blob: be0fad7e12095f9e56ab805bdeb63cc8170e85b3 [file] [log] [blame]
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001 <title>Input/Output</title>
2
3 <para>The V4L2 API defines several different methods to read from or
4write to a device. All drivers exchanging data with applications must
5support at least one of them.</para>
6
7 <para>The classic I/O method using the <function>read()</function>
8and <function>write()</function> function is automatically selected
9after opening a V4L2 device. When the driver does not support this
10method attempts to read or write will fail at any time.</para>
11
12 <para>Other methods must be negotiated. To select the streaming I/O
13method with memory mapped or user buffers applications call the
14&VIDIOC-REQBUFS; ioctl. The asynchronous I/O method is not defined
15yet.</para>
16
17 <para>Video overlay can be considered another I/O method, although
18the application does not directly receive the image data. It is
19selected by initiating video overlay with the &VIDIOC-S-FMT; ioctl.
20For more information see <xref linkend="overlay" />.</para>
21
22 <para>Generally exactly one I/O method, including overlay, is
23associated with each file descriptor. The only exceptions are
24applications not exchanging data with a driver ("panel applications",
25see <xref linkend="open" />) and drivers permitting simultaneous video capturing
26and overlay using the same file descriptor, for compatibility with V4L
27and earlier versions of V4L2.</para>
28
29 <para><constant>VIDIOC_S_FMT</constant> and
30<constant>VIDIOC_REQBUFS</constant> would permit this to some degree,
31but for simplicity drivers need not support switching the I/O method
32(after first switching away from read/write) other than by closing
33and reopening the device.</para>
34
35 <para>The following sections describe the various I/O methods in
36more detail.</para>
37
38 <section id="rw">
39 <title>Read/Write</title>
40
41 <para>Input and output devices support the
42<function>read()</function> and <function>write()</function> function,
43respectively, when the <constant>V4L2_CAP_READWRITE</constant> flag in
44the <structfield>capabilities</structfield> field of &v4l2-capability;
45returned by the &VIDIOC-QUERYCAP; ioctl is set.</para>
46
47 <para>Drivers may need the CPU to copy the data, but they may also
48support DMA to or from user memory, so this I/O method is not
49necessarily less efficient than other methods merely exchanging buffer
50pointers. It is considered inferior though because no meta-information
51like frame counters or timestamps are passed. This information is
52necessary to recognize frame dropping and to synchronize with other
53data streams. However this is also the simplest I/O method, requiring
54little or no setup to exchange data. It permits command line stunts
55like this (the <application>vidctrl</application> tool is
56fictitious):</para>
57
58 <informalexample>
59 <screen>
60&gt; vidctrl /dev/video --input=0 --format=YUYV --size=352x288
61&gt; dd if=/dev/video of=myimage.422 bs=202752 count=1
62</screen>
63 </informalexample>
64
65 <para>To read from the device applications use the
66&func-read; function, to write the &func-write; function.
67Drivers must implement one I/O method if they
68exchange data with applications, but it need not be this.<footnote>
69 <para>It would be desirable if applications could depend on
70drivers supporting all I/O interfaces, but as much as the complex
71memory mapping I/O can be inadequate for some devices we have no
72reason to require this interface, which is most useful for simple
73applications capturing still images.</para>
74 </footnote> When reading or writing is supported, the driver
75must also support the &func-select; and &func-poll;
76function.<footnote>
77 <para>At the driver level <function>select()</function> and
78<function>poll()</function> are the same, and
79<function>select()</function> is too important to be optional.</para>
80 </footnote></para>
81 </section>
82
83 <section id="mmap">
84 <title>Streaming I/O (Memory Mapping)</title>
85
86 <para>Input and output devices support this I/O method when the
87<constant>V4L2_CAP_STREAMING</constant> flag in the
88<structfield>capabilities</structfield> field of &v4l2-capability;
89returned by the &VIDIOC-QUERYCAP; ioctl is set. There are two
90streaming methods, to determine if the memory mapping flavor is
91supported applications must call the &VIDIOC-REQBUFS; ioctl.</para>
92
93 <para>Streaming is an I/O method where only pointers to buffers
94are exchanged between application and driver, the data itself is not
95copied. Memory mapping is primarily intended to map buffers in device
96memory into the application's address space. Device memory can be for
97example the video memory on a graphics card with a video capture
98add-on. However, being the most efficient I/O method available for a
99long time, many other drivers support streaming as well, allocating
100buffers in DMA-able main memory.</para>
101
102 <para>A driver can support many sets of buffers. Each set is
103identified by a unique buffer type value. The sets are independent and
104each set can hold a different type of data. To access different sets
105at the same time different file descriptors must be used.<footnote>
106 <para>One could use one file descriptor and set the buffer
107type field accordingly when calling &VIDIOC-QBUF; etc., but it makes
108the <function>select()</function> function ambiguous. We also like the
109clean approach of one file descriptor per logical stream. Video
110overlay for example is also a logical stream, although the CPU is not
111needed for continuous operation.</para>
112 </footnote></para>
113
114 <para>To allocate device buffers applications call the
115&VIDIOC-REQBUFS; ioctl with the desired number of buffers and buffer
116type, for example <constant>V4L2_BUF_TYPE_VIDEO_CAPTURE</constant>.
117This ioctl can also be used to change the number of buffers or to free
118the allocated memory, provided none of the buffers are still
119mapped.</para>
120
121 <para>Before applications can access the buffers they must map
122them into their address space with the &func-mmap; function. The
123location of the buffers in device memory can be determined with the
Pawel Osciak53b5d572011-01-07 01:41:33 -0300124&VIDIOC-QUERYBUF; ioctl. In the single-planar API case, the
125<structfield>m.offset</structfield> and <structfield>length</structfield>
126returned in a &v4l2-buffer; are passed as sixth and second parameter to the
127<function>mmap()</function> function. When using the multi-planar API,
128struct &v4l2-buffer; contains an array of &v4l2-plane; structures, each
129containing its own <structfield>m.offset</structfield> and
130<structfield>length</structfield>. When using the multi-planar API, every
131plane of every buffer has to be mapped separately, so the number of
132calls to &func-mmap; should be equal to number of buffers times number of
133planes in each buffer. The offset and length values must not be modified.
