blob: edc46b92b5088c511e6539720bb0cc6a69596b76 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100206 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100243 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200244 --ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290}
291
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100292static struct list_head *
293ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
294{
295 if (event->attr.pinned)
296 return &ctx->pinned_groups;
297 else
298 return &ctx->flexible_groups;
299}
300
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200301/*
302 * Add a event from the lists for its context.
303 * Must be called with ctx->mutex and ctx->lock held.
304 */
305static void
306list_add_event(struct perf_event *event, struct perf_event_context *ctx)
307{
308 struct perf_event *group_leader = event->group_leader;
309
310 /*
311 * Depending on whether it is a standalone or sibling event,
312 * add it straight to the context's event list, or to the group
313 * leader's sibling list:
314 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100315 if (group_leader == event) {
316 struct list_head *list;
317
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100318 if (is_software_event(event))
319 event->group_flags |= PERF_GROUP_SOFTWARE;
320
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100321 list = ctx_group_list(event, ctx);
322 list_add_tail(&event->group_entry, list);
323 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100324 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
325 !is_software_event(event))
326 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
327
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200328 list_add_tail(&event->group_entry, &group_leader->sibling_list);
329 group_leader->nr_siblings++;
330 }
331
332 list_add_rcu(&event->event_entry, &ctx->event_list);
333 ctx->nr_events++;
334 if (event->attr.inherit_stat)
335 ctx->nr_stat++;
336}
337
338/*
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
341 */
342static void
343list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344{
345 struct perf_event *sibling, *tmp;
346
347 if (list_empty(&event->group_entry))
348 return;
349 ctx->nr_events--;
350 if (event->attr.inherit_stat)
351 ctx->nr_stat--;
352
353 list_del_init(&event->group_entry);
354 list_del_rcu(&event->event_entry);
355
356 if (event->group_leader != event)
357 event->group_leader->nr_siblings--;
358
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100359 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800360
361 /*
362 * If event was in error state, then keep it
363 * that way, otherwise bogus counts will be
364 * returned on read(). The only way to get out
365 * of error state is by explicit re-enabling
366 * of the event
367 */
368 if (event->state > PERF_EVENT_STATE_OFF)
369 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100370
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200371 /*
372 * If this was a group event with sibling events then
373 * upgrade the siblings to singleton events by adding them
374 * to the context list directly:
375 */
376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100377 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200378
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100379 list = ctx_group_list(event, ctx);
380 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200381 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100382
383 /* Inherit group flags from the previous leader */
384 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200385 }
386}
387
388static void
389event_sched_out(struct perf_event *event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
392{
393 if (event->state != PERF_EVENT_STATE_ACTIVE)
394 return;
395
396 event->state = PERF_EVENT_STATE_INACTIVE;
397 if (event->pending_disable) {
398 event->pending_disable = 0;
399 event->state = PERF_EVENT_STATE_OFF;
400 }
401 event->tstamp_stopped = ctx->time;
402 event->pmu->disable(event);
403 event->oncpu = -1;
404
405 if (!is_software_event(event))
406 cpuctx->active_oncpu--;
407 ctx->nr_active--;
408 if (event->attr.exclusive || !cpuctx->active_oncpu)
409 cpuctx->exclusive = 0;
410}
411
412static void
413group_sched_out(struct perf_event *group_event,
414 struct perf_cpu_context *cpuctx,
415 struct perf_event_context *ctx)
416{
417 struct perf_event *event;
418
419 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
420 return;
421
422 event_sched_out(group_event, cpuctx, ctx);
423
424 /*
425 * Schedule out siblings (if any):
426 */
427 list_for_each_entry(event, &group_event->sibling_list, group_entry)
428 event_sched_out(event, cpuctx, ctx);
429
430 if (group_event->attr.exclusive)
431 cpuctx->exclusive = 0;
432}
433
434/*
435 * Cross CPU call to remove a performance event
436 *
437 * We disable the event on the hardware level first. After that we
438 * remove it from the context list.
439 */
440static void __perf_event_remove_from_context(void *info)
441{
442 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
443 struct perf_event *event = info;
444 struct perf_event_context *ctx = event->ctx;
445
446 /*
447 * If this is a task context, we need to check whether it is
448 * the current task context of this cpu. If not it has been
449 * scheduled out before the smp call arrived.
450 */
451 if (ctx->task && cpuctx->task_ctx != ctx)
452 return;
453
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100454 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200455 /*
456 * Protect the list operation against NMI by disabling the
457 * events on a global level.
458 */
459 perf_disable();
460
461 event_sched_out(event, cpuctx, ctx);
462
463 list_del_event(event, ctx);
464
465 if (!ctx->task) {
466 /*
467 * Allow more per task events with respect to the
468 * reservation:
469 */
470 cpuctx->max_pertask =
471 min(perf_max_events - ctx->nr_events,
472 perf_max_events - perf_reserved_percpu);
473 }
474
475 perf_enable();
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100476 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200477}
478
479
480/*
481 * Remove the event from a task's (or a CPU's) list of events.
482 *
483 * Must be called with ctx->mutex held.
484 *
485 * CPU events are removed with a smp call. For task events we only
486 * call when the task is on a CPU.
487 *
488 * If event->ctx is a cloned context, callers must make sure that
489 * every task struct that event->ctx->task could possibly point to
490 * remains valid. This is OK when called from perf_release since
491 * that only calls us on the top-level context, which can't be a clone.
492 * When called from perf_event_exit_task, it's OK because the
493 * context has been detached from its task.
494 */
495static void perf_event_remove_from_context(struct perf_event *event)
496{
497 struct perf_event_context *ctx = event->ctx;
498 struct task_struct *task = ctx->task;
499
500 if (!task) {
501 /*
502 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200503 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200504 */
505 smp_call_function_single(event->cpu,
506 __perf_event_remove_from_context,
507 event, 1);
508 return;
509 }
510
511retry:
512 task_oncpu_function_call(task, __perf_event_remove_from_context,
513 event);
514
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100515 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200516 /*
517 * If the context is active we need to retry the smp call.
518 */
519 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100520 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200521 goto retry;
522 }
523
524 /*
525 * The lock prevents that this context is scheduled in so we
526 * can remove the event safely, if the call above did not
527 * succeed.
528 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100529 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200530 list_del_event(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100531 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200532}
533
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200534/*
535 * Update total_time_enabled and total_time_running for all events in a group.
536 */
537static void update_group_times(struct perf_event *leader)
538{
539 struct perf_event *event;
540
541 update_event_times(leader);
542 list_for_each_entry(event, &leader->sibling_list, group_entry)
543 update_event_times(event);
544}
545
546/*
547 * Cross CPU call to disable a performance event
548 */
549static void __perf_event_disable(void *info)
550{
551 struct perf_event *event = info;
552 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
553 struct perf_event_context *ctx = event->ctx;
554
555 /*
556 * If this is a per-task event, need to check whether this
557 * event's task is the current task on this cpu.
558 */
559 if (ctx->task && cpuctx->task_ctx != ctx)
560 return;
561
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100562 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200563
564 /*
565 * If the event is on, turn it off.
566 * If it is in error state, leave it in error state.
567 */
568 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
569 update_context_time(ctx);
570 update_group_times(event);
571 if (event == event->group_leader)
572 group_sched_out(event, cpuctx, ctx);
573 else
574 event_sched_out(event, cpuctx, ctx);
575 event->state = PERF_EVENT_STATE_OFF;
576 }
577
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100578 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200579}
580
581/*
582 * Disable a event.
583 *
584 * If event->ctx is a cloned context, callers must make sure that
585 * every task struct that event->ctx->task could possibly point to
586 * remains valid. This condition is satisifed when called through
587 * perf_event_for_each_child or perf_event_for_each because they
588 * hold the top-level event's child_mutex, so any descendant that
589 * goes to exit will block in sync_child_event.
590 * When called from perf_pending_event it's OK because event->ctx
591 * is the current context on this CPU and preemption is disabled,
592 * hence we can't get into perf_event_task_sched_out for this context.
593 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100594void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200595{
596 struct perf_event_context *ctx = event->ctx;
597 struct task_struct *task = ctx->task;
598
599 if (!task) {
600 /*
601 * Disable the event on the cpu that it's on
602 */
603 smp_call_function_single(event->cpu, __perf_event_disable,
604 event, 1);
605 return;
606 }
607
608 retry:
609 task_oncpu_function_call(task, __perf_event_disable, event);
610
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100611 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612 /*
613 * If the event is still active, we need to retry the cross-call.
614 */
615 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100616 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200617 goto retry;
618 }
619
620 /*
621 * Since we have the lock this context can't be scheduled
622 * in, so we can change the state safely.
623 */
624 if (event->state == PERF_EVENT_STATE_INACTIVE) {
625 update_group_times(event);
626 event->state = PERF_EVENT_STATE_OFF;
627 }
628
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100629 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200630}
631
632static int
633event_sched_in(struct perf_event *event,
634 struct perf_cpu_context *cpuctx,
635 struct perf_event_context *ctx,
636 int cpu)
637{
638 if (event->state <= PERF_EVENT_STATE_OFF)
639 return 0;
640
641 event->state = PERF_EVENT_STATE_ACTIVE;
642 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
643 /*
644 * The new state must be visible before we turn it on in the hardware:
645 */
646 smp_wmb();
647
648 if (event->pmu->enable(event)) {
649 event->state = PERF_EVENT_STATE_INACTIVE;
650 event->oncpu = -1;
651 return -EAGAIN;
652 }
653
654 event->tstamp_running += ctx->time - event->tstamp_stopped;
655
656 if (!is_software_event(event))
657 cpuctx->active_oncpu++;
658 ctx->nr_active++;
659
660 if (event->attr.exclusive)
661 cpuctx->exclusive = 1;
662
663 return 0;
664}
665
666static int
667group_sched_in(struct perf_event *group_event,
668 struct perf_cpu_context *cpuctx,
669 struct perf_event_context *ctx,
670 int cpu)
671{
672 struct perf_event *event, *partial_group;
673 int ret;
674
675 if (group_event->state == PERF_EVENT_STATE_OFF)
676 return 0;
677
678 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
679 if (ret)
680 return ret < 0 ? ret : 0;
681
682 if (event_sched_in(group_event, cpuctx, ctx, cpu))
683 return -EAGAIN;
684
685 /*
686 * Schedule in siblings as one group (if any):
687 */
688 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
689 if (event_sched_in(event, cpuctx, ctx, cpu)) {
690 partial_group = event;
691 goto group_error;
692 }
693 }
694
695 return 0;
696
697group_error:
698 /*
699 * Groups can be scheduled in as one unit only, so undo any
700 * partial group before returning:
701 */
702 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
703 if (event == partial_group)
704 break;
705 event_sched_out(event, cpuctx, ctx);
706 }
707 event_sched_out(group_event, cpuctx, ctx);
708
709 return -EAGAIN;
710}
711
712/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200713 * Work out whether we can put this event group on the CPU now.
714 */
715static int group_can_go_on(struct perf_event *event,
716 struct perf_cpu_context *cpuctx,
717 int can_add_hw)
718{
719 /*
720 * Groups consisting entirely of software events can always go on.
721 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100722 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200723 return 1;
724 /*
725 * If an exclusive group is already on, no other hardware
726 * events can go on.
727 */
728 if (cpuctx->exclusive)
729 return 0;
730 /*
731 * If this group is exclusive and there are already
732 * events on the CPU, it can't go on.
733 */
734 if (event->attr.exclusive && cpuctx->active_oncpu)
735 return 0;
736 /*
737 * Otherwise, try to add it if all previous groups were able
738 * to go on.
739 */
740 return can_add_hw;
741}
742
743static void add_event_to_ctx(struct perf_event *event,
744 struct perf_event_context *ctx)
745{
746 list_add_event(event, ctx);
747 event->tstamp_enabled = ctx->time;
748 event->tstamp_running = ctx->time;
749 event->tstamp_stopped = ctx->time;
750}
751
752/*
753 * Cross CPU call to install and enable a performance event
754 *
755 * Must be called with ctx->mutex held
756 */
757static void __perf_install_in_context(void *info)
758{
759 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
760 struct perf_event *event = info;
761 struct perf_event_context *ctx = event->ctx;
762 struct perf_event *leader = event->group_leader;
763 int cpu = smp_processor_id();
764 int err;
765
766 /*
767 * If this is a task context, we need to check whether it is
768 * the current task context of this cpu. If not it has been
769 * scheduled out before the smp call arrived.
770 * Or possibly this is the right context but it isn't
771 * on this cpu because it had no events.
772 */
773 if (ctx->task && cpuctx->task_ctx != ctx) {
774 if (cpuctx->task_ctx || ctx->task != current)
775 return;
776 cpuctx->task_ctx = ctx;
777 }
778
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100779 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200780 ctx->is_active = 1;
781 update_context_time(ctx);
782
783 /*
784 * Protect the list operation against NMI by disabling the
785 * events on a global level. NOP for non NMI based events.
786 */
787 perf_disable();
788
789 add_event_to_ctx(event, ctx);
790
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100791 if (event->cpu != -1 && event->cpu != smp_processor_id())
792 goto unlock;
793
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200794 /*
795 * Don't put the event on if it is disabled or if
796 * it is in a group and the group isn't on.
797 */
798 if (event->state != PERF_EVENT_STATE_INACTIVE ||
799 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
800 goto unlock;
801
802 /*
803 * An exclusive event can't go on if there are already active
804 * hardware events, and no hardware event can go on if there
805 * is already an exclusive event on.
806 */
807 if (!group_can_go_on(event, cpuctx, 1))
808 err = -EEXIST;
809 else
810 err = event_sched_in(event, cpuctx, ctx, cpu);
811
812 if (err) {
813 /*
814 * This event couldn't go on. If it is in a group
815 * then we have to pull the whole group off.
816 * If the event group is pinned then put it in error state.
817 */
818 if (leader != event)
819 group_sched_out(leader, cpuctx, ctx);
820 if (leader->attr.pinned) {
821 update_group_times(leader);
822 leader->state = PERF_EVENT_STATE_ERROR;
823 }
824 }
825
826 if (!err && !ctx->task && cpuctx->max_pertask)
827 cpuctx->max_pertask--;
828
829 unlock:
830 perf_enable();
831
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100832 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200833}
834
835/*
836 * Attach a performance event to a context
837 *
838 * First we add the event to the list with the hardware enable bit
839 * in event->hw_config cleared.
840 *
841 * If the event is attached to a task which is on a CPU we use a smp
842 * call to enable it in the task context. The task might have been
843 * scheduled away, but we check this in the smp call again.
844 *
845 * Must be called with ctx->mutex held.
846 */
847static void
848perf_install_in_context(struct perf_event_context *ctx,
849 struct perf_event *event,
850 int cpu)
851{
852 struct task_struct *task = ctx->task;
853
854 if (!task) {
855 /*
856 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200857 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200858 */
859 smp_call_function_single(cpu, __perf_install_in_context,
860 event, 1);
861 return;
862 }
863
864retry:
865 task_oncpu_function_call(task, __perf_install_in_context,
866 event);
867
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100868 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200869 /*
870 * we need to retry the smp call.
871 */
872 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100873 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200874 goto retry;
875 }
876
877 /*
878 * The lock prevents that this context is scheduled in so we
879 * can add the event safely, if it the call above did not
880 * succeed.
881 */
882 if (list_empty(&event->group_entry))
883 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100884 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200885}
886
887/*
888 * Put a event into inactive state and update time fields.
889 * Enabling the leader of a group effectively enables all
890 * the group members that aren't explicitly disabled, so we
891 * have to update their ->tstamp_enabled also.
892 * Note: this works for group members as well as group leaders
893 * since the non-leader members' sibling_lists will be empty.
894 */
895static void __perf_event_mark_enabled(struct perf_event *event,
896 struct perf_event_context *ctx)
897{
898 struct perf_event *sub;
899
900 event->state = PERF_EVENT_STATE_INACTIVE;
901 event->tstamp_enabled = ctx->time - event->total_time_enabled;
902 list_for_each_entry(sub, &event->sibling_list, group_entry)
903 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
904 sub->tstamp_enabled =
905 ctx->time - sub->total_time_enabled;
906}
907
908/*
909 * Cross CPU call to enable a performance event
910 */
911static void __perf_event_enable(void *info)
912{
913 struct perf_event *event = info;
914 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
915 struct perf_event_context *ctx = event->ctx;
916 struct perf_event *leader = event->group_leader;
917 int err;
918
919 /*
920 * If this is a per-task event, need to check whether this
921 * event's task is the current task on this cpu.
922 */
923 if (ctx->task && cpuctx->task_ctx != ctx) {
924 if (cpuctx->task_ctx || ctx->task != current)
925 return;
926 cpuctx->task_ctx = ctx;
927 }
928
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100929 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200930 ctx->is_active = 1;
931 update_context_time(ctx);
932
933 if (event->state >= PERF_EVENT_STATE_INACTIVE)
934 goto unlock;
935 __perf_event_mark_enabled(event, ctx);
936
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100937 if (event->cpu != -1 && event->cpu != smp_processor_id())
938 goto unlock;
939
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200940 /*
941 * If the event is in a group and isn't the group leader,
942 * then don't put it on unless the group is on.
943 */
944 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
945 goto unlock;
946
947 if (!group_can_go_on(event, cpuctx, 1)) {
948 err = -EEXIST;
949 } else {
950 perf_disable();
951 if (event == leader)
952 err = group_sched_in(event, cpuctx, ctx,
953 smp_processor_id());
954 else
955 err = event_sched_in(event, cpuctx, ctx,
956 smp_processor_id());
957 perf_enable();
958 }
959
960 if (err) {
961 /*
962 * If this event can't go on and it's part of a
963 * group, then the whole group has to come off.
