blob: 30c3b7ebb55d54a7017657034e30f74c00c506e0 [file] [log] [blame]
Chris Metcalf867e3592010-05-28 23:09:12 -04001/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * This file shares the implementation of the userspace memcpy and
15 * the kernel's memcpy, copy_to_user and copy_from_user.
16 */
17
18#include <arch/chip.h>
19
Chris Metcalf867e3592010-05-28 23:09:12 -040020
21#include <linux/linkage.h>
22
23/* On TILE64, we wrap these functions via arch/tile/lib/memcpy_tile64.c */
24#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
25#define memcpy __memcpy_asm
26#define __copy_to_user_inatomic __copy_to_user_inatomic_asm
27#define __copy_from_user_inatomic __copy_from_user_inatomic_asm
28#define __copy_from_user_zeroing __copy_from_user_zeroing_asm
29#endif
30
31#define IS_MEMCPY 0
32#define IS_COPY_FROM_USER 1
33#define IS_COPY_FROM_USER_ZEROING 2
34#define IS_COPY_TO_USER -1
35
36 .section .text.memcpy_common, "ax"
37 .align 64
38
39/* Use this to preface each bundle that can cause an exception so
40 * the kernel can clean up properly. The special cleanup code should
41 * not use these, since it knows what it is doing.
42 */
43#define EX \
44 .pushsection __ex_table, "a"; \
45 .word 9f, memcpy_common_fixup; \
46 .popsection; \
47 9
48
49
50/* __copy_from_user_inatomic takes the kernel target address in r0,
51 * the user source in r1, and the bytes to copy in r2.
52 * It returns the number of uncopiable bytes (hopefully zero) in r0.
53 */
54ENTRY(__copy_from_user_inatomic)
55.type __copy_from_user_inatomic, @function
56 FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \
57 .text.memcpy_common, \
58 .Lend_memcpy_common - __copy_from_user_inatomic)
59 { movei r29, IS_COPY_FROM_USER; j memcpy_common }
60 .size __copy_from_user_inatomic, . - __copy_from_user_inatomic
61
62/* __copy_from_user_zeroing is like __copy_from_user_inatomic, but
63 * any uncopiable bytes are zeroed in the target.
64 */
65ENTRY(__copy_from_user_zeroing)
66.type __copy_from_user_zeroing, @function
67 FEEDBACK_REENTER(__copy_from_user_inatomic)
68 { movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common }
69 .size __copy_from_user_zeroing, . - __copy_from_user_zeroing
70
71/* __copy_to_user_inatomic takes the user target address in r0,
72 * the kernel source in r1, and the bytes to copy in r2.
73 * It returns the number of uncopiable bytes (hopefully zero) in r0.
74 */
75ENTRY(__copy_to_user_inatomic)
76.type __copy_to_user_inatomic, @function
77 FEEDBACK_REENTER(__copy_from_user_inatomic)
78 { movei r29, IS_COPY_TO_USER; j memcpy_common }
79 .size __copy_to_user_inatomic, . - __copy_to_user_inatomic
80
81ENTRY(memcpy)
82.type memcpy, @function
83 FEEDBACK_REENTER(__copy_from_user_inatomic)
84 { movei r29, IS_MEMCPY }
85 .size memcpy, . - memcpy
86 /* Fall through */
87
88 .type memcpy_common, @function
89memcpy_common:
90 /* On entry, r29 holds one of the IS_* macro values from above. */
91
92
93 /* r0 is the dest, r1 is the source, r2 is the size. */
94
95 /* Save aside original dest so we can return it at the end. */
96 { sw sp, lr; move r23, r0; or r4, r0, r1 }
97
98 /* Check for an empty size. */
99 { bz r2, .Ldone; andi r4, r4, 3 }
100
101 /* Save aside original values in case of a fault. */
102 { move r24, r1; move r25, r2 }
103 move r27, lr
104
105 /* Check for an unaligned source or dest. */
106 { bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 }
107
108.Lcheck_aligned_copy_size:
109 /* If we are copying < 256 bytes, branch to simple case. */
110 { blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 }
111
112 /* Copying >= 256 bytes, so jump to complex prefetching loop. */
113 { andi r6, r1, 63; j .Lcopy_many }
114
115/*
116 *
117 * Aligned 4 byte at a time copy loop
118 *
119 */
120
121.Lcopy_8_loop:
122 /* Copy two words at a time to hide load latency. */
123EX: { lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 }
124EX: { lw r4, r1; addi r1, r1, 4 }
125EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
126EX: { sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 }
127.Lcopy_8_check:
128 { bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 }
129
130 /* Copy odd leftover word, if any. */
131 { bnzt r4, .Lcheck_odd_stragglers }
132EX: { lw r3, r1; addi r1, r1, 4 }
133EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
134
135.Lcheck_odd_stragglers:
136 { bnz r2, .Lcopy_unaligned_few }
137
138.Ldone:
139 /* For memcpy return original dest address, else zero. */
140 { mz r0, r29, r23; jrp lr }
141
142
143/*
144 *
145 * Prefetching multiple cache line copy handler (for large transfers).
