blob: a38ee0a0650e3ddec11ed961684a30c32f113058 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Clark Williams8bd75c72013-02-07 09:47:07 -06004#include <linux/sched/rt.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02005#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02008#include <linux/tick.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02009
Peter Zijlstra391e43d2011-11-15 17:14:39 +010010#include "cpupri.h"
Li Zefan60fed782013-03-29 14:36:43 +080011#include "cpuacct.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +020012
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040013struct rq;
14
Peter Zijlstra029632f2011-10-25 10:00:11 +020015extern __read_mostly int scheduler_running;
16
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040017extern unsigned long calc_load_update;
18extern atomic_long_t calc_load_tasks;
19
20extern long calc_load_fold_active(struct rq *this_rq);
21extern void update_cpu_load_active(struct rq *this_rq);
22
Peter Zijlstra029632f2011-10-25 10:00:11 +020023/*
24 * Convert user-nice values [ -20 ... 0 ... 19 ]
25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
26 * and back.
27 */
28#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
29#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
30#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
31
32/*
33 * 'User priority' is the nice value converted to something we
34 * can work with better when scaling various scheduler parameters,
35 * it's a [ 0 ... 39 ] range.
36 */
37#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
38#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
39#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
40
41/*
42 * Helpers for converting nanosecond timing to jiffy resolution
43 */
44#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
45
Li Zefancc1f4b12013-03-05 16:06:09 +080046/*
47 * Increase resolution of nice-level calculations for 64-bit architectures.
48 * The extra resolution improves shares distribution and load balancing of
49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
50 * hierarchies, especially on larger systems. This is not a user-visible change
51 * and does not change the user-interface for setting shares/weights.
52 *
53 * We increase resolution only if we have enough bits to allow this increased
54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
56 * increased costs.
57 */
58#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
59# define SCHED_LOAD_RESOLUTION 10
60# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
61# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
62#else
63# define SCHED_LOAD_RESOLUTION 0
64# define scale_load(w) (w)
65# define scale_load_down(w) (w)
66#endif
67
68#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
69#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
70
Peter Zijlstra029632f2011-10-25 10:00:11 +020071#define NICE_0_LOAD SCHED_LOAD_SCALE
72#define NICE_0_SHIFT SCHED_LOAD_SHIFT
73
74/*
75 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020076 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020077
78/*
79 * single value that denotes runtime == period, ie unlimited time.
80 */
81#define RUNTIME_INF ((u64)~0ULL)
82
83static inline int rt_policy(int policy)
84{
85 if (policy == SCHED_FIFO || policy == SCHED_RR)
86 return 1;
87 return 0;
88}
89
90static inline int task_has_rt_policy(struct task_struct *p)
91{
92 return rt_policy(p->policy);
93}
94
95/*
96 * This is the priority-queue data structure of the RT scheduling class:
97 */
98struct rt_prio_array {
99 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
100 struct list_head queue[MAX_RT_PRIO];
101};
102
103struct rt_bandwidth {
104 /* nests inside the rq lock: */
105 raw_spinlock_t rt_runtime_lock;
106 ktime_t rt_period;
107 u64 rt_runtime;
108 struct hrtimer rt_period_timer;
109};
110
111extern struct mutex sched_domains_mutex;
112
113#ifdef CONFIG_CGROUP_SCHED
114
115#include <linux/cgroup.h>
116
117struct cfs_rq;
118struct rt_rq;
119
Mike Galbraith35cf4e52012-08-07 05:00:13 +0200120extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200121
122struct cfs_bandwidth {
123#ifdef CONFIG_CFS_BANDWIDTH
124 raw_spinlock_t lock;
125 ktime_t period;
126 u64 quota, runtime;
127 s64 hierarchal_quota;
128 u64 runtime_expires;
129
130 int idle, timer_active;
131 struct hrtimer period_timer, slack_timer;
132 struct list_head throttled_cfs_rq;
133
134 /* statistics */
135 int nr_periods, nr_throttled;
136 u64 throttled_time;
137#endif
138};
139
140/* task group related information */
141struct task_group {
142 struct cgroup_subsys_state css;
143
144#ifdef CONFIG_FAIR_GROUP_SCHED
145 /* schedulable entities of this group on each cpu */
146 struct sched_entity **se;
147 /* runqueue "owned" by this group on each cpu */
148 struct cfs_rq **cfs_rq;
149 unsigned long shares;
150
151 atomic_t load_weight;
Paul Turnerc566e8e2012-10-04 13:18:30 +0200152 atomic64_t load_avg;
Paul Turnerbb17f652012-10-04 13:18:31 +0200153 atomic_t runnable_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200154#endif
155
156#ifdef CONFIG_RT_GROUP_SCHED
157 struct sched_rt_entity **rt_se;
158 struct rt_rq **rt_rq;
159
160 struct rt_bandwidth rt_bandwidth;
161#endif
162
163 struct rcu_head rcu;
164 struct list_head list;
165
166 struct task_group *parent;
167 struct list_head siblings;
168 struct list_head children;
169
170#ifdef CONFIG_SCHED_AUTOGROUP
171 struct autogroup *autogroup;
172#endif
173
174 struct cfs_bandwidth cfs_bandwidth;
175};
176
177#ifdef CONFIG_FAIR_GROUP_SCHED
178#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
179
180/*
181 * A weight of 0 or 1 can cause arithmetics problems.
