Andy Walls | 52fd3dd | 2010-07-18 22:08:03 -0300 | [diff] [blame^] | 1 | /* |
| 2 | * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores |
| 3 | * |
| 4 | * Integrated Consumer Infrared Controller |
| 5 | * |
| 6 | * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License |
| 10 | * as published by the Free Software Foundation; either version 2 |
| 11 | * of the License, or (at your option) any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 21 | * 02110-1301, USA. |
| 22 | */ |
| 23 | |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/kfifo.h> |
| 26 | #include <media/cx25840.h> |
| 27 | |
| 28 | #include "cx25840-core.h" |
| 29 | |
| 30 | static unsigned int ir_debug; |
| 31 | module_param(ir_debug, int, 0644); |
| 32 | MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages"); |
| 33 | |
| 34 | #define CX25840_IR_REG_BASE 0x200 |
| 35 | |
| 36 | #define CX25840_IR_CNTRL_REG 0x200 |
| 37 | #define CNTRL_WIN_3_3 0x00000000 |
| 38 | #define CNTRL_WIN_4_3 0x00000001 |
| 39 | #define CNTRL_WIN_3_4 0x00000002 |
| 40 | #define CNTRL_WIN_4_4 0x00000003 |
| 41 | #define CNTRL_WIN 0x00000003 |
| 42 | #define CNTRL_EDG_NONE 0x00000000 |
| 43 | #define CNTRL_EDG_FALL 0x00000004 |
| 44 | #define CNTRL_EDG_RISE 0x00000008 |
| 45 | #define CNTRL_EDG_BOTH 0x0000000C |
| 46 | #define CNTRL_EDG 0x0000000C |
| 47 | #define CNTRL_DMD 0x00000010 |
| 48 | #define CNTRL_MOD 0x00000020 |
| 49 | #define CNTRL_RFE 0x00000040 |
| 50 | #define CNTRL_TFE 0x00000080 |
| 51 | #define CNTRL_RXE 0x00000100 |
| 52 | #define CNTRL_TXE 0x00000200 |
| 53 | #define CNTRL_RIC 0x00000400 |
| 54 | #define CNTRL_TIC 0x00000800 |
| 55 | #define CNTRL_CPL 0x00001000 |
| 56 | #define CNTRL_LBM 0x00002000 |
| 57 | #define CNTRL_R 0x00004000 |
| 58 | |
| 59 | #define CX25840_IR_TXCLK_REG 0x204 |
| 60 | #define TXCLK_TCD 0x0000FFFF |
| 61 | |
| 62 | #define CX25840_IR_RXCLK_REG 0x208 |
| 63 | #define RXCLK_RCD 0x0000FFFF |
| 64 | |
| 65 | #define CX25840_IR_CDUTY_REG 0x20C |
| 66 | #define CDUTY_CDC 0x0000000F |
| 67 | |
| 68 | #define CX25840_IR_STATS_REG 0x210 |
| 69 | #define STATS_RTO 0x00000001 |
| 70 | #define STATS_ROR 0x00000002 |
| 71 | #define STATS_RBY 0x00000004 |
| 72 | #define STATS_TBY 0x00000008 |
| 73 | #define STATS_RSR 0x00000010 |
| 74 | #define STATS_TSR 0x00000020 |
| 75 | |
| 76 | #define CX25840_IR_IRQEN_REG 0x214 |
| 77 | #define IRQEN_RTE 0x00000001 |
| 78 | #define IRQEN_ROE 0x00000002 |
| 79 | #define IRQEN_RSE 0x00000010 |
| 80 | #define IRQEN_TSE 0x00000020 |
| 81 | #define IRQEN_MSK 0x00000033 |
| 82 | |
| 83 | #define CX25840_IR_FILTR_REG 0x218 |
| 84 | #define FILTR_LPF 0x0000FFFF |
| 85 | |
| 86 | #define CX25840_IR_FIFO_REG 0x23C |
| 87 | #define FIFO_RXTX 0x0000FFFF |
| 88 | #define FIFO_RXTX_LVL 0x00010000 |
| 89 | #define FIFO_RXTX_RTO 0x0001FFFF |
| 90 | #define FIFO_RX_NDV 0x00020000 |
| 91 | #define FIFO_RX_DEPTH 8 |
| 92 | #define FIFO_TX_DEPTH 8 |
| 93 | |
| 94 | #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ |
| 95 | #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2) |
| 96 | |
| 97 | #define CX25840_IR_RX_KFIFO_SIZE (512 * sizeof(u32)) |
| 98 | #define CX25840_IR_TX_KFIFO_SIZE (512 * sizeof(u32)) |
| 99 | |
| 100 | struct cx25840_ir_state { |
| 101 | struct i2c_client *c; |
| 102 | |
| 103 | struct v4l2_subdev_ir_parameters rx_params; |
| 104 | struct mutex rx_params_lock; /* protects Rx parameter settings cache */ |
| 105 | atomic_t rxclk_divider; |
| 106 | atomic_t rx_invert; |
| 107 | |
| 108 | struct kfifo rx_kfifo; |
| 109 | spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */ |
| 110 | |
| 111 | struct v4l2_subdev_ir_parameters tx_params; |
| 112 | struct mutex tx_params_lock; /* protects Tx parameter settings cache */ |
