john stultz | 4c7ee8d | 2006-09-30 23:28:22 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/kernel/time/ntp.c |
| 3 | * |
| 4 | * NTP state machine interfaces and logic. |
| 5 | * |
| 6 | * This code was mainly moved from kernel/timer.c and kernel/time.c |
| 7 | * Please see those files for relevant copyright info and historical |
| 8 | * changelogs. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/mm.h> |
| 12 | #include <linux/time.h> |
| 13 | #include <linux/timex.h> |
| 14 | |
| 15 | #include <asm/div64.h> |
| 16 | #include <asm/timex.h> |
| 17 | |
| 18 | /* Don't completely fail for HZ > 500. */ |
| 19 | int tickadj = 500/HZ ? : 1; /* microsecs */ |
| 20 | |
| 21 | /* |
| 22 | * phase-lock loop variables |
| 23 | */ |
| 24 | /* TIME_ERROR prevents overwriting the CMOS clock */ |
| 25 | int time_state = TIME_OK; /* clock synchronization status */ |
| 26 | int time_status = STA_UNSYNC; /* clock status bits */ |
| 27 | long time_offset; /* time adjustment (us) */ |
| 28 | long time_constant = 2; /* pll time constant */ |
| 29 | long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ |
| 30 | long time_precision = 1; /* clock precision (us) */ |
| 31 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ |
| 32 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ |
| 33 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; |
| 34 | /* frequency offset (scaled ppm)*/ |
| 35 | static long time_adj; /* tick adjust (scaled 1 / HZ) */ |
| 36 | long time_reftime; /* time at last adjustment (s) */ |
| 37 | long time_adjust; |
| 38 | long time_next_adjust; |
| 39 | |
| 40 | /* |
| 41 | * this routine handles the overflow of the microsecond field |
| 42 | * |
| 43 | * The tricky bits of code to handle the accurate clock support |
| 44 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. |
| 45 | * They were originally developed for SUN and DEC kernels. |
| 46 | * All the kudos should go to Dave for this stuff. |
| 47 | */ |
| 48 | void second_overflow(void) |
| 49 | { |
| 50 | long ltemp; |
| 51 | |
| 52 | /* Bump the maxerror field */ |
| 53 | time_maxerror += time_tolerance >> SHIFT_USEC; |
| 54 | if (time_maxerror > NTP_PHASE_LIMIT) { |
| 55 | time_maxerror = NTP_PHASE_LIMIT; |
| 56 | time_status |= STA_UNSYNC; |
| 57 | } |
| 58 | |
| 59 | /* |
| 60 | * Leap second processing. If in leap-insert state at the end of the |
| 61 | * day, the system clock is set back one second; if in leap-delete |
| 62 | * state, the system clock is set ahead one second. The microtime() |
| 63 | * routine or external clock driver will insure that reported time is |
| 64 | * always monotonic. The ugly divides should be replaced. |
| 65 | */ |
| 66 | switch (time_state) { |
| 67 | case TIME_OK: |
| 68 | if (time_status & STA_INS) |
| 69 | time_state = TIME_INS; |
| 70 | else if (time_status & STA_DEL) |
| 71 | time_state = TIME_DEL; |
| 72 | break; |
| 73 | case TIME_INS: |
| 74 | if (xtime.tv_sec % 86400 == 0) { |
| 75 | xtime.tv_sec--; |
| 76 | wall_to_monotonic.tv_sec++; |
| 77 | /* |
| 78 | * The timer interpolator will make time change |
| 79 | * gradually instead of an immediate jump by one second |
| 80 | */ |
| 81 | time_interpolator_update(-NSEC_PER_SEC); |
| 82 | time_state = TIME_OOP; |
| 83 | clock_was_set(); |
| 84 | printk(KERN_NOTICE "Clock: inserting leap second " |
| 85 | "23:59:60 UTC\n"); |
| 86 | } |
| 87 | break; |
| 88 | case TIME_DEL: |
| 89 | if ((xtime.tv_sec + 1) % 86400 == 0) { |
| 90 | xtime.tv_sec++; |
| 91 | wall_to_monotonic.tv_sec--; |
| 92 | /* |
| 93 | * Use of time interpolator for a gradual change of |
| 94 | * time |