182 * A weight of a cfs_rq is the sum of weights of which entities
183 * are queued on this cfs_rq, so a weight of a entity should not be
184 * too large, so as the shares value of a task group.
185 * (The default weight is 1024 - so there's no practical
186 * limitation from this.)
187 */
188#define MIN_SHARES (1UL << 1)
189#define MAX_SHARES (1UL << 18)
190#endif
191
Peter Zijlstra029632f2011-10-25 10:00:11 +0200192typedef int (*tg_visitor)(struct task_group *, void *);
193
194extern int walk_tg_tree_from(struct task_group *from,
195 tg_visitor down, tg_visitor up, void *data);
196
197/*
198 * Iterate the full tree, calling @down when first entering a node and @up when
199 * leaving it for the final time.
200 *
201 * Caller must hold rcu_lock or sufficient equivalent.
202 */
203static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
204{
205 return walk_tg_tree_from(&root_task_group, down, up, data);
206}
207
208extern int tg_nop(struct task_group *tg, void *data);
209
210extern void free_fair_sched_group(struct task_group *tg);
211extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
212extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
213extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
214 struct sched_entity *se, int cpu,
215 struct sched_entity *parent);
216extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
217extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
218
219extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
220extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
221extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
222
223extern void free_rt_sched_group(struct task_group *tg);
224extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
225extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
226 struct sched_rt_entity *rt_se, int cpu,
227 struct sched_rt_entity *parent);
228
Li Zefan25cc7da2013-03-05 16:07:33 +0800229extern struct task_group *sched_create_group(struct task_group *parent);
230extern void sched_online_group(struct task_group *tg,
231 struct task_group *parent);
232extern void sched_destroy_group(struct task_group *tg);
233extern void sched_offline_group(struct task_group *tg);
234
235extern void sched_move_task(struct task_struct *tsk);
236
237#ifdef CONFIG_FAIR_GROUP_SCHED
238extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
239#endif
240
Peter Zijlstra029632f2011-10-25 10:00:11 +0200241#else /* CONFIG_CGROUP_SCHED */
242
243struct cfs_bandwidth { };
244
245#endif /* CONFIG_CGROUP_SCHED */
246
247/* CFS-related fields in a runqueue */
248struct cfs_rq {
249 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200250 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200251
252 u64 exec_clock;
253 u64 min_vruntime;
254#ifndef CONFIG_64BIT
255 u64 min_vruntime_copy;
256#endif
257
258 struct rb_root tasks_timeline;
259 struct rb_node *rb_leftmost;
260
Peter Zijlstra029632f2011-10-25 10:00:11 +0200261 /*
262 * 'curr' points to currently running entity on this cfs_rq.
263 * It is set to NULL otherwise (i.e when none are currently running).
264 */
265 struct sched_entity *curr, *next, *last, *skip;
266
267#ifdef CONFIG_SCHED_DEBUG
268 unsigned int nr_spread_over;
269#endif
270
Paul Turner2dac7542012-10-04 13:18:30 +0200271#ifdef CONFIG_SMP
Paul Turnerf4e26b12012-10-04 13:18:32 +0200272/*
273 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
274 * removed when useful for applications beyond shares distribution (e.g.
275 * load-balance).
276 */
277#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turner2dac7542012-10-04 13:18:30 +0200278 /*
279 * CFS Load tracking
280 * Under CFS, load is tracked on a per-entity basis and aggregated up.
281 * This allows for the description of both thread and group usage (in
282 * the FAIR_GROUP_SCHED case).
283 */
Paul Turner9ee474f2012-10-04 13:18:30 +0200284 u64 runnable_load_avg, blocked_load_avg;
Paul Turneraff3e492012-10-04 13:18:30 +0200285 atomic64_t decay_counter, removed_load;
Paul Turner9ee474f2012-10-04 13:18:30 +0200286 u64 last_decay;
Paul Turnerf4e26b12012-10-04 13:18:32 +0200287#endif /* CONFIG_FAIR_GROUP_SCHED */
288/* These always depend on CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +0200289#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turnerbb17f652012-10-04 13:18:31 +0200290 u32 tg_runnable_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +0200291 u64 tg_load_contrib;
Paul Turner82958362012-10-04 13:18:31 +0200292#endif /* CONFIG_FAIR_GROUP_SCHED */
293
294 /*
295 * h_load = weight * f(tg)
296 *
297 * Where f(tg) is the recursive weight fraction assigned to
298 * this group.
299 */
300 unsigned long h_load;
301#endif /* CONFIG_SMP */
302
Peter Zijlstra029632f2011-10-25 10:00:11 +0200303#ifdef CONFIG_FAIR_GROUP_SCHED
304 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
305
306 /*
307 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
308 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
309 * (like users, containers etc.)
310 *
311 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
312 * list is used during load balance.
