| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* Software floating-point emulation. | 
|  | 2 | Basic one-word fraction declaration and manipulation. | 
|  | 3 | Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. | 
|  | 4 | This file is part of the GNU C Library. | 
|  | 5 | Contributed by Richard Henderson (rth@cygnus.com), | 
|  | 6 | Jakub Jelinek (jj@ultra.linux.cz), | 
|  | 7 | David S. Miller (davem@redhat.com) and | 
|  | 8 | Peter Maydell (pmaydell@chiark.greenend.org.uk). | 
|  | 9 |  | 
|  | 10 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 11 | modify it under the terms of the GNU Library General Public License as | 
|  | 12 | published by the Free Software Foundation; either version 2 of the | 
|  | 13 | License, or (at your option) any later version. | 
|  | 14 |  | 
|  | 15 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 18 | Library General Public License for more details. | 
|  | 19 |  | 
|  | 20 | You should have received a copy of the GNU Library General Public | 
|  | 21 | License along with the GNU C Library; see the file COPYING.LIB.  If | 
|  | 22 | not, write to the Free Software Foundation, Inc., | 
|  | 23 | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */ | 
|  | 24 |  | 
|  | 25 | #ifndef    __MATH_EMU_OP_1_H__ | 
|  | 26 | #define    __MATH_EMU_OP_1_H__ | 
|  | 27 |  | 
|  | 28 | #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f=0 | 
|  | 29 | #define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f) | 
|  | 30 | #define _FP_FRAC_SET_1(X,I)	(X##_f = I) | 
|  | 31 | #define _FP_FRAC_HIGH_1(X)	(X##_f) | 
|  | 32 | #define _FP_FRAC_LOW_1(X)	(X##_f) | 
|  | 33 | #define _FP_FRAC_WORD_1(X,w)	(X##_f) | 
|  | 34 |  | 
|  | 35 | #define _FP_FRAC_ADDI_1(X,I)	(X##_f += I) | 
|  | 36 | #define _FP_FRAC_SLL_1(X,N)			\ | 
|  | 37 | do {						\ | 
|  | 38 | if (__builtin_constant_p(N) && (N) == 1)	\ | 
|  | 39 | X##_f += X##_f;				\ | 
|  | 40 | else					\ | 
|  | 41 | X##_f <<= (N);				\ | 
|  | 42 | } while (0) | 
|  | 43 | #define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N) | 
|  | 44 |  | 
|  | 45 | /* Right shift with sticky-lsb.  */ | 
|  | 46 | #define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz) | 
|  | 47 |  | 
|  | 48 | #define __FP_FRAC_SRS_1(X,N,sz)						\ | 
|  | 49 | (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\ | 
|  | 50 | ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) | 
|  | 51 |  | 
|  | 52 | #define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f) | 
|  | 53 | #define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f) | 
|  | 54 | #define _FP_FRAC_DEC_1(X,Y)	(X##_f -= Y##_f) | 
|  | 55 | #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f) | 
|  | 56 |  | 
|  | 57 | /* Predicates */ | 
|  | 58 | #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0) | 
|  | 59 | #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0) | 
|  | 60 | #define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs) | 
|  | 61 | #define _FP_FRAC_CLEAR_OVERP_1(fs,X)	(X##_f &= ~_FP_OVERFLOW_##fs) | 
|  | 62 | #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f) | 
|  | 63 | #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f) | 
|  | 64 | #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f) | 
|  | 65 |  | 
|  | 66 | #define _FP_ZEROFRAC_1		0 | 
|  | 67 | #define _FP_MINFRAC_1		1 | 
|  | 68 | #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE)0) | 
|  | 69 |  | 
|  | 70 | /* | 
|  | 71 | * Unpack the raw bits of a native fp value.  Do not classify or | 
|  | 72 | * normalize the data. | 
|  | 73 | */ | 
|  | 74 |  | 
|  | 75 | #define _FP_UNPACK_RAW_1(fs, X, val)				\ | 
|  | 76 | do {								\ | 
|  | 77 | union _FP_UNION_##fs _flo; _flo.flt = (val);		\ | 
|  | 78 | \ | 
|  | 79 | X##_f = _flo.bits.frac;					\ | 
|  | 80 | X##_e = _flo.bits.exp;					\ | 
|  | 81 | X##_s = _flo.bits.sign;					\ | 
|  | 82 | } while (0) | 
|  | 83 |  | 
|  | 84 | #define _FP_UNPACK_RAW_1_P(fs, X, val)				\ | 
|  | 85 | do {								\ | 
|  | 86 | union _FP_UNION_##fs *_flo =				\ | 
|  | 87 | (union _FP_UNION_##fs *)(val);				\ | 
|  | 88 | \ | 
|  | 89 | X##_f = _flo->bits.frac;					\ | 
|  | 90 | X##_e = _flo->bits.exp;					\ | 
|  | 91 | X##_s = _flo->bits.sign;					\ | 