146 *
147 */
148
149 /* Copy words until r1 is cache-line-aligned. */
150.Lalign_loop:
151EX: { lw r3, r1; addi r1, r1, 4 }
152 { andi r6, r1, 63 }
153EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
154.Lcopy_many:
155 { bnzt r6, .Lalign_loop; addi r9, r0, 63 }
156
157 { addi r3, r1, 60; andi r9, r9, -64 }
158
Chris Metcalfc745a8a2010-08-13 08:52:19 -0400159#if CHIP_HAS_WH64()
Chris Metcalf867e3592010-05-28 23:09:12 -0400160 /* No need to prefetch dst, we'll just do the wh64
161 * right before we copy a line.
162 */
163#endif
164
165EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 }
166 /* Intentionally stall for a few cycles to leave L2 cache alone. */
167 { bnzt zero, .; move r27, lr }
168EX: { lw r6, r3; addi r3, r3, 64 }
169 /* Intentionally stall for a few cycles to leave L2 cache alone. */
170 { bnzt zero, . }
171EX: { lw r7, r3; addi r3, r3, 64 }
Chris Metcalfc745a8a2010-08-13 08:52:19 -0400172#if !CHIP_HAS_WH64()
Chris Metcalf867e3592010-05-28 23:09:12 -0400173 /* Prefetch the dest */
174 /* Intentionally stall for a few cycles to leave L2 cache alone. */
175 { bnzt zero, . }
176 /* Use a real load to cause a TLB miss if necessary. We aren't using
177 * r28, so this should be fine.
178 */
179EX: { lw r28, r9; addi r9, r9, 64 }
180 /* Intentionally stall for a few cycles to leave L2 cache alone. */
181 { bnzt zero, . }
182 { prefetch r9; addi r9, r9, 64 }
183 /* Intentionally stall for a few cycles to leave L2 cache alone. */
184 { bnzt zero, . }
185 { prefetch r9; addi r9, r9, 64 }
186#endif
187 /* Intentionally stall for a few cycles to leave L2 cache alone. */
188 { bz zero, .Lbig_loop2 }
189
190 /* On entry to this loop:
191 * - r0 points to the start of dst line 0
192 * - r1 points to start of src line 0
193 * - r2 >= (256 - 60), only the first time the loop trips.
194 * - r3 contains r1 + 128 + 60 [pointer to end of source line 2]
195 * This is our prefetch address. When we get near the end
196 * rather than prefetching off the end this is changed to point
197 * to some "safe" recently loaded address.
198 * - r5 contains *(r1 + 60) [i.e. last word of source line 0]
199 * - r6 contains *(r1 + 64 + 60) [i.e. last word of source line 1]
200 * - r9 contains ((r0 + 63) & -64)
201 * [start of next dst cache line.]