313 */
314 int on_list;
315 struct list_head leaf_cfs_rq_list;
316 struct task_group *tg; /* group that "owns" this runqueue */
317
Peter Zijlstra029632f2011-10-25 10:00:11 +0200318#ifdef CONFIG_CFS_BANDWIDTH
319 int runtime_enabled;
320 u64 runtime_expires;
321 s64 runtime_remaining;
322
Paul Turnerf1b17282012-10-04 13:18:31 +0200323 u64 throttled_clock, throttled_clock_task;
324 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200325 int throttled, throttle_count;
326 struct list_head throttled_list;
327#endif /* CONFIG_CFS_BANDWIDTH */
328#endif /* CONFIG_FAIR_GROUP_SCHED */
329};
330
331static inline int rt_bandwidth_enabled(void)
332{
333 return sysctl_sched_rt_runtime >= 0;
334}
335
336/* Real-Time classes' related field in a runqueue: */
337struct rt_rq {
338 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200339 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200340#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
341 struct {
342 int curr; /* highest queued rt task prio */
343#ifdef CONFIG_SMP
344 int next; /* next highest */
345#endif
346 } highest_prio;
347#endif
348#ifdef CONFIG_SMP
349 unsigned long rt_nr_migratory;
350 unsigned long rt_nr_total;
351 int overloaded;
352 struct plist_head pushable_tasks;
353#endif
354 int rt_throttled;
355 u64 rt_time;
356 u64 rt_runtime;
357 /* Nests inside the rq lock: */
358 raw_spinlock_t rt_runtime_lock;
359
360#ifdef CONFIG_RT_GROUP_SCHED
361 unsigned long rt_nr_boosted;
362
363 struct rq *rq;
364 struct list_head leaf_rt_rq_list;
365 struct task_group *tg;
366#endif
367};
368
369#ifdef CONFIG_SMP
370
371/*
372 * We add the notion of a root-domain which will be used to define per-domain
373 * variables. Each exclusive cpuset essentially defines an island domain by
374 * fully partitioning the member cpus from any other cpuset. Whenever a new
375 * exclusive cpuset is created, we also create and attach a new root-domain
376 * object.
377 *
378 */
379struct root_domain {
380 atomic_t refcount;
381 atomic_t rto_count;
382 struct rcu_head rcu;
383 cpumask_var_t span;
384 cpumask_var_t online;
385
386 /*
387 * The "RT overload" flag: it gets set if a CPU has more than
388 * one runnable RT task.
389 */
390 cpumask_var_t rto_mask;
391 struct cpupri cpupri;
392};
393
394extern struct root_domain def_root_domain;
395
396#endif /* CONFIG_SMP */
397
398/*
399 * This is the main, per-CPU runqueue data structure.
400 *
401 * Locking rule: those places that want to lock multiple runqueues
402 * (such as the load balancing or the thread migration code), lock
403 * acquire operations must be ordered by ascending &runqueue.
404 */
405struct rq {
406 /* runqueue lock: */
407 raw_spinlock_t lock;
408
409 /*
410 * nr_running and cpu_load should be in the same cacheline because
411 * remote CPUs use both these fields when doing load calculation.
412 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200413 unsigned int nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200414 #define CPU_LOAD_IDX_MAX 5
415 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
416 unsigned long last_load_update_tick;
Frederic Weisbecker3451d022011-08-10 23:21:01 +0200417#ifdef CONFIG_NO_HZ_COMMON
Peter Zijlstra029632f2011-10-25 10:00:11 +0200418 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800419 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200420#endif
Frederic Weisbecker265f22a2013-05-03 03:39:05 +0200421#ifdef CONFIG_NO_HZ_FULL
422 unsigned long last_sched_tick;
423#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200424 int skip_clock_update;
425
426 /* capture load from *all* tasks on this cpu: */
427 struct load_weight load;
428 unsigned long nr_load_updates;
429 u64 nr_switches;
430
431 struct cfs_rq cfs;
432 struct rt_rq rt;
433
434#ifdef CONFIG_FAIR_GROUP_SCHED
435 /* list of leaf cfs_rq on this cpu: */
436 struct list_head leaf_cfs_rq_list;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200437#ifdef CONFIG_SMP
438 unsigned long h_load_throttle;
439#endif /* CONFIG_SMP */
440#endif /* CONFIG_FAIR_GROUP_SCHED */
441
Peter Zijlstra029632f2011-10-25 10:00:11 +0200442#ifdef CONFIG_RT_GROUP_SCHED
443 struct list_head leaf_rt_rq_list;
444#endif
445
446 /*
447 * This is part of a global counter where only the total sum
448 * over all CPUs matters. A task can increase this counter on
449 * one CPU and if it got migrated afterwards it may decrease
450 * it on another CPU. Always updated under the runqueue lock:
451 */
452 unsigned long nr_uninterruptible;
453
454 struct task_struct *curr, *idle, *stop;
455 unsigned long next_balance;
456 struct mm_struct *prev_mm;
457
458 u64 clock;
459 u64 clock_task;
460
461 atomic_t nr_iowait;
462
463#ifdef CONFIG_SMP
464 struct root_domain *rd;
465 struct sched_domain *sd;
466
467 unsigned long cpu_power;
468
469 unsigned char idle_balance;
470 /* For active balancing */
471 int post_schedule;
472 int active_balance;
473 int push_cpu;
474 struct cpu_stop_work active_balance_work;
475 /* cpu of this runqueue: */
476 int cpu;
477 int online;
478
Peter Zijlstra367456c2012-02-20 21:49:09 +0100479 struct list_head cfs_tasks;
480
Peter Zijlstra029632f2011-10-25 10:00:11 +0200481 u64 rt_avg;
482 u64 age_stamp;
483 u64 idle_stamp;
484 u64 avg_idle;
485#endif
486
487#ifdef CONFIG_IRQ_TIME_ACCOUNTING
