blob: 0ddc5659f9461b96ce7f365de87abb4e4836e723 [file] [log] [blame]
Arne Jansen7414a032011-05-23 14:33:49 +02001/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include <linux/workqueue.h>
26#include "ctree.h"
27#include "volumes.h"
28#include "disk-io.h"
29#include "transaction.h"
30
31#undef DEBUG
32
33/*
34 * This is the implementation for the generic read ahead framework.
35 *
36 * To trigger a readahead, btrfs_reada_add must be called. It will start
37 * a read ahead for the given range [start, end) on tree root. The returned
38 * handle can either be used to wait on the readahead to finish
39 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
40 *
41 * The read ahead works as follows:
42 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
43 * reada_start_machine will then search for extents to prefetch and trigger
44 * some reads. When a read finishes for a node, all contained node/leaf
45 * pointers that lie in the given range will also be enqueued. The reads will
46 * be triggered in sequential order, thus giving a big win over a naive
47 * enumeration. It will also make use of multi-device layouts. Each disk
48 * will have its on read pointer and all disks will by utilized in parallel.
49 * Also will no two disks read both sides of a mirror simultaneously, as this
50 * would waste seeking capacity. Instead both disks will read different parts
51 * of the filesystem.
52 * Any number of readaheads can be started in parallel. The read order will be
53 * determined globally, i.e. 2 parallel readaheads will normally finish faster
54 * than the 2 started one after another.
55 */
56
Arne Jansen7414a032011-05-23 14:33:49 +020057#define MAX_IN_FLIGHT 6
58
59struct reada_extctl {
60 struct list_head list;
61 struct reada_control *rc;
62 u64 generation;
63};
64
65struct reada_extent {
66 u64 logical;
67 struct btrfs_key top;
68 u32 blocksize;
69 int err;
70 struct list_head extctl;
Al Viro99621b42012-08-29 16:31:33 -040071 int refcnt;
Arne Jansen7414a032011-05-23 14:33:49 +020072 spinlock_t lock;
Stefan Behrens94598ba2012-03-27 14:21:26 -040073 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
Arne Jansen7414a032011-05-23 14:33:49 +020074 int nzones;
75 struct btrfs_device *scheduled_for;
76};
77
78struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
Stefan Behrens94598ba2012-03-27 14:21:26 -040086 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
Arne Jansen7414a032011-05-23 14:33:49 +020088 int ndevs;
89 struct kref refcnt;
90};
91
92struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
95};
96
97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98static void reada_control_release(struct kref *kref);
99static void reada_zone_release(struct kref *kref);
100static void reada_start_machine(struct btrfs_fs_info *fs_info);
101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, int level, u64 generation);
105
106/* recurses */
107/* in case of err, eb might be NULL */
108static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109 u64 start, int err)
110{
111 int level = 0;
112 int nritems;
113 int i;
114 u64 bytenr;
115 u64 generation;
116 struct reada_extent *re;
117 struct btrfs_fs_info *fs_info = root->fs_info;
118 struct list_head list;
119 unsigned long index = start >> PAGE_CACHE_SHIFT;
120 struct btrfs_device *for_dev;
121
122 if (eb)
123 level = btrfs_header_level(eb);
124
125 /* find extent */
126 spin_lock(&fs_info->reada_lock);
127 re = radix_tree_lookup(&fs_info->reada_tree, index);
128 if (re)
Al Viro99621b42012-08-29 16:31:33 -0400129 re->refcnt++;
Arne Jansen7414a032011-05-23 14:33:49 +0200130 spin_unlock(&fs_info->reada_lock);
131
132 if (!re)
133 return -1;
134
135 spin_lock(&re->lock);
136 /*
137 * just take the full list from the extent. afterwards we
138 * don't need the lock anymore
139 */
140 list_replace_init(&re->extctl, &list);
141 for_dev = re->scheduled_for;
142 re->scheduled_for = NULL;
143 spin_unlock(&re->lock);
144
145 if (err == 0) {
146 nritems = level ? btrfs_header_nritems(eb) : 0;
147 generation = btrfs_header_generation(eb);
148 /*
149 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 * effectively ignoring the content. In a next step we could
151 * trigger more readahead depending from the content, e.g.