134Remember, the buffers are allocated in physical memory, as opposed to virtual
135memory, which can be swapped out to disk. Applications should free the buffers
136as soon as possible with the &func-munmap; function.</para>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300137
138 <example>
Pawel Osciak53b5d572011-01-07 01:41:33 -0300139 <title>Mapping buffers in the single-planar API</title>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300140 <programlisting>
141&v4l2-requestbuffers; reqbuf;
142struct {
143 void *start;
144 size_t length;
145} *buffers;
146unsigned int i;
147
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300148memset(&amp;reqbuf, 0, sizeof(reqbuf));
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300149reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
150reqbuf.memory = V4L2_MEMORY_MMAP;
151reqbuf.count = 20;
152
153if (-1 == ioctl (fd, &VIDIOC-REQBUFS;, &amp;reqbuf)) {
154 if (errno == EINVAL)
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300155 printf("Video capturing or mmap-streaming is not supported\n");
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300156 else
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300157 perror("VIDIOC_REQBUFS");
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300158
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300159 exit(EXIT_FAILURE);
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300160}
161
162/* We want at least five buffers. */
163
164if (reqbuf.count &lt; 5) {
165 /* You may need to free the buffers here. */
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300166 printf("Not enough buffer memory\n");
167 exit(EXIT_FAILURE);
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300168}
169
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300170buffers = calloc(reqbuf.count, sizeof(*buffers));
171assert(buffers != NULL);
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300172
173for (i = 0; i &lt; reqbuf.count; i++) {
174 &v4l2-buffer; buffer;
175
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300176 memset(&amp;buffer, 0, sizeof(buffer));
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300177 buffer.type = reqbuf.type;
178 buffer.memory = V4L2_MEMORY_MMAP;
179 buffer.index = i;
180
181 if (-1 == ioctl (fd, &VIDIOC-QUERYBUF;, &amp;buffer)) {
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300182 perror("VIDIOC_QUERYBUF");
183 exit(EXIT_FAILURE);
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300184 }
185
186 buffers[i].length = buffer.length; /* remember for munmap() */
187
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300188 buffers[i].start = mmap(NULL, buffer.length,
189 PROT_READ | PROT_WRITE, /* recommended */
190 MAP_SHARED, /* recommended */
191 fd, buffer.m.offset);
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300192
193 if (MAP_FAILED == buffers[i].start) {
194 /* If you do not exit here you should unmap() and free()
195 the buffers mapped so far. */
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300196 perror("mmap");
197 exit(EXIT_FAILURE);
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300198 }
199}
200
201/* Cleanup. */
202
203for (i = 0; i &lt; reqbuf.count; i++)
Pawel Osciakc4c0a782011-01-12 05:57:26 -0300204 munmap(buffers[i].start, buffers[i].length);
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300205 </programlisting>
206 </example>
207
Pawel Osciak53b5d572011-01-07 01:41:33 -0300208 <example>
209 <title>Mapping buffers in the multi-planar API</title>
210 <programlisting>
211&v4l2-requestbuffers; reqbuf;
212/* Our current format uses 3 planes per buffer */
Phil Carmody497888c2011-07-14 15:07:13 +0300213#define FMT_NUM_PLANES = 3
Pawel Osciak53b5d572011-01-07 01:41:33 -0300214
215struct {
216 void *start[FMT_NUM_PLANES];
217 size_t length[FMT_NUM_PLANES];
218} *buffers;
219unsigned int i, j;
220
221memset(&amp;reqbuf, 0, sizeof(reqbuf));
222reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
223reqbuf.memory = V4L2_MEMORY_MMAP;
224reqbuf.count = 20;
225
226if (ioctl(fd, &VIDIOC-REQBUFS;, &amp;reqbuf) &lt; 0) {
227 if (errno == EINVAL)
228 printf("Video capturing or mmap-streaming is not supported\n");
229 else
230 perror("VIDIOC_REQBUFS");
231
232 exit(EXIT_FAILURE);
233}
234
235/* We want at least five buffers. */
236
237if (reqbuf.count &lt; 5) {
238 /* You may need to free the buffers here. */
239 printf("Not enough buffer memory\n");
240 exit(EXIT_FAILURE);
241}
242
243buffers = calloc(reqbuf.count, sizeof(*buffers));
244assert(buffers != NULL);
245
246for (i = 0; i &lt; reqbuf.count; i++) {
247 &v4l2-buffer; buffer;
248 &v4l2-plane; planes[FMT_NUM_PLANES];
249
250 memset(&amp;buffer, 0, sizeof(buffer));
251 buffer.type = reqbuf.type;
252 buffer.memory = V4L2_MEMORY_MMAP;
253 buffer.index = i;
254 /* length in struct v4l2_buffer in multi-planar API stores the size
255 * of planes array. */
256 buffer.length = FMT_NUM_PLANES;
257 buffer.m.planes = planes;
258
259 if (ioctl(fd, &VIDIOC-QUERYBUF;, &amp;buffer) &lt; 0) {
260 perror("VIDIOC_QUERYBUF");
261 exit(EXIT_FAILURE);
262 }
263
264 /* Every plane has to be mapped separately */
265 for (j = 0; j &lt; FMT_NUM_PLANES; j++) {
266 buffers[i].length[j] = buffer.m.planes[j].length; /* remember for munmap() */
267
268 buffers[i].start[j] = mmap(NULL, buffer.m.planes[j].length,
269 PROT_READ | PROT_WRITE, /* recommended */
270 MAP_SHARED, /* recommended */
271 fd, buffer.m.planes[j].m.offset);
272
273 if (MAP_FAILED == buffers[i].start[j]) {
274 /* If you do not exit here you should unmap() and free()
275 the buffers and planes mapped so far. */
276 perror("mmap");
277 exit(EXIT_FAILURE);
278 }
279 }
280}
281
282/* Cleanup. */
283
284for (i = 0; i &lt; reqbuf.count; i++)
285 for (j = 0; j &lt; FMT_NUM_PLANES; j++)
286 munmap(buffers[i].start[j], buffers[i].length[j]);
287 </programlisting>
288 </example>
289
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300290 <para>Conceptually streaming drivers maintain two buffer queues, an incoming
291and an outgoing queue. They separate the synchronous capture or output
292operation locked to a video clock from the application which is
293subject to random disk or network delays and preemption by
294other processes, thereby reducing the probability of data loss.
295The queues are organized as FIFOs, buffers will be
296output in the order enqueued in the incoming FIFO, and were
297captured in the order dequeued from the outgoing FIFO.</para>
298
299 <para>The driver may require a minimum number of buffers enqueued
300at all times to function, apart of this no limit exists on the number
301of buffers applications can enqueue in advance, or dequeue and
302process. They can also enqueue in a different order than buffers have
303been dequeued, and the driver can <emphasis>fill</emphasis> enqueued
304<emphasis>empty</emphasis> buffers in any order. <footnote>
305 <para>Random enqueue order permits applications processing
306images out of order (such as video codecs) to return buffers earlier,
307reducing the probability of data loss. Random fill order allows
308drivers to reuse buffers on a LIFO-basis, taking advantage of caches
309holding scatter-gather lists and the like.</para>
310 </footnote> The index number of a buffer (&v4l2-buffer;
311<structfield>index</structfield>) plays no role here, it only
312identifies the buffer.</para>
313
314 <para>Initially all mapped buffers are in dequeued state,
315inaccessible by the driver. For capturing applications it is customary
316to first enqueue all mapped buffers, then to start capturing and enter
317the read loop. Here the application waits until a filled buffer can be
318dequeued, and re-enqueues the buffer when the data is no longer
319needed. Output applications fill and enqueue buffers, when enough
320buffers are stacked up the output is started with
321<constant>VIDIOC_STREAMON</constant>. In the write loop, when
322the application runs out of free buffers, it must wait until an empty
323buffer can be dequeued and reused.</para>
324
325 <para>To enqueue and dequeue a buffer applications use the
326&VIDIOC-QBUF; and &VIDIOC-DQBUF; ioctl. The status of a buffer being
327mapped, enqueued, full or empty can be determined at any time using the
328&VIDIOC-QUERYBUF; ioctl. Two methods exist to suspend execution of the
329application until one or more buffers can be dequeued. By default
330<constant>VIDIOC_DQBUF</constant> blocks when no buffer is in the
331outgoing queue. When the <constant>O_NONBLOCK</constant> flag was
332given to the &func-open; function, <constant>VIDIOC_DQBUF</constant>
333returns immediately with an &EAGAIN; when no buffer is available. The
Tomasz Stanislawski4b9c1cb2012-06-14 10:37:36 -0300334&func-select; or &func-poll; functions are always available.</para>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300335
336 <para>To start and stop capturing or output applications call the
337&VIDIOC-STREAMON; and &VIDIOC-STREAMOFF; ioctl. Note
338<constant>VIDIOC_STREAMOFF</constant> removes all buffers from both
339queues as a side effect. Since there is no notion of doing anything
340"now" on a multitasking system, if an application needs to synchronize
341with another event it should examine the &v4l2-buffer;
342<structfield>timestamp</structfield> of captured buffers, or set the
343field before enqueuing buffers for output.</para>
344
345 <para>Drivers implementing memory mapping I/O must
346support the <constant>VIDIOC_REQBUFS</constant>,
347<constant>VIDIOC_QUERYBUF</constant>,
348<constant>VIDIOC_QBUF</constant>, <constant>VIDIOC_DQBUF</constant>,
349<constant>VIDIOC_STREAMON</constant> and
350<constant>VIDIOC_STREAMOFF</constant> ioctl, the
351<function>mmap()</function>, <function>munmap()</function>,
352<function>select()</function> and <function>poll()</function>
353function.<footnote>
354 <para>At the driver level <function>select()</function> and
355<function>poll()</function> are the same, and
356<function>select()</function> is too important to be optional. The
357rest should be evident.</para>
358 </footnote></para>
359
360 <para>[capture example]</para>
361
362 </section>
363
364 <section id="userp">
365 <title>Streaming I/O (User Pointers)</title>
366
367 <para>Input and output devices support this I/O method when the
368<constant>V4L2_CAP_STREAMING</constant> flag in the
369<structfield>capabilities</structfield> field of &v4l2-capability;
370returned by the &VIDIOC-QUERYCAP; ioctl is set. If the particular user
371pointer method (not only memory mapping) is supported must be
372determined by calling the &VIDIOC-REQBUFS; ioctl.</para>
373
374 <para>This I/O method combines advantages of the read/write and
Pawel Osciak53b5d572011-01-07 01:41:33 -0300375memory mapping methods. Buffers (planes) are allocated by the application
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300376itself, and can reside for example in virtual or shared memory. Only
377pointers to data are exchanged, these pointers and meta-information
Pawel Osciak53b5d572011-01-07 01:41:33 -0300378are passed in &v4l2-buffer; (or in &v4l2-plane; in the multi-planar API case).
