->cpu != smp_processor_id())
3625 return 0;
3626
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003627 if (event->attr.mmap)
3628 return 1;
3629
3630 return 0;
3631}
3632
3633static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3634 struct perf_mmap_event *mmap_event)
3635{
3636 struct perf_event *event;
3637
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003638 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3639 if (perf_event_mmap_match(event, mmap_event))
3640 perf_event_mmap_output(event, mmap_event);
3641 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003642}
3643
3644static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3645{
3646 struct perf_cpu_context *cpuctx;
3647 struct perf_event_context *ctx;
3648 struct vm_area_struct *vma = mmap_event->vma;
3649 struct file *file = vma->vm_file;
3650 unsigned int size;
3651 char tmp[16];
3652 char *buf = NULL;
3653 const char *name;
3654
3655 memset(tmp, 0, sizeof(tmp));
3656
3657 if (file) {
3658 /*
3659 * d_path works from the end of the buffer backwards, so we
3660 * need to add enough zero bytes after the string to handle
3661 * the 64bit alignment we do later.
3662 */
3663 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3664 if (!buf) {
3665 name = strncpy(tmp, "//enomem", sizeof(tmp));
3666 goto got_name;
3667 }
3668 name = d_path(&file->f_path, buf, PATH_MAX);
3669 if (IS_ERR(name)) {
3670 name = strncpy(tmp, "//toolong", sizeof(tmp));
3671 goto got_name;
3672 }
3673 } else {
3674 if (arch_vma_name(mmap_event->vma)) {
3675 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3676 sizeof(tmp));
3677 goto got_name;
3678 }
3679
3680 if (!vma->vm_mm) {
3681 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3682 goto got_name;
3683 }
3684
3685 name = strncpy(tmp, "//anon", sizeof(tmp));
3686 goto got_name;
3687 }
3688
3689got_name:
3690 size = ALIGN(strlen(name)+1, sizeof(u64));
3691
3692 mmap_event->file_name = name;
3693 mmap_event->file_size = size;
3694
3695 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3696
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003697 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003698 cpuctx = &get_cpu_var(perf_cpu_context);
3699 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003700 ctx = rcu_dereference(current->perf_event_ctxp);
3701 if (ctx)
3702 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003703 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003704 rcu_read_unlock();
3705
3706 kfree(buf);
3707}
3708
3709void __perf_event_mmap(struct vm_area_struct *vma)
3710{
3711 struct perf_mmap_event mmap_event;
3712
3713 if (!atomic_read(&nr_mmap_events))
3714 return;
3715
3716 mmap_event = (struct perf_mmap_event){
3717 .vma = vma,
3718 /* .file_name */
3719 /* .file_size */
3720 .event_id = {
3721 .header = {
3722 .type = PERF_RECORD_MMAP,
3723 .misc = 0,
3724 /* .size */
3725 },
3726 /* .pid */
3727 /* .tid */
3728 .start = vma->vm_start,
3729 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003730 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003731 },
3732 };
3733
3734 perf_event_mmap_event(&mmap_event);
3735}
3736
3737/*
3738 * IRQ throttle logging
3739 */
3740
3741static void perf_log_throttle(struct perf_event *event, int enable)
3742{
3743 struct perf_output_handle handle;
3744 int ret;
3745
3746 struct {
3747 struct perf_event_header header;
3748 u64 time;
3749 u64 id;
3750 u64 stream_id;
3751 } throttle_event = {
3752 .header = {
3753 .type = PERF_RECORD_THROTTLE,
3754 .misc = 0,
3755 .size = sizeof(throttle_event),
3756 },
3757 .time = perf_clock(),
3758 .id = primary_event_id(event),
3759 .stream_id = event->id,
3760 };
3761
3762 if (enable)
3763 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3764
3765 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3766 if (ret)
3767 return;
3768
3769 perf_output_put(&handle, throttle_event);
3770 perf_output_end(&handle);
3771}
3772
3773/*
3774 * Generic event overflow handling, sampling.
3775 */
3776
3777static int __perf_event_overflow(struct perf_event *event, int nmi,
3778 int throttle, struct perf_sample_data *data,
3779 struct pt_regs *regs)
3780{
3781 int events = atomic_read(&event->event_limit);
3782 struct hw_perf_event *hwc = &event->hw;
3783 int ret = 0;
3784
3785 throttle = (throttle && event->pmu->unthrottle != NULL);
3786
3787 if (!throttle) {
3788 hwc->interrupts++;
3789 } else {
3790 if (hwc->interrupts != MAX_INTERRUPTS) {
3791 hwc->interrupts++;
3792 if (HZ * hwc->interrupts >
3793 (u64)sysctl_perf_event_sample_rate) {
3794 hwc->interrupts = MAX_INTERRUPTS;
3795 perf_log_throttle(event, 0);
3796 ret = 1;
3797 }
3798 } else {
3799 /*
3800 * Keep re-disabling events even though on the previous
3801 * pass we disabled it - just in case we raced with a
3802 * sched-in and the event got enabled again:
3803 */
3804 ret = 1;
3805 }
3806 }
3807
3808 if (event->attr.freq) {
3809 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003810 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003811
Peter Zijlstraabd50712010-01-26 18:50:16 +01003812 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003813
Peter Zijlstraabd50712010-01-26 18:50:16 +01003814 if (delta > 0 && delta < 2*TICK_NSEC)
3815 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003816 }
3817
3818 /*
3819 * XXX event_limit might not quite work as expected on inherited
3820 * events
3821 */
3822
3823 event->pending_kill = POLL_IN;
3824 if (events && atomic_dec_and_test(&event->event_limit)) {
3825 ret = 1;
3826 event->pending_kill = POLL_HUP;
3827 if (nmi) {
3828 event->pending_disable = 1;
3829 perf_pending_queue(&event->pending,
3830 perf_pending_event);
3831 } else
3832 perf_event_disable(event);
3833 }
3834
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003835 if (event->overflow_handler)
3836 event->overflow_handler(event, nmi, data, regs);
3837 else
3838 perf_event_output(event, nmi, data, regs);
3839
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003840 return ret;
3841}
3842
3843int perf_event_overflow(struct perf_event *event, int nmi,
3844 struct perf_sample_data *data,
3845 struct pt_regs *regs)
3846{
3847 return __perf_event_overflow(event, nmi, 1, data, regs);
3848}
3849
3850/*
3851 * Generic software event infrastructure
3852 */
3853
3854/*
3855 * We directly increment event->count and keep a second value in
3856 * event->hw.period_left to count intervals. This period event
3857 * is kept in the range [-sample_period, 0] so that we can use the
3858 * sign as trigger.