152 * fetch the checksums for the extents in the leaf.
153 */
154 } else {
155 /*
156 * this is the error case, the extent buffer has not been
157 * read correctly. We won't access anything from it and
158 * just cleanup our data structures. Effectively this will
159 * cut the branch below this node from read ahead.
160 */
161 nritems = 0;
162 generation = 0;
163 }
164
165 for (i = 0; i < nritems; i++) {
166 struct reada_extctl *rec;
167 u64 n_gen;
168 struct btrfs_key key;
169 struct btrfs_key next_key;
170
171 btrfs_node_key_to_cpu(eb, &key, i);
172 if (i + 1 < nritems)
173 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174 else
175 next_key = re->top;
176 bytenr = btrfs_node_blockptr(eb, i);
177 n_gen = btrfs_node_ptr_generation(eb, i);
178
179 list_for_each_entry(rec, &list, list) {
180 struct reada_control *rc = rec->rc;
181
182 /*
183 * if the generation doesn't match, just ignore this
184 * extctl. This will probably cut off a branch from
185 * prefetch. Alternatively one could start a new (sub-)
186 * prefetch for this branch, starting again from root.
187 * FIXME: move the generation check out of this loop
188 */
189#ifdef DEBUG
190 if (rec->generation != generation) {
191 printk(KERN_DEBUG "generation mismatch for "
192 "(%llu,%d,%llu) %llu != %llu\n",
193 key.objectid, key.type, key.offset,
194 rec->generation, generation);
195 }
196#endif
197 if (rec->generation == generation &&
198 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200 reada_add_block(rc, bytenr, &next_key,
201 level - 1, n_gen);
202 }
203 }
204 /*
205 * free extctl records
206 */
207 while (!list_empty(&list)) {
208 struct reada_control *rc;
209 struct reada_extctl *rec;
210
211 rec = list_first_entry(&list, struct reada_extctl, list);
212 list_del(&rec->list);
213 rc = rec->rc;
214 kfree(rec);
215
216 kref_get(&rc->refcnt);
217 if (atomic_dec_and_test(&rc->elems)) {
218 kref_put(&rc->refcnt, reada_control_release);
219 wake_up(&rc->wait);
220 }
221 kref_put(&rc->refcnt, reada_control_release);
222
223 reada_extent_put(fs_info, re); /* one ref for each entry */
224 }
225 reada_extent_put(fs_info, re); /* our ref */
226 if (for_dev)
227 atomic_dec(&for_dev->reada_in_flight);
228
229 return 0;
230}
231
232/*
233 * start is passed separately in case eb in NULL, which may be the case with
234 * failed I/O
235 */
236int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237 u64 start, int err)
238{
239 int ret;
240
241 ret = __readahead_hook(root, eb, start, err);
242
243 reada_start_machine(root->fs_info);
244
245 return ret;
246}
247
248static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249 struct btrfs_device *dev, u64 logical,
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400250 struct btrfs_bio *bbio)
Arne Jansen7414a032011-05-23 14:33:49 +0200251{
252 int ret;
Arne Jansen7414a032011-05-23 14:33:49 +0200253 struct reada_zone *zone;
254 struct btrfs_block_group_cache *cache = NULL;
255 u64 start;
256 u64 end;
257 int i;
258
Arne Jansen7414a032011-05-23 14:33:49 +0200259 zone = NULL;
260 spin_lock(&fs_info->reada_lock);
261 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262 logical >> PAGE_CACHE_SHIFT, 1);
263 if (ret == 1)