379The driver must be switched into user pointer I/O mode by calling the
380&VIDIOC-REQBUFS; with the desired buffer type. No buffers (planes) are allocated
381beforehand, consequently they are not indexed and cannot be queried like mapped
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300382buffers with the <constant>VIDIOC_QUERYBUF</constant> ioctl.</para>
383
384 <example>
385 <title>Initiating streaming I/O with user pointers</title>
386
387 <programlisting>
388&v4l2-requestbuffers; reqbuf;
389
390memset (&amp;reqbuf, 0, sizeof (reqbuf));
391reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
392reqbuf.memory = V4L2_MEMORY_USERPTR;
393
394if (ioctl (fd, &VIDIOC-REQBUFS;, &amp;reqbuf) == -1) {
395 if (errno == EINVAL)
396 printf ("Video capturing or user pointer streaming is not supported\n");
397 else
398 perror ("VIDIOC_REQBUFS");
399
400 exit (EXIT_FAILURE);
401}
402 </programlisting>
403 </example>
404
Pawel Osciak53b5d572011-01-07 01:41:33 -0300405 <para>Buffer (plane) addresses and sizes are passed on the fly with the
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300406&VIDIOC-QBUF; ioctl. Although buffers are commonly cycled,
407applications can pass different addresses and sizes at each
408<constant>VIDIOC_QBUF</constant> call. If required by the hardware the
409driver swaps memory pages within physical memory to create a
410continuous area of memory. This happens transparently to the
411application in the virtual memory subsystem of the kernel. When buffer
412pages have been swapped out to disk they are brought back and finally
413locked in physical memory for DMA.<footnote>
414 <para>We expect that frequently used buffers are typically not
415swapped out. Anyway, the process of swapping, locking or generating
416scatter-gather lists may be time consuming. The delay can be masked by
417the depth of the incoming buffer queue, and perhaps by maintaining
418caches assuming a buffer will be soon enqueued again. On the other
419hand, to optimize memory usage drivers can limit the number of buffers
420locked in advance and recycle the most recently used buffers first. Of
421course, the pages of empty buffers in the incoming queue need not be
422saved to disk. Output buffers must be saved on the incoming and
423outgoing queue because an application may share them with other
424processes.</para>
425 </footnote></para>
426
427 <para>Filled or displayed buffers are dequeued with the
428&VIDIOC-DQBUF; ioctl. The driver can unlock the memory pages at any
429time between the completion of the DMA and this ioctl. The memory is
430also unlocked when &VIDIOC-STREAMOFF; is called, &VIDIOC-REQBUFS;, or
431when the device is closed. Applications must take care not to free
432buffers without dequeuing. For once, the buffers remain locked until
433further, wasting physical memory. Second the driver will not be
434notified when the memory is returned to the application's free list
435and subsequently reused for other purposes, possibly completing the
436requested DMA and overwriting valuable data.</para>
437
438 <para>For capturing applications it is customary to enqueue a
439number of empty buffers, to start capturing and enter the read loop.
440Here the application waits until a filled buffer can be dequeued, and
441re-enqueues the buffer when the data is no longer needed. Output
442applications fill and enqueue buffers, when enough buffers are stacked
443up output is started. In the write loop, when the application
444runs out of free buffers it must wait until an empty buffer can be
445dequeued and reused. Two methods exist to suspend execution of the
446application until one or more buffers can be dequeued. By default
447<constant>VIDIOC_DQBUF</constant> blocks when no buffer is in the
448outgoing queue. When the <constant>O_NONBLOCK</constant> flag was
449given to the &func-open; function, <constant>VIDIOC_DQBUF</constant>
450returns immediately with an &EAGAIN; when no buffer is available. The
451&func-select; or &func-poll; function are always available.</para>
452
453 <para>To start and stop capturing or output applications call the
454&VIDIOC-STREAMON; and &VIDIOC-STREAMOFF; ioctl. Note
455<constant>VIDIOC_STREAMOFF</constant> removes all buffers from both
456queues and unlocks all buffers as a side effect. Since there is no
457notion of doing anything "now" on a multitasking system, if an
458application needs to synchronize with another event it should examine
459the &v4l2-buffer; <structfield>timestamp</structfield> of captured
460buffers, or set the field before enqueuing buffers for output.</para>
461
462 <para>Drivers implementing user pointer I/O must
463support the <constant>VIDIOC_REQBUFS</constant>,
464<constant>VIDIOC_QBUF</constant>, <constant>VIDIOC_DQBUF</constant>,
465<constant>VIDIOC_STREAMON</constant> and
466<constant>VIDIOC_STREAMOFF</constant> ioctl, the
467<function>select()</function> and <function>poll()</function> function.<footnote>
468 <para>At the driver level <function>select()</function> and
469<function>poll()</function> are the same, and
470<function>select()</function> is too important to be optional. The
471rest should be evident.</para>
472 </footnote></para>
473 </section>
474
Tomasz Stanislawski4b9c1cb2012-06-14 10:37:36 -0300475 <section id="dmabuf">
476 <title>Streaming I/O (DMA buffer importing)</title>
477
478 <note>
479 <title>Experimental</title>
480 <para>This is an <link linkend="experimental"> experimental </link>
481 interface and may change in the future.</para>
482 </note>
483
484<para>The DMABUF framework provides a generic method for sharing buffers
485between multiple devices. Device drivers that support DMABUF can export a DMA
486buffer to userspace as a file descriptor (known as the exporter role), import a
487DMA buffer from userspace using a file descriptor previously exported for a
488different or the same device (known as the importer role), or both. This
489section describes the DMABUF importer role API in V4L2.</para>
490
491<para>Input and output devices support the streaming I/O method when the
492<constant>V4L2_CAP_STREAMING</constant> flag in the
493<structfield>capabilities</structfield> field of &v4l2-capability; returned by
494the &VIDIOC-QUERYCAP; ioctl is set. Whether importing DMA buffers through
495DMABUF file descriptors is supported is determined by calling the
496&VIDIOC-REQBUFS; ioctl with the memory type set to
497<constant>V4L2_MEMORY_DMABUF</constant>.</para>
498
499 <para>This I/O method is dedicated to sharing DMA buffers between different
500devices, which may be V4L devices or other video-related devices (e.g. DRM).