488 u64 prev_irq_time;
489#endif
490#ifdef CONFIG_PARAVIRT
491 u64 prev_steal_time;
492#endif
493#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
494 u64 prev_steal_time_rq;
495#endif
496
497 /* calc_load related fields */
498 unsigned long calc_load_update;
499 long calc_load_active;
500
501#ifdef CONFIG_SCHED_HRTICK
502#ifdef CONFIG_SMP
503 int hrtick_csd_pending;
504 struct call_single_data hrtick_csd;
505#endif
506 struct hrtimer hrtick_timer;
507#endif
508
509#ifdef CONFIG_SCHEDSTATS
510 /* latency stats */
511 struct sched_info rq_sched_info;
512 unsigned long long rq_cpu_time;
513 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
514
515 /* sys_sched_yield() stats */
516 unsigned int yld_count;
517
518 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200519 unsigned int sched_count;
520 unsigned int sched_goidle;
521
522 /* try_to_wake_up() stats */
523 unsigned int ttwu_count;
524 unsigned int ttwu_local;
525#endif
526
527#ifdef CONFIG_SMP
528 struct llist_head wake_list;
529#endif
Ben Segall18bf2802012-10-04 12:51:20 +0200530
531 struct sched_avg avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200532};
533
534static inline int cpu_of(struct rq *rq)
535{
536#ifdef CONFIG_SMP
537 return rq->cpu;
538#else
539 return 0;
540#endif
541}
542
543DECLARE_PER_CPU(struct rq, runqueues);
544
Peter Zijlstra518cd622011-12-07 15:07:31 +0100545#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
546#define this_rq() (&__get_cpu_var(runqueues))
547#define task_rq(p) cpu_rq(task_cpu(p))
548#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
549#define raw_rq() (&__raw_get_cpu_var(runqueues))
550
551#ifdef CONFIG_SMP
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553#define rcu_dereference_check_sched_domain(p) \
554 rcu_dereference_check((p), \
555 lockdep_is_held(&sched_domains_mutex))
556
557/*
558 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
559 * See detach_destroy_domains: synchronize_sched for details.
560 *
561 * The domain tree of any CPU may only be accessed from within
562 * preempt-disabled sections.
563 */
564#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100565 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
566 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200567
Suresh Siddha77e81362011-11-17 11:08:23 -0800568#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
569
Peter Zijlstra518cd622011-12-07 15:07:31 +0100570/**
571 * highest_flag_domain - Return highest sched_domain containing flag.
572 * @cpu: The cpu whose highest level of sched domain is to
573 * be returned.
574 * @flag: The flag to check for the highest sched_domain
575 * for the given cpu.
576 *
577 * Returns the highest sched_domain of a cpu which contains the given flag.
578 */
579static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
580{
581 struct sched_domain *sd, *hsd = NULL;
582
583 for_each_domain(cpu, sd) {
584 if (!(sd->flags & flag))
585 break;
586 hsd = sd;
587 }
588
589 return hsd;
590}
591
592DECLARE_PER_CPU(struct sched_domain *, sd_llc);
593DECLARE_PER_CPU(int, sd_llc_id);
594
Li Zefan5e6521e2013-03-05 16:06:23 +0800595struct sched_group_power {
596 atomic_t ref;
597 /*
598 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
599 * single CPU.
600 */
601 unsigned int power, power_orig;
602 unsigned long next_update;
603 /*
604 * Number of busy cpus in this group.
605 */
606 atomic_t nr_busy_cpus;
607
608 unsigned long cpumask[0]; /* iteration mask */
609};
610
611struct sched_group {
612 struct sched_group *next; /* Must be a circular list */
613 atomic_t ref;
614
615 unsigned int group_weight;
616 struct sched_group_power *sgp;
617
618 /*
619 * The CPUs this group covers.
620 *
621 * NOTE: this field is variable length. (Allocated dynamically
622 * by attaching extra space to the end of the structure,
623 * depending on how many CPUs the kernel has booted up with)
624 */
625 unsigned long cpumask[0];
626};
627
628static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
629{
630 return to_cpumask(sg->cpumask);
631}
632
633/*
634 * cpumask masking which cpus in the group are allowed to iterate up the domain
635 * tree.
636 */
637static inline struct cpumask *sched_group_mask(struct sched_group *sg)
638{
639 return to_cpumask(sg->sgp->cpumask);
640}
641
642/**
643 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
644 * @group: The group whose first cpu is to be returned.
645 */
646static inline unsigned int group_first_cpu(struct sched_group *group)
647{
648 return cpumask_first(sched_group_cpus(group));
649}
650
Peter Zijlstrac1174872012-05-31 14:47:33 +0200651extern int group_balance_cpu(struct sched_group *sg);
652
Peter Zijlstra518cd622011-12-07 15:07:31 +0100653#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200654
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100655#include "stats.h"
656#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200657
658#ifdef CONFIG_CGROUP_SCHED
659
660/*
661 * Return the group to which this tasks belongs.
662 *
Peter Zijlstra8323f262012-06-22 13:36:05 +0200663 * We cannot use task_subsys_state() and friends because the cgroup
664 * subsystem changes that value before the cgroup_subsys::attach() method
665 * is called, therefore we cannot pin it and might observe the wrong value.
