Paul Mackerras | 4574910 | 2009-01-09 20:21:55 +1100 | [diff] [blame^] | 1 | /* |
| 2 | * Performance counter support - powerpc architecture code |
| 3 | * |
| 4 | * Copyright 2008-2009 Paul Mackerras, IBM Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version |
| 9 | * 2 of the License, or (at your option) any later version. |
| 10 | */ |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/sched.h> |
| 13 | #include <linux/perf_counter.h> |
| 14 | #include <linux/percpu.h> |
| 15 | #include <linux/hardirq.h> |
| 16 | #include <asm/reg.h> |
| 17 | #include <asm/pmc.h> |
| 18 | |
| 19 | struct cpu_hw_counters { |
| 20 | int n_counters; |
| 21 | int n_percpu; |
| 22 | int disabled; |
| 23 | int n_added; |
| 24 | struct perf_counter *counter[MAX_HWCOUNTERS]; |
| 25 | unsigned int events[MAX_HWCOUNTERS]; |
| 26 | u64 mmcr[3]; |
| 27 | }; |
| 28 | DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); |
| 29 | |
| 30 | struct power_pmu *ppmu; |
| 31 | |
| 32 | void perf_counter_print_debug(void) |
| 33 | { |
| 34 | } |
| 35 | |
| 36 | /* |
| 37 | * Return 1 for a software counter, 0 for a hardware counter |
| 38 | */ |
| 39 | static inline int is_software_counter(struct perf_counter *counter) |
| 40 | { |
| 41 | return !counter->hw_event.raw && counter->hw_event.type < 0; |
| 42 | } |
| 43 | |
| 44 | /* |
| 45 | * Read one performance monitor counter (PMC). |
| 46 | */ |
| 47 | static unsigned long read_pmc(int idx) |
| 48 | { |
| 49 | unsigned long val; |
| 50 | |
| 51 | switch (idx) { |
| 52 | case 1: |
| 53 | val = mfspr(SPRN_PMC1); |
| 54 | break; |
| 55 | case 2: |
| 56 | val = mfspr(SPRN_PMC2); |
| 57 | break; |
| 58 | case 3: |
| 59 | val = mfspr(SPRN_PMC3); |
| 60 | break; |
| 61 | case 4: |
| 62 | val = mfspr(SPRN_PMC4); |
| 63 | break; |
| 64 | case 5: |
| 65 | val = mfspr(SPRN_PMC5); |
| 66 | break; |
| 67 | case 6: |
| 68 | val = mfspr(SPRN_PMC6); |
| 69 | break; |
| 70 | case 7: |
| 71 | val = mfspr(SPRN_PMC7); |
| 72 | break; |
| 73 | case 8: |
| 74 | val = mfspr(SPRN_PMC8); |
| 75 | break; |
| 76 | default: |
| 77 | printk(KERN_ERR "oops trying to read PMC%d\n", idx); |
| 78 | val = 0; |
| 79 | } |
| 80 | return val; |
| 81 | } |
| 82 | |
| 83 | /* |
| 84 | * Write one PMC. |
| 85 | */ |
| 86 | static void write_pmc(int idx, unsigned long val) |
| 87 | { |
| 88 | switch (idx) { |
| 89 | case 1: |
| 90 | mtspr(SPRN_PMC1, val); |
| 91 | break; |
| 92 | case 2: |
| 93 | mtspr(SPRN_PMC2, val); |
| 94 | break; |
| 95 | case 3: |
| 96 | mtspr(SPRN_PMC3, val); |
| 97 | break; |
| 98 | case 4: |
| 99 | mtspr(SPRN_PMC4, val); |
| 100 | break; |
| 101 | case 5: |
| 102 | mtspr(SPRN_PMC5, val); |
| 103 | break; |
| 104 | case 6: |
| 105 | mtspr(SPRN_PMC6, val); |
| 106 | break; |
| 107 | case 7: |
| 108 | mtspr(SPRN_PMC7, val); |
| 109 | break; |
| 110 | case 8: |
| 111 | mtspr(SPRN_PMC8, val); |
| 112 | break; |
| 113 | default: |
| 114 | printk(KERN_ERR "oops trying to write PMC%d\n", idx); |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * Check if a set of events can all go on the PMU at once. |
| 120 | * If they can't, this will look at alternative codes for the events |
| 121 | * and see if any combination of alternative codes is feasible. |
| 122 | * The feasible set is returned in event[]. |
| 123 | */ |
| 124 | static int power_check_constraints(unsigned int event[], int n_ev) |
| 125 | { |
| 126 | u64 mask, value, nv; |
| 127 | unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; |
| 128 | u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; |