3859 */
3860
3861static u64 perf_swevent_set_period(struct perf_event *event)
3862{
3863 struct hw_perf_event *hwc = &event->hw;
3864 u64 period = hwc->last_period;
3865 u64 nr, offset;
3866 s64 old, val;
3867
3868 hwc->last_period = hwc->sample_period;
3869
3870again:
3871 old = val = atomic64_read(&hwc->period_left);
3872 if (val < 0)
3873 return 0;
3874
3875 nr = div64_u64(period + val, period);
3876 offset = nr * period;
3877 val -= offset;
3878 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3879 goto again;
3880
3881 return nr;
3882}
3883
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003884static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003885 int nmi, struct perf_sample_data *data,
3886 struct pt_regs *regs)
3887{
3888 struct hw_perf_event *hwc = &event->hw;
3889 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003890
3891 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003892 if (!overflow)
3893 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003894
3895 if (hwc->interrupts == MAX_INTERRUPTS)
3896 return;
3897
3898 for (; overflow; overflow--) {
3899 if (__perf_event_overflow(event, nmi, throttle,
3900 data, regs)) {
3901 /*
3902 * We inhibit the overflow from happening when
3903 * hwc->interrupts == MAX_INTERRUPTS.
3904 */
3905 break;
3906 }
3907 throttle = 1;
3908 }
3909}
3910
3911static void perf_swevent_unthrottle(struct perf_event *event)
3912{
3913 /*
3914 * Nothing to do, we already reset hwc->interrupts.
3915 */
3916}
3917
3918static void perf_swevent_add(struct perf_event *event, u64 nr,
3919 int nmi, struct perf_sample_data *data,
3920 struct pt_regs *regs)
3921{
3922 struct hw_perf_event *hwc = &event->hw;
3923
3924 atomic64_add(nr, &event->count);
3925
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003926 if (!regs)
3927 return;
3928
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003929 if (!hwc->sample_period)
3930 return;
3931
3932 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3933 return perf_swevent_overflow(event, 1, nmi, data, regs);
3934
3935 if (atomic64_add_negative(nr, &hwc->period_left))
3936 return;
3937
3938 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003939}
3940
3941static int perf_swevent_is_counting(struct perf_event *event)
3942{
3943 /*
3944 * The event is active, we're good!
3945 */
3946 if (event->state == PERF_EVENT_STATE_ACTIVE)
3947 return 1;
3948
3949 /*
3950 * The event is off/error, not counting.
3951 */
3952 if (event->state != PERF_EVENT_STATE_INACTIVE)
3953 return 0;
3954
3955 /*
3956 * The event is inactive, if the context is active
3957 * we're part of a group that didn't make it on the 'pmu',
3958 * not counting.
3959 */
3960 if (event->ctx->is_active)
3961 return 0;
3962
3963 /*
3964 * We're inactive and the context is too, this means the
3965 * task is scheduled out, we're counting events that happen
3966 * to us, like migration events.
3967 */
3968 return 1;
3969}
3970
Li Zefan6fb29152009-10-15 11:21:42 +08003971static int perf_tp_event_match(struct perf_event *event,
3972 struct perf_sample_data *data);
3973
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003974static int perf_exclude_event(struct perf_event *event,
3975 struct pt_regs *regs)
3976{
3977 if (regs) {
3978 if (event->attr.exclude_user && user_mode(regs))
3979 return 1;
3980
3981 if (event->attr.exclude_kernel && !user_mode(regs))
3982 return 1;
3983 }
3984
3985 return 0;
3986}
3987
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003988static int perf_swevent_match(struct perf_event *event,
3989 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003990 u32 event_id,
3991 struct perf_sample_data *data,
3992 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003993{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003994 if (event->cpu != -1 && event->cpu != smp_processor_id())
3995 return 0;
3996
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003997 if (!perf_swevent_is_counting(event))
3998 return 0;
3999
4000 if (event->attr.type != type)
4001 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004002
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004003 if (event->attr.config != event_id)
4004 return 0;
4005
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004006 if (perf_exclude_event(event, regs))
4007 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004008
Li Zefan6fb29152009-10-15 11:21:42 +08004009 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4010 !perf_tp_event_match(event, data))
4011 return 0;
4012
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004013 return 1;
4014}
4015
4016static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4017 enum perf_type_id type,
4018 u32 event_id, u64 nr, int nmi,
4019 struct perf_sample_data *data,
4020 struct pt_regs *regs)
4021{
4022 struct perf_event *event;
4023
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004024 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004025 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004026 perf_swevent_add(event, nr, nmi, data, regs);
4027 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004028}
4029
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004030int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004031{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004032 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4033 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004034
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004035 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004036 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004037 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004038 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004039 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004040 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004041 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004042 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004043
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004044 if (cpuctx->recursion[rctx]) {
4045 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004046 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004047 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004048
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004049 cpuctx->recursion[rctx]++;
4050 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004051
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004052 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004053}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004054EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004055
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004056void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004057{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004058 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4059 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004060 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004061 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004062}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004063EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004064
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004065static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4066 u64 nr, int nmi,
4067 struct perf_sample_data *data,
4068 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004069{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004070 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004071 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004072
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004073 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004074 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004075 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4076 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004077 /*
4078 * doesn't really matter which of the child contexts the
4079 * events ends up in.
4080 */
4081 ctx = rcu_dereference(current->perf_event_ctxp);
4082 if (ctx)
4083 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4084 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004085}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004086
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004087void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4088 struct pt_regs *regs, u64 addr)
4089{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004090 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004091 int rctx;
4092
4093 rctx = perf_swevent_get_recursion_context();
4094 if (rctx < 0)
4095 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004096
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004097 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004098
4099 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004100
4101 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004102}
4103
4104static void perf_swevent_read(struct perf_event *event)
4105{
4106}
4107
4108static int perf_swevent_enable(struct perf_event *event)
4109{
4110 struct hw_perf_event *hwc = &event->hw;
4111
4112 if (hwc->sample_period) {
4113 hwc->last_period = hwc->sample_period;
4114 perf_swevent_set_period(event);
4115 }
4116 return 0;
4117}
4118
4119static void perf_swevent_disable(struct perf_event *event)
4120{
4121}
4122
4123static const struct pmu perf_ops_generic = {
4124 .enable = perf_swevent_enable,
4125 .disable = perf_swevent_disable,
4126 .read = perf_swevent_read,
4127 .unthrottle = perf_swevent_unthrottle,
4128};
4129
4130/*
4131 * hrtimer based swevent callback
4132 */
4133
4134static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4135{
4136 enum hrtimer_restart ret = HRTIMER_RESTART;
4137 struct perf_sample_data data;
4138 struct pt_regs *regs;
4139 struct perf_event *event;
4140 u64 period;
4141
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004142 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004143 event->pmu->read(event);
4144
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004145 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004146 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004147 regs = get_irq_regs();
4148 /*
4149 * In case we exclude kernel IPs or are somehow not in interrupt
4150 * context, provide the next best thing, the user IP.