202 */
203
204.Lbig_loop:
205 { jal .Lcopy_line2; add r15, r1, r2 }
206
207.Lbig_loop2:
208 /* Copy line 0, first stalling until r5 is ready. */
209EX: { move r12, r5; lw r16, r1 }
210 { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
211 /* Prefetch several lines ahead. */
212EX: { lw r5, r3; addi r3, r3, 64 }
213 { jal .Lcopy_line }
214
215 /* Copy line 1, first stalling until r6 is ready. */
216EX: { move r12, r6; lw r16, r1 }
217 { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
218 /* Prefetch several lines ahead. */
219EX: { lw r6, r3; addi r3, r3, 64 }
220 { jal .Lcopy_line }
221
222 /* Copy line 2, first stalling until r7 is ready. */
223EX: { move r12, r7; lw r16, r1 }
224 { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
225 /* Prefetch several lines ahead. */
226EX: { lw r7, r3; addi r3, r3, 64 }
227 /* Use up a caches-busy cycle by jumping back to the top of the
228 * loop. Might as well get it out of the way now.
229 */
230 { j .Lbig_loop }
231
232
233 /* On entry:
234 * - r0 points to the destination line.
235 * - r1 points to the source line.
236 * - r3 is the next prefetch address.
237 * - r9 holds the last address used for wh64.
238 * - r12 = WORD_15
239 * - r16 = WORD_0.
240 * - r17 == r1 + 16.
241 * - r27 holds saved lr to restore.
242 *
243 * On exit:
244 * - r0 is incremented by 64.
245 * - r1 is incremented by 64, unless that would point to a word
246 * beyond the end of the source array, in which case it is redirected
247 * to point to an arbitrary word already in the cache.
248 * - r2 is decremented by 64.
249 * - r3 is unchanged, unless it points to a word beyond the
250 * end of the source array, in which case it is redirected
251 * to point to an arbitrary word already in the cache.
252 * Redirecting is OK since if we are that close to the end
253 * of the array we will not come back to this subroutine
254 * and use the contents of the prefetched address.
255 * - r4 is nonzero iff r2 >= 64.
256 * - r9 is incremented by 64, unless it points beyond the
257 * end of the last full destination cache line, in which
258 * case it is redirected to a "safe address" that can be
259 * clobbered (sp - 64)
260 * - lr contains the value in r27.
261 */
262
263/* r26 unused */
264
265.Lcopy_line:
266 /* TODO: when r3 goes past the end, we would like to redirect it
267 * to prefetch the last partial cache line (if any) just once, for the
268 * benefit of the final cleanup loop. But we don't want to
269 * prefetch that line more than once, or subsequent prefetches
270 * will go into the RTF. But then .Lbig_loop should unconditionally
271 * branch to top of loop to execute final prefetch, and its
272 * nop should become a conditional branch.
273 */
274
275 /* We need two non-memory cycles here to cover the resources
276 * used by the loads initiated by the caller.
277 */
278 { add r15, r1, r2 }
279.Lcopy_line2:
280 { slt_u r13, r3, r15; addi r17, r1, 16 }
281
282 /* NOTE: this will stall for one cycle as L1 is busy. */
283
284 /* Fill second L1D line. */
285EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
286
Chris Metcalfc745a8a2010-08-13 08:52:19 -0400287#if CHIP_HAS_WH64()
Chris Metcalf867e3592010-05-28 23:09:12 -0400288 /* Prepare destination line for writing. */
289EX: { wh64 r9; addi r9, r9, 64 }
290#else
291 /* Prefetch dest line */
292 { prefetch r9; addi r9, r9, 64 }
293#endif
294 /* Load seven words that are L1D hits to cover wh64 L2 usage. */
295
296 /* Load the three remaining words from the last L1D line, which
297 * we know has already filled the L1D.
298 */
299EX: { lw r4, r1; addi r1, r1, 4; addi r20, r1, 16 } /* r4 = WORD_12 */
300EX: { lw r8, r1; addi r1, r1, 4; slt_u r13, r20, r15 }/* r8 = WORD_13 */
301EX: { lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 } /* r11 = WORD_14 */
302
303 /* Load the three remaining words from the first L1D line, first
304 * stalling until it has filled by "looking at" r16.
305 */
306EX: { lw r13, r1; addi r1, r1, 4; move zero, r16 } /* r13 = WORD_1 */
307EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_2 */
308EX: { lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */
309
310 /* Load second word from the second L1D line, first
311 * stalling until it has filled by "looking at" r17.