| 113 | atomic_t txclk_divider; |
| 114 | }; |
| 115 | |
| 116 | static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd) |
| 117 | { |
| 118 | struct cx25840_state *state = to_state(sd); |
| 119 | return state ? state->ir_state : NULL; |
| 120 | } |
| 121 | |
| 122 | |
| 123 | /* |
| 124 | * Rx and Tx Clock Divider register computations |
| 125 | * |
| 126 | * Note the largest clock divider value of 0xffff corresponds to: |
| 127 | * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns |
| 128 | * which fits in 21 bits, so we'll use unsigned int for time arguments. |
| 129 | */ |
| 130 | static inline u16 count_to_clock_divider(unsigned int d) |
| 131 | { |
| 132 | if (d > RXCLK_RCD + 1) |
| 133 | d = RXCLK_RCD; |
| 134 | else if (d < 2) |
| 135 | d = 1; |
| 136 | else |
| 137 | d--; |
| 138 | return (u16) d; |
| 139 | } |
| 140 | |
| 141 | static inline u16 ns_to_clock_divider(unsigned int ns) |
| 142 | { |
| 143 | return count_to_clock_divider( |
| 144 | DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); |
| 145 | } |
| 146 | |
| 147 | static inline unsigned int clock_divider_to_ns(unsigned int divider) |
| 148 | { |
| 149 | /* Period of the Rx or Tx clock in ns */ |
| 150 | return DIV_ROUND_CLOSEST((divider + 1) * 1000, |
| 151 | CX25840_IR_REFCLK_FREQ / 1000000); |
| 152 | } |
| 153 | |
| 154 | static inline u16 carrier_freq_to_clock_divider(unsigned int freq) |
| 155 | { |
| 156 | return count_to_clock_divider( |
| 157 | DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16)); |
| 158 | } |
| 159 | |
| 160 | static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) |
| 161 | { |
| 162 | return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16); |
| 163 | } |
| 164 | |
| 165 | static inline u16 freq_to_clock_divider(unsigned int freq, |
| 166 | unsigned int rollovers) |
| 167 | { |
| 168 | return count_to_clock_divider( |
| 169 | DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers)); |
| 170 | } |
| 171 | |
| 172 | static inline unsigned int clock_divider_to_freq(unsigned int divider, |
| 173 | unsigned int rollovers) |
| 174 | { |
| 175 | return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, |
| 176 | (divider + 1) * rollovers); |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Low Pass Filter register calculations |
| 181 | * |
| 182 | * Note the largest count value of 0xffff corresponds to: |
| 183 | * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns |
| 184 | * which fits in 21 bits, so we'll use unsigned int for time arguments. |
| 185 | */ |
| 186 | static inline u16 count_to_lpf_count(unsigned int d) |
| 187 | { |
| 188 | if (d > FILTR_LPF) |
| 189 | d = FILTR_LPF; |
| 190 | else if (d < 4) |
| 191 | d = 0; |
| 192 | return (u16) d; |
| 193 | } |
| 194 | |
| 195 | static inline u16 ns_to_lpf_count(unsigned int ns) |
| 196 | { |
| 197 | return count_to_lpf_count( |
| 198 | DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); |
| 199 | } |
| 200 | |
| 201 | static inline unsigned int lpf_count_to_ns(unsigned int count) |
| 202 | { |
| 203 | /* Duration of the Low Pass Filter rejection window in ns */ |
| 204 | return DIV_ROUND_CLOSEST(count * 1000, |
| 205 | CX25840_IR_REFCLK_FREQ / 1000000); |
| 206 | } |
| 207 | |
| 208 | static inline unsigned int lpf_count_to_us(unsigned int count) |
| 209 | { |
| 210 | /* Duration of the Low Pass Filter rejection window in us */ |
| 211 | return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000); |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * FIFO register pulse width count compuations |
| 216 | */ |
| 217 | static u32 clock_divider_to_resolution(u16 divider) |
| 218 | { |
| 219 | /* |
| 220 | * Resolution is the duration of 1 tick of the readable portion of |