964 */
965 if (leader != event)
966 group_sched_out(leader, cpuctx, ctx);
967 if (leader->attr.pinned) {
968 update_group_times(leader);
969 leader->state = PERF_EVENT_STATE_ERROR;
970 }
971 }
972
973 unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100974 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200975}
976
977/*
978 * Enable a event.
979 *
980 * If event->ctx is a cloned context, callers must make sure that
981 * every task struct that event->ctx->task could possibly point to
982 * remains valid. This condition is satisfied when called through
983 * perf_event_for_each_child or perf_event_for_each as described
984 * for perf_event_disable.
985 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100986void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200987{
988 struct perf_event_context *ctx = event->ctx;
989 struct task_struct *task = ctx->task;
990
991 if (!task) {
992 /*
993 * Enable the event on the cpu that it's on
994 */
995 smp_call_function_single(event->cpu, __perf_event_enable,
996 event, 1);
997 return;
998 }
999
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001000 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001001 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1002 goto out;
1003
1004 /*
1005 * If the event is in error state, clear that first.
1006 * That way, if we see the event in error state below, we
1007 * know that it has gone back into error state, as distinct
1008 * from the task having been scheduled away before the
1009 * cross-call arrived.
1010 */
1011 if (event->state == PERF_EVENT_STATE_ERROR)
1012 event->state = PERF_EVENT_STATE_OFF;
1013
1014 retry:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001015 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001016 task_oncpu_function_call(task, __perf_event_enable, event);
1017
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001018 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001019
1020 /*
1021 * If the context is active and the event is still off,
1022 * we need to retry the cross-call.
1023 */
1024 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1025 goto retry;
1026
1027 /*
1028 * Since we have the lock this context can't be scheduled
1029 * in, so we can change the state safely.
1030 */
1031 if (event->state == PERF_EVENT_STATE_OFF)
1032 __perf_event_mark_enabled(event, ctx);
1033
1034 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001035 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001036}
1037
1038static int perf_event_refresh(struct perf_event *event, int refresh)
1039{
1040 /*
1041 * not supported on inherited events
1042 */
1043 if (event->attr.inherit)
1044 return -EINVAL;
1045
1046 atomic_add(refresh, &event->event_limit);
1047 perf_event_enable(event);
1048
1049 return 0;
1050}
1051
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001052enum event_type_t {
1053 EVENT_FLEXIBLE = 0x1,
1054 EVENT_PINNED = 0x2,
1055 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1056};
1057
1058static void ctx_sched_out(struct perf_event_context *ctx,
1059 struct perf_cpu_context *cpuctx,
1060 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001061{
1062 struct perf_event *event;
1063
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001064 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001065 ctx->is_active = 0;
1066 if (likely(!ctx->nr_events))
1067 goto out;
1068 update_context_time(ctx);
1069
1070 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001071 if (!ctx->nr_active)
1072 goto out_enable;
1073
1074 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001075 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1076 group_sched_out(event, cpuctx, ctx);
1077
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001078 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001079 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001080 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001081
1082 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001083 perf_enable();
1084 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001085 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001086}
1087
1088/*
1089 * Test whether two contexts are equivalent, i.e. whether they
1090 * have both been cloned from the same version of the same context
1091 * and they both have the same number of enabled events.
1092 * If the number of enabled events is the same, then the set
1093 * of enabled events should be the same, because these are both
1094 * inherited contexts, therefore we can't access individual events
1095 * in them directly with an fd; we can only enable/disable all
1096 * events via prctl, or enable/disable all events in a family
1097 * via ioctl, which will have the same effect on both contexts.
1098 */
1099static int context_equiv(struct perf_event_context *ctx1,
1100 struct perf_event_context *ctx2)
1101{
1102 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103 && ctx1->parent_gen == ctx2->parent_gen
1104 && !ctx1->pin_count && !ctx2->pin_count;
1105}
1106
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001107static void __perf_event_sync_stat(struct perf_event *event,
1108 struct perf_event *next_event)
1109{
1110 u64 value;
1111
1112 if (!event->attr.inherit_stat)
1113 return;
1114
1115 /*
1116 * Update the event value, we cannot use perf_event_read()
1117 * because we're in the middle of a context switch and have IRQs
1118 * disabled, which upsets smp_call_function_single(), however
1119 * we know the event must be on the current CPU, therefore we
1120 * don't need to use it.
1121 */
1122 switch (event->state) {
1123 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001124 event->pmu->read(event);
1125 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001126
1127 case PERF_EVENT_STATE_INACTIVE:
1128 update_event_times(event);
1129 break;
1130
1131 default:
1132 break;
1133 }
1134
1135 /*
1136 * In order to keep per-task stats reliable we need to flip the event
1137 * values when we flip the contexts.
1138 */
1139 value = atomic64_read(&next_event->count);
1140 value = atomic64_xchg(&event->count, value);
1141 atomic64_set(&next_event->count, value);
1142
1143 swap(event->total_time_enabled, next_event->total_time_enabled);
1144 swap(event->total_time_running, next_event->total_time_running);
1145
1146 /*
1147 * Since we swizzled the values, update the user visible data too.
1148 */
1149 perf_event_update_userpage(event);
1150 perf_event_update_userpage(next_event);
1151}
1152
1153#define list_next_entry(pos, member) \
1154 list_entry(pos->member.next, typeof(*pos), member)
1155
1156static void perf_event_sync_stat(struct perf_event_context *ctx,
1157 struct perf_event_context *next_ctx)
1158{
1159 struct perf_event *event, *next_event;
1160
1161 if (!ctx->nr_stat)
1162 return;
1163
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001164 update_context_time(ctx);
1165
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001166 event = list_first_entry(&ctx->event_list,
1167 struct perf_event, event_entry);
1168
1169 next_event = list_first_entry(&next_ctx->event_list,
1170 struct perf_event, event_entry);
1171
1172 while (&event->event_entry != &ctx->event_list &&
1173 &next_event->event_entry != &next_ctx->event_list) {
1174
1175 __perf_event_sync_stat(event, next_event);
1176
1177 event = list_next_entry(event, event_entry);
1178 next_event = list_next_entry(next_event, event_entry);
1179 }
1180}
1181
1182/*
1183 * Called from scheduler to remove the events of the current task,
1184 * with interrupts disabled.
1185 *
1186 * We stop each event and update the event value in event->count.
1187 *
1188 * This does not protect us against NMI, but disable()
1189 * sets the disabled bit in the control field of event _before_
1190 * accessing the event control register. If a NMI hits, then it will
1191 * not restart the event.
1192 */
1193void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001194 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001195{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001196 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001197 struct perf_event_context *ctx = task->perf_event_ctxp;
1198 struct perf_event_context *next_ctx;
1199 struct perf_event_context *parent;
1200 struct pt_regs *regs;
1201 int do_switch = 1;
1202
1203 regs = task_pt_regs(task);
1204 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1205
1206 if (likely(!ctx || !cpuctx->task_ctx))
1207 return;
1208
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001209 rcu_read_lock();
1210 parent = rcu_dereference(ctx->parent_ctx);
1211 next_ctx = next->perf_event_ctxp;
1212 if (parent && next_ctx &&
1213 rcu_dereference(next_ctx->parent_ctx) == parent) {
1214 /*
1215 * Looks like the two contexts are clones, so we might be
1216 * able to optimize the context switch. We lock both
1217 * contexts and check that they are clones under the
1218 * lock (including re-checking that neither has been
1219 * uncloned in the meantime). It doesn't matter which
1220 * order we take the locks because no other cpu could
1221 * be trying to lock both of these tasks.
1222 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001223 raw_spin_lock(&ctx->lock);
1224 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001225 if (context_equiv(ctx, next_ctx)) {
1226 /*
1227 * XXX do we need a memory barrier of sorts
1228 * wrt to rcu_dereference() of perf_event_ctxp
1229 */
1230 task->perf_event_ctxp = next_ctx;
1231 next->perf_event_ctxp = ctx;
1232 ctx->task = next;
1233 next_ctx->task = task;
1234 do_switch = 0;
1235
1236 perf_event_sync_stat(ctx, next_ctx);
1237 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001238 raw_spin_unlock(&next_ctx->lock);
1239 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001240 }
1241 rcu_read_unlock();
1242
1243 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001244 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001245 cpuctx->task_ctx = NULL;
1246 }
1247}
1248
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001249static void task_ctx_sched_out(struct perf_event_context *ctx,
1250 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001251{
1252 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1253
1254 if (!cpuctx->task_ctx)
1255 return;
1256
1257 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1258 return;
1259
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001260 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001261 cpuctx->task_ctx = NULL;
1262}
1263
1264/*
1265 * Called with IRQs disabled
1266 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001267static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001268{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001269 task_ctx_sched_out(ctx, EVENT_ALL);
1270}
1271
1272/*
1273 * Called with IRQs disabled
1274 */
1275static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1276 enum event_type_t event_type)
1277{
1278 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001279}
1280
1281static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001282ctx_pinned_sched_in(struct perf_event_context *ctx,
1283 struct perf_cpu_context *cpuctx,
1284 int cpu)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001285{
1286 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001287
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001288 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1289 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 continue;
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1293
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001294 if (group_can_go_on(event, cpuctx, 1))
1295 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296
1297 /*
1298 * If this pinned group hasn't been scheduled,
1299 * put it in error state.
1300 */
1301 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1302 update_group_times(event);
1303 event->state = PERF_EVENT_STATE_ERROR;
1304 }
1305 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001306}
1307
1308static void
1309ctx_flexible_sched_in(struct perf_event_context *ctx,
1310 struct perf_cpu_context *cpuctx,
1311 int cpu)
1312{
1313 struct perf_event *event;
1314 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001315
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001316 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1317 /* Ignore events in OFF or ERROR state */
1318 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001319 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001320 /*
1321 * Listen to the 'cpu' scheduling filter constraint
1322 * of events:
1323 */
1324 if (event->cpu != -1 && event->cpu != cpu)
1325 continue;
1326
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001327 if (group_can_go_on(event, cpuctx, can_add_hw))
1328 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001329 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001330 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001331}
1332
1333static void
1334ctx_sched_in(struct perf_event_context *ctx,
1335 struct perf_cpu_context *cpuctx,
1336 enum event_type_t event_type)
1337{
1338 int cpu = smp_processor_id();
1339
1340 raw_spin_lock(&ctx->lock);
1341 ctx->is_active = 1;
1342 if (likely(!ctx->nr_events))
1343 goto out;
1344
1345 ctx->timestamp = perf_clock();
1346
1347 perf_disable();
1348
1349 /*
1350 * First go through the list and put on any pinned groups
1351 * in order to give them the best chance of going on.
1352 */
1353 if (event_type & EVENT_PINNED)
1354 ctx_pinned_sched_in(ctx, cpuctx, cpu);
1355
1356 /* Then walk through the lower prio flexible groups */
1357 if (event_type & EVENT_FLEXIBLE)
1358 ctx_flexible_sched_in(ctx, cpuctx, cpu);
1359
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360 perf_enable();
1361 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001362 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001363}
1364
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001365static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1366 enum event_type_t event_type)
1367{
1368 struct perf_event_context *ctx = &cpuctx->ctx;
1369
1370 ctx_sched_in(ctx, cpuctx, event_type);
1371}
1372
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001373static void task_ctx_sched_in(struct task_struct *task,
1374 enum event_type_t event_type)
1375{
1376 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1377 struct perf_event_context *ctx = task->perf_event_ctxp;
1378
1379 if (likely(!ctx))
1380 return;
1381 if (cpuctx->task_ctx == ctx)
1382 return;
1383 ctx_sched_in(ctx, cpuctx, event_type);
1384 cpuctx->task_ctx = ctx;
1385}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001386/*
1387 * Called from scheduler to add the events of the current task
1388 * with interrupts disabled.
1389 *
1390 * We restore the event value and then enable it.
1391 *
1392 * This does not protect us against NMI, but enable()
1393 * sets the enabled bit in the control field of event _before_
1394 * accessing the event control register. If a NMI hits, then it will
1395 * keep the event running.
1396 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001397void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001398{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001399 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1400 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001401
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001402 if (likely(!ctx))
1403 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001404
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001405 if (cpuctx->task_ctx == ctx)
1406 return;
1407
1408 /*
1409 * We want to keep the following priority order:
1410 * cpu pinned (that don't need to move), task pinned,
1411 * cpu flexible, task flexible.
1412 */
1413 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1414
1415 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1416 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1417 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1418
1419 cpuctx->task_ctx = ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001420}
1421
1422#define MAX_INTERRUPTS (~0ULL)
1423
1424static void perf_log_throttle(struct perf_event *event, int enable);
1425
1426static void perf_adjust_period(struct perf_event *event, u64 events)
1427{
1428 struct hw_perf_event *hwc = &event->hw;
1429 u64 period, sample_period;
1430 s64 delta;
1431
1432 events *= hwc->sample_period;
1433 period = div64_u64(events, event->attr.sample_freq);
1434
1435 delta = (s64)(period - hwc->sample_period);
1436 delta = (delta + 7) / 8; /* low pass filter */
1437
1438 sample_period = hwc->sample_period + delta;
1439
1440 if (!sample_period)
1441 sample_period = 1;
1442
1443 hwc->sample_period = sample_period;
1444}
1445
1446static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1447{
1448 struct perf_event *event;
1449 struct hw_perf_event *hwc;
1450 u64 interrupts, freq;
1451
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001452 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001453 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001454 if (event->state != PERF_EVENT_STATE_ACTIVE)
1455 continue;
1456
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001457 if (event->cpu != -1 && event->cpu != smp_processor_id())
1458 continue;
1459
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001460 hwc = &event->hw;
1461
1462 interrupts = hwc->interrupts;
1463 hwc->interrupts = 0;
1464
1465 /*
1466 * unthrottle events on the tick
1467 */
1468 if (interrupts == MAX_INTERRUPTS) {
1469 perf_log_throttle(event, 1);
1470 event->pmu->unthrottle(event);
1471 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1472 }
1473
1474 if (!event->attr.freq || !event->attr.sample_freq)
1475 continue;
1476
1477 /*
1478 * if the specified freq < HZ then we need to skip ticks
1479 */
1480 if (event->attr.sample_freq < HZ) {
1481 freq = event->attr.sample_freq;
1482
1483 hwc->freq_count += freq;
1484 hwc->freq_interrupts += interrupts;
1485
1486 if (hwc->freq_count < HZ)
1487 continue;
1488
1489 interrupts = hwc->freq_interrupts;
1490 hwc->freq_interrupts = 0;
1491 hwc->freq_count -= HZ;
1492 } else
1493 freq = HZ;
1494
1495 perf_adjust_period(event, freq * interrupts);
1496
1497 /*
1498 * In order to avoid being stalled by an (accidental) huge
1499 * sample period, force reset the sample period if we didn't
1500 * get any events in this freq period.
1501 */
1502 if (!interrupts) {
1503 perf_disable();
1504 event->pmu->disable(event);
1505 atomic64_set(&hwc->period_left, 0);
1506 event->pmu->enable(event);
1507 perf_enable();
1508 }
1509 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001510 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001511}
1512
1513/*
1514 * Round-robin a context's events:
1515 */
1516static void rotate_ctx(struct perf_event_context *ctx)
1517{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001518 if (!ctx->nr_events)
1519 return;
1520
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001521 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001522
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001523 /* Rotate the first entry last of non-pinned groups */
1524 perf_disable();
1525
1526 list_rotate_left(&ctx->flexible_groups);
1527
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001528 perf_enable();
1529
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001530 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001531}
1532
Peter Zijlstra49f47432009-12-27 11:51:52 +01001533void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001534{
1535 struct perf_cpu_context *cpuctx;
1536 struct perf_event_context *ctx;
1537
1538 if (!atomic_read(&nr_events))
1539 return;
1540
Peter Zijlstra49f47432009-12-27 11:51:52 +01001541 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001542 ctx = curr->perf_event_ctxp;
1543
1544 perf_ctx_adjust_freq(&cpuctx->ctx);
1545 if (ctx)
1546 perf_ctx_adjust_freq(ctx);
1547
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001548 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001549 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001550 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001551
1552 rotate_ctx(&cpuctx->ctx);
1553 if (ctx)
1554 rotate_ctx(ctx);
1555
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001556 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001557 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001558 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001559}
1560
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001561static int event_enable_on_exec(struct perf_event *event,
1562 struct perf_event_context *ctx)
1563{
1564 if (!event->attr.enable_on_exec)
1565 return 0;
1566
1567 event->attr.enable_on_exec = 0;
1568 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1569 return 0;
1570
1571 __perf_event_mark_enabled(event, ctx);
1572
1573 return 1;
1574}
1575
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001576/*
1577 * Enable all of a task's events that have been marked enable-on-exec.
1578 * This expects task == current.
1579 */
1580static void perf_event_enable_on_exec(struct task_struct *task)
1581{
1582 struct perf_event_context *ctx;
1583 struct perf_event *event;
1584 unsigned long flags;
1585 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001586 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001587
1588 local_irq_save(flags);
1589 ctx = task->perf_event_ctxp;
1590 if (!ctx || !ctx->nr_events)
1591 goto out;
1592
1593 __perf_event_task_sched_out(ctx);
1594
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001595 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001596
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001597 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1598 ret = event_enable_on_exec(event, ctx);
1599 if (ret)
1600 enabled = 1;
1601 }
1602
1603 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1604 ret = event_enable_on_exec(event, ctx);
1605 if (ret)
1606 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001607 }
1608
1609 /*
1610 * Unclone this context if we enabled any event.