312 */
313EX: { lw r19, r1; addi r1, r1, 4; move zero, r17 } /* r19 = WORD_5 */
314
315 /* Store last word to the destination line, potentially dirtying it
316 * for the first time, which keeps the L2 busy for two cycles.
317 */
318EX: { sw r10, r12 } /* store(WORD_15) */
319
320 /* Use two L1D hits to cover the sw L2 access above. */
321EX: { lw r10, r1; addi r1, r1, 4 } /* r10 = WORD_6 */
322EX: { lw r12, r1; addi r1, r1, 4 } /* r12 = WORD_7 */
323
324 /* Fill third L1D line. */
325EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */
326
327 /* Store first L1D line. */
328EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
329EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
330EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
Chris Metcalfc745a8a2010-08-13 08:52:19 -0400331#if CHIP_HAS_WH64()
Chris Metcalf867e3592010-05-28 23:09:12 -0400332EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
333#else
334 /* Back up the r9 to a cache line we are already storing to
335 * if it gets past the end of the dest vector. Strictly speaking,
336 * we don't need to back up to the start of a cache line, but it's free
337 * and tidy, so why not?
338 */
339EX: { sw r0, r15; addi r0, r0, 4; andi r13, r0, -64 } /* store(WORD_3) */
340#endif
341 /* Store second L1D line. */
342EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
343EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */
344EX: { sw r0, r10; addi r0, r0, 4 } /* store(WORD_6) */
345EX: { sw r0, r12; addi r0, r0, 4 } /* store(WORD_7) */
346
347EX: { lw r13, r1; addi r1, r1, 4; move zero, r18 } /* r13 = WORD_9 */
348EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_10 */
349EX: { lw r15, r1; move r1, r20 } /* r15 = WORD_11 */
350
351 /* Store third L1D line. */
352EX: { sw r0, r18; addi r0, r0, 4 } /* store(WORD_8) */
353EX: { sw r0, r13; addi r0, r0, 4 } /* store(WORD_9) */
354EX: { sw r0, r14; addi r0, r0, 4 } /* store(WORD_10) */
355EX: { sw r0, r15; addi r0, r0, 4 } /* store(WORD_11) */
356
357 /* Store rest of fourth L1D line. */
358EX: { sw r0, r4; addi r0, r0, 4 } /* store(WORD_12) */
359 {
360EX: sw r0, r8 /* store(WORD_13) */
361 addi r0, r0, 4
362 /* Will r2 be > 64 after we subtract 64 below? */
363 shri r4, r2, 7
364 }
365 {
366EX: sw r0, r11 /* store(WORD_14) */
367 addi r0, r0, 8
368 /* Record 64 bytes successfully copied. */
369 addi r2, r2, -64
370 }
371
372 { jrp lr; move lr, r27 }
373
374 /* Convey to the backtrace library that the stack frame is size
375 * zero, and the real return address is on the stack rather than
376 * in 'lr'.
377 */
378 { info 8 }
379
380 .align 64
381.Lcopy_unaligned_maybe_many:
382 /* Skip the setup overhead if we aren't copying many bytes. */
383 { slti_u r8, r2, 20; sub r4, zero, r0 }
384 { bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 }
385 { bz r4, .Ldest_is_word_aligned; add r18, r1, r2 }
386
387/*
388 *
389 * unaligned 4 byte at a time copy handler.
390 *
391 */
392
393 /* Copy single bytes until r0 == 0 mod 4, so we can store words. */
394.Lalign_dest_loop:
395EX: { lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 }
396EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
397 { bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 }
398
399 /* If source and dest are now *both* aligned, do an aligned copy. */
400 { bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 }
401
402.Ldest_is_word_aligned:
403
404#if CHIP_HAS_DWORD_ALIGN()
405EX: { andi r8, r0, 63; lwadd_na r6, r1, 4}
406 { slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
407
408 /* This copies unaligned words until either there are fewer
409 * than 4 bytes left to copy, or until the destination pointer
410 * is cache-aligned, whichever comes first.
411 *
412 * On entry:
413 * - r0 is the next store address.
414 * - r1 points 4 bytes past the load address corresponding to r0.