4151 */
4152 if ((event->attr.exclude_kernel || !regs) &&
4153 !event->attr.exclude_user)
4154 regs = task_pt_regs(current);
4155
4156 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004157 if (!(event->attr.exclude_idle && current->pid == 0))
4158 if (perf_event_overflow(event, 0, &data, regs))
4159 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004160 }
4161
4162 period = max_t(u64, 10000, event->hw.sample_period);
4163 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4164
4165 return ret;
4166}
4167
Soeren Sandmann721a6692009-09-15 14:33:08 +02004168static void perf_swevent_start_hrtimer(struct perf_event *event)
4169{
4170 struct hw_perf_event *hwc = &event->hw;
4171
4172 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4173 hwc->hrtimer.function = perf_swevent_hrtimer;
4174 if (hwc->sample_period) {
4175 u64 period;
4176
4177 if (hwc->remaining) {
4178 if (hwc->remaining < 0)
4179 period = 10000;
4180 else
4181 period = hwc->remaining;
4182 hwc->remaining = 0;
4183 } else {
4184 period = max_t(u64, 10000, hwc->sample_period);
4185 }
4186 __hrtimer_start_range_ns(&hwc->hrtimer,
4187 ns_to_ktime(period), 0,
4188 HRTIMER_MODE_REL, 0);
4189 }
4190}
4191
4192static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4193{
4194 struct hw_perf_event *hwc = &event->hw;
4195
4196 if (hwc->sample_period) {
4197 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4198 hwc->remaining = ktime_to_ns(remaining);
4199
4200 hrtimer_cancel(&hwc->hrtimer);
4201 }
4202}
4203
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004204/*
4205 * Software event: cpu wall time clock
4206 */
4207
4208static void cpu_clock_perf_event_update(struct perf_event *event)
4209{
4210 int cpu = raw_smp_processor_id();
4211 s64 prev;
4212 u64 now;
4213
4214 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004215 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004216 atomic64_add(now - prev, &event->count);
4217}
4218
4219static int cpu_clock_perf_event_enable(struct perf_event *event)
4220{
4221 struct hw_perf_event *hwc = &event->hw;
4222 int cpu = raw_smp_processor_id();
4223
4224 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004225 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004226
4227 return 0;
4228}
4229
4230static void cpu_clock_perf_event_disable(struct perf_event *event)
4231{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004232 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004233 cpu_clock_perf_event_update(event);
4234}
4235
4236static void cpu_clock_perf_event_read(struct perf_event *event)
4237{
4238 cpu_clock_perf_event_update(event);
4239}
4240
4241static const struct pmu perf_ops_cpu_clock = {
4242 .enable = cpu_clock_perf_event_enable,
4243 .disable = cpu_clock_perf_event_disable,
4244 .read = cpu_clock_perf_event_read,
4245};
4246
4247/*
4248 * Software event: task time clock
4249 */
4250
4251static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4252{
4253 u64 prev;
4254 s64 delta;
4255
4256 prev = atomic64_xchg(&event->hw.prev_count, now);
4257 delta = now - prev;
4258 atomic64_add(delta, &event->count);
4259}
4260
4261static int task_clock_perf_event_enable(struct perf_event *event)
4262{
4263 struct hw_perf_event *hwc = &event->hw;
4264 u64 now;
4265
4266 now = event->ctx->time;
4267
4268 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004269
4270 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004271
4272 return 0;
4273}
4274
4275static void task_clock_perf_event_disable(struct perf_event *event)
4276{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004277 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004278 task_clock_perf_event_update(event, event->ctx->time);
4279
4280}
4281
4282static void task_clock_perf_event_read(struct perf_event *event)
4283{
4284 u64 time;
4285
4286 if (!in_nmi()) {
4287 update_context_time(event->ctx);
4288 time = event->ctx->time;
4289 } else {
4290 u64 now = perf_clock();
4291 u64 delta = now - event->ctx->timestamp;
4292 time = event->ctx->time + delta;
4293 }
4294
4295 task_clock_perf_event_update(event, time);
4296}
4297
4298static const struct pmu perf_ops_task_clock = {
4299 .enable = task_clock_perf_event_enable,
4300 .disable = task_clock_perf_event_disable,
4301 .read = task_clock_perf_event_read,
4302};
4303
Li Zefan07b139c2009-12-21 14:27:35 +08004304#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004305
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004306void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4307 int entry_size)
4308{
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004309 struct pt_regs *regs = get_irq_regs();
4310 struct perf_sample_data data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004311 struct perf_raw_record raw = {
4312 .size = entry_size,
4313 .data = record,
4314 };
4315
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004316 perf_sample_data_init(&data, addr);
4317 data.raw = &raw;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004318
4319 if (!regs)
4320 regs = task_pt_regs(current);
4321
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004322 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004323 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004324 &data, regs);
4325}
4326EXPORT_SYMBOL_GPL(perf_tp_event);
4327
Li Zefan6fb29152009-10-15 11:21:42 +08004328static int perf_tp_event_match(struct perf_event *event,
4329 struct perf_sample_data *data)
4330{
4331 void *record = data->raw->data;
4332
4333 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4334 return 1;
4335 return 0;
4336}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004337
4338static void tp_perf_event_destroy(struct perf_event *event)
4339{
4340 ftrace_profile_disable(event->attr.config);
4341}
4342
4343static const struct pmu *tp_perf_event_init(struct perf_event *event)
4344{
4345 /*
4346 * Raw tracepoint data is a severe data leak, only allow root to
4347 * have these.