501Buffers (planes) are allocated by a driver on behalf of an application. Next,
502these buffers are exported to the application as file descriptors using an API
503which is specific for an allocator driver. Only such file descriptor are
504exchanged. The descriptors and meta-information are passed in &v4l2-buffer; (or
505in &v4l2-plane; in the multi-planar API case). The driver must be switched
506into DMABUF I/O mode by calling the &VIDIOC-REQBUFS; with the desired buffer
507type.</para>
508
509 <example>
510 <title>Initiating streaming I/O with DMABUF file descriptors</title>
511
512 <programlisting>
513&v4l2-requestbuffers; reqbuf;
514
515memset(&amp;reqbuf, 0, sizeof (reqbuf));
516reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
517reqbuf.memory = V4L2_MEMORY_DMABUF;
518reqbuf.count = 1;
519
520if (ioctl(fd, &VIDIOC-REQBUFS;, &amp;reqbuf) == -1) {
521 if (errno == EINVAL)
522 printf("Video capturing or DMABUF streaming is not supported\n");
523 else
524 perror("VIDIOC_REQBUFS");
525
526 exit(EXIT_FAILURE);
527}
528 </programlisting>
529 </example>
530
531 <para>The buffer (plane) file descriptor is passed on the fly with the
532&VIDIOC-QBUF; ioctl. In case of multiplanar buffers, every plane can be
533associated with a different DMABUF descriptor. Although buffers are commonly
534cycled, applications can pass a different DMABUF descriptor at each
535<constant>VIDIOC_QBUF</constant> call.</para>
536
537 <example>
538 <title>Queueing DMABUF using single plane API</title>
539
540 <programlisting>
541int buffer_queue(int v4lfd, int index, int dmafd)
542{
543 &v4l2-buffer; buf;
544
545 memset(&amp;buf, 0, sizeof buf);
546 buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
547 buf.memory = V4L2_MEMORY_DMABUF;
548 buf.index = index;
549 buf.m.fd = dmafd;
550
551 if (ioctl(v4lfd, &VIDIOC-QBUF;, &amp;buf) == -1) {
552 perror("VIDIOC_QBUF");
553 return -1;
554 }
555
556 return 0;
557}
558 </programlisting>
559 </example>
560
561 <example>
562 <title>Queueing DMABUF using multi plane API</title>
563
564 <programlisting>
565int buffer_queue_mp(int v4lfd, int index, int dmafd[], int n_planes)
566{
567 &v4l2-buffer; buf;
568 &v4l2-plane; planes[VIDEO_MAX_PLANES];
569 int i;
570
571 memset(&amp;buf, 0, sizeof buf);
572 buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
573 buf.memory = V4L2_MEMORY_DMABUF;
574 buf.index = index;
575 buf.m.planes = planes;
576 buf.length = n_planes;
577
578 memset(&amp;planes, 0, sizeof planes);
579
580 for (i = 0; i &lt; n_planes; ++i)
581 buf.m.planes[i].m.fd = dmafd[i];
582
583 if (ioctl(v4lfd, &VIDIOC-QBUF;, &amp;buf) == -1) {
584 perror("VIDIOC_QBUF");
585 return -1;
586 }
587
588 return 0;
589}
590 </programlisting>
591 </example>
592
593 <para>Captured or displayed buffers are dequeued with the
594&VIDIOC-DQBUF; ioctl. The driver can unlock the buffer at any
595time between the completion of the DMA and this ioctl. The memory is
596also unlocked when &VIDIOC-STREAMOFF; is called, &VIDIOC-REQBUFS;, or
597when the device is closed.</para>
598
599 <para>For capturing applications it is customary to enqueue a
600number of empty buffers, to start capturing and enter the read loop.
601Here the application waits until a filled buffer can be dequeued, and
602re-enqueues the buffer when the data is no longer needed. Output
603applications fill and enqueue buffers, when enough buffers are stacked
604up output is started. In the write loop, when the application
605runs out of free buffers it must wait until an empty buffer can be
606dequeued and reused. Two methods exist to suspend execution of the
607application until one or more buffers can be dequeued. By default
608<constant>VIDIOC_DQBUF</constant> blocks when no buffer is in the
609outgoing queue. When the <constant>O_NONBLOCK</constant> flag was
610given to the &func-open; function, <constant>VIDIOC_DQBUF</constant>
611returns immediately with an &EAGAIN; when no buffer is available. The
612&func-select; and &func-poll; functions are always available.</para>
613
614 <para>To start and stop capturing or displaying applications call the
615&VIDIOC-STREAMON; and &VIDIOC-STREAMOFF; ioctls. Note that
616<constant>VIDIOC_STREAMOFF</constant> removes all buffers from both queues and
617unlocks all buffers as a side effect. Since there is no notion of doing
618anything "now" on a multitasking system, if an application needs to synchronize
619with another event it should examine the &v4l2-buffer;
620<structfield>timestamp</structfield> of captured buffers, or set the field
621before enqueuing buffers for output.</para>
622
623 <para>Drivers implementing DMABUF importing I/O must support the
624<constant>VIDIOC_REQBUFS</constant>, <constant>VIDIOC_QBUF</constant>,
625<constant>VIDIOC_DQBUF</constant>, <constant>VIDIOC_STREAMON</constant> and
626<constant>VIDIOC_STREAMOFF</constant> ioctls, and the
627<function>select()</function> and <function>poll()</function> functions.</para>
628
629 </section>
630
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300631 <section id="async">
632 <title>Asynchronous I/O</title>
633
634 <para>This method is not defined yet.</para>
635 </section>
636
637 <section id="buffer">
638 <title>Buffers</title>
639
640 <para>A buffer contains data exchanged by application and
Pawel Osciak53b5d572011-01-07 01:41:33 -0300641driver using one of the Streaming I/O methods. In the multi-planar API, the
642data is held in planes, while the buffer structure acts as a container
643for the planes. Only pointers to buffers (planes) are exchanged, the data
644itself is not copied. These pointers, together with meta-information like
645timestamps or field parity, are stored in a struct
646<structname>v4l2_buffer</structname>, argument to
647the &VIDIOC-QUERYBUF;, &VIDIOC-QBUF; and &VIDIOC-DQBUF; ioctl.
648In the multi-planar API, some plane-specific members of struct
649<structname>v4l2_buffer</structname>, such as pointers and sizes for each
650plane, are stored in struct <structname>v4l2_plane</structname> instead.
651In that case, struct <structname>v4l2_buffer</structname> contains an array of
652plane structures.</para>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300653
654 <para>Nominally timestamps refer to the first data byte transmitted.
655In practice however the wide range of hardware covered by the V4L2 API
656limits timestamp accuracy. Often an interrupt routine will
657sample the system clock shortly after the field or frame was stored
658completely in memory. So applications must expect a constant
659difference up to one field or frame period plus a small (few scan
660lines) random error. The delay and error can be much
661larger due to compression or transmission over an external bus when
662the frames are not properly stamped by the sender. This is frequently
663the case with USB cameras. Here timestamps refer to the instant the
664field or frame was received by the driver, not the capture time. These
665devices identify by not enumerating any video standards, see <xref
666linkend="standard" />.</para>
667
668 <para>Similar limitations apply to output timestamps. Typically
669the video hardware locks to a clock controlling the video timing, the
670horizontal and vertical synchronization pulses. At some point in the
671line sequence, possibly the vertical blanking, an interrupt routine
672samples the system clock, compares against the timestamp and programs
673the hardware to repeat the previous field or frame, or to display the
674buffer contents.</para>
675
676 <para>Apart of limitations of the video device and natural
677inaccuracies of all clocks, it should be noted system time itself is
678not perfectly stable. It can be affected by power saving cycles,
679warped to insert leap seconds, or even turned back or forth by the
680system administrator affecting long term measurements. <footnote>
681 <para>Since no other Linux multimedia
682API supports unadjusted time it would be foolish to introduce here. We
683must use a universally supported clock to synchronize different media,
684hence time of day.</para>
685 </footnote></para>
686
687 <table frame="none" pgwide="1" id="v4l2-buffer">
688 <title>struct <structname>v4l2_buffer</structname></title>
689 <tgroup cols="4">
690 &cs-ustr;
691 <tbody valign="top">
692 <row>
693 <entry>__u32</entry>
694 <entry><structfield>index</structfield></entry>
695 <entry></entry>
696 <entry>Number of the buffer, set by the application. This
697field is only used for <link linkend="mmap">memory mapping</link> I/O
698and can range from zero to the number of buffers allocated
699with the &VIDIOC-REQBUFS; ioctl (&v4l2-requestbuffers; <structfield>count</structfield>) minus one.</entry>
700 </row>
701 <row>
Sakari Ailus6016af82012-05-10 02:02:07 -0300702 <entry>__u32</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300703 <entry><structfield>type</structfield></entry>
704 <entry></entry>
705 <entry>Type of the buffer, same as &v4l2-format;
706<structfield>type</structfield> or &v4l2-requestbuffers;
Sakari Ailus6016af82012-05-10 02:02:07 -0300707<structfield>type</structfield>, set by the application. See <xref
708linkend="v4l2-buf-type" /></entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300709 </row>
710 <row>
711 <entry>__u32</entry>
712 <entry><structfield>bytesused</structfield></entry>
713 <entry></entry>
714 <entry>The number of bytes occupied by the data in the
715buffer. It depends on the negotiated data format and may change with
716each buffer for compressed variable size data like JPEG images.