1611 */
1612 if (enabled)
1613 unclone_ctx(ctx);
1614
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001615 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001616
Peter Zijlstra49f47432009-12-27 11:51:52 +01001617 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001618 out:
1619 local_irq_restore(flags);
1620}
1621
1622/*
1623 * Cross CPU call to read the hardware event
1624 */
1625static void __perf_event_read(void *info)
1626{
1627 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1628 struct perf_event *event = info;
1629 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001630
1631 /*
1632 * If this is a task context, we need to check whether it is
1633 * the current task context of this cpu. If not it has been
1634 * scheduled out before the smp call arrived. In that case
1635 * event->count would have been updated to a recent sample
1636 * when the event was scheduled out.
1637 */
1638 if (ctx->task && cpuctx->task_ctx != ctx)
1639 return;
1640
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001641 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001642 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001643 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001644 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001645
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001646 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001647}
1648
1649static u64 perf_event_read(struct perf_event *event)
1650{
1651 /*
1652 * If event is enabled and currently active on a CPU, update the
1653 * value in the event structure:
1654 */
1655 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1656 smp_call_function_single(event->oncpu,
1657 __perf_event_read, event, 1);
1658 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001659 struct perf_event_context *ctx = event->ctx;
1660 unsigned long flags;
1661
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001662 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001663 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001664 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001665 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001666 }
1667
1668 return atomic64_read(&event->count);
1669}
1670
1671/*
1672 * Initialize the perf_event context in a task_struct:
1673 */
1674static void
1675__perf_event_init_context(struct perf_event_context *ctx,
1676 struct task_struct *task)
1677{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001678 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001679 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001680 INIT_LIST_HEAD(&ctx->pinned_groups);
1681 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001682 INIT_LIST_HEAD(&ctx->event_list);
1683 atomic_set(&ctx->refcount, 1);
1684 ctx->task = task;
1685}
1686
1687static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1688{
1689 struct perf_event_context *ctx;
1690 struct perf_cpu_context *cpuctx;
1691 struct task_struct *task;
1692 unsigned long flags;
1693 int err;
1694
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001695 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001696 /* Must be root to operate on a CPU event: */
1697 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1698 return ERR_PTR(-EACCES);
1699
Paul Mackerras0f624e72009-12-15 19:40:32 +11001700 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001701 return ERR_PTR(-EINVAL);
1702
1703 /*
1704 * We could be clever and allow to attach a event to an
1705 * offline CPU and activate it when the CPU comes up, but
1706 * that's for later.
1707 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001708 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001709 return ERR_PTR(-ENODEV);
1710
1711 cpuctx = &per_cpu(perf_cpu_context, cpu);
1712 ctx = &cpuctx->ctx;
1713 get_ctx(ctx);
1714
1715 return ctx;
1716 }
1717
1718 rcu_read_lock();
1719 if (!pid)
1720 task = current;
1721 else
1722 task = find_task_by_vpid(pid);
1723 if (task)
1724 get_task_struct(task);
1725 rcu_read_unlock();
1726
1727 if (!task)
1728 return ERR_PTR(-ESRCH);
1729
1730 /*
1731 * Can't attach events to a dying task.
1732 */
1733 err = -ESRCH;
1734 if (task->flags & PF_EXITING)
1735 goto errout;
1736
1737 /* Reuse ptrace permission checks for now. */
1738 err = -EACCES;
1739 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1740 goto errout;
1741
1742 retry:
1743 ctx = perf_lock_task_context(task, &flags);
1744 if (ctx) {
1745 unclone_ctx(ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001746 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001747 }
1748
1749 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001750 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001751 err = -ENOMEM;
1752 if (!ctx)
1753 goto errout;
1754 __perf_event_init_context(ctx, task);
1755 get_ctx(ctx);
1756 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1757 /*
1758 * We raced with some other task; use
1759 * the context they set.
1760 */
1761 kfree(ctx);
1762 goto retry;
1763 }
1764 get_task_struct(task);
1765 }
1766
1767 put_task_struct(task);
1768 return ctx;
1769
1770 errout:
1771 put_task_struct(task);
1772 return ERR_PTR(err);
1773}
1774
Li Zefan6fb29152009-10-15 11:21:42 +08001775static void perf_event_free_filter(struct perf_event *event);
1776
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001777static void free_event_rcu(struct rcu_head *head)
1778{
1779 struct perf_event *event;
1780
1781 event = container_of(head, struct perf_event, rcu_head);
1782 if (event->ns)
1783 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001784 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001785 kfree(event);
1786}
1787
1788static void perf_pending_sync(struct perf_event *event);
1789
1790static void free_event(struct perf_event *event)
1791{
1792 perf_pending_sync(event);
1793
1794 if (!event->parent) {
1795 atomic_dec(&nr_events);
1796 if (event->attr.mmap)
1797 atomic_dec(&nr_mmap_events);
1798 if (event->attr.comm)
1799 atomic_dec(&nr_comm_events);
1800 if (event->attr.task)
1801 atomic_dec(&nr_task_events);
1802 }
1803
1804 if (event->output) {
1805 fput(event->output->filp);
1806 event->output = NULL;
1807 }
1808
1809 if (event->destroy)
1810 event->destroy(event);
1811
1812 put_ctx(event->ctx);
1813 call_rcu(&event->rcu_head, free_event_rcu);
1814}
1815
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001816int perf_event_release_kernel(struct perf_event *event)
1817{
1818 struct perf_event_context *ctx = event->ctx;
1819
1820 WARN_ON_ONCE(ctx->parent_ctx);
1821 mutex_lock(&ctx->mutex);
1822 perf_event_remove_from_context(event);
1823 mutex_unlock(&ctx->mutex);
1824
1825 mutex_lock(&event->owner->perf_event_mutex);
1826 list_del_init(&event->owner_entry);
1827 mutex_unlock(&event->owner->perf_event_mutex);
1828 put_task_struct(event->owner);
1829
1830 free_event(event);
1831
1832 return 0;
1833}
1834EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1835
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001836/*
1837 * Called when the last reference to the file is gone.
1838 */
1839static int perf_release(struct inode *inode, struct file *file)
1840{
1841 struct perf_event *event = file->private_data;
1842
1843 file->private_data = NULL;
1844
1845 return perf_event_release_kernel(event);
1846}
1847
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001848static int perf_event_read_size(struct perf_event *event)
1849{
1850 int entry = sizeof(u64); /* value */
1851 int size = 0;
1852 int nr = 1;
1853
1854 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1855 size += sizeof(u64);
1856
1857 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1858 size += sizeof(u64);
1859
1860 if (event->attr.read_format & PERF_FORMAT_ID)
1861 entry += sizeof(u64);
1862
1863 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1864 nr += event->group_leader->nr_siblings;
1865 size += sizeof(u64);
1866 }
1867
1868 size += entry * nr;
1869
1870 return size;
1871}
1872
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001873u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001874{
1875 struct perf_event *child;
1876 u64 total = 0;
1877
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001878 *enabled = 0;
1879 *running = 0;
1880
Peter Zijlstra6f105812009-11-20 22:19:56 +01001881 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001882 total += perf_event_read(event);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001883 *enabled += event->total_time_enabled +
1884 atomic64_read(&event->child_total_time_enabled);
1885 *running += event->total_time_running +
1886 atomic64_read(&event->child_total_time_running);
1887
1888 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001889 total += perf_event_read(child);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001890 *enabled += child->total_time_enabled;
1891 *running += child->total_time_running;
1892 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001893 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001894
1895 return total;
1896}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001897EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001898
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001899static int perf_event_read_group(struct perf_event *event,
1900 u64 read_format, char __user *buf)
1901{
1902 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001903 int n = 0, size = 0, ret = -EFAULT;
1904 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001905 u64 values[5];
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001906 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001907
Peter Zijlstra6f105812009-11-20 22:19:56 +01001908 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001909 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001910
1911 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001912 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1913 values[n++] = enabled;
1914 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1915 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001916 values[n++] = count;
1917 if (read_format & PERF_FORMAT_ID)
1918 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001919
1920 size = n * sizeof(u64);
1921
1922 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001923 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001924
Peter Zijlstra6f105812009-11-20 22:19:56 +01001925 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001926
1927 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001928 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001929
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001930 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001931 if (read_format & PERF_FORMAT_ID)
1932 values[n++] = primary_event_id(sub);
1933
1934 size = n * sizeof(u64);
1935
Stephane Eranian184d3da2009-11-23 21:40:49 -08001936 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001937 ret = -EFAULT;
1938 goto unlock;
1939 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001940
1941 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001942 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001943unlock:
1944 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001945
Peter Zijlstraabf48682009-11-20 22:19:49 +01001946 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001947}
1948
1949static int perf_event_read_one(struct perf_event *event,
1950 u64 read_format, char __user *buf)
1951{
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001952 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001953 u64 values[4];
1954 int n = 0;
1955
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001956 values[n++] = perf_event_read_value(event, &enabled, &running);
1957 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1958 values[n++] = enabled;
1959 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1960 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001961 if (read_format & PERF_FORMAT_ID)
1962 values[n++] = primary_event_id(event);
1963
1964 if (copy_to_user(buf, values, n * sizeof(u64)))
1965 return -EFAULT;
1966
1967 return n * sizeof(u64);
1968}
1969
1970/*
1971 * Read the performance event - simple non blocking version for now
1972 */
1973static ssize_t
1974perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1975{
1976 u64 read_format = event->attr.read_format;
1977 int ret;
1978
1979 /*
1980 * Return end-of-file for a read on a event that is in
1981 * error state (i.e. because it was pinned but it couldn't be
1982 * scheduled on to the CPU at some point).
1983 */
1984 if (event->state == PERF_EVENT_STATE_ERROR)
1985 return 0;
1986
1987 if (count < perf_event_read_size(event))
1988 return -ENOSPC;
1989
1990 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001991 if (read_format & PERF_FORMAT_GROUP)
1992 ret = perf_event_read_group(event, read_format, buf);
1993 else
1994 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001995
1996 return ret;
1997}
1998
1999static ssize_t
2000perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2001{
2002 struct perf_event *event = file->private_data;
2003
2004 return perf_read_hw(event, buf, count);
2005}
2006
2007static unsigned int perf_poll(struct file *file, poll_table *wait)
2008{
2009 struct perf_event *event = file->private_data;
2010 struct perf_mmap_data *data;
2011 unsigned int events = POLL_HUP;
2012
2013 rcu_read_lock();
2014 data = rcu_dereference(event->data);
2015 if (data)
2016 events = atomic_xchg(&data->poll, 0);
2017 rcu_read_unlock();
2018
2019 poll_wait(file, &event->waitq, wait);
2020
2021 return events;
2022}
2023
2024static void perf_event_reset(struct perf_event *event)
2025{
2026 (void)perf_event_read(event);
2027 atomic64_set(&event->count, 0);
2028 perf_event_update_userpage(event);
2029}
2030
2031/*
2032 * Holding the top-level event's child_mutex means that any
2033 * descendant process that has inherited this event will block
2034 * in sync_child_event if it goes to exit, thus satisfying the
2035 * task existence requirements of perf_event_enable/disable.
2036 */
2037static void perf_event_for_each_child(struct perf_event *event,
2038 void (*func)(struct perf_event *))
2039{
2040 struct perf_event *child;
2041
2042 WARN_ON_ONCE(event->ctx->parent_ctx);
2043 mutex_lock(&event->child_mutex);
2044 func(event);
2045 list_for_each_entry(child, &event->child_list, child_list)
2046 func(child);
2047 mutex_unlock(&event->child_mutex);
2048}
2049
2050static void perf_event_for_each(struct perf_event *event,
2051 void (*func)(struct perf_event *))
2052{
2053 struct perf_event_context *ctx = event->ctx;
2054 struct perf_event *sibling;
2055
2056 WARN_ON_ONCE(ctx->parent_ctx);
2057 mutex_lock(&ctx->mutex);
2058 event = event->group_leader;
2059
2060 perf_event_for_each_child(event, func);
2061 func(event);
2062 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2063 perf_event_for_each_child(event, func);
2064 mutex_unlock(&ctx->mutex);
2065}
2066
2067static int perf_event_period(struct perf_event *event, u64 __user *arg)
2068{
2069 struct perf_event_context *ctx = event->ctx;
2070 unsigned long size;
2071 int ret = 0;
2072 u64 value;
2073
2074 if (!event->attr.sample_period)
2075 return -EINVAL;
2076
2077 size = copy_from_user(&value, arg, sizeof(value));
2078 if (size != sizeof(value))
2079 return -EFAULT;
2080
2081 if (!value)
2082 return -EINVAL;
2083
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002084 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002085 if (event->attr.freq) {
2086 if (value > sysctl_perf_event_sample_rate) {
2087 ret = -EINVAL;
2088 goto unlock;
2089 }
2090
2091 event->attr.sample_freq = value;
2092 } else {
2093 event->attr.sample_period = value;
2094 event->hw.sample_period = value;
2095 }
2096unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002097 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002098
2099 return ret;
2100}
2101
Li Zefan6fb29152009-10-15 11:21:42 +08002102static int perf_event_set_output(struct perf_event *event, int output_fd);
2103static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002104
2105static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2106{
2107 struct perf_event *event = file->private_data;
2108 void (*func)(struct perf_event *);
2109 u32 flags = arg;
2110
2111 switch (cmd) {
2112 case PERF_EVENT_IOC_ENABLE:
2113 func = perf_event_enable;
2114 break;
2115 case PERF_EVENT_IOC_DISABLE:
2116 func = perf_event_disable;
2117 break;
2118 case PERF_EVENT_IOC_RESET:
2119 func = perf_event_reset;
2120 break;
2121
2122 case PERF_EVENT_IOC_REFRESH:
2123 return perf_event_refresh(event, arg);
2124
2125 case PERF_EVENT_IOC_PERIOD:
2126 return perf_event_period(event, (u64 __user *)arg);
2127
2128 case PERF_EVENT_IOC_SET_OUTPUT:
2129 return perf_event_set_output(event, arg);
2130
Li Zefan6fb29152009-10-15 11:21:42 +08002131 case PERF_EVENT_IOC_SET_FILTER:
2132 return perf_event_set_filter(event, (void __user *)arg);
2133
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002134 default:
2135 return -ENOTTY;
2136 }
2137
2138 if (flags & PERF_IOC_FLAG_GROUP)
2139 perf_event_for_each(event, func);
2140 else
2141 perf_event_for_each_child(event, func);
2142
2143 return 0;
2144}
2145
2146int perf_event_task_enable(void)
2147{
2148 struct perf_event *event;
2149
2150 mutex_lock(&current->perf_event_mutex);
2151 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2152 perf_event_for_each_child(event, perf_event_enable);
2153 mutex_unlock(&current->perf_event_mutex);
2154
2155 return 0;
2156}
2157
2158int perf_event_task_disable(void)
2159{
2160 struct perf_event *event;
2161
2162 mutex_lock(&current->perf_event_mutex);
2163 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2164 perf_event_for_each_child(event, perf_event_disable);
2165 mutex_unlock(&current->perf_event_mutex);
2166
2167 return 0;
2168}
2169
2170#ifndef PERF_EVENT_INDEX_OFFSET
2171# define PERF_EVENT_INDEX_OFFSET 0
2172#endif
2173
2174static int perf_event_index(struct perf_event *event)
2175{
2176 if (event->state != PERF_EVENT_STATE_ACTIVE)
2177 return 0;
2178
2179 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2180}
2181
2182/*
2183 * Callers need to ensure there can be no nesting of this function, otherwise
2184 * the seqlock logic goes bad. We can not serialize this because the arch
2185 * code calls this from NMI context.
2186 */
2187void perf_event_update_userpage(struct perf_event *event)
2188{
2189 struct perf_event_mmap_page *userpg;
2190 struct perf_mmap_data *data;
2191
2192 rcu_read_lock();
2193 data = rcu_dereference(event->data);
2194 if (!data)
2195 goto unlock;
2196
2197 userpg = data->user_page;
2198
2199 /*
2200 * Disable preemption so as to not let the corresponding user-space
2201 * spin too long if we get preempted.
2202 */
2203 preempt_disable();
2204 ++userpg->lock;
2205 barrier();
2206 userpg->index = perf_event_index(event);
2207 userpg->offset = atomic64_read(&event->count);
2208 if (event->state == PERF_EVENT_STATE_ACTIVE)
2209 userpg->offset -= atomic64_read(&event->hw.prev_count);
2210
2211 userpg->time_enabled = event->total_time_enabled +
2212 atomic64_read(&event->child_total_time_enabled);
2213
2214 userpg->time_running = event->total_time_running +
2215 atomic64_read(&event->child_total_time_running);
2216
2217 barrier();
2218 ++userpg->lock;
2219 preempt_enable();
2220unlock:
2221 rcu_read_unlock();
2222}
2223
Peter Zijlstra906010b2009-09-21 16:08:49 +02002224static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002225{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002226 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002227}
2228
Peter Zijlstra906010b2009-09-21 16:08:49 +02002229#ifndef CONFIG_PERF_USE_VMALLOC
2230
2231/*
2232 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2233 */
2234
2235static struct page *
2236perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2237{
2238 if (pgoff > data->nr_pages)
2239 return NULL;
2240
2241 if (pgoff == 0)
2242 return virt_to_page(data->user_page);
2243
2244 return virt_to_page(data->data_pages[pgoff - 1]);
2245}
2246
2247static struct perf_mmap_data *
2248perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002249{
2250 struct perf_mmap_data *data;
2251 unsigned long size;
2252 int i;
2253
2254 WARN_ON(atomic_read(&event->mmap_count));
2255
2256 size = sizeof(struct perf_mmap_data);
2257 size += nr_pages * sizeof(void *);
2258
2259 data = kzalloc(size, GFP_KERNEL);
2260 if (!data)
2261 goto fail;
2262
2263 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2264 if (!data->user_page)
2265 goto fail_user_page;
2266
2267 for (i = 0; i < nr_pages; i++) {
2268 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2269 if (!data->data_pages[i])
2270 goto fail_data_pages;
2271 }
2272
Peter Zijlstra906010b2009-09-21 16:08:49 +02002273 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002274 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002275
Peter Zijlstra906010b2009-09-21 16:08:49 +02002276 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002277
2278fail_data_pages:
2279 for (i--; i >= 0; i--)
2280 free_page((unsigned long)data->data_pages[i]);
2281
2282 free_page((unsigned long)data->user_page);
2283
2284fail_user_page:
2285 kfree(data);
2286
2287fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002288 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002289}
2290
2291static void perf_mmap_free_page(unsigned long addr)
2292{
2293 struct page *page = virt_to_page((void *)addr);
2294
2295 page->mapping = NULL;
2296 __free_page(page);
2297}
2298
Peter Zijlstra906010b2009-09-21 16:08:49 +02002299static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002300{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002301 int i;
2302
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002303 perf_mmap_free_page((unsigned long)data->user_page);
2304 for (i = 0; i < data->nr_pages; i++)
2305 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002306 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002307}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002308
Peter Zijlstra906010b2009-09-21 16:08:49 +02002309#else
2310
2311/*
2312 * Back perf_mmap() with vmalloc memory.