| 221 | * of the pulse width counter as read from the FIFO. The two lsb's are |
| 222 | * not readable, hence the << 2. This function returns ns. |
| 223 | */ |
| 224 | return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, |
| 225 | CX25840_IR_REFCLK_FREQ / 1000000); |
| 226 | } |
| 227 | |
| 228 | static u64 pulse_width_count_to_ns(u16 count, u16 divider) |
| 229 | { |
| 230 | u64 n; |
| 231 | u32 rem; |
| 232 | |
| 233 | /* |
| 234 | * The 2 lsb's of the pulse width timer count are not readable, hence |
| 235 | * the (count << 2) | 0x3 |
| 236 | */ |
| 237 | n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ |
| 238 | rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ |
| 239 | if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) |
| 240 | n++; |
| 241 | return n; |
| 242 | } |
| 243 | |
| 244 | #if 0 |
| 245 | /* Keep as we will need this for Transmit functionality */ |
| 246 | static u16 ns_to_pulse_width_count(u32 ns, u16 divider) |
| 247 | { |
| 248 | u64 n; |
| 249 | u32 d; |
| 250 | u32 rem; |
| 251 | |
| 252 | /* |
| 253 | * The 2 lsb's of the pulse width timer count are not accessable, hence |
| 254 | * the (1 << 2) |
| 255 | */ |
| 256 | n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */ |
| 257 | d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */ |
| 258 | rem = do_div(n, d); |
| 259 | if (rem >= d / 2) |
| 260 | n++; |
| 261 | |
| 262 | if (n > FIFO_RXTX) |
| 263 | n = FIFO_RXTX; |
| 264 | else if (n == 0) |
| 265 | n = 1; |
| 266 | return (u16) n; |
| 267 | } |
| 268 | |
| 269 | #endif |
| 270 | static unsigned int pulse_width_count_to_us(u16 count, u16 divider) |
| 271 | { |
| 272 | u64 n; |
| 273 | u32 rem; |
| 274 | |
| 275 | /* |
| 276 | * The 2 lsb's of the pulse width timer count are not readable, hence |
| 277 | * the (count << 2) | 0x3 |
| 278 | */ |
| 279 | n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ |
| 280 | rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ |
| 281 | if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) |
| 282 | n++; |
| 283 | return (unsigned int) n; |
| 284 | } |
| 285 | |
| 286 | /* |
| 287 | * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts |
| 288 | * |
| 289 | * The total pulse clock count is an 18 bit pulse width timer count as the most |
| 290 | * significant part and (up to) 16 bit clock divider count as a modulus. |
| 291 | * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse |
| 292 | * width timer count's least significant bit. |
| 293 | */ |
| 294 | static u64 ns_to_pulse_clocks(u32 ns) |
| 295 | { |
| 296 | u64 clocks; |
| 297 | u32 rem; |
| 298 | clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ |
| 299 | rem = do_div(clocks, 1000); /* /1000 = cycles */ |
| 300 | if (rem >= 1000 / 2) |
| 301 | clocks++; |
| 302 | return clocks; |
| 303 | } |
| 304 | |
| 305 | static u16 pulse_clocks_to_clock_divider(u64 count) |
| 306 | { |
| 307 | u32 rem; |
| 308 | |
| 309 | rem = do_div(count, (FIFO_RXTX << 2) | 0x3); |
| 310 | |
| 311 | /* net result needs to be rounded down and decremented by 1 */ |
| 312 | if (count > RXCLK_RCD + 1) |
| 313 | count = RXCLK_RCD; |
| 314 | else if (count < 2) |
| 315 | count = 1; |
| 316 | else |
| 317 | count--; |
| 318 | return (u16) count; |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * IR Control Register helpers |
| 323 | */ |
| 324 | enum tx_fifo_watermark { |
| 325 | TX_FIFO_HALF_EMPTY = 0, |
| 326 | TX_FIFO_EMPTY = CNTRL_TIC, |
| 327 | }; |
| 328 | |
| 329 | enum rx_fifo_watermark { |
| 330 | RX_FIFO_HALF_FULL = 0, |
| 331 | RX_FIFO_NOT_EMPTY = CNTRL_RIC, |
| 332 | }; |
| 333 | |
| 334 | static inline void control_tx_irq_watermark(struct i2c_client *c, |
| 335 | enum tx_fifo_watermark level) |
| 336 | { |
