| David Howells | f0d1b0b | 2006-12-08 02:37:49 -0800 | [diff] [blame] | 1 | /* Integer base 2 logarithm calculation | 
 | 2 |  * | 
 | 3 |  * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. | 
 | 4 |  * Written by David Howells (dhowells@redhat.com) | 
 | 5 |  * | 
 | 6 |  * This program is free software; you can redistribute it and/or | 
 | 7 |  * modify it under the terms of the GNU General Public License | 
 | 8 |  * as published by the Free Software Foundation; either version | 
 | 9 |  * 2 of the License, or (at your option) any later version. | 
 | 10 |  */ | 
 | 11 |  | 
 | 12 | #ifndef _LINUX_LOG2_H | 
 | 13 | #define _LINUX_LOG2_H | 
 | 14 |  | 
 | 15 | #include <linux/types.h> | 
 | 16 | #include <linux/bitops.h> | 
 | 17 |  | 
 | 18 | /* | 
 | 19 |  * deal with unrepresentable constant logarithms | 
 | 20 |  */ | 
 | 21 | extern __attribute__((const, noreturn)) | 
 | 22 | int ____ilog2_NaN(void); | 
 | 23 |  | 
 | 24 | /* | 
 | 25 |  * non-constant log of base 2 calculators | 
 | 26 |  * - the arch may override these in asm/bitops.h if they can be implemented | 
 | 27 |  *   more efficiently than using fls() and fls64() | 
 | 28 |  * - the arch is not required to handle n==0 if implementing the fallback | 
 | 29 |  */ | 
 | 30 | #ifndef CONFIG_ARCH_HAS_ILOG2_U32 | 
 | 31 | static inline __attribute__((const)) | 
 | 32 | int __ilog2_u32(u32 n) | 
 | 33 | { | 
 | 34 | 	return fls(n) - 1; | 
 | 35 | } | 
 | 36 | #endif | 
 | 37 |  | 
 | 38 | #ifndef CONFIG_ARCH_HAS_ILOG2_U64 | 
 | 39 | static inline __attribute__((const)) | 
 | 40 | int __ilog2_u64(u64 n) | 
 | 41 | { | 
 | 42 | 	return fls64(n) - 1; | 
 | 43 | } | 
 | 44 | #endif | 
 | 45 |  | 
| David Howells | 312a0c17 | 2006-12-08 02:37:51 -0800 | [diff] [blame] | 46 | /* | 
| Robert P. J. Day | 63c2f78 | 2007-01-30 06:06:00 -0500 | [diff] [blame] | 47 |  *  Determine whether some value is a power of two, where zero is | 
 | 48 |  * *not* considered a power of two. | 
 | 49 |  */ | 
 | 50 |  | 
 | 51 | static inline __attribute__((const)) | 
 | 52 | bool is_power_of_2(unsigned long n) | 
 | 53 | { | 
 | 54 | 	return (n != 0 && ((n & (n - 1)) == 0)); | 
 | 55 | } | 
 | 56 |  | 
 | 57 | /* | 
| David Howells | 312a0c17 | 2006-12-08 02:37:51 -0800 | [diff] [blame] | 58 |  * round up to nearest power of two | 
 | 59 |  */ | 
 | 60 | static inline __attribute__((const)) | 
 | 61 | unsigned long __roundup_pow_of_two(unsigned long n) | 
 | 62 | { | 
 | 63 | 	return 1UL << fls_long(n - 1); | 
 | 64 | } | 
 | 65 |  | 
| Robert P. J. Day | b311e92 | 2007-10-16 23:29:32 -0700 | [diff] [blame] | 66 | /* | 
 | 67 |  * round down to nearest power of two | 
 | 68 |  */ | 
 | 69 | static inline __attribute__((const)) | 
 | 70 | unsigned long __rounddown_pow_of_two(unsigned long n) | 
 | 71 | { | 
 | 72 | 	return 1UL << (fls_long(n) - 1); | 
 | 73 | } | 
 | 74 |  | 
| David Howells | f0d1b0b | 2006-12-08 02:37:49 -0800 | [diff] [blame] | 75 | /** | 