2313 *
2314 * Required for architectures that have d-cache aliasing issues.
2315 */
2316
2317static struct page *
2318perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2319{
2320 if (pgoff > (1UL << data->data_order))
2321 return NULL;
2322
2323 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2324}
2325
2326static void perf_mmap_unmark_page(void *addr)
2327{
2328 struct page *page = vmalloc_to_page(addr);
2329
2330 page->mapping = NULL;
2331}
2332
2333static void perf_mmap_data_free_work(struct work_struct *work)
2334{
2335 struct perf_mmap_data *data;
2336 void *base;
2337 int i, nr;
2338
2339 data = container_of(work, struct perf_mmap_data, work);
2340 nr = 1 << data->data_order;
2341
2342 base = data->user_page;
2343 for (i = 0; i < nr + 1; i++)
2344 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2345
2346 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002347 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002348}
2349
2350static void perf_mmap_data_free(struct perf_mmap_data *data)
2351{
2352 schedule_work(&data->work);
2353}
2354
2355static struct perf_mmap_data *
2356perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2357{
2358 struct perf_mmap_data *data;
2359 unsigned long size;
2360 void *all_buf;
2361
2362 WARN_ON(atomic_read(&event->mmap_count));
2363
2364 size = sizeof(struct perf_mmap_data);
2365 size += sizeof(void *);
2366
2367 data = kzalloc(size, GFP_KERNEL);
2368 if (!data)
2369 goto fail;
2370
2371 INIT_WORK(&data->work, perf_mmap_data_free_work);
2372
2373 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2374 if (!all_buf)
2375 goto fail_all_buf;
2376
2377 data->user_page = all_buf;
2378 data->data_pages[0] = all_buf + PAGE_SIZE;
2379 data->data_order = ilog2(nr_pages);
2380 data->nr_pages = 1;
2381
2382 return data;
2383
2384fail_all_buf:
2385 kfree(data);
2386
2387fail:
2388 return NULL;
2389}
2390
2391#endif
2392
2393static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2394{
2395 struct perf_event *event = vma->vm_file->private_data;
2396 struct perf_mmap_data *data;
2397 int ret = VM_FAULT_SIGBUS;
2398
2399 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2400 if (vmf->pgoff == 0)
2401 ret = 0;
2402 return ret;
2403 }
2404
2405 rcu_read_lock();
2406 data = rcu_dereference(event->data);
2407 if (!data)
2408 goto unlock;
2409
2410 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2411 goto unlock;
2412
2413 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2414 if (!vmf->page)
2415 goto unlock;
2416
2417 get_page(vmf->page);
2418 vmf->page->mapping = vma->vm_file->f_mapping;
2419 vmf->page->index = vmf->pgoff;
2420
2421 ret = 0;
2422unlock:
2423 rcu_read_unlock();
2424
2425 return ret;
2426}
2427
2428static void
2429perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2430{
2431 long max_size = perf_data_size(data);
2432
2433 atomic_set(&data->lock, -1);
2434
2435 if (event->attr.watermark) {
2436 data->watermark = min_t(long, max_size,
2437 event->attr.wakeup_watermark);
2438 }
2439
2440 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002441 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002442
2443
2444 rcu_assign_pointer(event->data, data);
2445}
2446
2447static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2448{
2449 struct perf_mmap_data *data;
2450
2451 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2452 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002453}
2454
Peter Zijlstra906010b2009-09-21 16:08:49 +02002455static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002456{
2457 struct perf_mmap_data *data = event->data;
2458
2459 WARN_ON(atomic_read(&event->mmap_count));
2460
2461 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002462 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002463}
2464
2465static void perf_mmap_open(struct vm_area_struct *vma)
2466{
2467 struct perf_event *event = vma->vm_file->private_data;
2468
2469 atomic_inc(&event->mmap_count);
2470}
2471
2472static void perf_mmap_close(struct vm_area_struct *vma)
2473{
2474 struct perf_event *event = vma->vm_file->private_data;
2475
2476 WARN_ON_ONCE(event->ctx->parent_ctx);
2477 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002478 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002479 struct user_struct *user = current_user();
2480
Peter Zijlstra906010b2009-09-21 16:08:49 +02002481 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002482 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002483 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002484 mutex_unlock(&event->mmap_mutex);
2485 }
2486}
2487
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002488static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002489 .open = perf_mmap_open,
2490 .close = perf_mmap_close,
2491 .fault = perf_mmap_fault,
2492 .page_mkwrite = perf_mmap_fault,
2493};
2494
2495static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2496{
2497 struct perf_event *event = file->private_data;
2498 unsigned long user_locked, user_lock_limit;
2499 struct user_struct *user = current_user();
2500 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002501 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002502 unsigned long vma_size;
2503 unsigned long nr_pages;
2504 long user_extra, extra;
2505 int ret = 0;
2506
2507 if (!(vma->vm_flags & VM_SHARED))
2508 return -EINVAL;
2509
2510 vma_size = vma->vm_end - vma->vm_start;
2511 nr_pages = (vma_size / PAGE_SIZE) - 1;
2512
2513 /*
2514 * If we have data pages ensure they're a power-of-two number, so we
2515 * can do bitmasks instead of modulo.
2516 */
2517 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2518 return -EINVAL;
2519
2520 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2521 return -EINVAL;
2522
2523 if (vma->vm_pgoff != 0)
2524 return -EINVAL;
2525
2526 WARN_ON_ONCE(event->ctx->parent_ctx);
2527 mutex_lock(&event->mmap_mutex);
2528 if (event->output) {
2529 ret = -EINVAL;
2530 goto unlock;
2531 }
2532
2533 if (atomic_inc_not_zero(&event->mmap_count)) {
2534 if (nr_pages != event->data->nr_pages)
2535 ret = -EINVAL;
2536 goto unlock;
2537 }
2538
2539 user_extra = nr_pages + 1;
2540 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2541
2542 /*
2543 * Increase the limit linearly with more CPUs:
2544 */
2545 user_lock_limit *= num_online_cpus();
2546
2547 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2548
2549 extra = 0;
2550 if (user_locked > user_lock_limit)
2551 extra = user_locked - user_lock_limit;
2552
2553 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2554 lock_limit >>= PAGE_SHIFT;
2555 locked = vma->vm_mm->locked_vm + extra;
2556
2557 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2558 !capable(CAP_IPC_LOCK)) {
2559 ret = -EPERM;
2560 goto unlock;
2561 }
2562
2563 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002564
2565 data = perf_mmap_data_alloc(event, nr_pages);
2566 ret = -ENOMEM;
2567 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002568 goto unlock;
2569
Peter Zijlstra906010b2009-09-21 16:08:49 +02002570 ret = 0;
2571 perf_mmap_data_init(event, data);
2572
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002573 atomic_set(&event->mmap_count, 1);
2574 atomic_long_add(user_extra, &user->locked_vm);
2575 vma->vm_mm->locked_vm += extra;
2576 event->data->nr_locked = extra;
2577 if (vma->vm_flags & VM_WRITE)
2578 event->data->writable = 1;
2579
2580unlock:
2581 mutex_unlock(&event->mmap_mutex);
2582
2583 vma->vm_flags |= VM_RESERVED;
2584 vma->vm_ops = &perf_mmap_vmops;
2585
2586 return ret;
2587}
2588
2589static int perf_fasync(int fd, struct file *filp, int on)
2590{
2591 struct inode *inode = filp->f_path.dentry->d_inode;
2592 struct perf_event *event = filp->private_data;
2593 int retval;
2594
2595 mutex_lock(&inode->i_mutex);
2596 retval = fasync_helper(fd, filp, on, &event->fasync);
2597 mutex_unlock(&inode->i_mutex);
2598
2599 if (retval < 0)
2600 return retval;
2601
2602 return 0;
2603}
2604
2605static const struct file_operations perf_fops = {
2606 .release = perf_release,
2607 .read = perf_read,
2608 .poll = perf_poll,
2609 .unlocked_ioctl = perf_ioctl,
2610 .compat_ioctl = perf_ioctl,
2611 .mmap = perf_mmap,
2612 .fasync = perf_fasync,
2613};
2614
2615/*
2616 * Perf event wakeup
2617 *
2618 * If there's data, ensure we set the poll() state and publish everything
2619 * to user-space before waking everybody up.
2620 */
2621
2622void perf_event_wakeup(struct perf_event *event)
2623{
2624 wake_up_all(&event->waitq);
2625
2626 if (event->pending_kill) {
2627 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2628 event->pending_kill = 0;
2629 }
2630}
2631
2632/*
2633 * Pending wakeups
2634 *
2635 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2636 *
2637 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2638 * single linked list and use cmpxchg() to add entries lockless.
2639 */
2640
2641static void perf_pending_event(struct perf_pending_entry *entry)
2642{
2643 struct perf_event *event = container_of(entry,
2644 struct perf_event, pending);
2645
2646 if (event->pending_disable) {
2647 event->pending_disable = 0;
2648 __perf_event_disable(event);
2649 }
2650
2651 if (event->pending_wakeup) {
2652 event->pending_wakeup = 0;
2653 perf_event_wakeup(event);
2654 }
2655}
2656
2657#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2658
2659static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2660 PENDING_TAIL,
2661};
2662
2663static void perf_pending_queue(struct perf_pending_entry *entry,
2664 void (*func)(struct perf_pending_entry *))
2665{
2666 struct perf_pending_entry **head;
2667
2668 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2669 return;
2670
2671 entry->func = func;
2672
2673 head = &get_cpu_var(perf_pending_head);
2674
2675 do {
2676 entry->next = *head;
2677 } while (cmpxchg(head, entry->next, entry) != entry->next);
2678
2679 set_perf_event_pending();
2680
2681 put_cpu_var(perf_pending_head);
2682}
2683
2684static int __perf_pending_run(void)
2685{
2686 struct perf_pending_entry *list;
2687 int nr = 0;
2688
2689 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2690 while (list != PENDING_TAIL) {
2691 void (*func)(struct perf_pending_entry *);
2692 struct perf_pending_entry *entry = list;
2693
2694 list = list->next;
2695
2696 func = entry->func;
2697 entry->next = NULL;
2698 /*
2699 * Ensure we observe the unqueue before we issue the wakeup,
2700 * so that we won't be waiting forever.
2701 * -- see perf_not_pending().
2702 */
2703 smp_wmb();
2704
2705 func(entry);
2706 nr++;
2707 }
2708
2709 return nr;
2710}
2711
2712static inline int perf_not_pending(struct perf_event *event)
2713{
2714 /*
2715 * If we flush on whatever cpu we run, there is a chance we don't
2716 * need to wait.
2717 */
2718 get_cpu();
2719 __perf_pending_run();
2720 put_cpu();
2721
2722 /*
2723 * Ensure we see the proper queue state before going to sleep
2724 * so that we do not miss the wakeup. -- see perf_pending_handle()
2725 */
2726 smp_rmb();
2727 return event->pending.next == NULL;
2728}
2729
2730static void perf_pending_sync(struct perf_event *event)
2731{
2732 wait_event(event->waitq, perf_not_pending(event));
2733}
2734
2735void perf_event_do_pending(void)
2736{
2737 __perf_pending_run();
2738}
2739
2740/*
2741 * Callchain support -- arch specific
2742 */
2743
2744__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2745{
2746 return NULL;
2747}
2748
2749/*
2750 * Output
2751 */
2752static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2753 unsigned long offset, unsigned long head)
2754{
2755 unsigned long mask;
2756
2757 if (!data->writable)
2758 return true;
2759
Peter Zijlstra906010b2009-09-21 16:08:49 +02002760 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002761
2762 offset = (offset - tail) & mask;
2763 head = (head - tail) & mask;
2764
2765 if ((int)(head - offset) < 0)
2766 return false;
2767
2768 return true;
2769}
2770
2771static void perf_output_wakeup(struct perf_output_handle *handle)
2772{
2773 atomic_set(&handle->data->poll, POLL_IN);
2774
2775 if (handle->nmi) {
2776 handle->event->pending_wakeup = 1;
2777 perf_pending_queue(&handle->event->pending,
2778 perf_pending_event);
2779 } else
2780 perf_event_wakeup(handle->event);
2781}
2782
2783/*
2784 * Curious locking construct.
2785 *
2786 * We need to ensure a later event_id doesn't publish a head when a former
2787 * event_id isn't done writing. However since we need to deal with NMIs we
2788 * cannot fully serialize things.
2789 *
2790 * What we do is serialize between CPUs so we only have to deal with NMI
2791 * nesting on a single CPU.
2792 *
2793 * We only publish the head (and generate a wakeup) when the outer-most
2794 * event_id completes.
2795 */
2796static void perf_output_lock(struct perf_output_handle *handle)
2797{
2798 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002799 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002800
2801 handle->locked = 0;
2802
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002803 for (;;) {
2804 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2805 if (cur == -1) {
2806 handle->locked = 1;
2807 break;
2808 }
2809 if (cur == cpu)
2810 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002811
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002812 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002813 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002814}
2815
2816static void perf_output_unlock(struct perf_output_handle *handle)
2817{
2818 struct perf_mmap_data *data = handle->data;
2819 unsigned long head;
2820 int cpu;
2821
2822 data->done_head = data->head;
2823
2824 if (!handle->locked)
2825 goto out;
2826
2827again:
2828 /*
2829 * The xchg implies a full barrier that ensures all writes are done
2830 * before we publish the new head, matched by a rmb() in userspace when
2831 * reading this position.
2832 */
2833 while ((head = atomic_long_xchg(&data->done_head, 0)))
2834 data->user_page->data_head = head;
2835
2836 /*
2837 * NMI can happen here, which means we can miss a done_head update.
2838 */
2839
2840 cpu = atomic_xchg(&data->lock, -1);
2841 WARN_ON_ONCE(cpu != smp_processor_id());
2842
2843 /*
2844 * Therefore we have to validate we did not indeed do so.
2845 */
2846 if (unlikely(atomic_long_read(&data->done_head))) {
2847 /*
2848 * Since we had it locked, we can lock it again.
2849 */
2850 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2851 cpu_relax();
2852
2853 goto again;
2854 }
2855
2856 if (atomic_xchg(&data->wakeup, 0))
2857 perf_output_wakeup(handle);
2858out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002859 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002860}
2861
2862void perf_output_copy(struct perf_output_handle *handle,
2863 const void *buf, unsigned int len)
2864{
2865 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002866 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002867 unsigned int size;
2868 void **pages;
2869
2870 offset = handle->offset;
2871 pages_mask = handle->data->nr_pages - 1;
2872 pages = handle->data->data_pages;
2873
2874 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002875 unsigned long page_offset;
2876 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002877 int nr;
2878
2879 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002880 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2881 page_offset = offset & (page_size - 1);
2882 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002883
2884 memcpy(pages[nr] + page_offset, buf, size);
2885
2886 len -= size;
2887 buf += size;
2888 offset += size;
2889 } while (len);
2890
2891 handle->offset = offset;
2892
2893 /*
2894 * Check we didn't copy past our reservation window, taking the
2895 * possible unsigned int wrap into account.
2896 */
2897 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2898}
2899
2900int perf_output_begin(struct perf_output_handle *handle,
2901 struct perf_event *event, unsigned int size,
2902 int nmi, int sample)
2903{
2904 struct perf_event *output_event;
2905 struct perf_mmap_data *data;
2906 unsigned long tail, offset, head;
2907 int have_lost;
2908 struct {
2909 struct perf_event_header header;
2910 u64 id;
2911 u64 lost;
2912 } lost_event;
2913
2914 rcu_read_lock();
2915 /*
2916 * For inherited events we send all the output towards the parent.
2917 */
2918 if (event->parent)
2919 event = event->parent;
2920
2921 output_event = rcu_dereference(event->output);
2922 if (output_event)
2923 event = output_event;
2924
2925 data = rcu_dereference(event->data);
2926 if (!data)
2927 goto out;
2928
2929 handle->data = data;
2930 handle->event = event;
2931 handle->nmi = nmi;
2932 handle->sample = sample;
2933
2934 if (!data->nr_pages)
2935 goto fail;
2936
2937 have_lost = atomic_read(&data->lost);
2938 if (have_lost)
2939 size += sizeof(lost_event);
2940
2941 perf_output_lock(handle);
2942
2943 do {
2944 /*
2945 * Userspace could choose to issue a mb() before updating the
2946 * tail pointer. So that all reads will be completed before the
2947 * write is issued.