| 337 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level); |
| 338 | } |
| 339 | |
| 340 | static inline void control_rx_irq_watermark(struct i2c_client *c, |
| 341 | enum rx_fifo_watermark level) |
| 342 | { |
| 343 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level); |
| 344 | } |
| 345 | |
| 346 | static inline void control_tx_enable(struct i2c_client *c, bool enable) |
| 347 | { |
| 348 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), |
| 349 | enable ? (CNTRL_TXE | CNTRL_TFE) : 0); |
| 350 | } |
| 351 | |
| 352 | static inline void control_rx_enable(struct i2c_client *c, bool enable) |
| 353 | { |
| 354 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), |
| 355 | enable ? (CNTRL_RXE | CNTRL_RFE) : 0); |
| 356 | } |
| 357 | |
| 358 | static inline void control_tx_modulation_enable(struct i2c_client *c, |
| 359 | bool enable) |
| 360 | { |
| 361 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD, |
| 362 | enable ? CNTRL_MOD : 0); |
| 363 | } |
| 364 | |
| 365 | static inline void control_rx_demodulation_enable(struct i2c_client *c, |
| 366 | bool enable) |
| 367 | { |
| 368 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD, |
| 369 | enable ? CNTRL_DMD : 0); |
| 370 | } |
| 371 | |
| 372 | static inline void control_rx_s_edge_detection(struct i2c_client *c, |
| 373 | u32 edge_types) |
| 374 | { |
| 375 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, |
| 376 | edge_types & CNTRL_EDG_BOTH); |
| 377 | } |
| 378 | |
| 379 | static void control_rx_s_carrier_window(struct i2c_client *c, |
| 380 | unsigned int carrier, |
| 381 | unsigned int *carrier_range_low, |
| 382 | unsigned int *carrier_range_high) |
| 383 | { |
| 384 | u32 v; |
| 385 | unsigned int c16 = carrier * 16; |
| 386 | |
| 387 | if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { |
| 388 | v = CNTRL_WIN_3_4; |
| 389 | *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); |
| 390 | } else { |
| 391 | v = CNTRL_WIN_3_3; |
| 392 | *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); |
| 393 | } |
| 394 | |
| 395 | if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { |
| 396 | v |= CNTRL_WIN_4_3; |
| 397 | *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); |
| 398 | } else { |
| 399 | v |= CNTRL_WIN_3_3; |
| 400 | *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); |
| 401 | } |
| 402 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v); |
| 403 | } |
| 404 | |
| 405 | static inline void control_tx_polarity_invert(struct i2c_client *c, |
| 406 | bool invert) |
| 407 | { |
| 408 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL, |
| 409 | invert ? CNTRL_CPL : 0); |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * IR Rx & Tx Clock Register helpers |
| 414 | */ |
| 415 | static unsigned int txclk_tx_s_carrier(struct i2c_client *c, |
| 416 | unsigned int freq, |
| 417 | u16 *divider) |
| 418 | { |
| 419 | *divider = carrier_freq_to_clock_divider(freq); |
| 420 | cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); |
| 421 | return clock_divider_to_carrier_freq(*divider); |
| 422 | } |
| 423 | |
| 424 | static unsigned int rxclk_rx_s_carrier(struct i2c_client *c, |
| 425 | unsigned int freq, |
| 426 | u16 *divider) |
| 427 | { |
| 428 | *divider = carrier_freq_to_clock_divider(freq); |
| 429 | cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); |
| 430 | return clock_divider_to_carrier_freq(*divider); |
| 431 | } |
| 432 | |
| 433 | static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns, |
| 434 | u16 *divider) |
| 435 | { |
| 436 | u64 pulse_clocks; |
| 437 | |
| 438 | if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) |
| 439 | ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS; |