| 129 | u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; |
| 130 | u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS]; |
| 131 | int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS]; |
| 132 | int i, j; |
| 133 | u64 addf = ppmu->add_fields; |
| 134 | u64 tadd = ppmu->test_adder; |
| 135 | |
| 136 | if (n_ev > ppmu->n_counter) |
| 137 | return -1; |
| 138 | |
| 139 | /* First see if the events will go on as-is */ |
| 140 | for (i = 0; i < n_ev; ++i) { |
| 141 | alternatives[i][0] = event[i]; |
| 142 | if (ppmu->get_constraint(event[i], &amasks[i][0], |
| 143 | &avalues[i][0])) |
| 144 | return -1; |
| 145 | choice[i] = 0; |
| 146 | } |
| 147 | value = mask = 0; |
| 148 | for (i = 0; i < n_ev; ++i) { |
| 149 | nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf); |
| 150 | if ((((nv + tadd) ^ value) & mask) != 0 || |
| 151 | (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0) |
| 152 | break; |
| 153 | value = nv; |
| 154 | mask |= amasks[i][0]; |
| 155 | } |
| 156 | if (i == n_ev) |
| 157 | return 0; /* all OK */ |
| 158 | |
| 159 | /* doesn't work, gather alternatives... */ |
| 160 | if (!ppmu->get_alternatives) |
| 161 | return -1; |
| 162 | for (i = 0; i < n_ev; ++i) { |
| 163 | n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]); |
| 164 | for (j = 1; j < n_alt[i]; ++j) |
| 165 | ppmu->get_constraint(alternatives[i][j], |
| 166 | &amasks[i][j], &avalues[i][j]); |
| 167 | } |
| 168 | |
| 169 | /* enumerate all possibilities and see if any will work */ |
| 170 | i = 0; |
| 171 | j = -1; |
| 172 | value = mask = nv = 0; |
| 173 | while (i < n_ev) { |
| 174 | if (j >= 0) { |
| 175 | /* we're backtracking, restore context */ |
| 176 | value = svalues[i]; |
| 177 | mask = smasks[i]; |
| 178 | j = choice[i]; |
| 179 | } |
| 180 | /* |
| 181 | * See if any alternative k for event i, |
| 182 | * where k > j, will satisfy the constraints. |
| 183 | */ |
| 184 | while (++j < n_alt[i]) { |
| 185 | nv = (value | avalues[i][j]) + |
| 186 | (value & avalues[i][j] & addf); |
| 187 | if ((((nv + tadd) ^ value) & mask) == 0 && |
| 188 | (((nv + tadd) ^ avalues[i][j]) |
| 189 | & amasks[i][j]) == 0) |
| 190 | break; |
| 191 | } |
| 192 | if (j >= n_alt[i]) { |
| 193 | /* |
| 194 | * No feasible alternative, backtrack |
| 195 | * to event i-1 and continue enumerating its |
| 196 | * alternatives from where we got up to. |
| 197 | */ |
| 198 | if (--i < 0) |
| 199 | return -1; |
| 200 | } else { |
| 201 | /* |
| 202 | * Found a feasible alternative for event i, |
| 203 | * remember where we got up to with this event, |
| 204 | * go on to the next event, and start with |
| 205 | * the first alternative for it. |
| 206 | */ |
| 207 | choice[i] = j; |
| 208 | svalues[i] = value; |
| 209 | smasks[i] = mask; |
| 210 | value = nv; |
| 211 | mask |= amasks[i][j]; |
| 212 | ++i; |
| 213 | j = -1; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | /* OK, we have a feasible combination, tell the caller the solution */ |
| 218 | for (i = 0; i < n_ev; ++i) |
| 219 | event[i] = alternatives[i][choice[i]]; |
| 220 | return 0; |
| 221 | } |
| 222 | |
| 223 | static void power_perf_read(struct perf_counter *counter) |
| 224 | { |
| 225 | long val, delta, prev; |
| 226 | |
| 227 | if (!counter->hw.idx) |
| 228 | return; |
| 229 | /* |
| 230 | * Performance monitor interrupts come even when interrupts |
| 231 | * are soft-disabled, as long as interrupts are hard-enabled. |
| 232 | * Therefore we treat them like NMIs. |
| 233 | */ |