2948 */
2949 tail = ACCESS_ONCE(data->user_page->data_tail);
2950 smp_rmb();
2951 offset = head = atomic_long_read(&data->head);
2952 head += size;
2953 if (unlikely(!perf_output_space(data, tail, offset, head)))
2954 goto fail;
2955 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2956
2957 handle->offset = offset;
2958 handle->head = head;
2959
2960 if (head - tail > data->watermark)
2961 atomic_set(&data->wakeup, 1);
2962
2963 if (have_lost) {
2964 lost_event.header.type = PERF_RECORD_LOST;
2965 lost_event.header.misc = 0;
2966 lost_event.header.size = sizeof(lost_event);
2967 lost_event.id = event->id;
2968 lost_event.lost = atomic_xchg(&data->lost, 0);
2969
2970 perf_output_put(handle, lost_event);
2971 }
2972
2973 return 0;
2974
2975fail:
2976 atomic_inc(&data->lost);
2977 perf_output_unlock(handle);
2978out:
2979 rcu_read_unlock();
2980
2981 return -ENOSPC;
2982}
2983
2984void perf_output_end(struct perf_output_handle *handle)
2985{
2986 struct perf_event *event = handle->event;
2987 struct perf_mmap_data *data = handle->data;
2988
2989 int wakeup_events = event->attr.wakeup_events;
2990
2991 if (handle->sample && wakeup_events) {
2992 int events = atomic_inc_return(&data->events);
2993 if (events >= wakeup_events) {
2994 atomic_sub(wakeup_events, &data->events);
2995 atomic_set(&data->wakeup, 1);
2996 }
2997 }
2998
2999 perf_output_unlock(handle);
3000 rcu_read_unlock();
3001}
3002
3003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3004{
3005 /*
3006 * only top level events have the pid namespace they were created in
3007 */
3008 if (event->parent)
3009 event = event->parent;
3010
3011 return task_tgid_nr_ns(p, event->ns);
3012}
3013
3014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3015{
3016 /*
3017 * only top level events have the pid namespace they were created in
3018 */
3019 if (event->parent)
3020 event = event->parent;
3021
3022 return task_pid_nr_ns(p, event->ns);
3023}
3024
3025static void perf_output_read_one(struct perf_output_handle *handle,
3026 struct perf_event *event)
3027{
3028 u64 read_format = event->attr.read_format;
3029 u64 values[4];
3030 int n = 0;
3031
3032 values[n++] = atomic64_read(&event->count);
3033 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3034 values[n++] = event->total_time_enabled +
3035 atomic64_read(&event->child_total_time_enabled);
3036 }
3037 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3038 values[n++] = event->total_time_running +
3039 atomic64_read(&event->child_total_time_running);
3040 }
3041 if (read_format & PERF_FORMAT_ID)
3042 values[n++] = primary_event_id(event);
3043
3044 perf_output_copy(handle, values, n * sizeof(u64));
3045}
3046
3047/*
3048 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3049 */
3050static void perf_output_read_group(struct perf_output_handle *handle,
3051 struct perf_event *event)
3052{
3053 struct perf_event *leader = event->group_leader, *sub;
3054 u64 read_format = event->attr.read_format;
3055 u64 values[5];
3056 int n = 0;
3057
3058 values[n++] = 1 + leader->nr_siblings;
3059
3060 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3061 values[n++] = leader->total_time_enabled;
3062
3063 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3064 values[n++] = leader->total_time_running;
3065
3066 if (leader != event)
3067 leader->pmu->read(leader);
3068
3069 values[n++] = atomic64_read(&leader->count);
3070 if (read_format & PERF_FORMAT_ID)
3071 values[n++] = primary_event_id(leader);
3072
3073 perf_output_copy(handle, values, n * sizeof(u64));
3074
3075 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3076 n = 0;
3077
3078 if (sub != event)
3079 sub->pmu->read(sub);
3080
3081 values[n++] = atomic64_read(&sub->count);
3082 if (read_format & PERF_FORMAT_ID)
3083 values[n++] = primary_event_id(sub);
3084
3085 perf_output_copy(handle, values, n * sizeof(u64));
3086 }
3087}
3088
3089static void perf_output_read(struct perf_output_handle *handle,
3090 struct perf_event *event)
3091{
3092 if (event->attr.read_format & PERF_FORMAT_GROUP)
3093 perf_output_read_group(handle, event);
3094 else
3095 perf_output_read_one(handle, event);
3096}
3097
3098void perf_output_sample(struct perf_output_handle *handle,
3099 struct perf_event_header *header,
3100 struct perf_sample_data *data,
3101 struct perf_event *event)
3102{
3103 u64 sample_type = data->type;
3104
3105 perf_output_put(handle, *header);
3106
3107 if (sample_type & PERF_SAMPLE_IP)
3108 perf_output_put(handle, data->ip);
3109
3110 if (sample_type & PERF_SAMPLE_TID)
3111 perf_output_put(handle, data->tid_entry);
3112
3113 if (sample_type & PERF_SAMPLE_TIME)
3114 perf_output_put(handle, data->time);
3115
3116 if (sample_type & PERF_SAMPLE_ADDR)
3117 perf_output_put(handle, data->addr);
3118
3119 if (sample_type & PERF_SAMPLE_ID)
3120 perf_output_put(handle, data->id);
3121
3122 if (sample_type & PERF_SAMPLE_STREAM_ID)
3123 perf_output_put(handle, data->stream_id);
3124
3125 if (sample_type & PERF_SAMPLE_CPU)
3126 perf_output_put(handle, data->cpu_entry);
3127
3128 if (sample_type & PERF_SAMPLE_PERIOD)
3129 perf_output_put(handle, data->period);
3130
3131 if (sample_type & PERF_SAMPLE_READ)
3132 perf_output_read(handle, event);
3133
3134 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3135 if (data->callchain) {
3136 int size = 1;
3137
3138 if (data->callchain)
3139 size += data->callchain->nr;
3140
3141 size *= sizeof(u64);
3142
3143 perf_output_copy(handle, data->callchain, size);
3144 } else {
3145 u64 nr = 0;
3146 perf_output_put(handle, nr);
3147 }
3148 }
3149
3150 if (sample_type & PERF_SAMPLE_RAW) {
3151 if (data->raw) {
3152 perf_output_put(handle, data->raw->size);
3153 perf_output_copy(handle, data->raw->data,
3154 data->raw->size);
3155 } else {
3156 struct {
3157 u32 size;
3158 u32 data;
3159 } raw = {
3160 .size = sizeof(u32),
3161 .data = 0,
3162 };
3163 perf_output_put(handle, raw);
3164 }
3165 }
3166}
3167
3168void perf_prepare_sample(struct perf_event_header *header,
3169 struct perf_sample_data *data,
3170 struct perf_event *event,
3171 struct pt_regs *regs)
3172{
3173 u64 sample_type = event->attr.sample_type;
3174
3175 data->type = sample_type;
3176
3177 header->type = PERF_RECORD_SAMPLE;
3178 header->size = sizeof(*header);
3179
3180 header->misc = 0;
3181 header->misc |= perf_misc_flags(regs);
3182
3183 if (sample_type & PERF_SAMPLE_IP) {
3184 data->ip = perf_instruction_pointer(regs);
3185
3186 header->size += sizeof(data->ip);
3187 }
3188
3189 if (sample_type & PERF_SAMPLE_TID) {
3190 /* namespace issues */
3191 data->tid_entry.pid = perf_event_pid(event, current);
3192 data->tid_entry.tid = perf_event_tid(event, current);
3193
3194 header->size += sizeof(data->tid_entry);
3195 }
3196
3197 if (sample_type & PERF_SAMPLE_TIME) {
3198 data->time = perf_clock();
3199
3200 header->size += sizeof(data->time);
3201 }
3202
3203 if (sample_type & PERF_SAMPLE_ADDR)
3204 header->size += sizeof(data->addr);
3205
3206 if (sample_type & PERF_SAMPLE_ID) {
3207 data->id = primary_event_id(event);
3208
3209 header->size += sizeof(data->id);
3210 }
3211
3212 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3213 data->stream_id = event->id;
3214
3215 header->size += sizeof(data->stream_id);
3216 }
3217
3218 if (sample_type & PERF_SAMPLE_CPU) {
3219 data->cpu_entry.cpu = raw_smp_processor_id();
3220 data->cpu_entry.reserved = 0;
3221
3222 header->size += sizeof(data->cpu_entry);
3223 }
3224
3225 if (sample_type & PERF_SAMPLE_PERIOD)
3226 header->size += sizeof(data->period);
3227
3228 if (sample_type & PERF_SAMPLE_READ)
3229 header->size += perf_event_read_size(event);
3230
3231 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3232 int size = 1;
3233
3234 data->callchain = perf_callchain(regs);
3235
3236 if (data->callchain)
3237 size += data->callchain->nr;
3238
3239 header->size += size * sizeof(u64);
3240 }
3241
3242 if (sample_type & PERF_SAMPLE_RAW) {
3243 int size = sizeof(u32);
3244
3245 if (data->raw)
3246 size += data->raw->size;
3247 else
3248 size += sizeof(u32);
3249
3250 WARN_ON_ONCE(size & (sizeof(u64)-1));
3251 header->size += size;
3252 }
3253}
3254
3255static void perf_event_output(struct perf_event *event, int nmi,
3256 struct perf_sample_data *data,
3257 struct pt_regs *regs)
3258{
3259 struct perf_output_handle handle;
3260 struct perf_event_header header;
3261
3262 perf_prepare_sample(&header, data, event, regs);
3263
3264 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3265 return;
3266
3267 perf_output_sample(&handle, &header, data, event);
3268
3269 perf_output_end(&handle);
3270}
3271
3272/*
3273 * read event_id
3274 */
3275
3276struct perf_read_event {
3277 struct perf_event_header header;
3278
3279 u32 pid;
3280 u32 tid;
3281};
3282
3283static void
3284perf_event_read_event(struct perf_event *event,
3285 struct task_struct *task)
3286{
3287 struct perf_output_handle handle;
3288 struct perf_read_event read_event = {
3289 .header = {
3290 .type = PERF_RECORD_READ,
3291 .misc = 0,
3292 .size = sizeof(read_event) + perf_event_read_size(event),
3293 },
3294 .pid = perf_event_pid(event, task),
3295 .tid = perf_event_tid(event, task),
3296 };
3297 int ret;
3298
3299 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3300 if (ret)
3301 return;
3302
3303 perf_output_put(&handle, read_event);
3304 perf_output_read(&handle, event);
3305
3306 perf_output_end(&handle);
3307}
3308
3309/*
3310 * task tracking -- fork/exit
3311 *
3312 * enabled by: attr.comm | attr.mmap | attr.task
3313 */
3314
3315struct perf_task_event {
3316 struct task_struct *task;
3317 struct perf_event_context *task_ctx;
3318
3319 struct {
3320 struct perf_event_header header;
3321
3322 u32 pid;
3323 u32 ppid;
3324 u32 tid;
3325 u32 ptid;
3326 u64 time;
3327 } event_id;
3328};
3329
3330static void perf_event_task_output(struct perf_event *event,
3331 struct perf_task_event *task_event)
3332{
3333 struct perf_output_handle handle;
3334 int size;
3335 struct task_struct *task = task_event->task;
3336 int ret;
3337
3338 size = task_event->event_id.header.size;
3339 ret = perf_output_begin(&handle, event, size, 0, 0);
3340
3341 if (ret)
3342 return;
3343
3344 task_event->event_id.pid = perf_event_pid(event, task);
3345 task_event->event_id.ppid = perf_event_pid(event, current);
3346
3347 task_event->event_id.tid = perf_event_tid(event, task);
3348 task_event->event_id.ptid = perf_event_tid(event, current);
3349
3350 task_event->event_id.time = perf_clock();
3351
3352 perf_output_put(&handle, task_event->event_id);
3353
3354 perf_output_end(&handle);
3355}
3356
3357static int perf_event_task_match(struct perf_event *event)
3358{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003359 if (event->cpu != -1 && event->cpu != smp_processor_id())
3360 return 0;
3361
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003362 if (event->attr.comm || event->attr.mmap || event->attr.task)
3363 return 1;
3364
3365 return 0;
3366}
3367
3368static void perf_event_task_ctx(struct perf_event_context *ctx,
3369 struct perf_task_event *task_event)
3370{
3371 struct perf_event *event;
3372
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003373 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3374 if (perf_event_task_match(event))
3375 perf_event_task_output(event, task_event);
3376 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003377}
3378
3379static void perf_event_task_event(struct perf_task_event *task_event)
3380{
3381 struct perf_cpu_context *cpuctx;
3382 struct perf_event_context *ctx = task_event->task_ctx;
3383
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003384 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003385 cpuctx = &get_cpu_var(perf_cpu_context);
3386 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003387 if (!ctx)
3388 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3389 if (ctx)
3390 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003391 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003392 rcu_read_unlock();
3393}
3394
3395static void perf_event_task(struct task_struct *task,
3396 struct perf_event_context *task_ctx,
3397 int new)
3398{
3399 struct perf_task_event task_event;
3400
3401 if (!atomic_read(&nr_comm_events) &&
3402 !atomic_read(&nr_mmap_events) &&
3403 !atomic_read(&nr_task_events))
3404 return;
3405
3406 task_event = (struct perf_task_event){
3407 .task = task,
3408 .task_ctx = task_ctx,
3409 .event_id = {
3410 .header = {
3411 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3412 .misc = 0,
3413 .size = sizeof(task_event.event_id),
3414 },
3415 /* .pid */
3416 /* .ppid */
3417 /* .tid */
3418 /* .ptid */
3419 },
3420 };
3421
3422 perf_event_task_event(&task_event);
3423}
3424
3425void perf_event_fork(struct task_struct *task)
3426{
3427 perf_event_task(task, NULL, 1);
3428}
3429
3430/*
3431 * comm tracking
3432 */
3433
3434struct perf_comm_event {
3435 struct task_struct *task;
3436 char *comm;
3437 int comm_size;
3438
3439 struct {
3440 struct perf_event_header header;
3441
3442 u32 pid;
3443 u32 tid;
3444 } event_id;
3445};
3446
3447static void perf_event_comm_output(struct perf_event *event,
3448 struct perf_comm_event *comm_event)
3449{
3450 struct perf_output_handle handle;
3451 int size = comm_event->event_id.header.size;
3452 int ret = perf_output_begin(&handle, event, size, 0, 0);
3453
3454 if (ret)
3455 return;
3456
3457 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3458 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3459
3460 perf_output_put(&handle, comm_event->event_id);
3461 perf_output_copy(&handle, comm_event->comm,
3462 comm_event->comm_size);
3463 perf_output_end(&handle);
3464}
3465
3466static int perf_event_comm_match(struct perf_event *event)
3467{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003468 if (event->cpu != -1 && event->cpu != smp_processor_id())
3469 return 0;
3470
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003471 if (event->attr.comm)
3472 return 1;
3473
3474 return 0;
3475}
3476
3477static void perf_event_comm_ctx(struct perf_event_context *ctx,
3478 struct perf_comm_event *comm_event)
3479{
3480 struct perf_event *event;
3481
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003482 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3483 if (perf_event_comm_match(event))
3484 perf_event_comm_output(event, comm_event);
3485 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003486}
3487
3488static void perf_event_comm_event(struct perf_comm_event *comm_event)
3489{
3490 struct perf_cpu_context *cpuctx;
3491 struct perf_event_context *ctx;
3492 unsigned int size;
3493 char comm[TASK_COMM_LEN];
3494
3495 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003496 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003497 size = ALIGN(strlen(comm)+1, sizeof(u64));
3498
3499 comm_event->comm = comm;
3500 comm_event->comm_size = size;
3501
3502 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3503
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003504 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003505 cpuctx = &get_cpu_var(perf_cpu_context);
3506 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003507 ctx = rcu_dereference(current->perf_event_ctxp);
3508 if (ctx)
3509 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003510 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003511 rcu_read_unlock();
3512}
3513
3514void perf_event_comm(struct task_struct *task)
3515{
3516 struct perf_comm_event comm_event;
3517
3518 if (task->perf_event_ctxp)
3519 perf_event_enable_on_exec(task);
3520
3521 if (!atomic_read(&nr_comm_events))
3522 return;
3523
3524 comm_event = (struct perf_comm_event){
3525 .task = task,
3526 /* .comm */
3527 /* .comm_size */
3528 .event_id = {
3529 .header = {
3530 .type = PERF_RECORD_COMM,
3531 .misc = 0,
3532 /* .size */
3533 },
3534 /* .pid */
3535 /* .tid */
3536 },
3537 };
3538
3539 perf_event_comm_event(&comm_event);
3540}
3541
3542/*
3543 * mmap tracking
3544 */
3545
3546struct perf_mmap_event {
3547 struct vm_area_struct *vma;
3548
3549 const char *file_name;
3550 int file_size;
3551
3552 struct {
3553 struct perf_event_header header;
3554
3555 u32 pid;
3556 u32 tid;
3557 u64 start;
3558 u64 len;
3559 u64 pgoff;
3560 } event_id;
3561};
3562
3563static void perf_event_mmap_output(struct perf_event *event,
3564 struct perf_mmap_event *mmap_event)
3565{
3566 struct perf_output_handle handle;
3567 int size = mmap_event->event_id.header.size;
3568 int ret = perf_output_begin(&handle, event, size, 0, 0);
3569
3570 if (ret)
3571 return;
3572
3573 mmap_event->event_id.pid = perf_event_pid(event, current);
3574 mmap_event->event_id.tid = perf_event_tid(event, current);
3575
3576 perf_output_put(&handle, mmap_event->event_id);
3577 perf_output_copy(&handle, mmap_event->file_name,
3578 mmap_event->file_size);
3579 perf_output_end(&handle);
3580}
3581
3582static int perf_event_mmap_match(struct perf_event *event,
3583 struct perf_mmap_event *mmap_event)
3584{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003585 if (event->cpu != -1 && event->cpu != smp_processor_id())
3586 return 0;
3587
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003588 if (event->attr.mmap)
3589 return 1;
3590
3591 return 0;
3592}
3593
3594static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3595 struct perf_mmap_event *mmap_event)
3596{
3597 struct perf_event *event;
3598
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003599 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3600 if (perf_event_mmap_match(event, mmap_event))
3601 perf_event_mmap_output(event, mmap_event);
3602 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003603}
3604
3605static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3606{
3607 struct perf_cpu_context *cpuctx;
3608 struct perf_event_context *ctx;
3609 struct vm_area_struct *vma = mmap_event->vma;
3610 struct file *file = vma->vm_file;
3611 unsigned int size;
3612 char tmp[16];
3613 char *buf = NULL;
3614 const char *name;
3615
3616 memset(tmp, 0, sizeof(tmp));
3617
3618 if (file) {
3619 /*
3620 * d_path works from the end of the buffer backwards, so we
3621 * need to add enough zero bytes after the string to handle
3622 * the 64bit alignment we do later.