666 *
667 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
668 * core changes this before calling sched_move_task().
669 *
670 * Instead we use a 'copy' which is updated from sched_move_task() while
671 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200672 */
673static inline struct task_group *task_group(struct task_struct *p)
674{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200675 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200676}
677
678/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
679static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
680{
681#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
682 struct task_group *tg = task_group(p);
683#endif
684
685#ifdef CONFIG_FAIR_GROUP_SCHED
686 p->se.cfs_rq = tg->cfs_rq[cpu];
687 p->se.parent = tg->se[cpu];
688#endif
689
690#ifdef CONFIG_RT_GROUP_SCHED
691 p->rt.rt_rq = tg->rt_rq[cpu];
692 p->rt.parent = tg->rt_se[cpu];
693#endif
694}
695
696#else /* CONFIG_CGROUP_SCHED */
697
698static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
699static inline struct task_group *task_group(struct task_struct *p)
700{
701 return NULL;
702}
703
704#endif /* CONFIG_CGROUP_SCHED */
705
706static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
707{
708 set_task_rq(p, cpu);
709#ifdef CONFIG_SMP
710 /*
711 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
712 * successfuly executed on another CPU. We must ensure that updates of
713 * per-task data have been completed by this moment.
714 */
715 smp_wmb();
716 task_thread_info(p)->cpu = cpu;
717#endif
718}
719
720/*
721 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
722 */
723#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100724# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200725# define const_debug __read_mostly
726#else
727# define const_debug const
728#endif
729
730extern const_debug unsigned int sysctl_sched_features;
731
732#define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
735enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100736#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200737 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200738};
739
740#undef SCHED_FEAT
741
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200742#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Ingo Molnarc5905af2012-02-24 08:31:31 +0100743static __always_inline bool static_branch__true(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200744{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100745 return static_key_true(key); /* Not out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200746}
747
Ingo Molnarc5905af2012-02-24 08:31:31 +0100748static __always_inline bool static_branch__false(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200749{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100750 return static_key_false(key); /* Out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200751}
752
753#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100754static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200755{ \
756 return static_branch__##enabled(key); \
757}
758
759#include "features.h"
760
761#undef SCHED_FEAT
762
Ingo Molnarc5905af2012-02-24 08:31:31 +0100763extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200764#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200766#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200767#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200768
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200769#ifdef CONFIG_NUMA_BALANCING
770#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000771#ifdef CONFIG_SCHED_DEBUG
772#define numabalancing_enabled sched_feat_numa(NUMA)
773#else
774extern bool numabalancing_enabled;
775#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200776#else
777#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000778#define numabalancing_enabled (0)
779#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200780
Peter Zijlstra029632f2011-10-25 10:00:11 +0200781static inline u64 global_rt_period(void)
782{
783 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
784}
785
786static inline u64 global_rt_runtime(void)
787{
788 if (sysctl_sched_rt_runtime < 0)
789 return RUNTIME_INF;
790
791 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
792}
793
794
795
796static inline int task_current(struct rq *rq, struct task_struct *p)
797{
798 return rq->curr == p;
799}
800
801static inline int task_running(struct rq *rq, struct task_struct *p)
802{
803#ifdef CONFIG_SMP
804 return p->on_cpu;
805#else
806 return task_current(rq, p);
807#endif
808}
809
810
811#ifndef prepare_arch_switch
812# define prepare_arch_switch(next) do { } while (0)
813#endif
814#ifndef finish_arch_switch
815# define finish_arch_switch(prev) do { } while (0)
816#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000817#ifndef finish_arch_post_lock_switch
818# define finish_arch_post_lock_switch() do { } while (0)
819#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200820
821#ifndef __ARCH_WANT_UNLOCKED_CTXSW
822static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
823{
824#ifdef CONFIG_SMP
825 /*
826 * We can optimise this out completely for !SMP, because the
827 * SMP rebalancing from interrupt is the only thing that cares
828 * here.
829 */
830 next->on_cpu = 1;
831#endif
832}
833
834static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
835{
836#ifdef CONFIG_SMP
837 /*
838 * After ->on_cpu is cleared, the task can be moved to a different CPU.
839 * We must ensure this doesn't happen until the switch is completely
840 * finished.
841 */
842 smp_wmb();
843 prev->on_cpu = 0;
844#endif
845#ifdef CONFIG_DEBUG_SPINLOCK
846 /* this is a valid case when another task releases the spinlock */
847 rq->lock.owner = current;
848#endif
849 /*
850 * If we are tracking spinlock dependencies then we have to
851 * fix up the runqueue lock - which gets 'carried over' from
852 * prev into current:
853 */
854 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
855
856 raw_spin_unlock_irq(&rq->lock);
857}
858
859#else /* __ARCH_WANT_UNLOCKED_CTXSW */
860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861{
862#ifdef CONFIG_SMP
863 /*
864 * We can optimise this out completely for !SMP, because the
865 * SMP rebalancing from interrupt is the only thing that cares
866 * here.