4348 */
4349 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4350 perf_paranoid_tracepoint_raw() &&
4351 !capable(CAP_SYS_ADMIN))
4352 return ERR_PTR(-EPERM);
4353
4354 if (ftrace_profile_enable(event->attr.config))
4355 return NULL;
4356
4357 event->destroy = tp_perf_event_destroy;
4358
4359 return &perf_ops_generic;
4360}
Li Zefan6fb29152009-10-15 11:21:42 +08004361
4362static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4363{
4364 char *filter_str;
4365 int ret;
4366
4367 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4368 return -EINVAL;
4369
4370 filter_str = strndup_user(arg, PAGE_SIZE);
4371 if (IS_ERR(filter_str))
4372 return PTR_ERR(filter_str);
4373
4374 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4375
4376 kfree(filter_str);
4377 return ret;
4378}
4379
4380static void perf_event_free_filter(struct perf_event *event)
4381{
4382 ftrace_profile_free_filter(event);
4383}
4384
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004385#else
Li Zefan6fb29152009-10-15 11:21:42 +08004386
4387static int perf_tp_event_match(struct perf_event *event,
4388 struct perf_sample_data *data)
4389{
4390 return 1;
4391}
4392
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004393static const struct pmu *tp_perf_event_init(struct perf_event *event)
4394{
4395 return NULL;
4396}
Li Zefan6fb29152009-10-15 11:21:42 +08004397
4398static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4399{
4400 return -ENOENT;
4401}
4402
4403static void perf_event_free_filter(struct perf_event *event)
4404{
4405}
4406
Li Zefan07b139c2009-12-21 14:27:35 +08004407#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004408
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004409#ifdef CONFIG_HAVE_HW_BREAKPOINT
4410static void bp_perf_event_destroy(struct perf_event *event)
4411{
4412 release_bp_slot(event);
4413}
4414
4415static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4416{
4417 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004418
4419 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004420 if (err)
4421 return ERR_PTR(err);
4422
4423 bp->destroy = bp_perf_event_destroy;
4424
4425 return &perf_ops_bp;
4426}
4427
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004428void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004429{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004430 struct perf_sample_data sample;
4431 struct pt_regs *regs = data;
4432
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004433 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004434
4435 if (!perf_exclude_event(bp, regs))
4436 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004437}
4438#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004439static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4440{
4441 return NULL;
4442}
4443
4444void perf_bp_event(struct perf_event *bp, void *regs)
4445{
4446}
4447#endif
4448
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004449atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4450
4451static void sw_perf_event_destroy(struct perf_event *event)
4452{
4453 u64 event_id = event->attr.config;
4454
4455 WARN_ON(event->parent);
4456
4457 atomic_dec(&perf_swevent_enabled[event_id]);
4458}
4459
4460static const struct pmu *sw_perf_event_init(struct perf_event *event)
4461{
4462 const struct pmu *pmu = NULL;
4463 u64 event_id = event->attr.config;
4464
4465 /*
4466 * Software events (currently) can't in general distinguish
4467 * between user, kernel and hypervisor events.
4468 * However, context switches and cpu migrations are considered
4469 * to be kernel events, and page faults are never hypervisor
4470 * events.
4471 */
4472 switch (event_id) {
4473 case PERF_COUNT_SW_CPU_CLOCK:
4474 pmu = &perf_ops_cpu_clock;
4475
4476 break;
4477 case PERF_COUNT_SW_TASK_CLOCK:
4478 /*
4479 * If the user instantiates this as a per-cpu event,
4480 * use the cpu_clock event instead.
4481 */
4482 if (event->ctx->task)
4483 pmu = &perf_ops_task_clock;
4484 else
4485 pmu = &perf_ops_cpu_clock;
4486
4487 break;
4488 case PERF_COUNT_SW_PAGE_FAULTS:
4489 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4490 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4491 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4492 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004493 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4494 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004495 if (!event->parent) {
4496 atomic_inc(&perf_swevent_enabled[event_id]);
4497 event->destroy = sw_perf_event_destroy;
4498 }
4499 pmu = &perf_ops_generic;
4500 break;
4501 }
4502
4503 return pmu;
4504}
4505
4506/*
4507 * Allocate and initialize a event structure
4508 */
4509static struct perf_event *
4510perf_event_alloc(struct perf_event_attr *attr,
4511 int cpu,
4512 struct perf_event_context *ctx,
4513 struct perf_event *group_leader,
4514 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004515 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004516 gfp_t gfpflags)
4517{
4518 const struct pmu *pmu;
4519 struct perf_event *event;
4520 struct hw_perf_event *hwc;
4521 long err;
4522
4523 event = kzalloc(sizeof(*event), gfpflags);
4524 if (!event)
4525 return ERR_PTR(-ENOMEM);
4526
4527 /*
4528 * Single events are their own group leaders, with an
4529 * empty sibling list:
4530 */
4531 if (!group_leader)
4532 group_leader = event;
4533
4534 mutex_init(&event->child_mutex);
4535 INIT_LIST_HEAD(&event->child_list);
4536
4537 INIT_LIST_HEAD(&event->group_entry);
4538 INIT_LIST_HEAD(&event->event_entry);
4539 INIT_LIST_HEAD(&event->sibling_list);
4540 init_waitqueue_head(&event->waitq);
4541
4542 mutex_init(&event->mmap_mutex);
4543
4544 event->cpu = cpu;
4545 event->attr = *attr;
4546 event->group_leader = group_leader;
4547 event->pmu = NULL;
4548 event->ctx = ctx;
4549 event->oncpu = -1;
4550
4551 event->parent = parent_event;
4552
4553 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4554 event->id = atomic64_inc_return(&perf_event_id);
4555
4556 event->state = PERF_EVENT_STATE_INACTIVE;
4557
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004558 if (!overflow_handler && parent_event)
4559 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004560
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004561 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004562
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004563 if (attr->disabled)
4564 event->state = PERF_EVENT_STATE_OFF;
4565
4566 pmu = NULL;
4567
4568 hwc = &event->hw;
4569 hwc->sample_period = attr->sample_period;
4570 if (attr->freq && attr->sample_freq)
4571 hwc->sample_period = 1;
4572 hwc->last_period = hwc->sample_period;
4573
4574 atomic64_set(&hwc->period_left, hwc->sample_period);
4575
4576 /*
4577 * we currently do not support PERF_FORMAT_GROUP on inherited events
4578 */
4579 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4580 goto done;
4581
4582 switch (attr->type) {
4583 case PERF_TYPE_RAW:
4584 case PERF_TYPE_HARDWARE:
4585 case PERF_TYPE_HW_CACHE:
4586 pmu = hw_perf_event_init(event);
4587 break;
4588
4589 case PERF_TYPE_SOFTWARE:
4590 pmu = sw_perf_event_init(event);
4591 break;
4592
4593 case PERF_TYPE_TRACEPOINT:
4594 pmu = tp_perf_event_init(event);
4595 break;
4596
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004597 case PERF_TYPE_BREAKPOINT:
4598 pmu = bp_perf_event_init(event);
4599 break;
4600
4601
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004602 default:
4603 break;
4604 }
4605done:
4606 err = 0;
4607 if (!pmu)
4608 err = -EINVAL;
4609 else if (IS_ERR(pmu))
4610 err = PTR_ERR(pmu);
4611
4612 if (err) {
4613 if (event->ns)
4614 put_pid_ns(event->ns);
4615 kfree(event);
4616 return ERR_PTR(err);
4617 }
4618
4619 event->pmu = pmu;
4620
4621 if (!event->parent) {
4622 atomic_inc(&nr_events);
4623 if (event->attr.mmap)
4624 atomic_inc(&nr_mmap_events);
4625 if (event->attr.comm)
4626 atomic_inc(&nr_comm_events);
4627 if (event->attr.task)
4628 atomic_inc(&nr_task_events);
4629 }
4630
4631 return event;
4632}
4633
4634static int perf_copy_attr(struct perf_event_attr __user *uattr,
4635 struct perf_event_attr *attr)
4636{
4637 u32 size;
4638 int ret;
4639
4640 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4641 return -EFAULT;
4642
4643 /*
4644 * zero the full structure, so that a short copy will be nice.