264 kref_get(&zone->refcnt);
265 spin_unlock(&fs_info->reada_lock);
266
267 if (ret == 1) {
268 if (logical >= zone->start && logical < zone->end)
269 return zone;
270 spin_lock(&fs_info->reada_lock);
271 kref_put(&zone->refcnt, reada_zone_release);
272 spin_unlock(&fs_info->reada_lock);
273 }
274
Arne Jansen7414a032011-05-23 14:33:49 +0200275 cache = btrfs_lookup_block_group(fs_info, logical);
276 if (!cache)
277 return NULL;
278
279 start = cache->key.objectid;
280 end = start + cache->key.offset - 1;
281 btrfs_put_block_group(cache);
282
283 zone = kzalloc(sizeof(*zone), GFP_NOFS);
284 if (!zone)
285 return NULL;
286
287 zone->start = start;
288 zone->end = end;
289 INIT_LIST_HEAD(&zone->list);
290 spin_lock_init(&zone->lock);
291 zone->locked = 0;
292 kref_init(&zone->refcnt);
293 zone->elems = 0;
294 zone->device = dev; /* our device always sits at index 0 */
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400295 for (i = 0; i < bbio->num_stripes; ++i) {
Arne Jansen7414a032011-05-23 14:33:49 +0200296 /* bounds have already been checked */
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400297 zone->devs[i] = bbio->stripes[i].dev;
Arne Jansen7414a032011-05-23 14:33:49 +0200298 }
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400299 zone->ndevs = bbio->num_stripes;
Arne Jansen7414a032011-05-23 14:33:49 +0200300
301 spin_lock(&fs_info->reada_lock);
302 ret = radix_tree_insert(&dev->reada_zones,
Chris Masona1754232012-02-28 12:42:44 -0500303 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
Arne Jansen7414a032011-05-23 14:33:49 +0200304 zone);
Arne Jansen7414a032011-05-23 14:33:49 +0200305
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100306 if (ret == -EEXIST) {
Arne Jansen7414a032011-05-23 14:33:49 +0200307 kfree(zone);
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100308 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309 logical >> PAGE_CACHE_SHIFT, 1);
310 if (ret == 1)
311 kref_get(&zone->refcnt);
Arne Jansen7414a032011-05-23 14:33:49 +0200312 }
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100313 spin_unlock(&fs_info->reada_lock);
Arne Jansen7414a032011-05-23 14:33:49 +0200314
315 return zone;
316}
317
318static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319 u64 logical,
320 struct btrfs_key *top, int level)
321{
322 int ret;
Arne Jansen7414a032011-05-23 14:33:49 +0200323 struct reada_extent *re = NULL;
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100324 struct reada_extent *re_exist = NULL;
Arne Jansen7414a032011-05-23 14:33:49 +0200325 struct btrfs_fs_info *fs_info = root->fs_info;
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400326 struct btrfs_bio *bbio = NULL;
Arne Jansen7414a032011-05-23 14:33:49 +0200327 struct btrfs_device *dev;
Arne Jansen207a2322012-02-25 09:09:47 +0100328 struct btrfs_device *prev_dev;
Arne Jansen7414a032011-05-23 14:33:49 +0200329 u32 blocksize;
330 u64 length;
331 int nzones = 0;
332 int i;
333 unsigned long index = logical >> PAGE_CACHE_SHIFT;
334
Arne Jansen7414a032011-05-23 14:33:49 +0200335 spin_lock(&fs_info->reada_lock);
336 re = radix_tree_lookup(&fs_info->reada_tree, index);
337 if (re)
Al Viro99621b42012-08-29 16:31:33 -0400338 re->refcnt++;