717Drivers must set this field when <structfield>type</structfield>
718refers to an input stream, applications when an output stream.</entry>
719 </row>
720 <row>
721 <entry>__u32</entry>
722 <entry><structfield>flags</structfield></entry>
723 <entry></entry>
724 <entry>Flags set by the application or driver, see <xref
725linkend="buffer-flags" />.</entry>
726 </row>
727 <row>
Sakari Ailus6016af82012-05-10 02:02:07 -0300728 <entry>__u32</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300729 <entry><structfield>field</structfield></entry>
730 <entry></entry>
731 <entry>Indicates the field order of the image in the
732buffer, see <xref linkend="v4l2-field" />. This field is not used when
733the buffer contains VBI data. Drivers must set it when
734<structfield>type</structfield> refers to an input stream,
735applications when an output stream.</entry>
736 </row>
737 <row>
738 <entry>struct timeval</entry>
739 <entry><structfield>timestamp</structfield></entry>
740 <entry></entry>
741 <entry><para>For input streams this is the
742system time (as returned by the <function>gettimeofday()</function>
743function) when the first data byte was captured. For output streams
744the data will not be displayed before this time, secondary to the
745nominal frame rate determined by the current video standard in
746enqueued order. Applications can for example zero this field to
747display frames as soon as possible. The driver stores the time at
748which the first data byte was actually sent out in the
749<structfield>timestamp</structfield> field. This permits
750applications to monitor the drift between the video and system
751clock.</para></entry>
752 </row>
753 <row>
754 <entry>&v4l2-timecode;</entry>
755 <entry><structfield>timecode</structfield></entry>
756 <entry></entry>
757 <entry>When <structfield>type</structfield> is
758<constant>V4L2_BUF_TYPE_VIDEO_CAPTURE</constant> and the
759<constant>V4L2_BUF_FLAG_TIMECODE</constant> flag is set in
760<structfield>flags</structfield>, this structure contains a frame
761timecode. In <link linkend="v4l2-field">V4L2_FIELD_ALTERNATE</link>
762mode the top and bottom field contain the same timecode.
763Timecodes are intended to help video editing and are typically recorded on
764video tapes, but also embedded in compressed formats like MPEG. This
765field is independent of the <structfield>timestamp</structfield> and
766<structfield>sequence</structfield> fields.</entry>
767 </row>
768 <row>
769 <entry>__u32</entry>
770 <entry><structfield>sequence</structfield></entry>
771 <entry></entry>
Hans Verkuil0b1f8142012-09-04 07:07:54 -0300772 <entry>Set by the driver, counting the frames (not fields!) in
773sequence. This field is set for both input and output devices.</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300774 </row>
775 <row>
776 <entry spanname="hspan"><para>In <link
777linkend="v4l2-field">V4L2_FIELD_ALTERNATE</link> mode the top and
778bottom field have the same sequence number. The count starts at zero
779and includes dropped or repeated frames. A dropped frame was received
780by an input device but could not be stored due to lack of free buffer
781space. A repeated frame was displayed again by an output device
782because the application did not pass new data in
783time.</para><para>Note this may count the frames received
784e.g. over USB, without taking into account the frames dropped by the
785remote hardware due to limited compression throughput or bus
786bandwidth. These devices identify by not enumerating any video
787standards, see <xref linkend="standard" />.</para></entry>
788 </row>
789 <row>
Sakari Ailus6016af82012-05-10 02:02:07 -0300790 <entry>__u32</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300791 <entry><structfield>memory</structfield></entry>
792 <entry></entry>
793 <entry>This field must be set by applications and/or drivers
Sakari Ailus6016af82012-05-10 02:02:07 -0300794in accordance with the selected I/O method. See <xref linkend="v4l2-memory"
795 /></entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300796 </row>
797 <row>
798 <entry>union</entry>
799 <entry><structfield>m</structfield></entry>
800 </row>
801 <row>
802 <entry></entry>
803 <entry>__u32</entry>
804 <entry><structfield>offset</structfield></entry>
Pawel Osciak53b5d572011-01-07 01:41:33 -0300805 <entry>For the single-planar API and when
806<structfield>memory</structfield> is <constant>V4L2_MEMORY_MMAP</constant> this
807is the offset of the buffer from the start of the device memory. The value is
808returned by the driver and apart of serving as parameter to the &func-mmap;
809function not useful for applications. See <xref linkend="mmap" /> for details
810 </entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300811 </row>
812 <row>
813 <entry></entry>
814 <entry>unsigned long</entry>
815 <entry><structfield>userptr</structfield></entry>
Pawel Osciak53b5d572011-01-07 01:41:33 -0300816 <entry>For the single-planar API and when
817<structfield>memory</structfield> is <constant>V4L2_MEMORY_USERPTR</constant>
818this is a pointer to the buffer (casted to unsigned long type) in virtual
819memory, set by the application. See <xref linkend="userp" /> for details.
820 </entry>
821 </row>
822 <row>
823 <entry></entry>
824 <entry>struct v4l2_plane</entry>
825 <entry><structfield>*planes</structfield></entry>
826 <entry>When using the multi-planar API, contains a userspace pointer
827 to an array of &v4l2-plane;. The size of the array should be put
828 in the <structfield>length</structfield> field of this
829 <structname>v4l2_buffer</structname> structure.</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300830 </row>
831 <row>
Tomasz Stanislawski4b9c1cb2012-06-14 10:37:36 -0300832 <entry></entry>
833 <entry>int</entry>
834 <entry><structfield>fd</structfield></entry>
835 <entry>For the single-plane API and when
836<structfield>memory</structfield> is <constant>V4L2_MEMORY_DMABUF</constant> this
837is the file descriptor associated with a DMABUF buffer.</entry>
838 </row>
839 <row>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300840 <entry>__u32</entry>
841 <entry><structfield>length</structfield></entry>
842 <entry></entry>
Pawel Osciak53b5d572011-01-07 01:41:33 -0300843 <entry>Size of the buffer (not the payload) in bytes for the
Hans Verkuile3b1b4e2012-09-19 11:14:39 -0300844 single-planar API. For the multi-planar API the application sets
845 this to the number of elements in the <structfield>planes</structfield>
846 array. The driver will fill in the actual number of valid elements in
847 that array.
Pawel Osciak53b5d572011-01-07 01:41:33 -0300848 </entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300849 </row>
850 <row>
851 <entry>__u32</entry>
Sakari Ailus2b719d72012-05-02 09:40:03 -0300852 <entry><structfield>reserved2</structfield></entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300853 <entry></entry>
Hans Verkuil94953562012-09-03 10:09:23 -0300854 <entry>A place holder for future extensions. Applications
Sakari Ailus2b719d72012-05-02 09:40:03 -0300855should set this to 0.</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300856 </row>
857 <row>
858 <entry>__u32</entry>
859 <entry><structfield>reserved</structfield></entry>
860 <entry></entry>
Hans Verkuil94953562012-09-03 10:09:23 -0300861 <entry>A place holder for future extensions. Applications
Hans Verkuil995f5fe2010-02-20 09:41:03 -0300862should set this to 0.</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300863 </row>
864 </tbody>
865 </tgroup>
866 </table>
867
Pawel Osciak53b5d572011-01-07 01:41:33 -0300868 <table frame="none" pgwide="1" id="v4l2-plane">
869 <title>struct <structname>v4l2_plane</structname></title>
870 <tgroup cols="4">
871 &cs-ustr;
872 <tbody valign="top">
873 <row>
874 <entry>__u32</entry>
875 <entry><structfield>bytesused</structfield></entry>
876 <entry></entry>
877 <entry>The number of bytes occupied by data in the plane
878 (its payload).</entry>
879 </row>
880 <row>
881 <entry>__u32</entry>
882 <entry><structfield>length</structfield></entry>
883 <entry></entry>
884 <entry>Size in bytes of the plane (not its payload).</entry>
885 </row>
886 <row>
887 <entry>union</entry>
888 <entry><structfield>m</structfield></entry>
889 <entry></entry>
890 <entry></entry>
891 </row>
892 <row>
893 <entry></entry>
894 <entry>__u32</entry>
895 <entry><structfield>mem_offset</structfield></entry>
896 <entry>When the memory type in the containing &v4l2-buffer; is
897 <constant>V4L2_MEMORY_MMAP</constant>, this is the value that
898 should be passed to &func-mmap;, similar to the
899 <structfield>offset</structfield> field in &v4l2-buffer;.</entry>
900 </row>
901 <row>
902 <entry></entry>
903 <entry>__unsigned long</entry>
904 <entry><structfield>userptr</structfield></entry>
905 <entry>When the memory type in the containing &v4l2-buffer; is
906 <constant>V4L2_MEMORY_USERPTR</constant>, this is a userspace
907 pointer to the memory allocated for this plane by an application.