| 234 | do { |
| 235 | prev = atomic64_read(&counter->hw.prev_count); |
| 236 | barrier(); |
| 237 | val = read_pmc(counter->hw.idx); |
| 238 | } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev); |
| 239 | |
| 240 | /* The counters are only 32 bits wide */ |
| 241 | delta = (val - prev) & 0xfffffffful; |
| 242 | atomic64_add(delta, &counter->count); |
| 243 | atomic64_sub(delta, &counter->hw.period_left); |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Disable all counters to prevent PMU interrupts and to allow |
| 248 | * counters to be added or removed. |
| 249 | */ |
| 250 | u64 hw_perf_save_disable(void) |
| 251 | { |
| 252 | struct cpu_hw_counters *cpuhw; |
| 253 | unsigned long ret; |
| 254 | unsigned long flags; |
| 255 | |
| 256 | local_irq_save(flags); |
| 257 | cpuhw = &__get_cpu_var(cpu_hw_counters); |
| 258 | |
| 259 | ret = cpuhw->disabled; |
| 260 | if (!ret) { |
| 261 | cpuhw->disabled = 1; |
| 262 | cpuhw->n_added = 0; |
| 263 | |
| 264 | /* |
| 265 | * Set the 'freeze counters' bit. |
| 266 | * The barrier is to make sure the mtspr has been |
| 267 | * executed and the PMU has frozen the counters |
| 268 | * before we return. |
| 269 | */ |
| 270 | mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); |
| 271 | mb(); |
| 272 | } |
| 273 | local_irq_restore(flags); |
| 274 | return ret; |
| 275 | } |
| 276 | |
| 277 | /* |
| 278 | * Re-enable all counters if disable == 0. |
| 279 | * If we were previously disabled and counters were added, then |
| 280 | * put the new config on the PMU. |
| 281 | */ |
| 282 | void hw_perf_restore(u64 disable) |
| 283 | { |
| 284 | struct perf_counter *counter; |
| 285 | struct cpu_hw_counters *cpuhw; |
| 286 | unsigned long flags; |
| 287 | long i; |
| 288 | unsigned long val; |
| 289 | s64 left; |
| 290 | unsigned int hwc_index[MAX_HWCOUNTERS]; |
| 291 | |
| 292 | if (disable) |
| 293 | return; |
| 294 | local_irq_save(flags); |
| 295 | cpuhw = &__get_cpu_var(cpu_hw_counters); |
| 296 | cpuhw->disabled = 0; |
| 297 | |
| 298 | /* |
| 299 | * If we didn't change anything, or only removed counters, |
| 300 | * no need to recalculate MMCR* settings and reset the PMCs. |
| 301 | * Just reenable the PMU with the current MMCR* settings |
| 302 | * (possibly updated for removal of counters). |
| 303 | */ |
| 304 | if (!cpuhw->n_added) { |
| 305 | mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); |
| 306 | mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); |
| 307 | mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); |
| 308 | goto out; |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * Compute MMCR* values for the new set of counters |
| 313 | */ |
| 314 | if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index, |
| 315 | cpuhw->mmcr)) { |
| 316 | /* shouldn't ever get here */ |
| 317 | printk(KERN_ERR "oops compute_mmcr failed\n"); |
| 318 | goto out; |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * Write the new configuration to MMCR* with the freeze |
| 323 | * bit set and set the hardware counters to their initial values. |
| 324 | * Then unfreeze the counters. |
| 325 | */ |
| 326 | mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); |
| 327 | mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); |
| 328 | mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) |
| 329 | | MMCR0_FC); |
| 330 | |
| 331 | /* |
| 332 | * Read off any pre-existing counters that need to move |
| 333 | * to another PMC. |
| 334 | */ |
| 335 | for (i = 0; i < cpuhw->n_counters; ++i) { |