Arne Jansen7414a032011-05-23 14:33:49 +0200339 spin_unlock(&fs_info->reada_lock);
340
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100341 if (re)
Arne Jansen7414a032011-05-23 14:33:49 +0200342 return re;
343
344 re = kzalloc(sizeof(*re), GFP_NOFS);
345 if (!re)
346 return NULL;
347
348 blocksize = btrfs_level_size(root, level);
349 re->logical = logical;
350 re->blocksize = blocksize;
351 re->top = *top;
352 INIT_LIST_HEAD(&re->extctl);
353 spin_lock_init(&re->lock);
Al Viro99621b42012-08-29 16:31:33 -0400354 re->refcnt = 1;
Arne Jansen7414a032011-05-23 14:33:49 +0200355
356 /*
357 * map block
358 */
359 length = blocksize;
Stefan Behrens3ec706c2012-11-05 15:46:42 +0100360 ret = btrfs_map_block(fs_info, REQ_WRITE, logical, &length, &bbio, 0);
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400361 if (ret || !bbio || length < blocksize)
Arne Jansen7414a032011-05-23 14:33:49 +0200362 goto error;
363
Stefan Behrens94598ba2012-03-27 14:21:26 -0400364 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
Arne Jansen7414a032011-05-23 14:33:49 +0200365 printk(KERN_ERR "btrfs readahead: more than %d copies not "
Stefan Behrens94598ba2012-03-27 14:21:26 -0400366 "supported", BTRFS_MAX_MIRRORS);
Arne Jansen7414a032011-05-23 14:33:49 +0200367 goto error;
368 }
369
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400370 for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
Arne Jansen7414a032011-05-23 14:33:49 +0200371 struct reada_zone *zone;
372
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400373 dev = bbio->stripes[nzones].dev;
374 zone = reada_find_zone(fs_info, dev, logical, bbio);
Arne Jansen7414a032011-05-23 14:33:49 +0200375 if (!zone)
376 break;
377
378 re->zones[nzones] = zone;
379 spin_lock(&zone->lock);
380 if (!zone->elems)
381 kref_get(&zone->refcnt);
382 ++zone->elems;
383 spin_unlock(&zone->lock);
384 spin_lock(&fs_info->reada_lock);
385 kref_put(&zone->refcnt, reada_zone_release);
386 spin_unlock(&fs_info->reada_lock);
387 }
388 re->nzones = nzones;
389 if (nzones == 0) {
390 /* not a single zone found, error and out */
391 goto error;
392 }
393
394 /* insert extent in reada_tree + all per-device trees, all or nothing */
395 spin_lock(&fs_info->reada_lock);
396 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100397 if (ret == -EEXIST) {
398 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
399 BUG_ON(!re_exist);
Al Viro99621b42012-08-29 16:31:33 -0400400 re_exist->refcnt++;
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100401 spin_unlock(&fs_info->reada_lock);
402 goto error;
403 }
Arne Jansen7414a032011-05-23 14:33:49 +0200404 if (ret) {
405 spin_unlock(&fs_info->reada_lock);
Arne Jansen7414a032011-05-23 14:33:49 +0200406 goto error;
407 }
Arne Jansen207a2322012-02-25 09:09:47 +0100408 prev_dev = NULL;
Arne Jansen7414a032011-05-23 14:33:49 +0200409 for (i = 0; i < nzones; ++i) {
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400410 dev = bbio->stripes[i].dev;
Arne Jansen207a2322012-02-25 09:09:47 +0100411 if (dev == prev_dev) {
412 /*
413 * in case of DUP, just add the first zone. As both
414 * are on the same device, there's nothing to gain
415 * from adding both.