| 440 | pulse_clocks = ns_to_pulse_clocks(ns); |
| 441 | *divider = pulse_clocks_to_clock_divider(pulse_clocks); |
| 442 | cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); |
| 443 | return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); |
| 444 | } |
| 445 | |
| 446 | static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns, |
| 447 | u16 *divider) |
| 448 | { |
| 449 | u64 pulse_clocks; |
| 450 | |
| 451 | if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) |
| 452 | ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS; |
| 453 | pulse_clocks = ns_to_pulse_clocks(ns); |
| 454 | *divider = pulse_clocks_to_clock_divider(pulse_clocks); |
| 455 | cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); |
| 456 | return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * IR Tx Carrier Duty Cycle register helpers |
| 461 | */ |
| 462 | static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c, |
| 463 | unsigned int duty_cycle) |
| 464 | { |
| 465 | u32 n; |
| 466 | n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ |
| 467 | if (n != 0) |
| 468 | n--; |
| 469 | if (n > 15) |
| 470 | n = 15; |
| 471 | cx25840_write4(c, CX25840_IR_CDUTY_REG, n); |
| 472 | return DIV_ROUND_CLOSEST((n + 1) * 100, 16); |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * IR Filter Register helpers |
| 477 | */ |
| 478 | static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns) |
| 479 | { |
| 480 | u32 count = ns_to_lpf_count(min_width_ns); |
| 481 | cx25840_write4(c, CX25840_IR_FILTR_REG, count); |
| 482 | return lpf_count_to_ns(count); |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * IR IRQ Enable Register helpers |
| 487 | */ |
| 488 | static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask) |
| 489 | { |
| 490 | struct cx25840_state *state = to_state(sd); |
| 491 | |
| 492 | if (is_cx23885(state) || is_cx23887(state)) |
| 493 | mask ^= IRQEN_MSK; |
| 494 | mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); |
| 495 | cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, |
| 496 | ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); |
| 497 | } |
| 498 | |
| 499 | static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask) |
| 500 | { |
| 501 | struct cx25840_state *state = to_state(sd); |
| 502 | |
| 503 | if (is_cx23885(state) || is_cx23887(state)) |
| 504 | mask ^= IRQEN_MSK; |
| 505 | mask &= IRQEN_TSE; |
| 506 | cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask); |
| 507 | } |
| 508 | |
| 509 | /* |
| 510 | * V4L2 Subdevice IR Ops |
| 511 | */ |
| 512 | int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) |
| 513 | { |
| 514 | struct cx25840_state *state = to_state(sd); |
| 515 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 516 | struct i2c_client *c = NULL; |
| 517 | unsigned long flags; |
| 518 | |
| 519 | u32 rx_data[FIFO_RX_DEPTH]; |
| 520 | int i, j, k; |
| 521 | u32 events, v; |
| 522 | int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; |
| 523 | u32 cntrl, irqen, stats; |
| 524 | |
| 525 | *handled = false; |
| 526 | if (ir_state == NULL) |
| 527 | return -ENODEV; |
| 528 | |
| 529 | c = ir_state->c; |
| 530 | |
| 531 | /* Only support the IR controller for the CX2388[57] AV Core for now */ |
| 532 | if (!(is_cx23885(state) || is_cx23887(state))) |
| 533 | return -ENODEV; |
| 534 | |
| 535 | cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); |
| 536 | irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); |
| 537 | if (is_cx23885(state) || is_cx23887(state)) |
| 538 | irqen ^= IRQEN_MSK; |
| 539 | stats = cx25840_read4(c, CX25840_IR_STATS_REG); |
| 540 | |
| 541 | tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ |
| 542 | rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ |
| 543 | rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ |
| 544 | ror = stats & STATS_ROR; /* Rx FIFO Over Run */ |
| 545 | |
| 546 | tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ |
| 547 | rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */ |
| 548 | rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ |
| 549 | roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ |
| 550 | |
| 551 | v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n", |
| 552 | tsr ? "tsr" : " ", rsr ? "rsr" : " ", |
| 553 | rto ? "rto" : " ", ror ? "ror" : " ", |
| 554 | stats & STATS_TBY ? "tby" : " ", |
| 555 | stats & STATS_RBY ? "rby" : " "); |
| 556 | |
| 557 | v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n", |
| 558 | tse ? "tse" : " ", rse ? "rse" : " ", |
| 559 | rte ? "rte" : " ", roe ? "roe" : " "); |
| 560 | |
| 561 | /* |
| 562 | * Transmitter interrupt service |
| 563 | */ |
| 564 | if (tse && tsr) { |
| 565 | /* |
| 566 | * TODO: |
| 567 | * Check the watermark threshold setting |
| 568 | * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo |
| 569 | * Push the data to the hardware FIFO. |
| 570 | * If there was nothing more to send in the tx_kfifo, disable |
| 571 | * the TSR IRQ and notify the v4l2_device. |
| 572 | * If there was something in the tx_kfifo, check the tx_kfifo |
| 573 | * level and notify the v4l2_device, if it is low. |
| 574 | */ |
| 575 | /* For now, inhibit TSR interrupt until Tx is implemented */ |
| 576 | irqenable_tx(sd, 0); |
| 577 | events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; |
| 578 | v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); |
| 579 | *handled = true; |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * Receiver interrupt service |
| 584 | */ |
| 585 | kror = 0; |
| 586 | if ((rse && rsr) || (rte && rto)) { |
| 587 | /* |
| 588 | * Receive data on RSR to clear the STATS_RSR. |
| 589 | * Receive data on RTO, since we may not have yet hit the RSR |
| 590 | * watermark when we receive the RTO. |
| 591 | */ |
| 592 | for (i = 0, v = FIFO_RX_NDV; |
| 593 | (v & FIFO_RX_NDV) && !kror; i = 0) { |
| 594 | for (j = 0; |
| 595 | (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { |
| 596 | v = cx25840_read4(c, CX25840_IR_FIFO_REG); |
| 597 | rx_data[i++] = v & ~FIFO_RX_NDV; |
| 598 | } |
| 599 | if (i == 0) |
| 600 | break; |
| 601 | j = i * sizeof(u32); |
| 602 | k = kfifo_in_locked(&ir_state->rx_kfifo, |
| 603 | (unsigned char *) rx_data, j, |
| 604 | &ir_state->rx_kfifo_lock); |
| 605 | if (k != j) |
| 606 | kror++; /* rx_kfifo over run */ |
| 607 | } |
| 608 | *handled = true; |
| 609 | } |
| 610 | |
| 611 | events = 0; |
| 612 | v = 0; |
| 613 | if (kror) { |
| 614 | events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; |
| 615 | v4l2_err(sd, "IR receiver software FIFO overrun\n"); |
| 616 | } |
| 617 | if (roe && ror) { |
| 618 | /* |
| 619 | * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear |
| 620 | * the Rx FIFO Over Run status (STATS_ROR) |
| 621 | */ |
| 622 | v |= CNTRL_RFE; |
| 623 | events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; |
| 624 | v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); |
| 625 | } |
| 626 | if (rte && rto) { |
| 627 | /* |
| 628 | * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear |
| 629 | * the Rx Pulse Width Timer Time Out (STATS_RTO) |
| 630 | */ |
| 631 | v |= CNTRL_RXE; |
| 632 | events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; |
| 633 | } |
| 634 | if (v) { |
| 635 | /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */ |
| 636 | cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v); |
| 637 | cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl); |
| 638 | *handled = true; |
| 639 | } |