|  | 92 | } while (0) | 
|  | 93 |  | 
|  | 94 | /* | 
|  | 95 | * Repack the raw bits of a native fp value. | 
|  | 96 | */ | 
|  | 97 |  | 
|  | 98 | #define _FP_PACK_RAW_1(fs, val, X)				\ | 
|  | 99 | do {								\ | 
|  | 100 | union _FP_UNION_##fs _flo;					\ | 
|  | 101 | \ | 
|  | 102 | _flo.bits.frac = X##_f;					\ | 
|  | 103 | _flo.bits.exp  = X##_e;					\ | 
|  | 104 | _flo.bits.sign = X##_s;					\ | 
|  | 105 | \ | 
|  | 106 | (val) = _flo.flt;						\ | 
|  | 107 | } while (0) | 
|  | 108 |  | 
|  | 109 | #define _FP_PACK_RAW_1_P(fs, val, X)				\ | 
|  | 110 | do {								\ | 
|  | 111 | union _FP_UNION_##fs *_flo =				\ | 
|  | 112 | (union _FP_UNION_##fs *)(val);				\ | 
|  | 113 | \ | 
|  | 114 | _flo->bits.frac = X##_f;					\ | 
|  | 115 | _flo->bits.exp  = X##_e;					\ | 
|  | 116 | _flo->bits.sign = X##_s;					\ | 
|  | 117 | } while (0) | 
|  | 118 |  | 
|  | 119 |  | 
|  | 120 | /* | 
|  | 121 | * Multiplication algorithms: | 
|  | 122 | */ | 
|  | 123 |  | 
|  | 124 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
|  | 125 | multiplication immediately.  */ | 
|  | 126 |  | 
|  | 127 | #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\ | 
|  | 128 | do {									\ | 
|  | 129 | R##_f = X##_f * Y##_f;						\ | 
|  | 130 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 131 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 132 | at either 2B or 2B-1.  */					\ | 
|  | 133 | _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);			\ | 
|  | 134 | } while (0) | 
|  | 135 |  | 
|  | 136 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
|  | 137 |  | 
|  | 138 | #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\ | 
|  | 139 | do {									\ | 
|  | 140 | _FP_W_TYPE _Z_f0, _Z_f1;						\ | 
|  | 141 | doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\ | 
|  | 142 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 143 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 144 | at either 2B or 2B-1.  */					\ | 
|  | 145 | _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);			\ | 
|  | 146 | R##_f = _Z_f0;							\ | 
|  | 147 | } while (0) | 
|  | 148 |  | 
|  | 149 | /* Finally, a simple widening multiply algorithm.  What fun!  */ | 
|  | 150 |  | 
|  | 151 | #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)				\ | 
|  | 152 | do {									\ | 
|  | 153 | _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\ | 
|  | 154 | \ | 
|  | 155 | /* split the words in half */					\ | 
|  | 156 | _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\ | 
|  | 157 | _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\ | 
|  | 158 | _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\ | 
|  | 159 | _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\ | 
|  | 160 | \ | 
|  | 161 | /* multiply the pieces */						\ | 
|  | 162 | _z_f0 = _xl * _yl;							\ | 
|  | 163 | _a_f0 = _xh * _yl;							\ | 
|  | 164 | _a_f1 = _xl * _yh;							\ | 
|  | 165 | _z_f1 = _xh * _yh;							\ | 
|  | 166 | \ | 
|  | 167 | /* reassemble into two full words */				\ | 
|  | 168 | if ((_a_f0 += _a_f1) < _a_f1)					\ | 
|  | 169 | _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\ | 
|  | 170 | _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\ | 
|  | 171 | _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\ | 
|  | 172 | _FP_FRAC_ADD_2(_z, _z, _a);						\ | 
|  | 173 | \ | 
|  | 174 | /* normalize */							\ | 
|  | 175 | _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);			\ | 
|  | 176 | R##_f = _z_f0;							\ | 
|  | 177 | } while (0) | 
|  | 178 |  | 
|  | 179 |  | 
|  | 180 | /* | 
|  | 181 | * Division algorithms: | 
|  | 182 | */ | 
|  | 183 |  | 
|  | 184 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
|  | 185 | division immediately.  Give this macro either _FP_DIV_HELP_imm for | 
|  | 186 | C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you | 
|  | 187 | choose will depend on what the compiler does with divrem4.  */ | 
|  | 188 |  | 
|  | 189 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\ | 
|  | 190 | do {							\ | 
|  | 191 | _FP_W_TYPE _q, _r;					\ | 
|  | 192 | X##_f <<= (X##_f < Y##_f				\ | 
|  | 193 | ? R##_e--, _FP_WFRACBITS_##fs		\ | 
|  | 194 | : _FP_WFRACBITS_##fs - 1);		\ | 