415 * - r2 >= 4
416 * - r6 is the next aligned word loaded.
417 */
418.Lcopy_unaligned_src_words:
419EX: { lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 }
420 /* stall */
421 { dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 }
422EX: { swadd r0, r6, 4; addi r2, r2, -4 }
423 { bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 }
424 { bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
425
426 /* On entry:
427 * - r0 is the next store address.
428 * - r1 points 4 bytes past the load address corresponding to r0.
429 * - r2 >= 4 (# of bytes left to store).
430 * - r6 is the next aligned src word value.
431 * - r9 = (r2 < 64U).
432 * - r18 points one byte past the end of source memory.
433 */
434.Ldest_is_L2_line_aligned:
435
436 {
437 /* Not a full cache line remains. */
438 bnz r9, .Lcleanup_unaligned_words
439 move r7, r6
440 }
441
442 /* r2 >= 64 */
443
444 /* Kick off two prefetches, but don't go past the end. */
445 { addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 }
446 { prefetch r3; move r3, r8; slt_u r8, r8, r18 }
447 { mvz r3, r8, r1; addi r8, r3, 64 }
448 { prefetch r3; move r3, r8; slt_u r8, r8, r18 }
449 { mvz r3, r8, r1; movei r17, 0 }
450
451.Lcopy_unaligned_line:
452 /* Prefetch another line. */
453 { prefetch r3; addi r15, r1, 60; addi r3, r3, 64 }
454 /* Fire off a load of the last word we are about to copy. */
455EX: { lw_na r15, r15; slt_u r8, r3, r18 }
456
457EX: { mvz r3, r8, r1; wh64 r0 }
458
459 /* This loop runs twice.
460 *
461 * On entry:
462 * - r17 is even before the first iteration, and odd before
463 * the second. It is incremented inside the loop. Encountering
464 * an even value at the end of the loop makes it stop.
465 */
466.Lcopy_half_an_unaligned_line:
467EX: {
468 /* Stall until the last byte is ready. In the steady state this
469 * guarantees all words to load below will be in the L2 cache, which
470 * avoids shunting the loads to the RTF.
471 */
472 move zero, r15
473 lwadd_na r7, r1, 16
474 }
475EX: { lwadd_na r11, r1, 12 }
476EX: { lwadd_na r14, r1, -24 }
477EX: { lwadd_na r8, r1, 4 }
478EX: { lwadd_na r9, r1, 4 }
479EX: {
480 lwadd_na r10, r1, 8
481 /* r16 = (r2 < 64), after we subtract 32 from r2 below. */
482 slti_u r16, r2, 64 + 32
483 }
484EX: { lwadd_na r12, r1, 4; addi r17, r17, 1 }
485EX: { lwadd_na r13, r1, 8; dword_align r6, r7, r1 }
486EX: { swadd r0, r6, 4; dword_align r7, r8, r1 }
487EX: { swadd r0, r7, 4; dword_align r8, r9, r1 }
488EX: { swadd r0, r8, 4; dword_align r9, r10, r1 }
489EX: { swadd r0, r9, 4; dword_align r10, r11, r1 }
490EX: { swadd r0, r10, 4; dword_align r11, r12, r1 }
491EX: { swadd r0, r11, 4; dword_align r12, r13, r1 }
492EX: { swadd r0, r12, 4; dword_align r13, r14, r1 }
493EX: { swadd r0, r13, 4; addi r2, r2, -32 }
494 { move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line }
495
496 { bzt r16, .Lcopy_unaligned_line; move r7, r6 }
497
498 /* On entry:
499 * - r0 is the next store address.
500 * - r1 points 4 bytes past the load address corresponding to r0.
501 * - r2 >= 0 (# of bytes left to store).
502 * - r7 is the next aligned src word value.
503 */
504.Lcleanup_unaligned_words:
505 /* Handle any trailing bytes. */
506 { bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 }
507 { bzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
508
509 /* Move r1 back to the point where it corresponds to r0. */
510 { addi r1, r1, -4 }
511
512#else /* !CHIP_HAS_DWORD_ALIGN() */
513
514 /* Compute right/left shift counts and load initial source words. */
515 { andi r5, r1, -4; andi r3, r1, 3 }
516EX: { lw r6, r5; addi r5, r5, 4; shli r3, r3, 3 }
517EX: { lw r7, r5; addi r5, r5, 4; sub r4, zero, r3 }
518
519 /* Load and store one word at a time, using shifts and ORs
520 * to correct for the misaligned src.