908 </entry>
909 </row>
910 <row>
Tomasz Stanislawski4b9c1cb2012-06-14 10:37:36 -0300911 <entry></entry>
912 <entry>int</entry>
913 <entry><structfield>fd</structfield></entry>
914 <entry>When the memory type in the containing &v4l2-buffer; is
915 <constant>V4L2_MEMORY_DMABUF</constant>, this is a file
916 descriptor associated with a DMABUF buffer, similar to the
917 <structfield>fd</structfield> field in &v4l2-buffer;.</entry>
918 </row>
919 <row>
Pawel Osciak53b5d572011-01-07 01:41:33 -0300920 <entry>__u32</entry>
921 <entry><structfield>data_offset</structfield></entry>
922 <entry></entry>
923 <entry>Offset in bytes to video data in the plane, if applicable.
924 </entry>
925 </row>
926 <row>
927 <entry>__u32</entry>
928 <entry><structfield>reserved[11]</structfield></entry>
929 <entry></entry>
930 <entry>Reserved for future use. Should be zeroed by an
931 application.</entry>
932 </row>
933 </tbody>
934 </tgroup>
935 </table>
936
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300937 <table frame="none" pgwide="1" id="v4l2-buf-type">
938 <title>enum v4l2_buf_type</title>
939 <tgroup cols="3">
940 &cs-def;
941 <tbody valign="top">
942 <row>
943 <entry><constant>V4L2_BUF_TYPE_VIDEO_CAPTURE</constant></entry>
944 <entry>1</entry>
Pawel Osciak53b5d572011-01-07 01:41:33 -0300945 <entry>Buffer of a single-planar video capture stream, see <xref
946 linkend="capture" />.</entry>
947 </row>
948 <row>
949 <entry><constant>V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE</constant>
950 </entry>
951 <entry>9</entry>
952 <entry>Buffer of a multi-planar video capture stream, see <xref
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300953 linkend="capture" />.</entry>
954 </row>
955 <row>
956 <entry><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT</constant></entry>
957 <entry>2</entry>
Pawel Osciak53b5d572011-01-07 01:41:33 -0300958 <entry>Buffer of a single-planar video output stream, see <xref
959 linkend="output" />.</entry>
960 </row>
961 <row>
962 <entry><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE</constant>
963 </entry>
964 <entry>10</entry>
965 <entry>Buffer of a multi-planar video output stream, see <xref
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -0300966 linkend="output" />.</entry>
967 </row>
968 <row>
969 <entry><constant>V4L2_BUF_TYPE_VIDEO_OVERLAY</constant></entry>
970 <entry>3</entry>
971 <entry>Buffer for video overlay, see <xref linkend="overlay" />.</entry>
972 </row>
973 <row>
974 <entry><constant>V4L2_BUF_TYPE_VBI_CAPTURE</constant></entry>
975 <entry>4</entry>
976 <entry>Buffer of a raw VBI capture stream, see <xref
977 linkend="raw-vbi" />.</entry>
978 </row>
979 <row>
980 <entry><constant>V4L2_BUF_TYPE_VBI_OUTPUT</constant></entry>
981 <entry>5</entry>
982 <entry>Buffer of a raw VBI output stream, see <xref
983 linkend="raw-vbi" />.</entry>
984 </row>
985 <row>
986 <entry><constant>V4L2_BUF_TYPE_SLICED_VBI_CAPTURE</constant></entry>
987 <entry>6</entry>
988 <entry>Buffer of a sliced VBI capture stream, see <xref
989 linkend="sliced" />.</entry>
990 </row>
991 <row>
992 <entry><constant>V4L2_BUF_TYPE_SLICED_VBI_OUTPUT</constant></entry>
993 <entry>7</entry>
994 <entry>Buffer of a sliced VBI output stream, see <xref
995 linkend="sliced" />.</entry>
996 </row>
997 <row>
998 <entry><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant></entry>
999 <entry>8</entry>
1000 <entry>Buffer for video output overlay (OSD), see <xref
Sakari Ailus8fd207a2012-09-02 03:45:45 -03001001 linkend="osd" />.</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001002 </row>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001003 </tbody>
1004 </tgroup>
1005 </table>
1006
1007 <table frame="none" pgwide="1" id="buffer-flags">
1008 <title>Buffer Flags</title>
1009 <tgroup cols="3">
1010 &cs-def;
1011 <tbody valign="top">
1012 <row>
1013 <entry><constant>V4L2_BUF_FLAG_MAPPED</constant></entry>
1014 <entry>0x0001</entry>
1015 <entry>The buffer resides in device memory and has been mapped
1016into the application's address space, see <xref linkend="mmap" /> for details.
1017Drivers set or clear this flag when the
1018<link linkend="vidioc-querybuf">VIDIOC_QUERYBUF</link>, <link
1019 linkend="vidioc-qbuf">VIDIOC_QBUF</link> or <link
1020 linkend="vidioc-qbuf">VIDIOC_DQBUF</link> ioctl is called. Set by the driver.</entry>
1021 </row>
1022 <row>
1023 <entry><constant>V4L2_BUF_FLAG_QUEUED</constant></entry>
1024 <entry>0x0002</entry>
1025 <entry>Internally drivers maintain two buffer queues, an
1026incoming and outgoing queue. When this flag is set, the buffer is
1027currently on the incoming queue. It automatically moves to the
1028outgoing queue after the buffer has been filled (capture devices) or
1029displayed (output devices). Drivers set or clear this flag when the
1030<constant>VIDIOC_QUERYBUF</constant> ioctl is called. After
1031(successful) calling the <constant>VIDIOC_QBUF </constant>ioctl it is
1032always set and after <constant>VIDIOC_DQBUF</constant> always
1033cleared.</entry>
1034 </row>
1035 <row>
1036 <entry><constant>V4L2_BUF_FLAG_DONE</constant></entry>
1037 <entry>0x0004</entry>
1038 <entry>When this flag is set, the buffer is currently on
1039the outgoing queue, ready to be dequeued from the driver. Drivers set
1040or clear this flag when the <constant>VIDIOC_QUERYBUF</constant> ioctl
1041is called. After calling the <constant>VIDIOC_QBUF</constant> or
1042<constant>VIDIOC_DQBUF</constant> it is always cleared. Of course a
1043buffer cannot be on both queues at the same time, the
1044<constant>V4L2_BUF_FLAG_QUEUED</constant> and
1045<constant>V4L2_BUF_FLAG_DONE</constant> flag are mutually exclusive.
1046They can be both cleared however, then the buffer is in "dequeued"
1047state, in the application domain to say so.</entry>
1048 </row>
1049 <row>
Pawel Osciak21636362010-04-28 04:05:23 -03001050 <entry><constant>V4L2_BUF_FLAG_ERROR</constant></entry>
1051 <entry>0x0040</entry>
1052 <entry>When this flag is set, the buffer has been dequeued
1053 successfully, although the data might have been corrupted.
1054 This is recoverable, streaming may continue as normal and
1055 the buffer may be reused normally.
1056 Drivers set this flag when the <constant>VIDIOC_DQBUF</constant>
1057 ioctl is called.</entry>
1058 </row>
1059 <row>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001060 <entry><constant>V4L2_BUF_FLAG_KEYFRAME</constant></entry>
1061 <entry>0x0008</entry>
1062 <entry>Drivers set or clear this flag when calling the
1063<constant>VIDIOC_DQBUF</constant> ioctl. It may be set by video
1064capture devices when the buffer contains a compressed image which is a
1065key frame (or field), &ie; can be decompressed on its own.</entry>
1066 </row>
1067 <row>
1068 <entry><constant>V4L2_BUF_FLAG_PFRAME</constant></entry>
1069 <entry>0x0010</entry>
1070 <entry>Similar to <constant>V4L2_BUF_FLAG_KEYFRAME</constant>
1071this flags predicted frames or fields which contain only differences to a
1072previous key frame.</entry>
1073 </row>
1074 <row>
1075 <entry><constant>V4L2_BUF_FLAG_BFRAME</constant></entry>
1076 <entry>0x0020</entry>
1077 <entry>Similar to <constant>V4L2_BUF_FLAG_PFRAME</constant>
1078 this is a bidirectional predicted frame or field. [ooc tbd]</entry>
1079 </row>
1080 <row>
1081 <entry><constant>V4L2_BUF_FLAG_TIMECODE</constant></entry>
1082 <entry>0x0100</entry>
1083 <entry>The <structfield>timecode</structfield> field is valid.