| 95 | */ |
| 96 | time_interpolator_update(NSEC_PER_SEC); |
| 97 | time_state = TIME_WAIT; |
| 98 | clock_was_set(); |
| 99 | printk(KERN_NOTICE "Clock: deleting leap second " |
| 100 | "23:59:59 UTC\n"); |
| 101 | } |
| 102 | break; |
| 103 | case TIME_OOP: |
| 104 | time_state = TIME_WAIT; |
| 105 | break; |
| 106 | case TIME_WAIT: |
| 107 | if (!(time_status & (STA_INS | STA_DEL))) |
| 108 | time_state = TIME_OK; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * Compute the phase adjustment for the next second. In PLL mode, the |
| 113 | * offset is reduced by a fixed factor times the time constant. In FLL |
| 114 | * mode the offset is used directly. In either mode, the maximum phase |
| 115 | * adjustment for each second is clamped so as to spread the adjustment |
| 116 | * over not more than the number of seconds between updates. |
| 117 | */ |
| 118 | ltemp = time_offset; |
| 119 | if (!(time_status & STA_FLL)) |
| 120 | ltemp = shift_right(ltemp, SHIFT_KG + time_constant); |
| 121 | ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); |
| 122 | ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); |
| 123 | time_offset -= ltemp; |
| 124 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); |
| 125 | |
| 126 | /* |
| 127 | * Compute the frequency estimate and additional phase adjustment due |
| 128 | * to frequency error for the next second. |
| 129 | */ |
| 130 | ltemp = time_freq; |
| 131 | time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); |
| 132 | |
| 133 | #if HZ == 100 |
| 134 | /* |
| 135 | * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to |
| 136 | * get 128.125; => only 0.125% error (p. 14) |
| 137 | */ |
| 138 | time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); |
| 139 | #endif |
| 140 | #if HZ == 250 |
| 141 | /* |
| 142 | * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and |
| 143 | * 0.78125% to get 255.85938; => only 0.05% error (p. 14) |
| 144 | */ |
| 145 | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); |
| 146 | #endif |
| 147 | #if HZ == 1000 |
| 148 | /* |
| 149 | * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and |
| 150 | * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) |
| 151 | */ |
| 152 | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); |
| 153 | #endif |
| 154 | } |
| 155 | |
| 156 | /* |
| 157 | * Returns how many microseconds we need to add to xtime this tick |
| 158 | * in doing an adjustment requested with adjtime. |
| 159 | */ |
| 160 | static long adjtime_adjustment(void) |
| 161 | { |
| 162 | long time_adjust_step; |
| 163 | |
| 164 | time_adjust_step = time_adjust; |
| 165 | if (time_adjust_step) { |
| 166 | /* |
| 167 | * We are doing an adjtime thing. Prepare time_adjust_step to |
| 168 | * be within bounds. Note that a positive time_adjust means we |
| 169 | * want the clock to run faster. |
| 170 | * |
| 171 | * Limit the amount of the step to be in the range |
| 172 | * -tickadj .. +tickadj |
| 173 | */ |
| 174 | time_adjust_step = min(time_adjust_step, (long)tickadj); |
| 175 | time_adjust_step = max(time_adjust_step, (long)-tickadj); |
| 176 | } |
| 177 | return time_adjust_step; |
| 178 | } |
| 179 | |
| 180 | /* in the NTP reference this is called "hardclock()" */ |
| 181 | void update_ntp_one_tick(void) |
| 182 | { |
| 183 | long time_adjust_step; |
| 184 | |
| 185 | time_adjust_step = adjtime_adjustment(); |
| 186 | if (time_adjust_step) |
| 187 | /* Reduce by this step the amount of time left */ |
| 188 | time_adjust -= time_adjust_step; |
| 189 | |
| 190 | /* Changes by adjtime() do not take effect till next tick. */ |