416 * Also, it wouldn't work, as the tree is per device
417 * and adding would fail with EEXIST
418 */
419 continue;
420 }
421 prev_dev = dev;
Arne Jansen7414a032011-05-23 14:33:49 +0200422 ret = radix_tree_insert(&dev->reada_extents, index, re);
423 if (ret) {
424 while (--i >= 0) {
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400425 dev = bbio->stripes[i].dev;
Arne Jansen7414a032011-05-23 14:33:49 +0200426 BUG_ON(dev == NULL);
427 radix_tree_delete(&dev->reada_extents, index);
428 }
429 BUG_ON(fs_info == NULL);
430 radix_tree_delete(&fs_info->reada_tree, index);
431 spin_unlock(&fs_info->reada_lock);
432 goto error;
433 }
434 }
435 spin_unlock(&fs_info->reada_lock);
436
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400437 kfree(bbio);
Arne Jansen7414a032011-05-23 14:33:49 +0200438 return re;
439
440error:
441 while (nzones) {
442 struct reada_zone *zone;
443
444 --nzones;
445 zone = re->zones[nzones];
446 kref_get(&zone->refcnt);
447 spin_lock(&zone->lock);
448 --zone->elems;
449 if (zone->elems == 0) {
450 /*
451 * no fs_info->reada_lock needed, as this can't be
452 * the last ref
453 */
454 kref_put(&zone->refcnt, reada_zone_release);
455 }
456 spin_unlock(&zone->lock);
457
458 spin_lock(&fs_info->reada_lock);
459 kref_put(&zone->refcnt, reada_zone_release);
460 spin_unlock(&fs_info->reada_lock);
461 }
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400462 kfree(bbio);
Arne Jansen7414a032011-05-23 14:33:49 +0200463 kfree(re);
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100464 return re_exist;
Arne Jansen7414a032011-05-23 14:33:49 +0200465}
466
Arne Jansen7414a032011-05-23 14:33:49 +0200467static void reada_extent_put(struct btrfs_fs_info *fs_info,
468 struct reada_extent *re)
469{
470 int i;
471 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
472
473 spin_lock(&fs_info->reada_lock);
Al Viro99621b42012-08-29 16:31:33 -0400474 if (--re->refcnt) {
Arne Jansen7414a032011-05-23 14:33:49 +0200475 spin_unlock(&fs_info->reada_lock);
476 return;
477 }
478
479 radix_tree_delete(&fs_info->reada_tree, index);
480 for (i = 0; i < re->nzones; ++i) {
481 struct reada_zone *zone = re->zones[i];
482
483 radix_tree_delete(&zone->device->reada_extents, index);
484 }
485
486 spin_unlock(&fs_info->reada_lock);
487
488 for (i = 0; i < re->nzones; ++i) {
489 struct reada_zone *zone = re->zones[i];
490
491 kref_get(&zone->refcnt);
492 spin_lock(&zone->lock);
493 --zone->elems;
494 if (zone->elems == 0) {
495 /* no fs_info->reada_lock needed, as this can't be
496 * the last ref */
497 kref_put(&zone->refcnt, reada_zone_release);
498 }
499 spin_unlock(&zone->lock);
500
501 spin_lock(&fs_info->reada_lock);
502 kref_put(&zone->refcnt, reada_zone_release);
503 spin_unlock(&fs_info->reada_lock);
504 }
505 if (re->scheduled_for)
506 atomic_dec(&re->scheduled_for->reada_in_flight);
507
508 kfree(re);
509}
510
511static void reada_zone_release(struct kref *kref)
512{
513 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
514
515 radix_tree_delete(&zone->device->reada_zones,
516 zone->end >> PAGE_CACHE_SHIFT);
517
518 kfree(zone);
519}
520
521static void reada_control_release(struct kref *kref)
522{
523 struct reada_control *rc = container_of(kref, struct reada_control,
524 refcnt);
525
526 kfree(rc);
527}
528
529static int reada_add_block(struct reada_control *rc, u64 logical,
530 struct btrfs_key *top, int level, u64 generation)
531{
532 struct btrfs_root *root = rc->root;
533 struct reada_extent *re;
534 struct reada_extctl *rec;
535
536 re = reada_find_extent(root, logical, top, level); /* takes one ref */
537 if (!re)
538 return -1;
539
540 rec = kzalloc(sizeof(*rec), GFP_NOFS);
541 if (!rec) {
542 reada_extent_put(root->fs_info, re);
543 return -1;
544 }
545
546 rec->rc = rc;
547 rec->generation = generation;
548 atomic_inc(&rc->elems);