| 336 | counter = cpuhw->counter[i]; |
| 337 | if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) { |
| 338 | power_perf_read(counter); |
| 339 | write_pmc(counter->hw.idx, 0); |
| 340 | counter->hw.idx = 0; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * Initialize the PMCs for all the new and moved counters. |
| 346 | */ |
| 347 | for (i = 0; i < cpuhw->n_counters; ++i) { |
| 348 | counter = cpuhw->counter[i]; |
| 349 | if (counter->hw.idx) |
| 350 | continue; |
| 351 | val = 0; |
| 352 | if (counter->hw_event.irq_period) { |
| 353 | left = atomic64_read(&counter->hw.period_left); |
| 354 | if (left < 0x80000000L) |
| 355 | val = 0x80000000L - left; |
| 356 | } |
| 357 | atomic64_set(&counter->hw.prev_count, val); |
| 358 | counter->hw.idx = hwc_index[i] + 1; |
| 359 | write_pmc(counter->hw.idx, val); |
| 360 | } |
| 361 | mb(); |
| 362 | cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; |
| 363 | mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); |
| 364 | |
| 365 | out: |
| 366 | local_irq_restore(flags); |
| 367 | } |
| 368 | |
| 369 | static int collect_events(struct perf_counter *group, int max_count, |
| 370 | struct perf_counter *ctrs[], unsigned int *events) |
| 371 | { |
| 372 | int n = 0; |
| 373 | struct perf_counter *counter; |
| 374 | |
| 375 | if (!is_software_counter(group)) { |
| 376 | if (n >= max_count) |
| 377 | return -1; |
| 378 | ctrs[n] = group; |
| 379 | events[n++] = group->hw.config; |
| 380 | } |
| 381 | list_for_each_entry(counter, &group->sibling_list, list_entry) { |
| 382 | if (!is_software_counter(counter) && |
| 383 | counter->state != PERF_COUNTER_STATE_OFF) { |
| 384 | if (n >= max_count) |
| 385 | return -1; |
| 386 | ctrs[n] = counter; |
| 387 | events[n++] = counter->hw.config; |
| 388 | } |
| 389 | } |
| 390 | return n; |
| 391 | } |
| 392 | |
| 393 | static void counter_sched_in(struct perf_counter *counter, int cpu) |
| 394 | { |
| 395 | counter->state = PERF_COUNTER_STATE_ACTIVE; |
| 396 | counter->oncpu = cpu; |
| 397 | if (is_software_counter(counter)) |
| 398 | counter->hw_ops->enable(counter); |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * Called to enable a whole group of counters. |
| 403 | * Returns 1 if the group was enabled, or -EAGAIN if it could not be. |
| 404 | * Assumes the caller has disabled interrupts and has |
| 405 | * frozen the PMU with hw_perf_save_disable. |
| 406 | */ |
| 407 | int hw_perf_group_sched_in(struct perf_counter *group_leader, |
| 408 | struct perf_cpu_context *cpuctx, |
| 409 | struct perf_counter_context *ctx, int cpu) |
| 410 | { |
| 411 | struct cpu_hw_counters *cpuhw; |
| 412 | long i, n, n0; |
| 413 | struct perf_counter *sub; |
| 414 | |
| 415 | cpuhw = &__get_cpu_var(cpu_hw_counters); |
| 416 | n0 = cpuhw->n_counters; |
| 417 | n = collect_events(group_leader, ppmu->n_counter - n0, |
| 418 | &cpuhw->counter[n0], &cpuhw->events[n0]); |
| 419 | if (n < 0) |
| 420 | return -EAGAIN; |
| 421 | if (power_check_constraints(cpuhw->events, n + n0)) |
| 422 | return -EAGAIN; |
| 423 | cpuhw->n_counters = n0 + n; |
| 424 | cpuhw->n_added += n; |
| 425 | |
| 426 | /* |
| 427 | * OK, this group can go on; update counter states etc., |
| 428 | * and enable any software counters |
| 429 | */ |
| 430 | for (i = n0; i < n0 + n; ++i) |
| 431 | cpuhw->counter[i]->hw.config = cpuhw->events[i]; |
| 432 | n = 1; |
| 433 | counter_sched_in(group_leader, cpu); |
| 434 | list_for_each_entry(sub, &group_leader->sibling_list, list_entry) { |