521 */
522.Lcopy_unaligned_src_loop:
523 { shr r6, r6, r3; shl r8, r7, r4 }
524EX: { lw r7, r5; or r8, r8, r6; move r6, r7 }
525EX: { sw r0, r8; addi r0, r0, 4; addi r2, r2, -4 }
526 { addi r5, r5, 4; slti_u r8, r2, 8 }
527 { bzt r8, .Lcopy_unaligned_src_loop; addi r1, r1, 4 }
528
529 { bz r2, .Lcopy_unaligned_done }
530#endif /* !CHIP_HAS_DWORD_ALIGN() */
531
532 /* Fall through */
533
534/*
535 *
536 * 1 byte at a time copy handler.
537 *
538 */
539
540.Lcopy_unaligned_few:
541EX: { lb_u r3, r1; addi r1, r1, 1 }
542EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
543 { bnzt r2, .Lcopy_unaligned_few }
544
545.Lcopy_unaligned_done:
546
547 /* For memcpy return original dest address, else zero. */
548 { mz r0, r29, r23; jrp lr }
549
550.Lend_memcpy_common:
551 .size memcpy_common, .Lend_memcpy_common - memcpy_common
552
553 .section .fixup,"ax"
554memcpy_common_fixup:
555 .type memcpy_common_fixup, @function
556
557 /* Skip any bytes we already successfully copied.
558 * r2 (num remaining) is correct, but r0 (dst) and r1 (src)
559 * may not be quite right because of unrolling and prefetching.
560 * So we need to recompute their values as the address just
561 * after the last byte we are sure was successfully loaded and
562 * then stored.
563 */
564
565 /* Determine how many bytes we successfully copied. */
566 { sub r3, r25, r2 }
567
568 /* Add this to the original r0 and r1 to get their new values. */
569 { add r0, r23, r3; add r1, r24, r3 }
570
571 { bzt r29, memcpy_fixup_loop }
572 { blzt r29, copy_to_user_fixup_loop }
573
574copy_from_user_fixup_loop:
575 /* Try copying the rest one byte at a time, expecting a load fault. */
576.Lcfu: { lb_u r3, r1; addi r1, r1, 1 }
577 { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
578 { bnzt r2, copy_from_user_fixup_loop }
579
580.Lcopy_from_user_fixup_zero_remainder:
581 { bbs r29, 2f } /* low bit set means IS_COPY_FROM_USER */
582 /* byte-at-a-time loop faulted, so zero the rest. */
583 { move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ }
5841: { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 }
585 { bnzt r3, 1b }
5862: move lr, r27
587 { move r0, r2; jrp lr }
588
589copy_to_user_fixup_loop:
590 /* Try copying the rest one byte at a time, expecting a store fault. */
591 { lb_u r3, r1; addi r1, r1, 1 }
592.Lctu: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
593 { bnzt r2, copy_to_user_fixup_loop }
594.Lcopy_to_user_fixup_done:
595 move lr, r27
596 { move r0, r2; jrp lr }
597
598memcpy_fixup_loop:
599 /* Try copying the rest one byte at a time. We expect a disastrous
600 * fault to happen since we are in fixup code, but let it happen.
601 */
602 { lb_u r3, r1; addi r1, r1, 1 }
603 { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
604 { bnzt r2, memcpy_fixup_loop }
605 /* This should be unreachable, we should have faulted again.
606 * But be paranoid and handle it in case some interrupt changed
607 * the TLB or something.
608 */
609 move lr, r27
610 { move r0, r23; jrp lr }
611
612 .size memcpy_common_fixup, . - memcpy_common_fixup
613
614 .section __ex_table,"a"
615 .word .Lcfu, .Lcopy_from_user_fixup_zero_remainder
616 .word .Lctu, .Lcopy_to_user_fixup_done