867 */
868 next->on_cpu = 1;
869#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200870 raw_spin_unlock(&rq->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200871}
872
873static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
874{
875#ifdef CONFIG_SMP
876 /*
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
880 */
881 smp_wmb();
882 prev->on_cpu = 0;
883#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200884 local_irq_enable();
Peter Zijlstra029632f2011-10-25 10:00:11 +0200885}
886#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
887
Li Zefanb13095f2013-03-05 16:06:38 +0800888/*
889 * wake flags
890 */
891#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
892#define WF_FORK 0x02 /* child wakeup after fork */
893#define WF_MIGRATED 0x4 /* internal use, task got migrated */
894
Peter Zijlstra029632f2011-10-25 10:00:11 +0200895static inline void update_load_add(struct load_weight *lw, unsigned long inc)
896{
897 lw->weight += inc;
898 lw->inv_weight = 0;
899}
900
901static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
902{
903 lw->weight -= dec;
904 lw->inv_weight = 0;
905}
906
907static inline void update_load_set(struct load_weight *lw, unsigned long w)
908{
909 lw->weight = w;
910 lw->inv_weight = 0;
911}
912
913/*
914 * To aid in avoiding the subversion of "niceness" due to uneven distribution
915 * of tasks with abnormal "nice" values across CPUs the contribution that
916 * each task makes to its run queue's load is weighted according to its
917 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
918 * scaled version of the new time slice allocation that they receive on time
919 * slice expiry etc.
920 */
921
922#define WEIGHT_IDLEPRIO 3
923#define WMULT_IDLEPRIO 1431655765
924
925/*
926 * Nice levels are multiplicative, with a gentle 10% change for every
927 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
928 * nice 1, it will get ~10% less CPU time than another CPU-bound task
929 * that remained on nice 0.
930 *
931 * The "10% effect" is relative and cumulative: from _any_ nice level,
932 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
933 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
934 * If a task goes up by ~10% and another task goes down by ~10% then
935 * the relative distance between them is ~25%.)
936 */
937static const int prio_to_weight[40] = {
938 /* -20 */ 88761, 71755, 56483, 46273, 36291,
939 /* -15 */ 29154, 23254, 18705, 14949, 11916,
940 /* -10 */ 9548, 7620, 6100, 4904, 3906,
941 /* -5 */ 3121, 2501, 1991, 1586, 1277,
942 /* 0 */ 1024, 820, 655, 526, 423,
943 /* 5 */ 335, 272, 215, 172, 137,
944 /* 10 */ 110, 87, 70, 56, 45,
945 /* 15 */ 36, 29, 23, 18, 15,
946};
947
948/*
949 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
950 *
951 * In cases where the weight does not change often, we can use the
952 * precalculated inverse to speed up arithmetics by turning divisions
953 * into multiplications:
954 */
955static const u32 prio_to_wmult[40] = {
956 /* -20 */ 48388, 59856, 76040, 92818, 118348,
957 /* -15 */ 147320, 184698, 229616, 287308, 360437,
958 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
959 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
960 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
961 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
962 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
963 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
964};
965
Li Zefanc82ba9f2013-03-05 16:06:55 +0800966#define ENQUEUE_WAKEUP 1
967#define ENQUEUE_HEAD 2
968#ifdef CONFIG_SMP
969#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
970#else
971#define ENQUEUE_WAKING 0
972#endif
973
974#define DEQUEUE_SLEEP 1
975
976struct sched_class {
977 const struct sched_class *next;
978
979 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
980 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
981 void (*yield_task) (struct rq *rq);
982 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
983
984 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
985
986 struct task_struct * (*pick_next_task) (struct rq *rq);
987 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
988
989#ifdef CONFIG_SMP
990 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
991 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
992
993 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
994 void (*post_schedule) (struct rq *this_rq);
995 void (*task_waking) (struct task_struct *task);
996 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
997
998 void (*set_cpus_allowed)(struct task_struct *p,
999 const struct cpumask *newmask);
1000
1001 void (*rq_online)(struct rq *rq);
1002 void (*rq_offline)(struct rq *rq);
1003#endif
1004
1005 void (*set_curr_task) (struct rq *rq);
1006 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1007 void (*task_fork) (struct task_struct *p);
1008
1009 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1010 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1011 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1012 int oldprio);
1013
1014 unsigned int (*get_rr_interval) (struct rq *rq,
1015 struct task_struct *task);
1016
1017#ifdef CONFIG_FAIR_GROUP_SCHED
1018 void (*task_move_group) (struct task_struct *p, int on_rq);
1019#endif
1020};
Peter Zijlstra029632f2011-10-25 10:00:11 +02001021
1022#define sched_class_highest (&stop_sched_class)
1023#define for_each_class(class) \
1024 for (class = sched_class_highest; class; class = class->next)
1025
1026extern const struct sched_class stop_sched_class;
1027extern const struct sched_class rt_sched_class;
1028extern const struct sched_class fair_sched_class;