| 191 | if (time_next_adjust != 0) { |
| 192 | time_adjust = time_next_adjust; |
| 193 | time_next_adjust = 0; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | /* |
| 198 | * Return how long ticks are at the moment, that is, how much time |
| 199 | * update_wall_time_one_tick will add to xtime next time we call it |
| 200 | * (assuming no calls to do_adjtimex in the meantime). |
| 201 | * The return value is in fixed-point nanoseconds shifted by the |
| 202 | * specified number of bits to the right of the binary point. |
| 203 | * This function has no side-effects. |
| 204 | */ |
| 205 | u64 current_tick_length(void) |
| 206 | { |
| 207 | long delta_nsec; |
| 208 | u64 ret; |
| 209 | |
| 210 | /* calculate the finest interval NTP will allow. |
| 211 | * ie: nanosecond value shifted by (SHIFT_SCALE - 10) |
| 212 | */ |
| 213 | delta_nsec = tick_nsec + adjtime_adjustment() * 1000; |
| 214 | ret = (u64)delta_nsec << TICK_LENGTH_SHIFT; |
| 215 | ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10)); |
| 216 | |
| 217 | return ret; |
| 218 | } |
| 219 | |
| 220 | |
| 221 | void __attribute__ ((weak)) notify_arch_cmos_timer(void) |
| 222 | { |
| 223 | return; |
| 224 | } |
| 225 | |
| 226 | /* adjtimex mainly allows reading (and writing, if superuser) of |
| 227 | * kernel time-keeping variables. used by xntpd. |
| 228 | */ |
| 229 | int do_adjtimex(struct timex *txc) |
| 230 | { |
| 231 | long ltemp, mtemp, save_adjust; |
| 232 | int result; |
| 233 | |
| 234 | /* In order to modify anything, you gotta be super-user! */ |
| 235 | if (txc->modes && !capable(CAP_SYS_TIME)) |
| 236 | return -EPERM; |
| 237 | |
| 238 | /* Now we validate the data before disabling interrupts */ |
| 239 | |
| 240 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) |
| 241 | /* singleshot must not be used with any other mode bits */ |
| 242 | if (txc->modes != ADJ_OFFSET_SINGLESHOT) |
| 243 | return -EINVAL; |
| 244 | |
| 245 | if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) |
| 246 | /* adjustment Offset limited to +- .512 seconds */ |
| 247 | if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) |
| 248 | return -EINVAL; |
| 249 | |
| 250 | /* if the quartz is off by more than 10% something is VERY wrong ! */ |
| 251 | if (txc->modes & ADJ_TICK) |
| 252 | if (txc->tick < 900000/USER_HZ || |
| 253 | txc->tick > 1100000/USER_HZ) |
| 254 | return -EINVAL; |
| 255 | |
| 256 | write_seqlock_irq(&xtime_lock); |
| 257 | result = time_state; /* mostly `TIME_OK' */ |
| 258 | |
| 259 | /* Save for later - semantics of adjtime is to return old value */ |
| 260 | save_adjust = time_next_adjust ? time_next_adjust : time_adjust; |
| 261 | |
| 262 | #if 0 /* STA_CLOCKERR is never set yet */ |
| 263 | time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ |
| 264 | #endif |
| 265 | /* If there are input parameters, then process them */ |
| 266 | if (txc->modes) |
| 267 | { |
| 268 | if (txc->modes & ADJ_STATUS) /* only set allowed bits */ |
| 269 | time_status = (txc->status & ~STA_RONLY) | |
| 270 | (time_status & STA_RONLY); |
| 271 | |
| 272 | if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ |
| 273 | if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { |
| 274 | result = -EINVAL; |
| 275 | goto leave; |
| 276 | } |
| 277 | time_freq = txc->freq; |
| 278 | } |
| 279 | |
| 280 | if (txc->modes & ADJ_MAXERROR) { |
| 281 | if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { |
| 282 | result = -EINVAL; |
| 283 | goto leave; |
| 284 | } |
| 285 | time_maxerror = txc->maxerror; |
| 286 | } |
| 287 | |
| 288 | if (txc->modes & ADJ_ESTERROR) { |