| 435 | if (sub->state != PERF_COUNTER_STATE_OFF) { |
| 436 | counter_sched_in(sub, cpu); |
| 437 | ++n; |
| 438 | } |
| 439 | } |
| 440 | cpuctx->active_oncpu += n; |
| 441 | ctx->nr_active += n; |
| 442 | |
| 443 | return 1; |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * Add a counter to the PMU. |
| 448 | * If all counters are not already frozen, then we disable and |
| 449 | * re-enable the PMU in order to get hw_perf_restore to do the |
| 450 | * actual work of reconfiguring the PMU. |
| 451 | */ |
| 452 | static int power_perf_enable(struct perf_counter *counter) |
| 453 | { |
| 454 | struct cpu_hw_counters *cpuhw; |
| 455 | unsigned long flags; |
| 456 | u64 pmudis; |
| 457 | int n0; |
| 458 | int ret = -EAGAIN; |
| 459 | |
| 460 | local_irq_save(flags); |
| 461 | pmudis = hw_perf_save_disable(); |
| 462 | |
| 463 | /* |
| 464 | * Add the counter to the list (if there is room) |
| 465 | * and check whether the total set is still feasible. |
| 466 | */ |
| 467 | cpuhw = &__get_cpu_var(cpu_hw_counters); |
| 468 | n0 = cpuhw->n_counters; |
| 469 | if (n0 >= ppmu->n_counter) |
| 470 | goto out; |
| 471 | cpuhw->counter[n0] = counter; |
| 472 | cpuhw->events[n0] = counter->hw.config; |
| 473 | if (power_check_constraints(cpuhw->events, n0 + 1)) |
| 474 | goto out; |
| 475 | |
| 476 | counter->hw.config = cpuhw->events[n0]; |
| 477 | ++cpuhw->n_counters; |
| 478 | ++cpuhw->n_added; |
| 479 | |
| 480 | ret = 0; |
| 481 | out: |
| 482 | hw_perf_restore(pmudis); |
| 483 | local_irq_restore(flags); |
| 484 | return ret; |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * Remove a counter from the PMU. |
| 489 | */ |
| 490 | static void power_perf_disable(struct perf_counter *counter) |
| 491 | { |
| 492 | struct cpu_hw_counters *cpuhw; |
| 493 | long i; |
| 494 | u64 pmudis; |
| 495 | unsigned long flags; |
| 496 | |
| 497 | local_irq_save(flags); |
| 498 | pmudis = hw_perf_save_disable(); |
| 499 | |
| 500 | power_perf_read(counter); |
| 501 | |
| 502 | cpuhw = &__get_cpu_var(cpu_hw_counters); |
| 503 | for (i = 0; i < cpuhw->n_counters; ++i) { |
| 504 | if (counter == cpuhw->counter[i]) { |
| 505 | while (++i < cpuhw->n_counters) |
| 506 | cpuhw->counter[i-1] = cpuhw->counter[i]; |
| 507 | --cpuhw->n_counters; |
| 508 | ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr); |
| 509 | write_pmc(counter->hw.idx, 0); |
| 510 | counter->hw.idx = 0; |
| 511 | break; |
| 512 | } |
| 513 | } |
| 514 | if (cpuhw->n_counters == 0) { |
| 515 | /* disable exceptions if no counters are running */ |
| 516 | cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); |
| 517 | } |
| 518 | |
| 519 | hw_perf_restore(pmudis); |
| 520 | local_irq_restore(flags); |
| 521 | } |
| 522 | |
| 523 | struct hw_perf_counter_ops power_perf_ops = { |
| 524 | .enable = power_perf_enable, |
| 525 | .disable = power_perf_disable, |
| 526 | .read = power_perf_read |
| 527 | }; |
| 528 | |
| 529 | const struct hw_perf_counter_ops * |
| 530 | hw_perf_counter_init(struct perf_counter *counter) |
| 531 | { |
| 532 | unsigned long ev; |
| 533 | struct perf_counter *ctrs[MAX_HWCOUNTERS]; |
| 534 | unsigned int events[MAX_HWCOUNTERS]; |
| 535 | int n; |
| 536 | |
| 537 | if (!ppmu) |
| 538 | return NULL; |
| 539 | if ((s64)counter->hw_event.irq_period < 0) |
| 540 | return NULL; |
| 541 | ev = counter->hw_event.type; |
| 542 | if (!counter->hw_event.raw) { |
| 543 | if (ev >= ppmu->n_generic || |
| 544 | ppmu->generic_events[ev] == 0) |
| 545 | return NULL; |