3623 */
3624 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3625 if (!buf) {
3626 name = strncpy(tmp, "//enomem", sizeof(tmp));
3627 goto got_name;
3628 }
3629 name = d_path(&file->f_path, buf, PATH_MAX);
3630 if (IS_ERR(name)) {
3631 name = strncpy(tmp, "//toolong", sizeof(tmp));
3632 goto got_name;
3633 }
3634 } else {
3635 if (arch_vma_name(mmap_event->vma)) {
3636 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3637 sizeof(tmp));
3638 goto got_name;
3639 }
3640
3641 if (!vma->vm_mm) {
3642 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3643 goto got_name;
3644 }
3645
3646 name = strncpy(tmp, "//anon", sizeof(tmp));
3647 goto got_name;
3648 }
3649
3650got_name:
3651 size = ALIGN(strlen(name)+1, sizeof(u64));
3652
3653 mmap_event->file_name = name;
3654 mmap_event->file_size = size;
3655
3656 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3657
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003658 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003659 cpuctx = &get_cpu_var(perf_cpu_context);
3660 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003661 ctx = rcu_dereference(current->perf_event_ctxp);
3662 if (ctx)
3663 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003664 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003665 rcu_read_unlock();
3666
3667 kfree(buf);
3668}
3669
3670void __perf_event_mmap(struct vm_area_struct *vma)
3671{
3672 struct perf_mmap_event mmap_event;
3673
3674 if (!atomic_read(&nr_mmap_events))
3675 return;
3676
3677 mmap_event = (struct perf_mmap_event){
3678 .vma = vma,
3679 /* .file_name */
3680 /* .file_size */
3681 .event_id = {
3682 .header = {
3683 .type = PERF_RECORD_MMAP,
3684 .misc = 0,
3685 /* .size */
3686 },
3687 /* .pid */
3688 /* .tid */
3689 .start = vma->vm_start,
3690 .len = vma->vm_end - vma->vm_start,
3691 .pgoff = vma->vm_pgoff,
3692 },
3693 };
3694
3695 perf_event_mmap_event(&mmap_event);
3696}
3697
3698/*
3699 * IRQ throttle logging
3700 */
3701
3702static void perf_log_throttle(struct perf_event *event, int enable)
3703{
3704 struct perf_output_handle handle;
3705 int ret;
3706
3707 struct {
3708 struct perf_event_header header;
3709 u64 time;
3710 u64 id;
3711 u64 stream_id;
3712 } throttle_event = {
3713 .header = {
3714 .type = PERF_RECORD_THROTTLE,
3715 .misc = 0,
3716 .size = sizeof(throttle_event),
3717 },
3718 .time = perf_clock(),
3719 .id = primary_event_id(event),
3720 .stream_id = event->id,
3721 };
3722
3723 if (enable)
3724 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3725
3726 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3727 if (ret)
3728 return;
3729
3730 perf_output_put(&handle, throttle_event);
3731 perf_output_end(&handle);
3732}
3733
3734/*
3735 * Generic event overflow handling, sampling.
3736 */
3737
3738static int __perf_event_overflow(struct perf_event *event, int nmi,
3739 int throttle, struct perf_sample_data *data,
3740 struct pt_regs *regs)
3741{
3742 int events = atomic_read(&event->event_limit);
3743 struct hw_perf_event *hwc = &event->hw;
3744 int ret = 0;
3745
3746 throttle = (throttle && event->pmu->unthrottle != NULL);
3747
3748 if (!throttle) {
3749 hwc->interrupts++;
3750 } else {
3751 if (hwc->interrupts != MAX_INTERRUPTS) {
3752 hwc->interrupts++;
3753 if (HZ * hwc->interrupts >
3754 (u64)sysctl_perf_event_sample_rate) {
3755 hwc->interrupts = MAX_INTERRUPTS;
3756 perf_log_throttle(event, 0);
3757 ret = 1;
3758 }
3759 } else {
3760 /*
3761 * Keep re-disabling events even though on the previous
3762 * pass we disabled it - just in case we raced with a
3763 * sched-in and the event got enabled again:
3764 */
3765 ret = 1;
3766 }
3767 }
3768
3769 if (event->attr.freq) {
3770 u64 now = perf_clock();
3771 s64 delta = now - hwc->freq_stamp;
3772
3773 hwc->freq_stamp = now;
3774
3775 if (delta > 0 && delta < TICK_NSEC)
3776 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3777 }
3778
3779 /*
3780 * XXX event_limit might not quite work as expected on inherited
3781 * events
3782 */
3783
3784 event->pending_kill = POLL_IN;
3785 if (events && atomic_dec_and_test(&event->event_limit)) {
3786 ret = 1;
3787 event->pending_kill = POLL_HUP;
3788 if (nmi) {
3789 event->pending_disable = 1;
3790 perf_pending_queue(&event->pending,
3791 perf_pending_event);
3792 } else
3793 perf_event_disable(event);
3794 }
3795
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003796 if (event->overflow_handler)
3797 event->overflow_handler(event, nmi, data, regs);
3798 else
3799 perf_event_output(event, nmi, data, regs);
3800
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003801 return ret;
3802}
3803
3804int perf_event_overflow(struct perf_event *event, int nmi,
3805 struct perf_sample_data *data,
3806 struct pt_regs *regs)
3807{
3808 return __perf_event_overflow(event, nmi, 1, data, regs);
3809}
3810
3811/*
3812 * Generic software event infrastructure
3813 */
3814
3815/*
3816 * We directly increment event->count and keep a second value in
3817 * event->hw.period_left to count intervals. This period event
3818 * is kept in the range [-sample_period, 0] so that we can use the
3819 * sign as trigger.
3820 */
3821
3822static u64 perf_swevent_set_period(struct perf_event *event)
3823{
3824 struct hw_perf_event *hwc = &event->hw;
3825 u64 period = hwc->last_period;
3826 u64 nr, offset;
3827 s64 old, val;
3828
3829 hwc->last_period = hwc->sample_period;
3830
3831again:
3832 old = val = atomic64_read(&hwc->period_left);
3833 if (val < 0)
3834 return 0;
3835
3836 nr = div64_u64(period + val, period);
3837 offset = nr * period;
3838 val -= offset;
3839 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3840 goto again;
3841
3842 return nr;
3843}
3844
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003845static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003846 int nmi, struct perf_sample_data *data,
3847 struct pt_regs *regs)
3848{
3849 struct hw_perf_event *hwc = &event->hw;
3850 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003851
3852 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003853 if (!overflow)
3854 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003855
3856 if (hwc->interrupts == MAX_INTERRUPTS)
3857 return;
3858
3859 for (; overflow; overflow--) {
3860 if (__perf_event_overflow(event, nmi, throttle,
3861 data, regs)) {
3862 /*
3863 * We inhibit the overflow from happening when
3864 * hwc->interrupts == MAX_INTERRUPTS.
3865 */
3866 break;
3867 }
3868 throttle = 1;
3869 }
3870}
3871
3872static void perf_swevent_unthrottle(struct perf_event *event)
3873{
3874 /*
3875 * Nothing to do, we already reset hwc->interrupts.
3876 */
3877}
3878
3879static void perf_swevent_add(struct perf_event *event, u64 nr,
3880 int nmi, struct perf_sample_data *data,
3881 struct pt_regs *regs)
3882{
3883 struct hw_perf_event *hwc = &event->hw;
3884
3885 atomic64_add(nr, &event->count);
3886
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003887 if (!regs)
3888 return;
3889
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003890 if (!hwc->sample_period)
3891 return;
3892
3893 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3894 return perf_swevent_overflow(event, 1, nmi, data, regs);
3895
3896 if (atomic64_add_negative(nr, &hwc->period_left))
3897 return;
3898
3899 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003900}
3901
3902static int perf_swevent_is_counting(struct perf_event *event)
3903{
3904 /*
3905 * The event is active, we're good!
3906 */
3907 if (event->state == PERF_EVENT_STATE_ACTIVE)
3908 return 1;
3909
3910 /*
3911 * The event is off/error, not counting.
3912 */
3913 if (event->state != PERF_EVENT_STATE_INACTIVE)
3914 return 0;
3915
3916 /*
3917 * The event is inactive, if the context is active
3918 * we're part of a group that didn't make it on the 'pmu',
3919 * not counting.
3920 */
3921 if (event->ctx->is_active)
3922 return 0;
3923
3924 /*
3925 * We're inactive and the context is too, this means the
3926 * task is scheduled out, we're counting events that happen
3927 * to us, like migration events.
3928 */
3929 return 1;
3930}
3931
Li Zefan6fb29152009-10-15 11:21:42 +08003932static int perf_tp_event_match(struct perf_event *event,
3933 struct perf_sample_data *data);
3934
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003935static int perf_exclude_event(struct perf_event *event,
3936 struct pt_regs *regs)
3937{
3938 if (regs) {
3939 if (event->attr.exclude_user && user_mode(regs))
3940 return 1;
3941
3942 if (event->attr.exclude_kernel && !user_mode(regs))
3943 return 1;
3944 }
3945
3946 return 0;
3947}
3948
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003949static int perf_swevent_match(struct perf_event *event,
3950 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003951 u32 event_id,
3952 struct perf_sample_data *data,
3953 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003954{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003955 if (event->cpu != -1 && event->cpu != smp_processor_id())
3956 return 0;
3957
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003958 if (!perf_swevent_is_counting(event))
3959 return 0;
3960
3961 if (event->attr.type != type)
3962 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003963
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003964 if (event->attr.config != event_id)
3965 return 0;
3966
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003967 if (perf_exclude_event(event, regs))
3968 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003969
Li Zefan6fb29152009-10-15 11:21:42 +08003970 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3971 !perf_tp_event_match(event, data))
3972 return 0;
3973
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003974 return 1;
3975}
3976
3977static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3978 enum perf_type_id type,
3979 u32 event_id, u64 nr, int nmi,
3980 struct perf_sample_data *data,
3981 struct pt_regs *regs)
3982{
3983 struct perf_event *event;
3984
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003985 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003986 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003987 perf_swevent_add(event, nr, nmi, data, regs);
3988 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003989}
3990
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003991int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003992{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003993 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3994 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003995
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003996 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003997 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003998 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003999 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004000 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004001 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004002 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004003 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004004
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004005 if (cpuctx->recursion[rctx]) {
4006 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004007 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004008 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004009
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004010 cpuctx->recursion[rctx]++;
4011 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004012
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004013 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004014}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004015EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004016
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004017void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004018{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004019 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4020 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004021 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004022 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004023}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004024EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004025
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004026static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4027 u64 nr, int nmi,
4028 struct perf_sample_data *data,
4029 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004030{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004031 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004032 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004033
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004034 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004035 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004036 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4037 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004038 /*
4039 * doesn't really matter which of the child contexts the
4040 * events ends up in.
4041 */
4042 ctx = rcu_dereference(current->perf_event_ctxp);
4043 if (ctx)
4044 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4045 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004046}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004047
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004048void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4049 struct pt_regs *regs, u64 addr)
4050{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004051 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004052 int rctx;
4053
4054 rctx = perf_swevent_get_recursion_context();
4055 if (rctx < 0)
4056 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004057
Ingo Molnara4234bf2009-11-23 10:57:59 +01004058 data.addr = addr;
4059 data.raw = NULL;
4060
4061 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004062
4063 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004064}
4065
4066static void perf_swevent_read(struct perf_event *event)
4067{
4068}
4069
4070static int perf_swevent_enable(struct perf_event *event)
4071{
4072 struct hw_perf_event *hwc = &event->hw;
4073
4074 if (hwc->sample_period) {
4075 hwc->last_period = hwc->sample_period;
4076 perf_swevent_set_period(event);
4077 }
4078 return 0;
4079}
4080
4081static void perf_swevent_disable(struct perf_event *event)
4082{
4083}
4084
4085static const struct pmu perf_ops_generic = {
4086 .enable = perf_swevent_enable,
4087 .disable = perf_swevent_disable,
4088 .read = perf_swevent_read,
4089 .unthrottle = perf_swevent_unthrottle,
4090};
4091
4092/*
4093 * hrtimer based swevent callback
4094 */
4095
4096static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4097{
4098 enum hrtimer_restart ret = HRTIMER_RESTART;
4099 struct perf_sample_data data;
4100 struct pt_regs *regs;
4101 struct perf_event *event;
4102 u64 period;
4103
4104 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4105 event->pmu->read(event);
4106
4107 data.addr = 0;
Xiao Guangrong21140f42009-12-10 14:00:51 +08004108 data.raw = NULL;
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004109 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004110 regs = get_irq_regs();
4111 /*
4112 * In case we exclude kernel IPs or are somehow not in interrupt
4113 * context, provide the next best thing, the user IP.
4114 */
4115 if ((event->attr.exclude_kernel || !regs) &&
4116 !event->attr.exclude_user)
4117 regs = task_pt_regs(current);
4118
4119 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004120 if (!(event->attr.exclude_idle && current->pid == 0))
4121 if (perf_event_overflow(event, 0, &data, regs))
4122 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004123 }
4124
4125 period = max_t(u64, 10000, event->hw.sample_period);
4126 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4127
4128 return ret;
4129}
4130
Soeren Sandmann721a6692009-09-15 14:33:08 +02004131static void perf_swevent_start_hrtimer(struct perf_event *event)
4132{
4133 struct hw_perf_event *hwc = &event->hw;
4134
4135 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4136 hwc->hrtimer.function = perf_swevent_hrtimer;
4137 if (hwc->sample_period) {
4138 u64 period;
4139
4140 if (hwc->remaining) {
4141 if (hwc->remaining < 0)
4142 period = 10000;
4143 else
4144 period = hwc->remaining;
4145 hwc->remaining = 0;
4146 } else {
4147 period = max_t(u64, 10000, hwc->sample_period);
4148 }
4149 __hrtimer_start_range_ns(&hwc->hrtimer,
4150 ns_to_ktime(period), 0,
4151 HRTIMER_MODE_REL, 0);
4152 }
4153}
4154
4155static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4156{
4157 struct hw_perf_event *hwc = &event->hw;
4158
4159 if (hwc->sample_period) {
4160 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4161 hwc->remaining = ktime_to_ns(remaining);
4162
4163 hrtimer_cancel(&hwc->hrtimer);
4164 }
4165}
4166
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004167/*
4168 * Software event: cpu wall time clock
4169 */
4170
4171static void cpu_clock_perf_event_update(struct perf_event *event)
4172{
4173 int cpu = raw_smp_processor_id();
4174 s64 prev;
4175 u64 now;
4176
4177 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004178 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004179 atomic64_add(now - prev, &event->count);
4180}
4181
4182static int cpu_clock_perf_event_enable(struct perf_event *event)
4183{
4184 struct hw_perf_event *hwc = &event->hw;
4185 int cpu = raw_smp_processor_id();
4186
4187 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004188 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004189
4190 return 0;
4191}
4192
4193static void cpu_clock_perf_event_disable(struct perf_event *event)
4194{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004195 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004196 cpu_clock_perf_event_update(event);
4197}
4198
4199static void cpu_clock_perf_event_read(struct perf_event *event)
4200{
4201 cpu_clock_perf_event_update(event);
4202}
4203
4204static const struct pmu perf_ops_cpu_clock = {
4205 .enable = cpu_clock_perf_event_enable,
4206 .disable = cpu_clock_perf_event_disable,
4207 .read = cpu_clock_perf_event_read,
4208};
4209
4210/*
4211 * Software event: task time clock
4212 */
4213
4214static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4215{
4216 u64 prev;
4217 s64 delta;
4218
4219 prev = atomic64_xchg(&event->hw.prev_count, now);
4220 delta = now - prev;
4221 atomic64_add(delta, &event->count);
4222}
4223
4224static int task_clock_perf_event_enable(struct perf_event *event)
4225{
4226 struct hw_perf_event *hwc = &event->hw;
4227 u64 now;
4228
4229 now = event->ctx->time;
4230
4231 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004232
4233 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004234
4235 return 0;
4236}
4237
4238static void task_clock_perf_event_disable(struct perf_event *event)
4239{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004240 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004241 task_clock_perf_event_update(event, event->ctx->time);
4242
4243}
4244
4245static void task_clock_perf_event_read(struct perf_event *event)
4246{
4247 u64 time;
4248
4249 if (!in_nmi()) {
4250 update_context_time(event->ctx);
4251 time = event->ctx->time;
4252 } else {
4253 u64 now = perf_clock();
4254 u64 delta = now - event->ctx->timestamp;
4255 time = event->ctx->time + delta;
4256 }
4257
4258 task_clock_perf_event_update(event, time);
4259}
4260
4261static const struct pmu perf_ops_task_clock = {
4262 .enable = task_clock_perf_event_enable,
4263 .disable = task_clock_perf_event_disable,
4264 .read = task_clock_perf_event_read,
4265};
4266
Li Zefan07b139c2009-12-21 14:27:35 +08004267#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004268
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004269void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4270 int entry_size)
4271{
4272 struct perf_raw_record raw = {
4273 .size = entry_size,
4274 .data = record,
4275 };
4276
4277 struct perf_sample_data data = {
4278 .addr = addr,
4279 .raw = &raw,
4280 };
4281
4282 struct pt_regs *regs = get_irq_regs();
4283
4284 if (!regs)
4285 regs = task_pt_regs(current);
4286
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004287 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004288 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004289 &data, regs);
4290}
4291EXPORT_SYMBOL_GPL(perf_tp_event);
4292
Li Zefan6fb29152009-10-15 11:21:42 +08004293static int perf_tp_event_match(struct perf_event *event,
4294 struct perf_sample_data *data)
4295{
4296 void *record = data->raw->data;
4297
4298 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4299 return 1;
4300 return 0;
4301}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004302
4303static void tp_perf_event_destroy(struct perf_event *event)
4304{
4305 ftrace_profile_disable(event->attr.config);
4306}
4307
4308static const struct pmu *tp_perf_event_init(struct perf_event *event)
4309{
4310 /*
4311 * Raw tracepoint data is a severe data leak, only allow root to
4312 * have these.