549
550 spin_lock(&re->lock);
551 list_add_tail(&rec->list, &re->extctl);
552 spin_unlock(&re->lock);
553
554 /* leave the ref on the extent */
555
556 return 0;
557}
558
559/*
560 * called with fs_info->reada_lock held
561 */
562static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
563{
564 int i;
565 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
566
567 for (i = 0; i < zone->ndevs; ++i) {
568 struct reada_zone *peer;
569 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
570 if (peer && peer->device != zone->device)
571 peer->locked = lock;
572 }
573}
574
575/*
576 * called with fs_info->reada_lock held
577 */
578static int reada_pick_zone(struct btrfs_device *dev)
579{
580 struct reada_zone *top_zone = NULL;
581 struct reada_zone *top_locked_zone = NULL;
582 u64 top_elems = 0;
583 u64 top_locked_elems = 0;
584 unsigned long index = 0;
585 int ret;
586
587 if (dev->reada_curr_zone) {
588 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
589 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
590 dev->reada_curr_zone = NULL;
591 }
592 /* pick the zone with the most elements */
593 while (1) {
594 struct reada_zone *zone;
595
596 ret = radix_tree_gang_lookup(&dev->reada_zones,
597 (void **)&zone, index, 1);
598 if (ret == 0)
599 break;
600 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
601 if (zone->locked) {
602 if (zone->elems > top_locked_elems) {
603 top_locked_elems = zone->elems;
604 top_locked_zone = zone;
605 }
606 } else {
607 if (zone->elems > top_elems) {
608 top_elems = zone->elems;
609 top_zone = zone;
610 }
611 }
612 }
613 if (top_zone)
614 dev->reada_curr_zone = top_zone;
615 else if (top_locked_zone)
616 dev->reada_curr_zone = top_locked_zone;
617 else
618 return 0;
619
620 dev->reada_next = dev->reada_curr_zone->start;
621 kref_get(&dev->reada_curr_zone->refcnt);
622 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
623
624 return 1;
625}
626
627static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
628 struct btrfs_device *dev)
629{
630 struct reada_extent *re = NULL;
631 int mirror_num = 0;
632 struct extent_buffer *eb = NULL;
633 u64 logical;
634 u32 blocksize;
635 int ret;
636 int i;
637 int need_kick = 0;
638
639 spin_lock(&fs_info->reada_lock);
640 if (dev->reada_curr_zone == NULL) {
641 ret = reada_pick_zone(dev);
642 if (!ret) {
643 spin_unlock(&fs_info->reada_lock);
644 return 0;
645 }
646 }
647 /*
648 * FIXME currently we issue the reads one extent at a time. If we have
649 * a contiguous block of extents, we could also coagulate them or use
650 * plugging to speed things up
651 */
652 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
653 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
654 if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
655 ret = reada_pick_zone(dev);
656 if (!ret) {
657 spin_unlock(&fs_info->reada_lock);
658 return 0;
659 }
660 re = NULL;
661 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
662 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
663 }
664 if (ret == 0) {
665 spin_unlock(&fs_info->reada_lock);
666 return 0;
667 }
668 dev->reada_next = re->logical + re->blocksize;
Al Viro99621b42012-08-29 16:31:33 -0400669 re->refcnt++;
Arne Jansen7414a032011-05-23 14:33:49 +0200670
671 spin_unlock(&fs_info->reada_lock);
672
673 /*
674 * find mirror num
675 */
676 for (i = 0; i < re->nzones; ++i) {
677 if (re->zones[i]->device == dev) {
678 mirror_num = i + 1;
679 break;
680 }
681 }
682 logical = re->logical;
683 blocksize = re->blocksize;
684
685 spin_lock(&re->lock);
686 if (re->scheduled_for == NULL) {
687 re->scheduled_for = dev;
688 need_kick = 1;
689 }
690 spin_unlock(&re->lock);
691
692 reada_extent_put(fs_info, re);
693
694 if (!need_kick)
695 return 0;
696
697 atomic_inc(&dev->reada_in_flight);
698 ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