 | 76 |  * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value | 
 | 77 |  * @n - parameter | 
 | 78 |  * | 
 | 79 |  * constant-capable log of base 2 calculation | 
 | 80 |  * - this can be used to initialise global variables from constant data, hence | 
 | 81 |  *   the massive ternary operator construction | 
 | 82 |  * | 
 | 83 |  * selects the appropriately-sized optimised version depending on sizeof(n) | 
 | 84 |  */ | 
 | 85 | #define ilog2(n)				\ | 
 | 86 | (						\ | 
 | 87 | 	__builtin_constant_p(n) ? (		\ | 
 | 88 | 		(n) < 1 ? ____ilog2_NaN() :	\ | 
 | 89 | 		(n) & (1ULL << 63) ? 63 :	\ | 
 | 90 | 		(n) & (1ULL << 62) ? 62 :	\ | 
 | 91 | 		(n) & (1ULL << 61) ? 61 :	\ | 
 | 92 | 		(n) & (1ULL << 60) ? 60 :	\ | 
 | 93 | 		(n) & (1ULL << 59) ? 59 :	\ | 
 | 94 | 		(n) & (1ULL << 58) ? 58 :	\ | 
 | 95 | 		(n) & (1ULL << 57) ? 57 :	\ | 
 | 96 | 		(n) & (1ULL << 56) ? 56 :	\ | 
 | 97 | 		(n) & (1ULL << 55) ? 55 :	\ | 
 | 98 | 		(n) & (1ULL << 54) ? 54 :	\ | 
 | 99 | 		(n) & (1ULL << 53) ? 53 :	\ | 
 | 100 | 		(n) & (1ULL << 52) ? 52 :	\ | 
 | 101 | 		(n) & (1ULL << 51) ? 51 :	\ | 
 | 102 | 		(n) & (1ULL << 50) ? 50 :	\ | 
 | 103 | 		(n) & (1ULL << 49) ? 49 :	\ | 
 | 104 | 		(n) & (1ULL << 48) ? 48 :	\ | 
 | 105 | 		(n) & (1ULL << 47) ? 47 :	\ | 
 | 106 | 		(n) & (1ULL << 46) ? 46 :	\ | 
 | 107 | 		(n) & (1ULL << 45) ? 45 :	\ | 
 | 108 | 		(n) & (1ULL << 44) ? 44 :	\ | 
 | 109 | 		(n) & (1ULL << 43) ? 43 :	\ | 
 | 110 | 		(n) & (1ULL << 42) ? 42 :	\ | 
 | 111 | 		(n) & (1ULL << 41) ? 41 :	\ | 
 | 112 | 		(n) & (1ULL << 40) ? 40 :	\ | 
 | 113 | 		(n) & (1ULL << 39) ? 39 :	\ | 
 | 114 | 		(n) & (1ULL << 38) ? 38 :	\ | 
 | 115 | 		(n) & (1ULL << 37) ? 37 :	\ | 
 | 116 | 		(n) & (1ULL << 36) ? 36 :	\ | 
 | 117 | 		(n) & (1ULL << 35) ? 35 :	\ | 
 | 118 | 		(n) & (1ULL << 34) ? 34 :	\ | 
 | 119 | 		(n) & (1ULL << 33) ? 33 :	\ | 
 | 120 | 		(n) & (1ULL << 32) ? 32 :	\ | 
 | 121 | 		(n) & (1ULL << 31) ? 31 :	\ | 
 | 122 | 		(n) & (1ULL << 30) ? 30 :	\ | 
 | 123 | 		(n) & (1ULL << 29) ? 29 :	\ | 
 | 124 | 		(n) & (1ULL << 28) ? 28 :	\ | 
 | 125 | 		(n) & (1ULL << 27) ? 27 :	\ | 
 | 126 | 		(n) & (1ULL << 26) ? 26 :	\ | 
 | 127 | 		(n) & (1ULL << 25) ? 25 :	\ | 
 | 128 | 		(n) & (1ULL << 24) ? 24 :	\ | 
 | 129 | 		(n) & (1ULL << 23) ? 23 :	\ | 
 | 130 | 		(n) & (1ULL << 22) ? 22 :	\ | 
 | 131 | 		(n) & (1ULL << 21) ? 21 :	\ | 
 | 132 | 		(n) & (1ULL << 20) ? 20 :	\ | 
 | 133 | 		(n) & (1ULL << 19) ? 19 :	\ | 
 | 134 | 		(n) & (1ULL << 18) ? 18 :	\ | 
 | 135 | 		(n) & (1ULL << 17) ? 17 :	\ | 
 | 136 | 		(n) & (1ULL << 16) ? 16 :	\ | 
 | 137 | 		(n) & (1ULL << 15) ? 15 :	\ | 
 | 138 | 		(n) & (1ULL << 14) ? 14 :	\ | 
 | 139 | 		(n) & (1ULL << 13) ? 13 :	\ | 
 | 140 | 		(n) & (1ULL << 12) ? 12 :	\ | 
 | 141 | 		(n) & (1ULL << 11) ? 11 :	\ | 
 | 142 | 		(n) & (1ULL << 10) ? 10 :	\ | 
 | 143 | 		(n) & (1ULL <<  9) ?  9 :	\ | 
 | 144 | 		(n) & (1ULL <<  8) ?  8 :	\ | 