1084Drivers set or clear this flag when the <constant>VIDIOC_DQBUF</constant>
1085ioctl is called.</entry>
1086 </row>
1087 <row>
Guennadi Liakhovetski55093282011-09-28 08:10:58 -03001088 <entry><constant>V4L2_BUF_FLAG_PREPARED</constant></entry>
1089 <entry>0x0400</entry>
1090 <entry>The buffer has been prepared for I/O and can be queued by the
1091application. Drivers set or clear this flag when the
1092<link linkend="vidioc-querybuf">VIDIOC_QUERYBUF</link>, <link
1093 linkend="vidioc-qbuf">VIDIOC_PREPARE_BUF</link>, <link
1094 linkend="vidioc-qbuf">VIDIOC_QBUF</link> or <link
1095 linkend="vidioc-qbuf">VIDIOC_DQBUF</link> ioctl is called.</entry>
1096 </row>
1097 <row>
1098 <entry><constant>V4L2_BUF_FLAG_NO_CACHE_INVALIDATE</constant></entry>
Sakari Ailuse7d99352012-10-21 15:30:02 -03001099 <entry>0x0800</entry>
Guennadi Liakhovetski55093282011-09-28 08:10:58 -03001100 <entry>Caches do not have to be invalidated for this buffer.
1101Typically applications shall use this flag if the data captured in the buffer
1102is not going to be touched by the CPU, instead the buffer will, probably, be
1103passed on to a DMA-capable hardware unit for further processing or output.
1104</entry>
1105 </row>
1106 <row>
1107 <entry><constant>V4L2_BUF_FLAG_NO_CACHE_CLEAN</constant></entry>
Sakari Ailuse7d99352012-10-21 15:30:02 -03001108 <entry>0x1000</entry>
Guennadi Liakhovetski55093282011-09-28 08:10:58 -03001109 <entry>Caches do not have to be cleaned for this buffer.
1110Typically applications shall use this flag for output buffers if the data
1111in this buffer has not been created by the CPU but by some DMA-capable unit,
1112in which case caches have not been used.</entry>
1113 </row>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001114 </tbody>
1115 </tgroup>
1116 </table>
1117
1118 <table pgwide="1" frame="none" id="v4l2-memory">
1119 <title>enum v4l2_memory</title>
1120 <tgroup cols="3">
1121 &cs-def;
1122 <tbody valign="top">
1123 <row>
1124 <entry><constant>V4L2_MEMORY_MMAP</constant></entry>
1125 <entry>1</entry>
1126 <entry>The buffer is used for <link linkend="mmap">memory
1127mapping</link> I/O.</entry>
1128 </row>
1129 <row>
1130 <entry><constant>V4L2_MEMORY_USERPTR</constant></entry>
1131 <entry>2</entry>
1132 <entry>The buffer is used for <link linkend="userp">user
1133pointer</link> I/O.</entry>
1134 </row>
1135 <row>
1136 <entry><constant>V4L2_MEMORY_OVERLAY</constant></entry>
1137 <entry>3</entry>
1138 <entry>[to do]</entry>
1139 </row>
Tomasz Stanislawski4b9c1cb2012-06-14 10:37:36 -03001140 <row>
1141 <entry><constant>V4L2_MEMORY_DMABUF</constant></entry>
1142 <entry>4</entry>
1143 <entry>The buffer is used for <link linkend="dmabuf">DMA shared
1144buffer</link> I/O.</entry>
1145 </row>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001146 </tbody>
1147 </tgroup>
1148 </table>
1149
1150 <section>
1151 <title>Timecodes</title>
1152
1153 <para>The <structname>v4l2_timecode</structname> structure is
1154designed to hold a <xref linkend="smpte12m" /> or similar timecode.
1155(struct <structname>timeval</structname> timestamps are stored in
1156&v4l2-buffer; field <structfield>timestamp</structfield>.)</para>
1157
1158 <table frame="none" pgwide="1" id="v4l2-timecode">
1159 <title>struct <structname>v4l2_timecode</structname></title>
1160 <tgroup cols="3">
1161 &cs-str;
1162 <tbody valign="top">
1163 <row>
1164 <entry>__u32</entry>
1165 <entry><structfield>type</structfield></entry>
1166 <entry>Frame rate the timecodes are based on, see <xref
1167 linkend="timecode-type" />.</entry>
1168 </row>
1169 <row>
1170 <entry>__u32</entry>
1171 <entry><structfield>flags</structfield></entry>
1172 <entry>Timecode flags, see <xref linkend="timecode-flags" />.</entry>
1173 </row>
1174 <row>
1175 <entry>__u8</entry>
1176 <entry><structfield>frames</structfield></entry>
1177 <entry>Frame count, 0 ... 23/24/29/49/59, depending on the
1178 type of timecode.</entry>
1179 </row>
1180 <row>
1181 <entry>__u8</entry>
1182 <entry><structfield>seconds</structfield></entry>
1183 <entry>Seconds count, 0 ... 59. This is a binary, not BCD number.</entry>
1184 </row>
1185 <row>
1186 <entry>__u8</entry>
1187 <entry><structfield>minutes</structfield></entry>
1188 <entry>Minutes count, 0 ... 59. This is a binary, not BCD number.</entry>
1189 </row>
1190 <row>
1191 <entry>__u8</entry>
1192 <entry><structfield>hours</structfield></entry>
1193 <entry>Hours count, 0 ... 29. This is a binary, not BCD number.</entry>
1194 </row>
1195 <row>
1196 <entry>__u8</entry>
1197 <entry><structfield>userbits</structfield>[4]</entry>
1198 <entry>The "user group" bits from the timecode.</entry>
1199 </row>
1200 </tbody>
1201 </tgroup>
1202 </table>
1203
1204 <table frame="none" pgwide="1" id="timecode-type">
1205 <title>Timecode Types</title>
1206 <tgroup cols="3">
1207 &cs-def;
1208 <tbody valign="top">
1209 <row>
1210 <entry><constant>V4L2_TC_TYPE_24FPS</constant></entry>
1211 <entry>1</entry>
1212 <entry>24 frames per second, i.&nbsp;e. film.</entry>
1213 </row>
1214 <row>
1215 <entry><constant>V4L2_TC_TYPE_25FPS</constant></entry>
1216 <entry>2</entry>
1217 <entry>25 frames per second, &ie; PAL or SECAM video.</entry>
1218 </row>
1219 <row>
1220 <entry><constant>V4L2_TC_TYPE_30FPS</constant></entry>
1221 <entry>3</entry>
1222 <entry>30 frames per second, &ie; NTSC video.</entry>
1223 </row>
1224 <row>
1225 <entry><constant>V4L2_TC_TYPE_50FPS</constant></entry>
1226 <entry>4</entry>
1227 <entry></entry>
1228 </row>
1229 <row>
1230 <entry><constant>V4L2_TC_TYPE_60FPS</constant></entry>
1231 <entry>5</entry>
1232 <entry></entry>
1233 </row>
1234 </tbody>
1235 </tgroup>
1236 </table>
1237
1238 <table frame="none" pgwide="1" id="timecode-flags">
1239 <title>Timecode Flags</title>
1240 <tgroup cols="3">
1241 &cs-def;
1242 <tbody valign="top">
1243 <row>
1244 <entry><constant>V4L2_TC_FLAG_DROPFRAME</constant></entry>
1245 <entry>0x0001</entry>
1246 <entry>Indicates "drop frame" semantics for counting frames
1247in 29.97 fps material. When set, frame numbers 0 and 1 at the start of
1248each minute, except minutes 0, 10, 20, 30, 40, 50 are omitted from the
1249count.</entry>
1250 </row>
1251 <row>
1252 <entry><constant>V4L2_TC_FLAG_COLORFRAME</constant></entry>
1253 <entry>0x0002</entry>
1254 <entry>The "color frame" flag.</entry>
1255 </row>
1256 <row>
1257 <entry><constant>V4L2_TC_USERBITS_field</constant></entry>
1258 <entry>0x000C</entry>
1259 <entry>Field mask for the "binary group flags".</entry>
1260 </row>
1261 <row>
1262 <entry><constant>V4L2_TC_USERBITS_USERDEFINED</constant></entry>
1263 <entry>0x0000</entry>
1264 <entry>Unspecified format.</entry>
1265 </row>
1266 <row>
1267 <entry><constant>V4L2_TC_USERBITS_8BITCHARS</constant></entry>
1268 <entry>0x0008</entry>
1269 <entry>8-bit ISO characters.</entry>
1270 </row>
1271 </tbody>
1272 </tgroup>
1273 </table>
1274 </section>
1275 </section>
1276
1277 <section id="field-order">
1278 <title>Field Order</title>
1279
1280 <para>We have to distinguish between progressive and interlaced
1281video. Progressive video transmits all lines of a video image
1282sequentially. Interlaced video divides an image into two fields,
1283containing only the odd and even lines of the image, respectively.