4645 */
4646 memset(attr, 0, sizeof(*attr));
4647
4648 ret = get_user(size, &uattr->size);
4649 if (ret)
4650 return ret;
4651
4652 if (size > PAGE_SIZE) /* silly large */
4653 goto err_size;
4654
4655 if (!size) /* abi compat */
4656 size = PERF_ATTR_SIZE_VER0;
4657
4658 if (size < PERF_ATTR_SIZE_VER0)
4659 goto err_size;
4660
4661 /*
4662 * If we're handed a bigger struct than we know of,
4663 * ensure all the unknown bits are 0 - i.e. new
4664 * user-space does not rely on any kernel feature
4665 * extensions we dont know about yet.
4666 */
4667 if (size > sizeof(*attr)) {
4668 unsigned char __user *addr;
4669 unsigned char __user *end;
4670 unsigned char val;
4671
4672 addr = (void __user *)uattr + sizeof(*attr);
4673 end = (void __user *)uattr + size;
4674
4675 for (; addr < end; addr++) {
4676 ret = get_user(val, addr);
4677 if (ret)
4678 return ret;
4679 if (val)
4680 goto err_size;
4681 }
4682 size = sizeof(*attr);
4683 }
4684
4685 ret = copy_from_user(attr, uattr, size);
4686 if (ret)
4687 return -EFAULT;
4688
4689 /*
4690 * If the type exists, the corresponding creation will verify
4691 * the attr->config.
4692 */
4693 if (attr->type >= PERF_TYPE_MAX)
4694 return -EINVAL;
4695
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304696 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004697 return -EINVAL;
4698
4699 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4700 return -EINVAL;
4701
4702 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4703 return -EINVAL;
4704
4705out:
4706 return ret;
4707
4708err_size:
4709 put_user(sizeof(*attr), &uattr->size);
4710 ret = -E2BIG;
4711 goto out;
4712}
4713
Li Zefan6fb29152009-10-15 11:21:42 +08004714static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004715{
4716 struct perf_event *output_event = NULL;
4717 struct file *output_file = NULL;
4718 struct perf_event *old_output;
4719 int fput_needed = 0;
4720 int ret = -EINVAL;
4721
4722 if (!output_fd)
4723 goto set;
4724
4725 output_file = fget_light(output_fd, &fput_needed);
4726 if (!output_file)
4727 return -EBADF;
4728
4729 if (output_file->f_op != &perf_fops)
4730 goto out;
4731
4732 output_event = output_file->private_data;
4733
4734 /* Don't chain output fds */
4735 if (output_event->output)
4736 goto out;
4737
4738 /* Don't set an output fd when we already have an output channel */
4739 if (event->data)
4740 goto out;
4741
4742 atomic_long_inc(&output_file->f_count);
4743
4744set:
4745 mutex_lock(&event->mmap_mutex);
4746 old_output = event->output;
4747 rcu_assign_pointer(event->output, output_event);
4748 mutex_unlock(&event->mmap_mutex);
4749
4750 if (old_output) {
4751 /*
4752 * we need to make sure no existing perf_output_*()
4753 * is still referencing this event.
4754 */
4755 synchronize_rcu();
4756 fput(old_output->filp);
4757 }
4758
4759 ret = 0;
4760out:
4761 fput_light(output_file, fput_needed);
4762 return ret;
4763}
4764
4765/**
4766 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4767 *
4768 * @attr_uptr: event_id type attributes for monitoring/sampling
4769 * @pid: target pid
4770 * @cpu: target cpu
4771 * @group_fd: group leader event fd
4772 */
4773SYSCALL_DEFINE5(perf_event_open,
4774 struct perf_event_attr __user *, attr_uptr,
4775 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4776{
4777 struct perf_event *event, *group_leader;
4778 struct perf_event_attr attr;
4779 struct perf_event_context *ctx;
4780 struct file *event_file = NULL;
4781 struct file *group_file = NULL;
4782 int fput_needed = 0;
4783 int fput_needed2 = 0;
4784 int err;
4785
4786 /* for future expandability... */
4787 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4788 return -EINVAL;
4789
4790 err = perf_copy_attr(attr_uptr, &attr);
4791 if (err)
4792 return err;
4793
4794 if (!attr.exclude_kernel) {
4795 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4796 return -EACCES;
4797 }
4798
4799 if (attr.freq) {
4800 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4801 return -EINVAL;
4802 }
4803
4804 /*
4805 * Get the target context (task or percpu):
4806 */
4807 ctx = find_get_context(pid, cpu);
4808 if (IS_ERR(ctx))
4809 return PTR_ERR(ctx);
4810
4811 /*
4812 * Look up the group leader (we will attach this event to it):
4813 */
4814 group_leader = NULL;
4815 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4816 err = -EINVAL;
4817 group_file = fget_light(group_fd, &fput_needed);
4818 if (!group_file)
4819 goto err_put_context;
4820 if (group_file->f_op != &perf_fops)
4821 goto err_put_context;
4822
4823 group_leader = group_file->private_data;
4824 /*
4825 * Do not allow a recursive hierarchy (this new sibling
4826 * becoming part of another group-sibling):
4827 */
4828 if (group_leader->group_leader != group_leader)
4829 goto err_put_context;
4830 /*
4831 * Do not allow to attach to a group in a different
4832 * task or CPU context:
4833 */
4834 if (group_leader->ctx != ctx)
4835 goto err_put_context;
4836 /*
4837 * Only a group leader can be exclusive or pinned
4838 */
4839 if (attr.exclusive || attr.pinned)
4840 goto err_put_context;
4841 }
4842
4843 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004844 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004845 err = PTR_ERR(event);
4846 if (IS_ERR(event))
4847 goto err_put_context;
4848
Roland Dreier628ff7c2009-12-18 09:41:24 -08004849 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004850 if (err < 0)
4851 goto err_free_put_context;
4852
4853 event_file = fget_light(err, &fput_needed2);
4854 if (!event_file)
4855 goto err_free_put_context;
4856
4857 if (flags & PERF_FLAG_FD_OUTPUT) {
4858 err = perf_event_set_output(event, group_fd);
4859 if (err)
4860 goto err_fput_free_put_context;
4861 }
4862
4863 event->filp = event_file;
4864 WARN_ON_ONCE(ctx->parent_ctx);
4865 mutex_lock(&ctx->mutex);
4866 perf_install_in_context(ctx, event, cpu);
4867 ++ctx->generation;
4868 mutex_unlock(&ctx->mutex);
4869
4870 event->owner = current;
4871 get_task_struct(current);
4872 mutex_lock(&current->perf_event_mutex);
4873 list_add_tail(&event->owner_entry, &current->perf_event_list);
4874 mutex_unlock(&current->perf_event_mutex);
4875
4876err_fput_free_put_context:
4877 fput_light(event_file, fput_needed2);
4878
4879err_free_put_context:
4880 if (err < 0)
4881 kfree(event);
4882
4883err_put_context:
4884 if (err < 0)