|  | 195 | doit(_q, _r, X##_f, Y##_f);				\ | 
|  | 196 | R##_f = _q | (_r != 0);				\ | 
|  | 197 | } while (0) | 
|  | 198 |  | 
|  | 199 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd | 
|  | 200 | that may be useful in this situation.  This first is for a primitive | 
|  | 201 | that requires normalization, the second for one that does not.  Look | 
|  | 202 | for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */ | 
|  | 203 |  | 
|  | 204 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\ | 
|  | 205 | do {									\ | 
|  | 206 | _FP_W_TYPE _nh, _nl, _q, _r, _y;					\ | 
|  | 207 | \ | 
|  | 208 | /* Normalize Y -- i.e. make the most significant bit set.  */	\ | 
|  | 209 | _y = Y##_f << _FP_WFRACXBITS_##fs;					\ | 
|  | 210 | \ | 
|  | 211 | /* Shift X op correspondingly high, that is, up one full word.  */	\ | 
|  | 212 | if (X##_f < Y##_f)							\ | 
|  | 213 | {									\ | 
|  | 214 | R##_e--;							\ | 
|  | 215 | _nl = 0;							\ | 
|  | 216 | _nh = X##_f;							\ | 
|  | 217 | }									\ | 
|  | 218 | else								\ | 
|  | 219 | {									\ | 
|  | 220 | _nl = X##_f << (_FP_W_TYPE_SIZE - 1);				\ | 
|  | 221 | _nh = X##_f >> 1;						\ | 
|  | 222 | }									\ | 
|  | 223 | \ | 
|  | 224 | udiv_qrnnd(_q, _r, _nh, _nl, _y);					\ | 
|  | 225 | R##_f = _q | (_r != 0);						\ | 
|  | 226 | } while (0) | 
|  | 227 |  | 
|  | 228 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\ | 
|  | 229 | do {							\ | 
|  | 230 | _FP_W_TYPE _nh, _nl, _q, _r;			\ | 
|  | 231 | if (X##_f < Y##_f)					\ | 
|  | 232 | {							\ | 
|  | 233 | R##_e--;					\ | 
|  | 234 | _nl = X##_f << _FP_WFRACBITS_##fs;		\ | 
|  | 235 | _nh = X##_f >> _FP_WFRACXBITS_##fs;		\ | 
|  | 236 | }							\ | 
|  | 237 | else						\ | 
|  | 238 | {							\ | 
|  | 239 | _nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\ | 
|  | 240 | _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\ | 
|  | 241 | }							\ | 
|  | 242 | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\ | 
|  | 243 | R##_f = _q | (_r != 0);				\ | 
|  | 244 | } while (0) | 
|  | 245 |  | 
|  | 246 |  | 
|  | 247 | /* | 
|  | 248 | * Square root algorithms: | 
|  | 249 | * We have just one right now, maybe Newton approximation | 
|  | 250 | * should be added for those machines where division is fast. | 
|  | 251 | */ | 
|  | 252 |  | 
|  | 253 | #define _FP_SQRT_MEAT_1(R, S, T, X, q)			\ | 
|  | 254 | do {							\ | 
|  | 255 | while (q != _FP_WORK_ROUND)				\ | 
|  | 256 | {							\ | 
|  | 257 | T##_f = S##_f + q;				\ | 
|  | 258 | if (T##_f <= X##_f)				\ | 
|  | 259 | {						\ | 
|  | 260 | S##_f = T##_f + q;				\ | 
|  | 261 | X##_f -= T##_f;				\ | 
|  | 262 | R##_f += q;					\ | 
|  | 263 | }						\ | 
|  | 264 | _FP_FRAC_SLL_1(X, 1);				\ | 
|  | 265 | q >>= 1;					\ | 
|  | 266 | }							\ | 
|  | 267 | if (X##_f)						\ | 
|  | 268 | {							\ | 
|  | 269 | if (S##_f < X##_f)				\ | 
|  | 270 | R##_f |= _FP_WORK_ROUND;			\ | 
|  | 271 | R##_f |= _FP_WORK_STICKY;			\ | 
|  | 272 | }							\ | 
|  | 273 | } while (0) | 
|  | 274 |  | 
|  | 275 | /* | 
|  | 276 | * Assembly/disassembly for converting to/from integral types. | 
|  | 277 | * No shifting or overflow handled here. | 
|  | 278 | */ | 
|  | 279 |  | 
|  | 280 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f) | 
|  | 281 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r) | 
|  | 282 |  | 
|  | 283 |  | 
|  | 284 | /* | 
|  | 285 | * Convert FP values between word sizes | 
|  | 286 | */ | 
|  | 287 |  | 
|  | 288 | #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\ | 
|  | 289 | do {									\ | 
|  | 290 | D##_f = S##_f;							\ | 
|  | 291 | if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\ | 
|  | 292 | {									\ | 
|  | 293 | if (S##_c != FP_CLS_NAN)					\ | 
|  | 294 | _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\ | 
|  | 295 | _FP_WFRACBITS_##sfs);				\ | 
|  | 296 | else								\ | 
|  | 297 | _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs));	\ | 
|  | 298 | }									\ | 
|  | 299 | else								\ | 
|  | 300 | D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\ | 
|  | 301 | } while (0) | 
|  | 302 |  | 
|  | 303 | #endif /* __MATH_EMU_OP_1_H__ */ |