699 mirror_num, &eb);
700 if (ret)
701 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
702 else if (eb)
703 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
704
705 if (eb)
706 free_extent_buffer(eb);
707
708 return 1;
709
710}
711
712static void reada_start_machine_worker(struct btrfs_work *work)
713{
714 struct reada_machine_work *rmw;
715 struct btrfs_fs_info *fs_info;
Stefan Behrens3d136a12012-02-03 11:20:04 +0100716 int old_ioprio;
Arne Jansen7414a032011-05-23 14:33:49 +0200717
718 rmw = container_of(work, struct reada_machine_work, work);
719 fs_info = rmw->fs_info;
720
721 kfree(rmw);
722
Stefan Behrens3d136a12012-02-03 11:20:04 +0100723 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
724 task_nice_ioprio(current));
725 set_task_ioprio(current, BTRFS_IOPRIO_READA);
Arne Jansen7414a032011-05-23 14:33:49 +0200726 __reada_start_machine(fs_info);
Stefan Behrens3d136a12012-02-03 11:20:04 +0100727 set_task_ioprio(current, old_ioprio);
Arne Jansen7414a032011-05-23 14:33:49 +0200728}
729
730static void __reada_start_machine(struct btrfs_fs_info *fs_info)
731{
732 struct btrfs_device *device;
733 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
734 u64 enqueued;
735 u64 total = 0;
736 int i;
737
738 do {
739 enqueued = 0;
740 list_for_each_entry(device, &fs_devices->devices, dev_list) {
741 if (atomic_read(&device->reada_in_flight) <
742 MAX_IN_FLIGHT)
743 enqueued += reada_start_machine_dev(fs_info,
744 device);
745 }
746 total += enqueued;
747 } while (enqueued && total < 10000);
748
749 if (enqueued == 0)
750 return;
751
752 /*
753 * If everything is already in the cache, this is effectively single
754 * threaded. To a) not hold the caller for too long and b) to utilize
755 * more cores, we broke the loop above after 10000 iterations and now
756 * enqueue to workers to finish it. This will distribute the load to
757 * the cores.
758 */
759 for (i = 0; i < 2; ++i)
760 reada_start_machine(fs_info);
761}
762
763static void reada_start_machine(struct btrfs_fs_info *fs_info)
764{
765 struct reada_machine_work *rmw;
766
767 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
768 if (!rmw) {
769 /* FIXME we cannot handle this properly right now */
770 BUG();
771 }
772 rmw->work.func = reada_start_machine_worker;
773 rmw->fs_info = fs_info;
774
775 btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
776}
777
778#ifdef DEBUG
779static void dump_devs(struct btrfs_fs_info *fs_info, int all)
780{
781 struct btrfs_device *device;
782 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
783 unsigned long index;
784 int ret;
785 int i;
786 int j;
787 int cnt;
788
789 spin_lock(&fs_info->reada_lock);
790 list_for_each_entry(device, &fs_devices->devices, dev_list) {
791 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
792 atomic_read(&device->reada_in_flight));
793 index = 0;
794 while (1) {
795 struct reada_zone *zone;
796 ret = radix_tree_gang_lookup(&device->reada_zones,
797 (void **)&zone, index, 1);
798 if (ret == 0)
799 break;
800 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
801 "%d devs", zone->start, zone->end, zone->elems,
802 zone->locked);
803 for (j = 0; j < zone->ndevs; ++j) {
804 printk(KERN_CONT " %lld",
805 zone->devs[j]->devid);
806 }
807 if (device->reada_curr_zone == zone)
808 printk(KERN_CONT " curr off %llu",
809 device->reada_next - zone->start);
810 printk(KERN_CONT "\n");
811 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
812 }
813 cnt = 0;
814 index = 0;
815 while (all) {
816 struct reada_extent *re = NULL;
817
818 ret = radix_tree_gang_lookup(&device->reada_extents,
819 (void **)&re, index, 1);
820 if (ret == 0)
821 break;
822 printk(KERN_DEBUG
823 " re: logical %llu size %u empty %d for %lld",
824 re->logical, re->blocksize,
825 list_empty(&re->extctl), re->scheduled_for ?