4885 put_ctx(ctx);
4886
4887 fput_light(group_file, fput_needed);
4888
4889 return err;
4890}
4891
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004892/**
4893 * perf_event_create_kernel_counter
4894 *
4895 * @attr: attributes of the counter to create
4896 * @cpu: cpu in which the counter is bound
4897 * @pid: task to profile
4898 */
4899struct perf_event *
4900perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004901 pid_t pid,
4902 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004903{
4904 struct perf_event *event;
4905 struct perf_event_context *ctx;
4906 int err;
4907
4908 /*
4909 * Get the target context (task or percpu):
4910 */
4911
4912 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004913 if (IS_ERR(ctx)) {
4914 err = PTR_ERR(ctx);
4915 goto err_exit;
4916 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004917
4918 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004919 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004920 if (IS_ERR(event)) {
4921 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004922 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004923 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004924
4925 event->filp = NULL;
4926 WARN_ON_ONCE(ctx->parent_ctx);
4927 mutex_lock(&ctx->mutex);
4928 perf_install_in_context(ctx, event, cpu);
4929 ++ctx->generation;
4930 mutex_unlock(&ctx->mutex);
4931
4932 event->owner = current;
4933 get_task_struct(current);
4934 mutex_lock(&current->perf_event_mutex);
4935 list_add_tail(&event->owner_entry, &current->perf_event_list);
4936 mutex_unlock(&current->perf_event_mutex);
4937
4938 return event;
4939
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004940 err_put_context:
4941 put_ctx(ctx);
4942 err_exit:
4943 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004944}
4945EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4946
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004947/*
4948 * inherit a event from parent task to child task:
4949 */
4950static struct perf_event *
4951inherit_event(struct perf_event *parent_event,
4952 struct task_struct *parent,
4953 struct perf_event_context *parent_ctx,
4954 struct task_struct *child,
4955 struct perf_event *group_leader,
4956 struct perf_event_context *child_ctx)
4957{
4958 struct perf_event *child_event;
4959
4960 /*
4961 * Instead of creating recursive hierarchies of events,
4962 * we link inherited events back to the original parent,
4963 * which has a filp for sure, which we use as the reference
4964 * count:
4965 */
4966 if (parent_event->parent)
4967 parent_event = parent_event->parent;
4968
4969 child_event = perf_event_alloc(&parent_event->attr,
4970 parent_event->cpu, child_ctx,
4971 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004972 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004973 if (IS_ERR(child_event))
4974 return child_event;
4975 get_ctx(child_ctx);
4976
4977 /*
4978 * Make the child state follow the state of the parent event,
4979 * not its attr.disabled bit. We hold the parent's mutex,
4980 * so we won't race with perf_event_{en, dis}able_family.
4981 */
4982 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4983 child_event->state = PERF_EVENT_STATE_INACTIVE;
4984 else
4985 child_event->state = PERF_EVENT_STATE_OFF;
4986
Peter Zijlstra75c9f322010-01-29 09:04:26 +01004987 if (parent_event->attr.freq) {
4988 u64 sample_period = parent_event->hw.sample_period;
4989 struct hw_perf_event *hwc = &child_event->hw;
4990
4991 hwc->sample_period = sample_period;
4992 hwc->last_period = sample_period;
4993
4994 atomic64_set(&hwc->period_left, sample_period);
4995 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004996
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004997 child_event->overflow_handler = parent_event->overflow_handler;
4998
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004999 /*
5000 * Link it up in the child's context:
5001 */
5002 add_event_to_ctx(child_event, child_ctx);
5003
5004 /*
5005 * Get a reference to the parent filp - we will fput it
5006 * when the child event exits. This is safe to do because
5007 * we are in the parent and we know that the filp still
5008 * exists and has a nonzero count:
5009 */
5010 atomic_long_inc(&parent_event->filp->f_count);
5011
5012 /*
5013 * Link this into the parent event's child list
5014 */
5015 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5016 mutex_lock(&parent_event->child_mutex);
5017 list_add_tail(&child_event->child_list, &parent_event->child_list);
5018 mutex_unlock(&parent_event->child_mutex);
5019
5020 return child_event;
5021}
5022
5023static int inherit_group(struct perf_event *parent_event,
5024 struct task_struct *parent,
5025 struct perf_event_context *parent_ctx,
5026 struct task_struct *child,
5027 struct perf_event_context *child_ctx)
5028{
5029 struct perf_event *leader;
5030 struct perf_event *sub;
5031 struct perf_event *child_ctr;
5032
5033 leader = inherit_event(parent_event, parent, parent_ctx,
5034 child, NULL, child_ctx);
5035 if (IS_ERR(leader))
5036 return PTR_ERR(leader);
5037 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5038 child_ctr = inherit_event(sub, parent, parent_ctx,
5039 child, leader, child_ctx);
5040 if (IS_ERR(child_ctr))
5041 return PTR_ERR(child_ctr);
5042 }
5043 return 0;
5044}
5045
5046static void sync_child_event(struct perf_event *child_event,
5047 struct task_struct *child)
5048{
5049 struct perf_event *parent_event = child_event->parent;
5050 u64 child_val;
5051
5052 if (child_event->attr.inherit_stat)
5053 perf_event_read_event(child_event, child);
5054
5055 child_val = atomic64_read(&child_event->count);
5056
5057 /*
5058 * Add back the child's count to the parent's count:
5059 */
5060 atomic64_add(child_val, &parent_event->count);
5061 atomic64_add(child_event->total_time_enabled,
5062 &parent_event->child_total_time_enabled);
5063 atomic64_add(child_event->total_time_running,
5064 &parent_event->child_total_time_running);
5065
5066 /*
5067 * Remove this event from the parent's list
5068 */
5069 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5070 mutex_lock(&parent_event->child_mutex);
5071 list_del_init(&child_event->child_list);
5072 mutex_unlock(&parent_event->child_mutex);
5073
5074 /*
5075 * Release the parent event, if this was the last
5076 * reference to it.