4313 */
4314 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4315 perf_paranoid_tracepoint_raw() &&
4316 !capable(CAP_SYS_ADMIN))
4317 return ERR_PTR(-EPERM);
4318
4319 if (ftrace_profile_enable(event->attr.config))
4320 return NULL;
4321
4322 event->destroy = tp_perf_event_destroy;
4323
4324 return &perf_ops_generic;
4325}
Li Zefan6fb29152009-10-15 11:21:42 +08004326
4327static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4328{
4329 char *filter_str;
4330 int ret;
4331
4332 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4333 return -EINVAL;
4334
4335 filter_str = strndup_user(arg, PAGE_SIZE);
4336 if (IS_ERR(filter_str))
4337 return PTR_ERR(filter_str);
4338
4339 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4340
4341 kfree(filter_str);
4342 return ret;
4343}
4344
4345static void perf_event_free_filter(struct perf_event *event)
4346{
4347 ftrace_profile_free_filter(event);
4348}
4349
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004350#else
Li Zefan6fb29152009-10-15 11:21:42 +08004351
4352static int perf_tp_event_match(struct perf_event *event,
4353 struct perf_sample_data *data)
4354{
4355 return 1;
4356}
4357
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004358static const struct pmu *tp_perf_event_init(struct perf_event *event)
4359{
4360 return NULL;
4361}
Li Zefan6fb29152009-10-15 11:21:42 +08004362
4363static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4364{
4365 return -ENOENT;
4366}
4367
4368static void perf_event_free_filter(struct perf_event *event)
4369{
4370}
4371
Li Zefan07b139c2009-12-21 14:27:35 +08004372#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004373
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004374#ifdef CONFIG_HAVE_HW_BREAKPOINT
4375static void bp_perf_event_destroy(struct perf_event *event)
4376{
4377 release_bp_slot(event);
4378}
4379
4380static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4381{
4382 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004383
4384 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004385 if (err)
4386 return ERR_PTR(err);
4387
4388 bp->destroy = bp_perf_event_destroy;
4389
4390 return &perf_ops_bp;
4391}
4392
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004393void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004394{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004395 struct perf_sample_data sample;
4396 struct pt_regs *regs = data;
4397
Xiao Guangrong5e855db2009-12-10 17:08:54 +08004398 sample.raw = NULL;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004399 sample.addr = bp->attr.bp_addr;
4400
4401 if (!perf_exclude_event(bp, regs))
4402 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004403}
4404#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004405static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4406{
4407 return NULL;
4408}
4409
4410void perf_bp_event(struct perf_event *bp, void *regs)
4411{
4412}
4413#endif
4414
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004415atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4416
4417static void sw_perf_event_destroy(struct perf_event *event)
4418{
4419 u64 event_id = event->attr.config;
4420
4421 WARN_ON(event->parent);
4422
4423 atomic_dec(&perf_swevent_enabled[event_id]);
4424}
4425
4426static const struct pmu *sw_perf_event_init(struct perf_event *event)
4427{
4428 const struct pmu *pmu = NULL;
4429 u64 event_id = event->attr.config;
4430
4431 /*
4432 * Software events (currently) can't in general distinguish
4433 * between user, kernel and hypervisor events.
4434 * However, context switches and cpu migrations are considered
4435 * to be kernel events, and page faults are never hypervisor
4436 * events.
4437 */
4438 switch (event_id) {
4439 case PERF_COUNT_SW_CPU_CLOCK:
4440 pmu = &perf_ops_cpu_clock;
4441
4442 break;
4443 case PERF_COUNT_SW_TASK_CLOCK:
4444 /*
4445 * If the user instantiates this as a per-cpu event,
4446 * use the cpu_clock event instead.
4447 */
4448 if (event->ctx->task)
4449 pmu = &perf_ops_task_clock;
4450 else
4451 pmu = &perf_ops_cpu_clock;
4452
4453 break;
4454 case PERF_COUNT_SW_PAGE_FAULTS:
4455 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4456 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4457 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4458 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004459 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4460 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004461 if (!event->parent) {
4462 atomic_inc(&perf_swevent_enabled[event_id]);
4463 event->destroy = sw_perf_event_destroy;
4464 }
4465 pmu = &perf_ops_generic;
4466 break;
4467 }
4468
4469 return pmu;
4470}
4471
4472/*
4473 * Allocate and initialize a event structure
4474 */
4475static struct perf_event *
4476perf_event_alloc(struct perf_event_attr *attr,
4477 int cpu,
4478 struct perf_event_context *ctx,
4479 struct perf_event *group_leader,
4480 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004481 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004482 gfp_t gfpflags)
4483{
4484 const struct pmu *pmu;
4485 struct perf_event *event;
4486 struct hw_perf_event *hwc;
4487 long err;
4488
4489 event = kzalloc(sizeof(*event), gfpflags);
4490 if (!event)
4491 return ERR_PTR(-ENOMEM);
4492
4493 /*
4494 * Single events are their own group leaders, with an
4495 * empty sibling list:
4496 */
4497 if (!group_leader)
4498 group_leader = event;
4499
4500 mutex_init(&event->child_mutex);
4501 INIT_LIST_HEAD(&event->child_list);
4502
4503 INIT_LIST_HEAD(&event->group_entry);
4504 INIT_LIST_HEAD(&event->event_entry);
4505 INIT_LIST_HEAD(&event->sibling_list);
4506 init_waitqueue_head(&event->waitq);
4507
4508 mutex_init(&event->mmap_mutex);
4509
4510 event->cpu = cpu;
4511 event->attr = *attr;
4512 event->group_leader = group_leader;
4513 event->pmu = NULL;
4514 event->ctx = ctx;
4515 event->oncpu = -1;
4516
4517 event->parent = parent_event;
4518
4519 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4520 event->id = atomic64_inc_return(&perf_event_id);
4521
4522 event->state = PERF_EVENT_STATE_INACTIVE;
4523
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004524 if (!overflow_handler && parent_event)
4525 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004526
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004527 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004528
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004529 if (attr->disabled)
4530 event->state = PERF_EVENT_STATE_OFF;
4531
4532 pmu = NULL;
4533
4534 hwc = &event->hw;
4535 hwc->sample_period = attr->sample_period;
4536 if (attr->freq && attr->sample_freq)
4537 hwc->sample_period = 1;
4538 hwc->last_period = hwc->sample_period;
4539
4540 atomic64_set(&hwc->period_left, hwc->sample_period);
4541
4542 /*
4543 * we currently do not support PERF_FORMAT_GROUP on inherited events
4544 */
4545 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4546 goto done;
4547
4548 switch (attr->type) {
4549 case PERF_TYPE_RAW:
4550 case PERF_TYPE_HARDWARE:
4551 case PERF_TYPE_HW_CACHE:
4552 pmu = hw_perf_event_init(event);
4553 break;
4554
4555 case PERF_TYPE_SOFTWARE:
4556 pmu = sw_perf_event_init(event);
4557 break;
4558
4559 case PERF_TYPE_TRACEPOINT:
4560 pmu = tp_perf_event_init(event);
4561 break;
4562
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004563 case PERF_TYPE_BREAKPOINT:
4564 pmu = bp_perf_event_init(event);
4565 break;
4566
4567
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004568 default:
4569 break;
4570 }
4571done:
4572 err = 0;
4573 if (!pmu)
4574 err = -EINVAL;
4575 else if (IS_ERR(pmu))
4576 err = PTR_ERR(pmu);
4577
4578 if (err) {
4579 if (event->ns)
4580 put_pid_ns(event->ns);
4581 kfree(event);
4582 return ERR_PTR(err);
4583 }
4584
4585 event->pmu = pmu;
4586
4587 if (!event->parent) {
4588 atomic_inc(&nr_events);
4589 if (event->attr.mmap)
4590 atomic_inc(&nr_mmap_events);
4591 if (event->attr.comm)
4592 atomic_inc(&nr_comm_events);
4593 if (event->attr.task)
4594 atomic_inc(&nr_task_events);
4595 }
4596
4597 return event;
4598}
4599
4600static int perf_copy_attr(struct perf_event_attr __user *uattr,
4601 struct perf_event_attr *attr)
4602{
4603 u32 size;
4604 int ret;
4605
4606 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4607 return -EFAULT;
4608
4609 /*
4610 * zero the full structure, so that a short copy will be nice.
4611 */
4612 memset(attr, 0, sizeof(*attr));
4613
4614 ret = get_user(size, &uattr->size);
4615 if (ret)
4616 return ret;
4617
4618 if (size > PAGE_SIZE) /* silly large */
4619 goto err_size;
4620
4621 if (!size) /* abi compat */
4622 size = PERF_ATTR_SIZE_VER0;
4623
4624 if (size < PERF_ATTR_SIZE_VER0)
4625 goto err_size;
4626
4627 /*
4628 * If we're handed a bigger struct than we know of,
4629 * ensure all the unknown bits are 0 - i.e. new
4630 * user-space does not rely on any kernel feature
4631 * extensions we dont know about yet.
4632 */
4633 if (size > sizeof(*attr)) {
4634 unsigned char __user *addr;
4635 unsigned char __user *end;
4636 unsigned char val;
4637
4638 addr = (void __user *)uattr + sizeof(*attr);
4639 end = (void __user *)uattr + size;
4640
4641 for (; addr < end; addr++) {
4642 ret = get_user(val, addr);
4643 if (ret)
4644 return ret;
4645 if (val)
4646 goto err_size;
4647 }
4648 size = sizeof(*attr);
4649 }
4650
4651 ret = copy_from_user(attr, uattr, size);
4652 if (ret)
4653 return -EFAULT;
4654
4655 /*
4656 * If the type exists, the corresponding creation will verify
4657 * the attr->config.
4658 */
4659 if (attr->type >= PERF_TYPE_MAX)
4660 return -EINVAL;
4661
Peter Zijlstraf13c12c2009-12-15 19:43:11 +01004662 if (attr->__reserved_1 || attr->__reserved_2)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004663 return -EINVAL;
4664
4665 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4666 return -EINVAL;
4667
4668 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4669 return -EINVAL;
4670
4671out:
4672 return ret;
4673
4674err_size:
4675 put_user(sizeof(*attr), &uattr->size);
4676 ret = -E2BIG;
4677 goto out;
4678}
4679
Li Zefan6fb29152009-10-15 11:21:42 +08004680static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004681{
4682 struct perf_event *output_event = NULL;
4683 struct file *output_file = NULL;
4684 struct perf_event *old_output;
4685 int fput_needed = 0;
4686 int ret = -EINVAL;
4687
4688 if (!output_fd)
4689 goto set;
4690
4691 output_file = fget_light(output_fd, &fput_needed);
4692 if (!output_file)
4693 return -EBADF;
4694
4695 if (output_file->f_op != &perf_fops)
4696 goto out;
4697
4698 output_event = output_file->private_data;
4699
4700 /* Don't chain output fds */
4701 if (output_event->output)
4702 goto out;
4703
4704 /* Don't set an output fd when we already have an output channel */
4705 if (event->data)
4706 goto out;
4707
4708 atomic_long_inc(&output_file->f_count);
4709
4710set:
4711 mutex_lock(&event->mmap_mutex);
4712 old_output = event->output;
4713 rcu_assign_pointer(event->output, output_event);
4714 mutex_unlock(&event->mmap_mutex);
4715
4716 if (old_output) {
4717 /*
4718 * we need to make sure no existing perf_output_*()
4719 * is still referencing this event.
4720 */
4721 synchronize_rcu();
4722 fput(old_output->filp);
4723 }
4724
4725 ret = 0;
4726out:
4727 fput_light(output_file, fput_needed);
4728 return ret;
4729}
4730
4731/**
4732 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4733 *
4734 * @attr_uptr: event_id type attributes for monitoring/sampling
4735 * @pid: target pid
4736 * @cpu: target cpu
4737 * @group_fd: group leader event fd
4738 */
4739SYSCALL_DEFINE5(perf_event_open,
4740 struct perf_event_attr __user *, attr_uptr,
4741 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4742{
4743 struct perf_event *event, *group_leader;
4744 struct perf_event_attr attr;
4745 struct perf_event_context *ctx;
4746 struct file *event_file = NULL;
4747 struct file *group_file = NULL;
4748 int fput_needed = 0;
4749 int fput_needed2 = 0;
4750 int err;
4751
4752 /* for future expandability... */
4753 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4754 return -EINVAL;
4755
4756 err = perf_copy_attr(attr_uptr, &attr);
4757 if (err)
4758 return err;
4759
4760 if (!attr.exclude_kernel) {
4761 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4762 return -EACCES;
4763 }
4764
4765 if (attr.freq) {
4766 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4767 return -EINVAL;
4768 }
4769
4770 /*
4771 * Get the target context (task or percpu):
4772 */
4773 ctx = find_get_context(pid, cpu);
4774 if (IS_ERR(ctx))
4775 return PTR_ERR(ctx);
4776
4777 /*
4778 * Look up the group leader (we will attach this event to it):
4779 */
4780 group_leader = NULL;
4781 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4782 err = -EINVAL;
4783 group_file = fget_light(group_fd, &fput_needed);
4784 if (!group_file)
4785 goto err_put_context;
4786 if (group_file->f_op != &perf_fops)
4787 goto err_put_context;
4788
4789 group_leader = group_file->private_data;
4790 /*
4791 * Do not allow a recursive hierarchy (this new sibling
4792 * becoming part of another group-sibling):
4793 */
4794 if (group_leader->group_leader != group_leader)
4795 goto err_put_context;
4796 /*
4797 * Do not allow to attach to a group in a different
4798 * task or CPU context:
4799 */
4800 if (group_leader->ctx != ctx)
4801 goto err_put_context;
4802 /*
4803 * Only a group leader can be exclusive or pinned
4804 */
4805 if (attr.exclusive || attr.pinned)
4806 goto err_put_context;
4807 }
4808
4809 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004810 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004811 err = PTR_ERR(event);
4812 if (IS_ERR(event))
4813 goto err_put_context;
4814
Roland Dreier628ff7c2009-12-18 09:41:24 -08004815 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004816 if (err < 0)
4817 goto err_free_put_context;
4818
4819 event_file = fget_light(err, &fput_needed2);
4820 if (!event_file)
4821 goto err_free_put_context;
4822
4823 if (flags & PERF_FLAG_FD_OUTPUT) {
4824 err = perf_event_set_output(event, group_fd);
4825 if (err)
4826 goto err_fput_free_put_context;
4827 }
4828
4829 event->filp = event_file;
4830 WARN_ON_ONCE(ctx->parent_ctx);
4831 mutex_lock(&ctx->mutex);
4832 perf_install_in_context(ctx, event, cpu);
4833 ++ctx->generation;
4834 mutex_unlock(&ctx->mutex);
4835
4836 event->owner = current;
4837 get_task_struct(current);
4838 mutex_lock(&current->perf_event_mutex);
4839 list_add_tail(&event->owner_entry, &current->perf_event_list);
4840 mutex_unlock(&current->perf_event_mutex);
4841
4842err_fput_free_put_context:
4843 fput_light(event_file, fput_needed2);
4844
4845err_free_put_context:
4846 if (err < 0)
4847 kfree(event);
4848
4849err_put_context:
4850 if (err < 0)
4851 put_ctx(ctx);
4852
4853 fput_light(group_file, fput_needed);
4854
4855 return err;
4856}
4857
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004858/**
4859 * perf_event_create_kernel_counter
4860 *
4861 * @attr: attributes of the counter to create
4862 * @cpu: cpu in which the counter is bound
4863 * @pid: task to profile
4864 */
4865struct perf_event *
4866perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004867 pid_t pid,
4868 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004869{
4870 struct perf_event *event;
4871 struct perf_event_context *ctx;
4872 int err;
4873
4874 /*
4875 * Get the target context (task or percpu):
4876 */
4877
4878 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004879 if (IS_ERR(ctx)) {
4880 err = PTR_ERR(ctx);
4881 goto err_exit;
4882 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004883
4884 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004885 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004886 if (IS_ERR(event)) {
4887 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004888 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004889 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004890
4891 event->filp = NULL;
4892 WARN_ON_ONCE(ctx->parent_ctx);
4893 mutex_lock(&ctx->mutex);
4894 perf_install_in_context(ctx, event, cpu);
4895 ++ctx->generation;
4896 mutex_unlock(&ctx->mutex);
4897
4898 event->owner = current;
4899 get_task_struct(current);
4900 mutex_lock(&current->perf_event_mutex);
4901 list_add_tail(&event->owner_entry, &current->perf_event_list);
4902 mutex_unlock(&current->perf_event_mutex);
4903
4904 return event;
4905
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004906 err_put_context:
4907 put_ctx(ctx);
4908 err_exit:
4909 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004910}
4911EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4912
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004913/*
4914 * inherit a event from parent task to child task:
4915 */
4916static struct perf_event *
4917inherit_event(struct perf_event *parent_event,
4918 struct task_struct *parent,
4919 struct perf_event_context *parent_ctx,
4920 struct task_struct *child,
4921 struct perf_event *group_leader,
4922 struct perf_event_context *child_ctx)
4923{
4924 struct perf_event *child_event;
4925
4926 /*
4927 * Instead of creating recursive hierarchies of events,
4928 * we link inherited events back to the original parent,
4929 * which has a filp for sure, which we use as the reference
4930 * count:
4931 */
4932 if (parent_event->parent)
4933 parent_event = parent_event->parent;
4934
4935 child_event = perf_event_alloc(&parent_event->attr,
4936 parent_event->cpu, child_ctx,
4937 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004938 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004939 if (IS_ERR(child_event))
4940 return child_event;
4941 get_ctx(child_ctx);
4942
4943 /*
4944 * Make the child state follow the state of the parent event,
4945 * not its attr.disabled bit. We hold the parent's mutex,
4946 * so we won't race with perf_event_{en, dis}able_family.