| 546 | ev = ppmu->generic_events[ev]; |
| 547 | } |
| 548 | counter->hw.config_base = ev; |
| 549 | counter->hw.idx = 0; |
| 550 | |
| 551 | /* |
| 552 | * If this is in a group, check if it can go on with all the |
| 553 | * other hardware counters in the group. We assume the counter |
| 554 | * hasn't been linked into its leader's sibling list at this point. |
| 555 | */ |
| 556 | n = 0; |
| 557 | if (counter->group_leader != counter) { |
| 558 | n = collect_events(counter->group_leader, ppmu->n_counter - 1, |
| 559 | ctrs, events); |
| 560 | if (n < 0) |
| 561 | return NULL; |
| 562 | } |
| 563 | events[n++] = ev; |
| 564 | if (power_check_constraints(events, n)) |
| 565 | return NULL; |
| 566 | |
| 567 | counter->hw.config = events[n - 1]; |
| 568 | atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period); |
| 569 | return &power_perf_ops; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Handle wakeups. |
| 574 | */ |
| 575 | void perf_counter_do_pending(void) |
| 576 | { |
| 577 | int i; |
| 578 | struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); |
| 579 | struct perf_counter *counter; |
| 580 | |
| 581 | set_perf_counter_pending(0); |
| 582 | for (i = 0; i < cpuhw->n_counters; ++i) { |
| 583 | counter = cpuhw->counter[i]; |
| 584 | if (counter && counter->wakeup_pending) { |
| 585 | counter->wakeup_pending = 0; |
| 586 | wake_up(&counter->waitq); |
| 587 | } |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | /* |
| 592 | * Record data for an irq counter. |
| 593 | * This function was lifted from the x86 code; maybe it should |
| 594 | * go in the core? |
| 595 | */ |
| 596 | static void perf_store_irq_data(struct perf_counter *counter, u64 data) |
| 597 | { |
| 598 | struct perf_data *irqdata = counter->irqdata; |
| 599 | |
| 600 | if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) { |
| 601 | irqdata->overrun++; |
| 602 | } else { |
| 603 | u64 *p = (u64 *) &irqdata->data[irqdata->len]; |
| 604 | |
| 605 | *p = data; |
| 606 | irqdata->len += sizeof(u64); |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * Record all the values of the counters in a group |
| 612 | */ |
| 613 | static void perf_handle_group(struct perf_counter *counter) |
| 614 | { |
| 615 | struct perf_counter *leader, *sub; |
| 616 | |
| 617 | leader = counter->group_leader; |
| 618 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { |
| 619 | if (sub != counter) |
| 620 | sub->hw_ops->read(sub); |
| 621 | perf_store_irq_data(counter, sub->hw_event.type); |
| 622 | perf_store_irq_data(counter, atomic64_read(&sub->count)); |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | /* |
| 627 | * A counter has overflowed; update its count and record |
| 628 | * things if requested. Note that interrupts are hard-disabled |
| 629 | * here so there is no possibility of being interrupted. |
| 630 | */ |
| 631 | static void record_and_restart(struct perf_counter *counter, long val, |
| 632 | struct pt_regs *regs) |
| 633 | { |
| 634 | s64 prev, delta, left; |
| 635 | int record = 0; |
| 636 | |
| 637 | /* we don't have to worry about interrupts here */ |
| 638 | prev = atomic64_read(&counter->hw.prev_count); |
| 639 | delta = (val - prev) & 0xfffffffful; |
| 640 | atomic64_add(delta, &counter->count); |
| 641 | |
| 642 | /* |
| 643 | * See if the total period for this counter has expired, |
| 644 | * and update for the next period. |
| 645 | */ |
| 646 | val = 0; |
| 647 | left = atomic64_read(&counter->hw.period_left) - delta; |
| 648 | if (counter->hw_event.irq_period) { |