5077 */
5078 fput(parent_event->filp);
5079}
5080
5081static void
5082__perf_event_exit_task(struct perf_event *child_event,
5083 struct perf_event_context *child_ctx,
5084 struct task_struct *child)
5085{
5086 struct perf_event *parent_event;
5087
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005088 perf_event_remove_from_context(child_event);
5089
5090 parent_event = child_event->parent;
5091 /*
5092 * It can happen that parent exits first, and has events
5093 * that are still around due to the child reference. These
5094 * events need to be zapped - but otherwise linger.
5095 */
5096 if (parent_event) {
5097 sync_child_event(child_event, child);
5098 free_event(child_event);
5099 }
5100}
5101
5102/*
5103 * When a child task exits, feed back event values to parent events.
5104 */
5105void perf_event_exit_task(struct task_struct *child)
5106{
5107 struct perf_event *child_event, *tmp;
5108 struct perf_event_context *child_ctx;
5109 unsigned long flags;
5110
5111 if (likely(!child->perf_event_ctxp)) {
5112 perf_event_task(child, NULL, 0);
5113 return;
5114 }
5115
5116 local_irq_save(flags);
5117 /*
5118 * We can't reschedule here because interrupts are disabled,
5119 * and either child is current or it is a task that can't be
5120 * scheduled, so we are now safe from rescheduling changing
5121 * our context.
5122 */
5123 child_ctx = child->perf_event_ctxp;
5124 __perf_event_task_sched_out(child_ctx);
5125
5126 /*
5127 * Take the context lock here so that if find_get_context is
5128 * reading child->perf_event_ctxp, we wait until it has
5129 * incremented the context's refcount before we do put_ctx below.
5130 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005131 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005132 child->perf_event_ctxp = NULL;
5133 /*
5134 * If this context is a clone; unclone it so it can't get
5135 * swapped to another process while we're removing all
5136 * the events from it.
5137 */
5138 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005139 update_context_time(child_ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005140 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005141
5142 /*
5143 * Report the task dead after unscheduling the events so that we
5144 * won't get any samples after PERF_RECORD_EXIT. We can however still
5145 * get a few PERF_RECORD_READ events.
5146 */
5147 perf_event_task(child, child_ctx, 0);
5148
5149 /*
5150 * We can recurse on the same lock type through:
5151 *
5152 * __perf_event_exit_task()
5153 * sync_child_event()
5154 * fput(parent_event->filp)
5155 * perf_release()
5156 * mutex_lock(&ctx->mutex)
5157 *
5158 * But since its the parent context it won't be the same instance.
5159 */
5160 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5161
5162again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005163 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5164 group_entry)
5165 __perf_event_exit_task(child_event, child_ctx, child);
5166
5167 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005168 group_entry)
5169 __perf_event_exit_task(child_event, child_ctx, child);
5170
5171 /*
5172 * If the last event was a group event, it will have appended all
5173 * its siblings to the list, but we obtained 'tmp' before that which
5174 * will still point to the list head terminating the iteration.
5175 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005176 if (!list_empty(&child_ctx->pinned_groups) ||
5177 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005178 goto again;
5179
5180 mutex_unlock(&child_ctx->mutex);
5181
5182 put_ctx(child_ctx);
5183}
5184
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005185static void perf_free_event(struct perf_event *event,
5186 struct perf_event_context *ctx)
5187{
5188 struct perf_event *parent = event->parent;
5189
5190 if (WARN_ON_ONCE(!parent))
5191 return;
5192
5193 mutex_lock(&parent->child_mutex);
5194 list_del_init(&event->child_list);
5195 mutex_unlock(&parent->child_mutex);
5196
5197 fput(parent->filp);
5198
5199 list_del_event(event, ctx);
5200 free_event(event);
5201}
5202
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005203/*
5204 * free an unexposed, unused context as created by inheritance by
5205 * init_task below, used by fork() in case of fail.
5206 */
5207void perf_event_free_task(struct task_struct *task)
5208{
5209 struct perf_event_context *ctx = task->perf_event_ctxp;
5210 struct perf_event *event, *tmp;
5211
5212 if (!ctx)
5213 return;
5214
5215 mutex_lock(&ctx->mutex);
5216again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005217 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5218 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005219
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005220 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5221 group_entry)
5222 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005223
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005224 if (!list_empty(&ctx->pinned_groups) ||
5225 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005226 goto again;
5227
5228 mutex_unlock(&ctx->mutex);
5229
5230 put_ctx(ctx);
5231}
5232
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005233static int
5234inherit_task_group(struct perf_event *event, struct task_struct *parent,
5235 struct perf_event_context *parent_ctx,
5236 struct task_struct *child,
5237 int *inherited_all)
5238{
5239 int ret;
5240 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5241
5242 if (!event->attr.inherit) {
5243 *inherited_all = 0;
5244 return 0;
5245 }
5246
5247 if (!child_ctx) {
5248 /*
5249 * This is executed from the parent task context, so
5250 * inherit events that have been marked for cloning.
5251 * First allocate and initialize a context for the
5252 * child.
5253 */
5254
5255 child_ctx = kzalloc(sizeof(struct perf_event_context),
5256 GFP_KERNEL);
5257 if (!child_ctx)
5258 return -ENOMEM;
5259
5260 __perf_event_init_context(child_ctx, child);
5261 child->perf_event_ctxp = child_ctx;
5262 get_task_struct(child);
5263 }
5264
5265 ret = inherit_group(event, parent, parent_ctx,
5266 child, child_ctx);
5267
5268 if (ret)
5269 *inherited_all = 0;
5270
5271 return ret;
5272}
5273
5274
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005275/*
5276 * Initialize the perf_event context in task_struct
5277 */
5278int perf_event_init_task(struct task_struct *child)
5279{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005280 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005281 struct perf_event_context *cloned_ctx;
5282 struct perf_event *event;
5283 struct task_struct *parent = current;
5284 int inherited_all = 1;
5285 int ret = 0;
5286
5287 child->perf_event_ctxp = NULL;
5288
5289 mutex_init(&child->perf_event_mutex);
5290 INIT_LIST_HEAD(&child->perf_event_list);
5291
5292 if (likely(!parent->perf_event_ctxp))
5293 return 0;
5294
5295 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005296 * If the parent's context is a clone, pin it so it won't get
5297 * swapped under us.
5298 */
5299 parent_ctx = perf_pin_task_context(parent);
5300
5301 /*
5302 * No need to check if parent_ctx != NULL here; since we saw
5303 * it non-NULL earlier, the only reason for it to become NULL
5304 * is if we exit, and since we're currently in the middle of
5305 * a fork we can't be exiting at the same time.