4947 */
4948 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4949 child_event->state = PERF_EVENT_STATE_INACTIVE;
4950 else
4951 child_event->state = PERF_EVENT_STATE_OFF;
4952
4953 if (parent_event->attr.freq)
4954 child_event->hw.sample_period = parent_event->hw.sample_period;
4955
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004956 child_event->overflow_handler = parent_event->overflow_handler;
4957
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004958 /*
4959 * Link it up in the child's context:
4960 */
4961 add_event_to_ctx(child_event, child_ctx);
4962
4963 /*
4964 * Get a reference to the parent filp - we will fput it
4965 * when the child event exits. This is safe to do because
4966 * we are in the parent and we know that the filp still
4967 * exists and has a nonzero count:
4968 */
4969 atomic_long_inc(&parent_event->filp->f_count);
4970
4971 /*
4972 * Link this into the parent event's child list
4973 */
4974 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4975 mutex_lock(&parent_event->child_mutex);
4976 list_add_tail(&child_event->child_list, &parent_event->child_list);
4977 mutex_unlock(&parent_event->child_mutex);
4978
4979 return child_event;
4980}
4981
4982static int inherit_group(struct perf_event *parent_event,
4983 struct task_struct *parent,
4984 struct perf_event_context *parent_ctx,
4985 struct task_struct *child,
4986 struct perf_event_context *child_ctx)
4987{
4988 struct perf_event *leader;
4989 struct perf_event *sub;
4990 struct perf_event *child_ctr;
4991
4992 leader = inherit_event(parent_event, parent, parent_ctx,
4993 child, NULL, child_ctx);
4994 if (IS_ERR(leader))
4995 return PTR_ERR(leader);
4996 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4997 child_ctr = inherit_event(sub, parent, parent_ctx,
4998 child, leader, child_ctx);
4999 if (IS_ERR(child_ctr))
5000 return PTR_ERR(child_ctr);
5001 }
5002 return 0;
5003}
5004
5005static void sync_child_event(struct perf_event *child_event,
5006 struct task_struct *child)
5007{
5008 struct perf_event *parent_event = child_event->parent;
5009 u64 child_val;
5010
5011 if (child_event->attr.inherit_stat)
5012 perf_event_read_event(child_event, child);
5013
5014 child_val = atomic64_read(&child_event->count);
5015
5016 /*
5017 * Add back the child's count to the parent's count:
5018 */
5019 atomic64_add(child_val, &parent_event->count);
5020 atomic64_add(child_event->total_time_enabled,
5021 &parent_event->child_total_time_enabled);
5022 atomic64_add(child_event->total_time_running,
5023 &parent_event->child_total_time_running);
5024
5025 /*
5026 * Remove this event from the parent's list
5027 */
5028 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5029 mutex_lock(&parent_event->child_mutex);
5030 list_del_init(&child_event->child_list);
5031 mutex_unlock(&parent_event->child_mutex);
5032
5033 /*
5034 * Release the parent event, if this was the last
5035 * reference to it.
5036 */
5037 fput(parent_event->filp);
5038}
5039
5040static void
5041__perf_event_exit_task(struct perf_event *child_event,
5042 struct perf_event_context *child_ctx,
5043 struct task_struct *child)
5044{
5045 struct perf_event *parent_event;
5046
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005047 perf_event_remove_from_context(child_event);
5048
5049 parent_event = child_event->parent;
5050 /*
5051 * It can happen that parent exits first, and has events
5052 * that are still around due to the child reference. These
5053 * events need to be zapped - but otherwise linger.
5054 */
5055 if (parent_event) {
5056 sync_child_event(child_event, child);
5057 free_event(child_event);
5058 }
5059}
5060
5061/*
5062 * When a child task exits, feed back event values to parent events.
5063 */
5064void perf_event_exit_task(struct task_struct *child)
5065{
5066 struct perf_event *child_event, *tmp;
5067 struct perf_event_context *child_ctx;
5068 unsigned long flags;
5069
5070 if (likely(!child->perf_event_ctxp)) {
5071 perf_event_task(child, NULL, 0);
5072 return;
5073 }
5074
5075 local_irq_save(flags);
5076 /*
5077 * We can't reschedule here because interrupts are disabled,
5078 * and either child is current or it is a task that can't be
5079 * scheduled, so we are now safe from rescheduling changing
5080 * our context.
5081 */
5082 child_ctx = child->perf_event_ctxp;
5083 __perf_event_task_sched_out(child_ctx);
5084
5085 /*
5086 * Take the context lock here so that if find_get_context is
5087 * reading child->perf_event_ctxp, we wait until it has
5088 * incremented the context's refcount before we do put_ctx below.
5089 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005090 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005091 child->perf_event_ctxp = NULL;
5092 /*
5093 * If this context is a clone; unclone it so it can't get
5094 * swapped to another process while we're removing all
5095 * the events from it.
5096 */
5097 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005098 update_context_time(child_ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005099 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005100
5101 /*
5102 * Report the task dead after unscheduling the events so that we
5103 * won't get any samples after PERF_RECORD_EXIT. We can however still
5104 * get a few PERF_RECORD_READ events.
5105 */
5106 perf_event_task(child, child_ctx, 0);
5107
5108 /*
5109 * We can recurse on the same lock type through:
5110 *
5111 * __perf_event_exit_task()
5112 * sync_child_event()
5113 * fput(parent_event->filp)
5114 * perf_release()
5115 * mutex_lock(&ctx->mutex)
5116 *
5117 * But since its the parent context it won't be the same instance.
5118 */
5119 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5120
5121again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005122 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5123 group_entry)
5124 __perf_event_exit_task(child_event, child_ctx, child);
5125
5126 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005127 group_entry)
5128 __perf_event_exit_task(child_event, child_ctx, child);
5129
5130 /*
5131 * If the last event was a group event, it will have appended all
5132 * its siblings to the list, but we obtained 'tmp' before that which
5133 * will still point to the list head terminating the iteration.
5134 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005135 if (!list_empty(&child_ctx->pinned_groups) ||
5136 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005137 goto again;
5138
5139 mutex_unlock(&child_ctx->mutex);
5140
5141 put_ctx(child_ctx);
5142}
5143
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005144static void perf_free_event(struct perf_event *event,
5145 struct perf_event_context *ctx)
5146{
5147 struct perf_event *parent = event->parent;
5148
5149 if (WARN_ON_ONCE(!parent))
5150 return;
5151
5152 mutex_lock(&parent->child_mutex);
5153 list_del_init(&event->child_list);
5154 mutex_unlock(&parent->child_mutex);
5155
5156 fput(parent->filp);
5157
5158 list_del_event(event, ctx);
5159 free_event(event);
5160}
5161
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005162/*
5163 * free an unexposed, unused context as created by inheritance by
5164 * init_task below, used by fork() in case of fail.
5165 */
5166void perf_event_free_task(struct task_struct *task)
5167{
5168 struct perf_event_context *ctx = task->perf_event_ctxp;
5169 struct perf_event *event, *tmp;
5170
5171 if (!ctx)
5172 return;
5173
5174 mutex_lock(&ctx->mutex);
5175again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005176 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5177 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005178
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005179 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5180 group_entry)
5181 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005182
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005183 if (!list_empty(&ctx->pinned_groups) ||
5184 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005185 goto again;
5186
5187 mutex_unlock(&ctx->mutex);
5188
5189 put_ctx(ctx);
5190}
5191
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005192static int
5193inherit_task_group(struct perf_event *event, struct task_struct *parent,
5194 struct perf_event_context *parent_ctx,
5195 struct task_struct *child,
5196 int *inherited_all)
5197{
5198 int ret;
5199 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5200
5201 if (!event->attr.inherit) {
5202 *inherited_all = 0;
5203 return 0;
5204 }
5205
5206 if (!child_ctx) {
5207 /*
5208 * This is executed from the parent task context, so
5209 * inherit events that have been marked for cloning.
5210 * First allocate and initialize a context for the
5211 * child.
5212 */
5213
5214 child_ctx = kzalloc(sizeof(struct perf_event_context),
5215 GFP_KERNEL);
5216 if (!child_ctx)
5217 return -ENOMEM;
5218
5219 __perf_event_init_context(child_ctx, child);
5220 child->perf_event_ctxp = child_ctx;
5221 get_task_struct(child);
5222 }
5223
5224 ret = inherit_group(event, parent, parent_ctx,
5225 child, child_ctx);
5226
5227 if (ret)
5228 *inherited_all = 0;
5229
5230 return ret;
5231}
5232
5233
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005234/*
5235 * Initialize the perf_event context in task_struct
5236 */
5237int perf_event_init_task(struct task_struct *child)
5238{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005239 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005240 struct perf_event_context *cloned_ctx;
5241 struct perf_event *event;
5242 struct task_struct *parent = current;
5243 int inherited_all = 1;
5244 int ret = 0;
5245
5246 child->perf_event_ctxp = NULL;
5247
5248 mutex_init(&child->perf_event_mutex);
5249 INIT_LIST_HEAD(&child->perf_event_list);
5250
5251 if (likely(!parent->perf_event_ctxp))
5252 return 0;
5253
5254 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005255 * If the parent's context is a clone, pin it so it won't get
5256 * swapped under us.
5257 */
5258 parent_ctx = perf_pin_task_context(parent);
5259
5260 /*
5261 * No need to check if parent_ctx != NULL here; since we saw
5262 * it non-NULL earlier, the only reason for it to become NULL
5263 * is if we exit, and since we're currently in the middle of
5264 * a fork we can't be exiting at the same time.
5265 */
5266
5267 /*
5268 * Lock the parent list. No need to lock the child - not PID
5269 * hashed yet and not running, so nobody can access it.
5270 */
5271 mutex_lock(&parent_ctx->mutex);
5272
5273 /*
5274 * We dont have to disable NMIs - we are only looking at
5275 * the list, not manipulating it:
5276 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005277 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5278 ret = inherit_task_group(event, parent, parent_ctx, child,
5279 &inherited_all);
5280 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005281 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005282 }
5283
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005284 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5285 ret = inherit_task_group(event, parent, parent_ctx, child,
5286 &inherited_all);
5287 if (ret)
5288 break;
5289 }
5290
5291 child_ctx = child->perf_event_ctxp;
5292
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005293 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005294 /*
5295 * Mark the child context as a clone of the parent
5296 * context, or of whatever the parent is a clone of.
5297 * Note that if the parent is a clone, it could get
5298 * uncloned at any point, but that doesn't matter
5299 * because the list of events and the generation
5300 * count can't have changed since we took the mutex.
5301 */
5302 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5303 if (cloned_ctx) {
5304 child_ctx->parent_ctx = cloned_ctx;
5305 child_ctx->parent_gen = parent_ctx->parent_gen;
5306 } else {
5307 child_ctx->parent_ctx = parent_ctx;
5308 child_ctx->parent_gen = parent_ctx->generation;
5309 }
5310 get_ctx(child_ctx->parent_ctx);
5311 }
5312
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005313 mutex_unlock(&parent_ctx->mutex);
5314
5315 perf_unpin_context(parent_ctx);
5316
5317 return ret;
5318}
5319
5320static void __cpuinit perf_event_init_cpu(int cpu)
5321{
5322 struct perf_cpu_context *cpuctx;
5323
5324 cpuctx = &per_cpu(perf_cpu_context, cpu);
5325 __perf_event_init_context(&cpuctx->ctx, NULL);
5326
5327 spin_lock(&perf_resource_lock);
5328 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5329 spin_unlock(&perf_resource_lock);
5330
5331 hw_perf_event_setup(cpu);
5332}
5333
5334#ifdef CONFIG_HOTPLUG_CPU
5335static void __perf_event_exit_cpu(void *info)
5336{
5337 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5338 struct perf_event_context *ctx = &cpuctx->ctx;
5339 struct perf_event *event, *tmp;
5340
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005341 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5342 __perf_event_remove_from_context(event);
5343 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005344 __perf_event_remove_from_context(event);
5345}
5346static void perf_event_exit_cpu(int cpu)
5347{
5348 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5349 struct perf_event_context *ctx = &cpuctx->ctx;
5350
5351 mutex_lock(&ctx->mutex);
5352 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5353 mutex_unlock(&ctx->mutex);
5354}
5355#else
5356static inline void perf_event_exit_cpu(int cpu) { }
5357#endif
5358
5359static int __cpuinit
5360perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5361{
5362 unsigned int cpu = (long)hcpu;
5363
5364 switch (action) {
5365
5366 case CPU_UP_PREPARE:
5367 case CPU_UP_PREPARE_FROZEN:
5368 perf_event_init_cpu(cpu);
5369 break;
5370
5371 case CPU_ONLINE:
5372 case CPU_ONLINE_FROZEN:
5373 hw_perf_event_setup_online(cpu);
5374 break;
5375
5376 case CPU_DOWN_PREPARE:
5377 case CPU_DOWN_PREPARE_FROZEN:
5378 perf_event_exit_cpu(cpu);
5379 break;
5380
5381 default:
5382 break;
5383 }
5384
5385 return NOTIFY_OK;
5386}
5387
5388/*
5389 * This has to have a higher priority than migration_notifier in sched.c.
5390 */
5391static struct notifier_block __cpuinitdata perf_cpu_nb = {
5392 .notifier_call = perf_cpu_notify,
5393 .priority = 20,
5394};
5395
5396void __init perf_event_init(void)
5397{
5398 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5399 (void *)(long)smp_processor_id());
5400 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5401 (void *)(long)smp_processor_id());
5402 register_cpu_notifier(&perf_cpu_nb);
5403}
5404
5405static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5406{
5407 return sprintf(buf, "%d\n", perf_reserved_percpu);
5408}
5409
5410static ssize_t
5411perf_set_reserve_percpu(struct sysdev_class *class,
5412 const char *buf,
5413 size_t count)
5414{
5415 struct perf_cpu_context *cpuctx;
5416 unsigned long val;
5417 int err, cpu, mpt;
5418
5419 err = strict_strtoul(buf, 10, &val);
5420 if (err)
5421 return err;
5422 if (val > perf_max_events)
5423 return -EINVAL;
5424
5425 spin_lock(&perf_resource_lock);
5426 perf_reserved_percpu = val;
5427 for_each_online_cpu(cpu) {
5428 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005429 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005430 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5431 perf_max_events - perf_reserved_percpu);
5432 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005433 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005434 }
5435 spin_unlock(&perf_resource_lock);
5436
5437 return count;
5438}
5439
5440static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5441{
5442 return sprintf(buf, "%d\n", perf_overcommit);
5443}
5444
5445static ssize_t
5446perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5447{
5448 unsigned long val;
5449 int err;
5450
5451 err = strict_strtoul(buf, 10, &val);
5452 if (err)
5453 return err;
5454 if (val > 1)
5455 return -EINVAL;
5456
5457 spin_lock(&perf_resource_lock);
5458 perf_overcommit = val;
5459 spin_unlock(&perf_resource_lock);
5460
5461 return count;
5462}
5463
5464static SYSDEV_CLASS_ATTR(
5465 reserve_percpu,
5466 0644,
5467 perf_show_reserve_percpu,
5468 perf_set_reserve_percpu
5469 );
5470
5471static SYSDEV_CLASS_ATTR(
5472 overcommit,
5473 0644,
5474 perf_show_overcommit,
5475 perf_set_overcommit
5476 );
5477
5478static struct attribute *perfclass_attrs[] = {
5479 &attr_reserve_percpu.attr,
5480 &attr_overcommit.attr,
5481 NULL
5482};
5483
5484static struct attribute_group perfclass_attr_group = {
5485 .attrs = perfclass_attrs,
5486 .name = "perf_events",
5487};
5488
5489static int __init perf_event_sysfs_init(void)
5490{
5491 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5492 &perfclass_attr_group);
5493}
5494device_initcall(perf_event_sysfs_init);