 | 145 | 		(n) & (1ULL <<  7) ?  7 :	\ | 
 | 146 | 		(n) & (1ULL <<  6) ?  6 :	\ | 
 | 147 | 		(n) & (1ULL <<  5) ?  5 :	\ | 
 | 148 | 		(n) & (1ULL <<  4) ?  4 :	\ | 
 | 149 | 		(n) & (1ULL <<  3) ?  3 :	\ | 
 | 150 | 		(n) & (1ULL <<  2) ?  2 :	\ | 
 | 151 | 		(n) & (1ULL <<  1) ?  1 :	\ | 
 | 152 | 		(n) & (1ULL <<  0) ?  0 :	\ | 
 | 153 | 		____ilog2_NaN()			\ | 
 | 154 | 				   ) :		\ | 
 | 155 | 	(sizeof(n) <= 4) ?			\ | 
 | 156 | 	__ilog2_u32(n) :			\ | 
 | 157 | 	__ilog2_u64(n)				\ | 
 | 158 |  ) | 
 | 159 |  | 
| David Howells | 312a0c17 | 2006-12-08 02:37:51 -0800 | [diff] [blame] | 160 | /** | 
 | 161 |  * roundup_pow_of_two - round the given value up to nearest power of two | 
 | 162 |  * @n - parameter | 
 | 163 |  * | 
| Robert P. J. Day | 6fb189c2 | 2007-02-17 19:17:37 +0100 | [diff] [blame] | 164 |  * round the given value up to the nearest power of two | 
| David Howells | 312a0c17 | 2006-12-08 02:37:51 -0800 | [diff] [blame] | 165 |  * - the result is undefined when n == 0 | 
 | 166 |  * - this can be used to initialise global variables from constant data | 
 | 167 |  */ | 
 | 168 | #define roundup_pow_of_two(n)			\ | 
 | 169 | (						\ | 
 | 170 | 	__builtin_constant_p(n) ? (		\ | 
| Rolf Eike Beer | 1a06a52 | 2007-05-17 23:56:56 +0200 | [diff] [blame] | 171 | 		(n == 1) ? 1 :			\ | 
| David Howells | 312a0c17 | 2006-12-08 02:37:51 -0800 | [diff] [blame] | 172 | 		(1UL << (ilog2((n) - 1) + 1))	\ | 
 | 173 | 				   ) :		\ | 
 | 174 | 	__roundup_pow_of_two(n)			\ | 
 | 175 |  ) | 
 | 176 |  | 
| Robert P. J. Day | b311e92 | 2007-10-16 23:29:32 -0700 | [diff] [blame] | 177 | /** | 
 | 178 |  * rounddown_pow_of_two - round the given value down to nearest power of two | 
 | 179 |  * @n - parameter | 
 | 180 |  * | 
 | 181 |  * round the given value down to the nearest power of two | 
 | 182 |  * - the result is undefined when n == 0 | 
 | 183 |  * - this can be used to initialise global variables from constant data | 
 | 184 |  */ | 
 | 185 | #define rounddown_pow_of_two(n)			\ | 
 | 186 | (						\ | 
 | 187 | 	__builtin_constant_p(n) ? (		\ | 
| Robert P. J. Day | b311e92 | 2007-10-16 23:29:32 -0700 | [diff] [blame] | 188 | 		(1UL << ilog2(n))) :		\ | 
 | 189 | 	__rounddown_pow_of_two(n)		\ | 
 | 190 |  ) | 
 | 191 |  | 
| Robert P. J. Day | de9330d | 2008-02-06 01:36:54 -0800 | [diff] [blame] | 192 | /** | 
 | 193 |  * order_base_2 - calculate the (rounded up) base 2 order of the argument | 
 | 194 |  * @n: parameter | 
 | 195 |  * | 
 | 196 |  * The first few values calculated by this routine: | 
 | 197 |  *  ob2(0) = 0 | 
 | 198 |  *  ob2(1) = 0 | 
 | 199 |  *  ob2(2) = 1 | 
 | 200 |  *  ob2(3) = 2 | 
 | 201 |  *  ob2(4) = 2 | 
 | 202 |  *  ob2(5) = 3 | 
 | 203 |  *  ... and so on. | 
 | 204 |  */ | 
 | 205 |  | 
 | 206 | #define order_base_2(n) ilog2(roundup_pow_of_two(n)) | 
 | 207 |  | 
| David Howells | f0d1b0b | 2006-12-08 02:37:49 -0800 | [diff] [blame] | 208 | #endif /* _LINUX_LOG2_H */ |