5306 */
5307
5308 /*
5309 * Lock the parent list. No need to lock the child - not PID
5310 * hashed yet and not running, so nobody can access it.
5311 */
5312 mutex_lock(&parent_ctx->mutex);
5313
5314 /*
5315 * We dont have to disable NMIs - we are only looking at
5316 * the list, not manipulating it:
5317 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005318 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5319 ret = inherit_task_group(event, parent, parent_ctx, child,
5320 &inherited_all);
5321 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005322 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005323 }
5324
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005325 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5326 ret = inherit_task_group(event, parent, parent_ctx, child,
5327 &inherited_all);
5328 if (ret)
5329 break;
5330 }
5331
5332 child_ctx = child->perf_event_ctxp;
5333
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005334 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005335 /*
5336 * Mark the child context as a clone of the parent
5337 * context, or of whatever the parent is a clone of.
5338 * Note that if the parent is a clone, it could get
5339 * uncloned at any point, but that doesn't matter
5340 * because the list of events and the generation
5341 * count can't have changed since we took the mutex.
5342 */
5343 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5344 if (cloned_ctx) {
5345 child_ctx->parent_ctx = cloned_ctx;
5346 child_ctx->parent_gen = parent_ctx->parent_gen;
5347 } else {
5348 child_ctx->parent_ctx = parent_ctx;
5349 child_ctx->parent_gen = parent_ctx->generation;
5350 }
5351 get_ctx(child_ctx->parent_ctx);
5352 }
5353
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005354 mutex_unlock(&parent_ctx->mutex);
5355
5356 perf_unpin_context(parent_ctx);
5357
5358 return ret;
5359}
5360
5361static void __cpuinit perf_event_init_cpu(int cpu)
5362{
5363 struct perf_cpu_context *cpuctx;
5364
5365 cpuctx = &per_cpu(perf_cpu_context, cpu);
5366 __perf_event_init_context(&cpuctx->ctx, NULL);
5367
5368 spin_lock(&perf_resource_lock);
5369 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5370 spin_unlock(&perf_resource_lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005371}
5372
5373#ifdef CONFIG_HOTPLUG_CPU
5374static void __perf_event_exit_cpu(void *info)
5375{
5376 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5377 struct perf_event_context *ctx = &cpuctx->ctx;
5378 struct perf_event *event, *tmp;
5379
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005380 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5381 __perf_event_remove_from_context(event);
5382 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005383 __perf_event_remove_from_context(event);
5384}
5385static void perf_event_exit_cpu(int cpu)
5386{
5387 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5388 struct perf_event_context *ctx = &cpuctx->ctx;
5389
5390 mutex_lock(&ctx->mutex);
5391 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5392 mutex_unlock(&ctx->mutex);
5393}
5394#else
5395static inline void perf_event_exit_cpu(int cpu) { }
5396#endif
5397
5398static int __cpuinit
5399perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5400{
5401 unsigned int cpu = (long)hcpu;
5402
5403 switch (action) {
5404
5405 case CPU_UP_PREPARE:
5406 case CPU_UP_PREPARE_FROZEN:
5407 perf_event_init_cpu(cpu);
5408 break;
5409
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005410 case CPU_DOWN_PREPARE:
5411 case CPU_DOWN_PREPARE_FROZEN:
5412 perf_event_exit_cpu(cpu);
5413 break;
5414
5415 default:
5416 break;
5417 }
5418
5419 return NOTIFY_OK;
5420}
5421
5422/*
5423 * This has to have a higher priority than migration_notifier in sched.c.
5424 */
5425static struct notifier_block __cpuinitdata perf_cpu_nb = {
5426 .notifier_call = perf_cpu_notify,
5427 .priority = 20,
5428};
5429
5430void __init perf_event_init(void)
5431{
5432 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5433 (void *)(long)smp_processor_id());
5434 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5435 (void *)(long)smp_processor_id());
5436 register_cpu_notifier(&perf_cpu_nb);
5437}
5438
Andi Kleenc9be0a32010-01-05 12:47:58 +01005439static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5440 struct sysdev_class_attribute *attr,
5441 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005442{
5443 return sprintf(buf, "%d\n", perf_reserved_percpu);
5444}
5445
5446static ssize_t
5447perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005448 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005449 const char *buf,
5450 size_t count)
5451{
5452 struct perf_cpu_context *cpuctx;
5453 unsigned long val;
5454 int err, cpu, mpt;
5455
5456 err = strict_strtoul(buf, 10, &val);
5457 if (err)
5458 return err;
5459 if (val > perf_max_events)
5460 return -EINVAL;
5461
5462 spin_lock(&perf_resource_lock);
5463 perf_reserved_percpu = val;
5464 for_each_online_cpu(cpu) {
5465 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005466 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005467 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5468 perf_max_events - perf_reserved_percpu);
5469 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005470 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005471 }
5472 spin_unlock(&perf_resource_lock);
5473
5474 return count;
5475}
5476
Andi Kleenc9be0a32010-01-05 12:47:58 +01005477static ssize_t perf_show_overcommit(struct sysdev_class *class,
5478 struct sysdev_class_attribute *attr,
5479 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005480{
5481 return sprintf(buf, "%d\n", perf_overcommit);
5482}
5483
5484static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005485perf_set_overcommit(struct sysdev_class *class,
5486 struct sysdev_class_attribute *attr,
5487 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005488{
5489 unsigned long val;
5490 int err;
5491
5492 err = strict_strtoul(buf, 10, &val);
5493 if (err)
5494 return err;
5495 if (val > 1)
5496 return -EINVAL;
5497
5498 spin_lock(&perf_resource_lock);
5499 perf_overcommit = val;
5500 spin_unlock(&perf_resource_lock);
5501
5502 return count;
5503}
5504
5505static SYSDEV_CLASS_ATTR(
5506 reserve_percpu,
5507 0644,
5508 perf_show_reserve_percpu,
5509 perf_set_reserve_percpu
5510 );
5511
5512static SYSDEV_CLASS_ATTR(
5513 overcommit,
5514 0644,
5515 perf_show_overcommit,
5516 perf_set_overcommit
5517 );
5518
5519static struct attribute *perfclass_attrs[] = {
5520 &attr_reserve_percpu.attr,
5521 &attr_overcommit.attr,
5522 NULL
5523};
5524
5525static struct attribute_group perfclass_attr_group = {
5526 .attrs = perfclass_attrs,
5527 .name = "perf_events",
5528};
5529
5530static int __init perf_event_sysfs_init(void)
5531{
5532 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5533 &perfclass_attr_group);
5534}
5535device_initcall(perf_event_sysfs_init);