1029extern const struct sched_class idle_sched_class;
1030
1031
1032#ifdef CONFIG_SMP
1033
Li Zefanb7192032013-03-07 10:00:26 +08001034extern void update_group_power(struct sched_domain *sd, int cpu);
1035
Peter Zijlstra029632f2011-10-25 10:00:11 +02001036extern void trigger_load_balance(struct rq *rq, int cpu);
1037extern void idle_balance(int this_cpu, struct rq *this_rq);
1038
Vincent Guittot642dbc32013-04-18 18:34:26 +02001039/*
1040 * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg
1041 * becomes useful in lb
1042 */
1043#if defined(CONFIG_FAIR_GROUP_SCHED)
1044extern void idle_enter_fair(struct rq *this_rq);
1045extern void idle_exit_fair(struct rq *this_rq);
1046#else
1047static inline void idle_enter_fair(struct rq *this_rq) {}
1048static inline void idle_exit_fair(struct rq *this_rq) {}
1049#endif
1050
Peter Zijlstra029632f2011-10-25 10:00:11 +02001051#else /* CONFIG_SMP */
1052
1053static inline void idle_balance(int cpu, struct rq *rq)
1054{
1055}
1056
1057#endif
1058
1059extern void sysrq_sched_debug_show(void);
1060extern void sched_init_granularity(void);
1061extern void update_max_interval(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001062extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
1063extern void init_sched_rt_class(void);
1064extern void init_sched_fair_class(void);
1065
1066extern void resched_task(struct task_struct *p);
1067extern void resched_cpu(int cpu);
1068
1069extern struct rt_bandwidth def_rt_bandwidth;
1070extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1071
Peter Zijlstra556061b2012-05-11 17:31:26 +02001072extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001073
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001074#ifdef CONFIG_PARAVIRT
1075static inline u64 steal_ticks(u64 steal)
1076{
1077 if (unlikely(steal > NSEC_PER_SEC))
1078 return div_u64(steal, TICK_NSEC);
1079
1080 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1081}
1082#endif
1083
Peter Zijlstra029632f2011-10-25 10:00:11 +02001084static inline void inc_nr_running(struct rq *rq)
1085{
1086 rq->nr_running++;
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001087
1088#ifdef CONFIG_NO_HZ_FULL
1089 if (rq->nr_running == 2) {
1090 if (tick_nohz_full_cpu(rq->cpu)) {
1091 /* Order rq->nr_running write against the IPI */
1092 smp_wmb();
1093 smp_send_reschedule(rq->cpu);
1094 }
1095 }
1096#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001097}
1098
1099static inline void dec_nr_running(struct rq *rq)
1100{
1101 rq->nr_running--;
1102}
1103
Frederic Weisbecker265f22a2013-05-03 03:39:05 +02001104static inline void rq_last_tick_reset(struct rq *rq)
1105{
1106#ifdef CONFIG_NO_HZ_FULL
1107 rq->last_sched_tick = jiffies;
1108#endif
1109}
1110
Peter Zijlstra029632f2011-10-25 10:00:11 +02001111extern void update_rq_clock(struct rq *rq);
1112
1113extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1114extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1115
1116extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1117
1118extern const_debug unsigned int sysctl_sched_time_avg;
1119extern const_debug unsigned int sysctl_sched_nr_migrate;
1120extern const_debug unsigned int sysctl_sched_migration_cost;
1121
1122static inline u64 sched_avg_period(void)
1123{
1124 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1125}
1126
Peter Zijlstra029632f2011-10-25 10:00:11 +02001127#ifdef CONFIG_SCHED_HRTICK
1128
1129/*
1130 * Use hrtick when:
1131 * - enabled by features
1132 * - hrtimer is actually high res
1133 */
1134static inline int hrtick_enabled(struct rq *rq)
1135{
1136 if (!sched_feat(HRTICK))
1137 return 0;
1138 if (!cpu_active(cpu_of(rq)))
1139 return 0;
1140 return hrtimer_is_hres_active(&rq->hrtick_timer);
1141}
1142
1143void hrtick_start(struct rq *rq, u64 delay);
1144
Mike Galbraithb39e66e2011-11-22 15:20:07 +01001145#else
1146
1147static inline int hrtick_enabled(struct rq *rq)
1148{
1149 return 0;
1150}
1151
Peter Zijlstra029632f2011-10-25 10:00:11 +02001152#endif /* CONFIG_SCHED_HRTICK */
1153
1154#ifdef CONFIG_SMP
1155extern void sched_avg_update(struct rq *rq);
1156static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1157{
1158 rq->rt_avg += rt_delta;
1159 sched_avg_update(rq);
1160}
1161#else
1162static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1163static inline void sched_avg_update(struct rq *rq) { }
1164#endif
1165
1166extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1167
1168#ifdef CONFIG_SMP
1169#ifdef CONFIG_PREEMPT
1170
1171static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1172
1173/*
1174 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1175 * way at the expense of forcing extra atomic operations in all
1176 * invocations. This assures that the double_lock is acquired using the
1177 * same underlying policy as the spinlock_t on this architecture, which
1178 * reduces latency compared to the unfair variant below. However, it
1179 * also adds more overhead and therefore may reduce throughput.
1180 */
1181static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1182 __releases(this_rq->lock)
1183 __acquires(busiest->lock)
1184 __acquires(this_rq->lock)
1185{
1186 raw_spin_unlock(&this_rq->lock);
1187 double_rq_lock(this_rq, busiest);
1188
1189 return 1;
1190}
1191
1192#else
1193/*
1194 * Unfair double_lock_balance: Optimizes throughput at the expense of
1195 * latency by eliminating extra atomic operations when the locks are
1196 * already in proper order on entry. This favors lower cpu-ids and will
1197 * grant the double lock to lower cpus over higher ids under contention,
1198 * regardless of entry order into the function.