| 649 | if (left <= 0) { |
| 650 | left += counter->hw_event.irq_period; |
| 651 | if (left <= 0) |
| 652 | left = counter->hw_event.irq_period; |
| 653 | record = 1; |
| 654 | } |
| 655 | if (left < 0x80000000L) |
| 656 | val = 0x80000000L - left; |
| 657 | } |
| 658 | write_pmc(counter->hw.idx, val); |
| 659 | atomic64_set(&counter->hw.prev_count, val); |
| 660 | atomic64_set(&counter->hw.period_left, left); |
| 661 | |
| 662 | /* |
| 663 | * Finally record data if requested. |
| 664 | */ |
| 665 | if (record) { |
| 666 | switch (counter->hw_event.record_type) { |
| 667 | case PERF_RECORD_SIMPLE: |
| 668 | break; |
| 669 | case PERF_RECORD_IRQ: |
| 670 | perf_store_irq_data(counter, instruction_pointer(regs)); |
| 671 | counter->wakeup_pending = 1; |
| 672 | break; |
| 673 | case PERF_RECORD_GROUP: |
| 674 | perf_handle_group(counter); |
| 675 | counter->wakeup_pending = 1; |
| 676 | break; |
| 677 | } |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | /* |
| 682 | * Performance monitor interrupt stuff |
| 683 | */ |
| 684 | static void perf_counter_interrupt(struct pt_regs *regs) |
| 685 | { |
| 686 | int i; |
| 687 | struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); |
| 688 | struct perf_counter *counter; |
| 689 | long val; |
| 690 | int need_wakeup = 0, found = 0; |
| 691 | |
| 692 | for (i = 0; i < cpuhw->n_counters; ++i) { |
| 693 | counter = cpuhw->counter[i]; |
| 694 | val = read_pmc(counter->hw.idx); |
| 695 | if ((int)val < 0) { |
| 696 | /* counter has overflowed */ |
| 697 | found = 1; |
| 698 | record_and_restart(counter, val, regs); |
| 699 | if (counter->wakeup_pending) |
| 700 | need_wakeup = 1; |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | * In case we didn't find and reset the counter that caused |
| 706 | * the interrupt, scan all counters and reset any that are |
| 707 | * negative, to avoid getting continual interrupts. |
| 708 | * Any that we processed in the previous loop will not be negative. |
| 709 | */ |
| 710 | if (!found) { |
| 711 | for (i = 0; i < ppmu->n_counter; ++i) { |
| 712 | val = read_pmc(i + 1); |
| 713 | if ((int)val < 0) |
| 714 | write_pmc(i + 1, 0); |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | /* |
| 719 | * Reset MMCR0 to its normal value. This will set PMXE and |
| 720 | * clear FC (freeze counters) and PMAO (perf mon alert occurred) |
| 721 | * and thus allow interrupts to occur again. |
| 722 | * XXX might want to use MSR.PM to keep the counters frozen until |
| 723 | * we get back out of this interrupt. |
| 724 | */ |
| 725 | mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); |
| 726 | |
| 727 | /* |
| 728 | * If we need a wakeup, check whether interrupts were soft-enabled |
| 729 | * when we took the interrupt. If they were, we can wake stuff up |
| 730 | * immediately; otherwise we'll have to set a flag and do the |
| 731 | * wakeup when interrupts get soft-enabled. |
| 732 | */ |
| 733 | if (need_wakeup) { |
| 734 | if (regs->softe) { |
| 735 | irq_enter(); |
| 736 | perf_counter_do_pending(); |
| 737 | irq_exit(); |
| 738 | } else { |
| 739 | set_perf_counter_pending(1); |
| 740 | } |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | static int init_perf_counters(void) |
| 745 | { |
| 746 | if (reserve_pmc_hardware(perf_counter_interrupt)) { |
| 747 | printk(KERN_ERR "Couldn't init performance monitor subsystem\n"); |
| 748 | return -EBUSY; |
| 749 | } |
| 750 | |
| 751 | return 0; |
| 752 | } |
| 753 | |
| 754 | arch_initcall(init_perf_counters); |