1284Alternating the so called odd and even field are transmitted, and due
1285to a small delay between fields a cathode ray TV displays the lines
1286interleaved, yielding the original frame. This curious technique was
1287invented because at refresh rates similar to film the image would
1288fade out too quickly. Transmitting fields reduces the flicker without
1289the necessity of doubling the frame rate and with it the bandwidth
1290required for each channel.</para>
1291
1292 <para>It is important to understand a video camera does not expose
1293one frame at a time, merely transmitting the frames separated into
1294fields. The fields are in fact captured at two different instances in
1295time. An object on screen may well move between one field and the
1296next. For applications analysing motion it is of paramount importance
1297to recognize which field of a frame is older, the <emphasis>temporal
1298order</emphasis>.</para>
1299
1300 <para>When the driver provides or accepts images field by field
1301rather than interleaved, it is also important applications understand
Hans Verkuil37089362010-03-27 14:10:37 -03001302how the fields combine to frames. We distinguish between top (aka odd) and
1303bottom (aka even) fields, the <emphasis>spatial order</emphasis>: The first line
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001304of the top field is the first line of an interlaced frame, the first
1305line of the bottom field is the second line of that frame.</para>
1306
1307 <para>However because fields were captured one after the other,
1308arguing whether a frame commences with the top or bottom field is
1309pointless. Any two successive top and bottom, or bottom and top fields
1310yield a valid frame. Only when the source was progressive to begin
1311with, &eg; when transferring film to video, two fields may come from
1312the same frame, creating a natural order.</para>
1313
1314 <para>Counter to intuition the top field is not necessarily the
1315older field. Whether the older field contains the top or bottom lines
1316is a convention determined by the video standard. Hence the
1317distinction between temporal and spatial order of fields. The diagrams
1318below should make this clearer.</para>
1319
1320 <para>All video capture and output devices must report the current
1321field order. Some drivers may permit the selection of a different
1322order, to this end applications initialize the
1323<structfield>field</structfield> field of &v4l2-pix-format; before
1324calling the &VIDIOC-S-FMT; ioctl. If this is not desired it should
1325have the value <constant>V4L2_FIELD_ANY</constant> (0).</para>
1326
1327 <table frame="none" pgwide="1" id="v4l2-field">
1328 <title>enum v4l2_field</title>
1329 <tgroup cols="3">
1330 &cs-def;
1331 <tbody valign="top">
1332 <row>
1333 <entry><constant>V4L2_FIELD_ANY</constant></entry>
1334 <entry>0</entry>
1335 <entry>Applications request this field order when any
1336one of the <constant>V4L2_FIELD_NONE</constant>,
1337<constant>V4L2_FIELD_TOP</constant>,
1338<constant>V4L2_FIELD_BOTTOM</constant>, or
1339<constant>V4L2_FIELD_INTERLACED</constant> formats is acceptable.
1340Drivers choose depending on hardware capabilities or e.&nbsp;g. the
1341requested image size, and return the actual field order. &v4l2-buffer;
1342<structfield>field</structfield> can never be
1343<constant>V4L2_FIELD_ANY</constant>.</entry>
1344 </row>
1345 <row>
1346 <entry><constant>V4L2_FIELD_NONE</constant></entry>
1347 <entry>1</entry>
1348 <entry>Images are in progressive format, not interlaced.
1349The driver may also indicate this order when it cannot distinguish
1350between <constant>V4L2_FIELD_TOP</constant> and
1351<constant>V4L2_FIELD_BOTTOM</constant>.</entry>
1352 </row>
1353 <row>
1354 <entry><constant>V4L2_FIELD_TOP</constant></entry>
1355 <entry>2</entry>
Hans Verkuil37089362010-03-27 14:10:37 -03001356 <entry>Images consist of the top (aka odd) field only.</entry>
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001357 </row>
1358 <row>
1359 <entry><constant>V4L2_FIELD_BOTTOM</constant></entry>
1360 <entry>3</entry>
Hans Verkuil37089362010-03-27 14:10:37 -03001361 <entry>Images consist of the bottom (aka even) field only.
Mauro Carvalho Chehab8e080c22009-09-13 22:16:04 -03001362Applications may wish to prevent a device from capturing interlaced
1363images because they will have "comb" or "feathering" artefacts around
1364moving objects.</entry>
1365 </row>
1366 <row>
1367 <entry><constant>V4L2_FIELD_INTERLACED</constant></entry>
1368 <entry>4</entry>
1369 <entry>Images contain both fields, interleaved line by
1370line. The temporal order of the fields (whether the top or bottom
1371field is first transmitted) depends on the current video standard.
1372M/NTSC transmits the bottom field first, all other standards the top
1373field first.</entry>
1374 </row>
1375 <row>
1376 <entry><constant>V4L2_FIELD_SEQ_TB</constant></entry>
1377 <entry>5</entry>
1378 <entry>Images contain both fields, the top field lines
1379are stored first in memory, immediately followed by the bottom field
1380lines. Fields are always stored in temporal order, the older one first
1381in memory. Image sizes refer to the frame, not fields.</entry>
1382 </row>
1383 <row>
1384 <entry><constant>V4L2_FIELD_SEQ_BT</constant></entry>
1385 <entry>6</entry>
1386 <entry>Images contain both fields, the bottom field
1387lines are stored first in memory, immediately followed by the top
1388field lines. Fields are always stored in temporal order, the older one
1389first in memory. Image sizes refer to the frame, not fields.</entry>
1390 </row>
1391 <row>
1392 <entry><constant>V4L2_FIELD_ALTERNATE</constant></entry>
1393 <entry>7</entry>
1394 <entry>The two fields of a frame are passed in separate
1395buffers, in temporal order, &ie; the older one first. To indicate the field
1396parity (whether the current field is a top or bottom field) the driver
1397or application, depending on data direction, must set &v4l2-buffer;
1398<structfield>field</structfield> to
1399<constant>V4L2_FIELD_TOP</constant> or
1400<constant>V4L2_FIELD_BOTTOM</constant>. Any two successive fields pair
1401to build a frame. If fields are successive, without any dropped fields
1402between them (fields can drop individually), can be determined from
1403the &v4l2-buffer; <structfield>sequence</structfield> field. Image
1404sizes refer to the frame, not fields. This format cannot be selected
1405when using the read/write I/O method.<!-- Where it's indistinguishable
1406from V4L2_FIELD_SEQ_*. --></entry>
1407 </row>
1408 <row>
1409 <entry><constant>V4L2_FIELD_INTERLACED_TB</constant></entry>
1410 <entry>8</entry>
1411 <entry>Images contain both fields, interleaved line by
1412line, top field first. The top field is transmitted first.</entry>
1413 </row>
1414 <row>
1415 <entry><constant>V4L2_FIELD_INTERLACED_BT</constant></entry>
1416 <entry>9</entry>
1417 <entry>Images contain both fields, interleaved line by
1418line, top field first. The bottom field is transmitted first.</entry>
1419 </row>
1420 </tbody>
1421 </tgroup>
1422 </table>
1423
1424 <figure id="fieldseq-tb">
1425 <title>Field Order, Top Field First Transmitted</title>
1426 <mediaobject>
1427 <imageobject>
1428 <imagedata fileref="fieldseq_tb.pdf" format="PS" />
1429 </imageobject>
1430 <imageobject>
1431 <imagedata fileref="fieldseq_tb.gif" format="GIF" />
1432 </imageobject>
1433 </mediaobject>
1434 </figure>
1435
1436 <figure id="fieldseq-bt">
1437 <title>Field Order, Bottom Field First Transmitted</title>
1438 <mediaobject>
1439 <imageobject>
1440 <imagedata fileref="fieldseq_bt.pdf" format="PS" />
1441 </imageobject>
1442 <imageobject>
1443 <imagedata fileref="fieldseq_bt.gif" format="GIF" />
1444 </imageobject>
1445 </mediaobject>
1446 </figure>
1447 </section>