1199 */
1200static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1201 __releases(this_rq->lock)
1202 __acquires(busiest->lock)
1203 __acquires(this_rq->lock)
1204{
1205 int ret = 0;
1206
1207 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1208 if (busiest < this_rq) {
1209 raw_spin_unlock(&this_rq->lock);
1210 raw_spin_lock(&busiest->lock);
1211 raw_spin_lock_nested(&this_rq->lock,
1212 SINGLE_DEPTH_NESTING);
1213 ret = 1;
1214 } else
1215 raw_spin_lock_nested(&busiest->lock,
1216 SINGLE_DEPTH_NESTING);
1217 }
1218 return ret;
1219}
1220
1221#endif /* CONFIG_PREEMPT */
1222
1223/*
1224 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1225 */
1226static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1227{
1228 if (unlikely(!irqs_disabled())) {
1229 /* printk() doesn't work good under rq->lock */
1230 raw_spin_unlock(&this_rq->lock);
1231 BUG_ON(1);
1232 }
1233
1234 return _double_lock_balance(this_rq, busiest);
1235}
1236
1237static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1238 __releases(busiest->lock)
1239{
1240 raw_spin_unlock(&busiest->lock);
1241 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1242}
1243
1244/*
1245 * double_rq_lock - safely lock two runqueues
1246 *
1247 * Note this does not disable interrupts like task_rq_lock,
1248 * you need to do so manually before calling.
1249 */
1250static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1251 __acquires(rq1->lock)
1252 __acquires(rq2->lock)
1253{
1254 BUG_ON(!irqs_disabled());
1255 if (rq1 == rq2) {
1256 raw_spin_lock(&rq1->lock);
1257 __acquire(rq2->lock); /* Fake it out ;) */
1258 } else {
1259 if (rq1 < rq2) {
1260 raw_spin_lock(&rq1->lock);
1261 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1262 } else {
1263 raw_spin_lock(&rq2->lock);
1264 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1265 }
1266 }
1267}
1268
1269/*
1270 * double_rq_unlock - safely unlock two runqueues
1271 *
1272 * Note this does not restore interrupts like task_rq_unlock,
1273 * you need to do so manually after calling.
1274 */
1275static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1276 __releases(rq1->lock)
1277 __releases(rq2->lock)
1278{
1279 raw_spin_unlock(&rq1->lock);
1280 if (rq1 != rq2)
1281 raw_spin_unlock(&rq2->lock);
1282 else
1283 __release(rq2->lock);
1284}
1285
1286#else /* CONFIG_SMP */
1287
1288/*
1289 * double_rq_lock - safely lock two runqueues
1290 *
1291 * Note this does not disable interrupts like task_rq_lock,
1292 * you need to do so manually before calling.
1293 */
1294static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1295 __acquires(rq1->lock)
1296 __acquires(rq2->lock)
1297{
1298 BUG_ON(!irqs_disabled());
1299 BUG_ON(rq1 != rq2);
1300 raw_spin_lock(&rq1->lock);
1301 __acquire(rq2->lock); /* Fake it out ;) */
1302}
1303
1304/*
1305 * double_rq_unlock - safely unlock two runqueues
1306 *
1307 * Note this does not restore interrupts like task_rq_unlock,
1308 * you need to do so manually after calling.
1309 */
1310static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1311 __releases(rq1->lock)
1312 __releases(rq2->lock)
1313{
1314 BUG_ON(rq1 != rq2);
1315 raw_spin_unlock(&rq1->lock);
1316 __release(rq2->lock);
1317}
1318
1319#endif
1320
1321extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1322extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1323extern void print_cfs_stats(struct seq_file *m, int cpu);
1324extern void print_rt_stats(struct seq_file *m, int cpu);
1325
1326extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1327extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001328
1329extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001330
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001331#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08001332enum rq_nohz_flag_bits {
1333 NOHZ_TICK_STOPPED,
1334 NOHZ_BALANCE_KICK,
1335};
1336
1337#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1338#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001339
1340#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1341
1342DECLARE_PER_CPU(u64, cpu_hardirq_time);
1343DECLARE_PER_CPU(u64, cpu_softirq_time);
1344
1345#ifndef CONFIG_64BIT
1346DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1347
1348static inline void irq_time_write_begin(void)
1349{
1350 __this_cpu_inc(irq_time_seq.sequence);
1351 smp_wmb();
1352}
1353
1354static inline void irq_time_write_end(void)
1355{
1356 smp_wmb();
1357 __this_cpu_inc(irq_time_seq.sequence);
1358}
1359
1360static inline u64 irq_time_read(int cpu)
1361{
1362 u64 irq_time;
1363 unsigned seq;
1364
1365 do {
1366 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1367 irq_time = per_cpu(cpu_softirq_time, cpu) +
1368 per_cpu(cpu_hardirq_time, cpu);
1369 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1370
1371 return irq_time;
1372}
1373#else /* CONFIG_64BIT */
1374static inline void irq_time_write_begin(void)
1375{
1376}
1377
1378static inline void irq_time_write_end(void)
1379{
1380}
1381
1382static inline u64 irq_time_read(int cpu)
1383{
1384 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1385}
1386#endif /* CONFIG_64BIT */
1387#endif /* CONFIG_IRQ_TIME_ACCOUNTING */