| 289 | if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { |
| 290 | result = -EINVAL; |
| 291 | goto leave; |
| 292 | } |
| 293 | time_esterror = txc->esterror; |
| 294 | } |
| 295 | |
| 296 | if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ |
| 297 | if (txc->constant < 0) { /* NTP v4 uses values > 6 */ |
| 298 | result = -EINVAL; |
| 299 | goto leave; |
| 300 | } |
| 301 | time_constant = txc->constant; |
| 302 | } |
| 303 | |
| 304 | if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ |
| 305 | if (txc->modes == ADJ_OFFSET_SINGLESHOT) { |
| 306 | /* adjtime() is independent from ntp_adjtime() */ |
| 307 | if ((time_next_adjust = txc->offset) == 0) |
| 308 | time_adjust = 0; |
| 309 | } |
| 310 | else if (time_status & STA_PLL) { |
| 311 | ltemp = txc->offset; |
| 312 | |
| 313 | /* |
| 314 | * Scale the phase adjustment and |
| 315 | * clamp to the operating range. |
| 316 | */ |
| 317 | if (ltemp > MAXPHASE) |
| 318 | time_offset = MAXPHASE << SHIFT_UPDATE; |
| 319 | else if (ltemp < -MAXPHASE) |
| 320 | time_offset = -(MAXPHASE << SHIFT_UPDATE); |
| 321 | else |
| 322 | time_offset = ltemp << SHIFT_UPDATE; |
| 323 | |
| 324 | /* |
| 325 | * Select whether the frequency is to be controlled |
| 326 | * and in which mode (PLL or FLL). Clamp to the operating |
| 327 | * range. Ugly multiply/divide should be replaced someday. |
| 328 | */ |
| 329 | |
| 330 | if (time_status & STA_FREQHOLD || time_reftime == 0) |
| 331 | time_reftime = xtime.tv_sec; |
| 332 | mtemp = xtime.tv_sec - time_reftime; |
| 333 | time_reftime = xtime.tv_sec; |
| 334 | if (time_status & STA_FLL) { |
| 335 | if (mtemp >= MINSEC) { |
| 336 | ltemp = (time_offset / mtemp) << (SHIFT_USEC - |
| 337 | SHIFT_UPDATE); |
| 338 | time_freq += shift_right(ltemp, SHIFT_KH); |
| 339 | } else /* calibration interval too short (p. 12) */ |
| 340 | result = TIME_ERROR; |
| 341 | } else { /* PLL mode */ |
| 342 | if (mtemp < MAXSEC) { |
| 343 | ltemp *= mtemp; |
| 344 | time_freq += shift_right(ltemp,(time_constant + |
| 345 | time_constant + |
| 346 | SHIFT_KF - SHIFT_USEC)); |
| 347 | } else /* calibration interval too long (p. 12) */ |
| 348 | result = TIME_ERROR; |
| 349 | } |
| 350 | time_freq = min(time_freq, time_tolerance); |
| 351 | time_freq = max(time_freq, -time_tolerance); |
| 352 | } /* STA_PLL */ |
| 353 | } /* txc->modes & ADJ_OFFSET */ |
| 354 | if (txc->modes & ADJ_TICK) { |
| 355 | tick_usec = txc->tick; |
| 356 | tick_nsec = TICK_USEC_TO_NSEC(tick_usec); |
| 357 | } |
| 358 | } /* txc->modes */ |
| 359 | leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) |
| 360 | result = TIME_ERROR; |
| 361 | |
| 362 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) |
| 363 | txc->offset = save_adjust; |
| 364 | else { |
| 365 | txc->offset = shift_right(time_offset, SHIFT_UPDATE); |
| 366 | } |
| 367 | txc->freq = time_freq; |
| 368 | txc->maxerror = time_maxerror; |
| 369 | txc->esterror = time_esterror; |
| 370 | txc->status = time_status; |
| 371 | txc->constant = time_constant; |
| 372 | txc->precision = time_precision; |
| 373 | txc->tolerance = time_tolerance; |
| 374 | txc->tick = tick_usec; |
| 375 | |
| 376 | /* PPS is not implemented, so these are zero */ |
| 377 | txc->ppsfreq = 0; |
| 378 | txc->jitter = 0; |
| 379 | txc->shift = 0; |
| 380 | txc->stabil = 0; |
| 381 | txc->jitcnt = 0; |
| 382 | txc->calcnt = 0; |
| 383 | txc->errcnt = 0; |
| 384 | txc->stbcnt = 0; |
| 385 | write_sequnlock_irq(&xtime_lock); |
| 386 | do_gettimeofday(&txc->time); |
| 387 | notify_arch_cmos_timer(); |
| 388 | return(result); |
| 389 | } |