826 re->scheduled_for->devid : -1);
827
828 for (i = 0; i < re->nzones; ++i) {
829 printk(KERN_CONT " zone %llu-%llu devs",
830 re->zones[i]->start,
831 re->zones[i]->end);
832 for (j = 0; j < re->zones[i]->ndevs; ++j) {
833 printk(KERN_CONT " %lld",
834 re->zones[i]->devs[j]->devid);
835 }
836 }
837 printk(KERN_CONT "\n");
838 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
839 if (++cnt > 15)
840 break;
841 }
842 }
843
844 index = 0;
845 cnt = 0;
846 while (all) {
847 struct reada_extent *re = NULL;
848
849 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
850 index, 1);
851 if (ret == 0)
852 break;
853 if (!re->scheduled_for) {
854 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
855 continue;
856 }
857 printk(KERN_DEBUG
858 "re: logical %llu size %u list empty %d for %lld",
859 re->logical, re->blocksize, list_empty(&re->extctl),
860 re->scheduled_for ? re->scheduled_for->devid : -1);
861 for (i = 0; i < re->nzones; ++i) {
862 printk(KERN_CONT " zone %llu-%llu devs",
863 re->zones[i]->start,
864 re->zones[i]->end);
865 for (i = 0; i < re->nzones; ++i) {
866 printk(KERN_CONT " zone %llu-%llu devs",
867 re->zones[i]->start,
868 re->zones[i]->end);
869 for (j = 0; j < re->zones[i]->ndevs; ++j) {
870 printk(KERN_CONT " %lld",
871 re->zones[i]->devs[j]->devid);
872 }
873 }
874 }
875 printk(KERN_CONT "\n");
876 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
877 }
878 spin_unlock(&fs_info->reada_lock);
879}
880#endif
881
882/*
883 * interface
884 */
885struct reada_control *btrfs_reada_add(struct btrfs_root *root,
886 struct btrfs_key *key_start, struct btrfs_key *key_end)
887{
888 struct reada_control *rc;
889 u64 start;
890 u64 generation;
891 int level;
892 struct extent_buffer *node;
893 static struct btrfs_key max_key = {
894 .objectid = (u64)-1,
895 .type = (u8)-1,
896 .offset = (u64)-1
897 };
898
899 rc = kzalloc(sizeof(*rc), GFP_NOFS);
900 if (!rc)
901 return ERR_PTR(-ENOMEM);
902
903 rc->root = root;
904 rc->key_start = *key_start;
905 rc->key_end = *key_end;
906 atomic_set(&rc->elems, 0);
907 init_waitqueue_head(&rc->wait);
908 kref_init(&rc->refcnt);
909 kref_get(&rc->refcnt); /* one ref for having elements */
910
911 node = btrfs_root_node(root);
912 start = node->start;
913 level = btrfs_header_level(node);
914 generation = btrfs_header_generation(node);
915 free_extent_buffer(node);
916
917 reada_add_block(rc, start, &max_key, level, generation);
918
919 reada_start_machine(root->fs_info);
920
921 return rc;
922}
923
924#ifdef DEBUG
925int btrfs_reada_wait(void *handle)
926{
927 struct reada_control *rc = handle;
928
929 while (atomic_read(&rc->elems)) {
930 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
931 5 * HZ);
932 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
933 }
934
935 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
936
937 kref_put(&rc->refcnt, reada_control_release);
938
939 return 0;
940}
941#else
942int btrfs_reada_wait(void *handle)
943{
944 struct reada_control *rc = handle;
945
946 while (atomic_read(&rc->elems)) {
947 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
948 }
949
950 kref_put(&rc->refcnt, reada_control_release);
951
952 return 0;
953}
954#endif
955
956void btrfs_reada_detach(void *handle)
957{
958 struct reada_control *rc = handle;
959
960 kref_put(&rc->refcnt, reada_control_release);
961}