| 640 | spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); |
| 641 | if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2) |
| 642 | events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; |
| 643 | spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); |
| 644 | |
| 645 | if (events) |
| 646 | v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); |
| 647 | return 0; |
| 648 | } |
| 649 | |
| 650 | /* Receiver */ |
| 651 | static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, |
| 652 | ssize_t *num) |
| 653 | { |
| 654 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 655 | bool invert; |
| 656 | u16 divider; |
| 657 | unsigned int i, n; |
| 658 | u32 *p; |
| 659 | u32 u, v; |
| 660 | |
| 661 | if (ir_state == NULL) |
| 662 | return -ENODEV; |
| 663 | |
| 664 | invert = (bool) atomic_read(&ir_state->rx_invert); |
| 665 | divider = (u16) atomic_read(&ir_state->rxclk_divider); |
| 666 | |
| 667 | n = count / sizeof(u32) * sizeof(u32); |
| 668 | if (n == 0) { |
| 669 | *num = 0; |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n, |
| 674 | &ir_state->rx_kfifo_lock); |
| 675 | |
| 676 | n /= sizeof(u32); |
| 677 | *num = n * sizeof(u32); |
| 678 | |
| 679 | for (p = (u32 *) buf, i = 0; i < n; p++, i++) { |
| 680 | if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { |
| 681 | *p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END; |
| 682 | v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n"); |
| 683 | continue; |
| 684 | } |
| 685 | |
| 686 | u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0; |
| 687 | if (invert) |
| 688 | u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK; |
| 689 | |
| 690 | v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX), |
| 691 | divider); |
| 692 | if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) |
| 693 | v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1; |
| 694 | |
| 695 | *p = u | v; |
| 696 | |
| 697 | v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s\n", |
| 698 | v, u ? "mark" : "space"); |
| 699 | } |
| 700 | return 0; |
| 701 | } |
| 702 | |
| 703 | static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd, |
| 704 | struct v4l2_subdev_ir_parameters *p) |
| 705 | { |
| 706 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 707 | |
| 708 | if (ir_state == NULL) |
| 709 | return -ENODEV; |
| 710 | |
| 711 | mutex_lock(&ir_state->rx_params_lock); |
| 712 | memcpy(p, &ir_state->rx_params, |
| 713 | sizeof(struct v4l2_subdev_ir_parameters)); |
| 714 | mutex_unlock(&ir_state->rx_params_lock); |
| 715 | return 0; |
| 716 | } |
| 717 | |
| 718 | static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd) |
| 719 | { |
| 720 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 721 | struct i2c_client *c; |
| 722 | |
| 723 | if (ir_state == NULL) |
| 724 | return -ENODEV; |
| 725 | |
| 726 | c = ir_state->c; |
| 727 | mutex_lock(&ir_state->rx_params_lock); |
| 728 | |
| 729 | /* Disable or slow down all IR Rx circuits and counters */ |
| 730 | irqenable_rx(sd, 0); |
| 731 | control_rx_enable(c, false); |
| 732 | control_rx_demodulation_enable(c, false); |
| 733 | control_rx_s_edge_detection(c, CNTRL_EDG_NONE); |
| 734 | filter_rx_s_min_width(c, 0); |
| 735 | cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD); |
| 736 | |
| 737 | ir_state->rx_params.shutdown = true; |
| 738 | |
| 739 | mutex_unlock(&ir_state->rx_params_lock); |
| 740 | return 0; |
| 741 | } |
| 742 | |
| 743 | static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd, |
| 744 | struct v4l2_subdev_ir_parameters *p) |
| 745 | { |
| 746 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 747 | struct i2c_client *c; |
| 748 | struct v4l2_subdev_ir_parameters *o; |
| 749 | u16 rxclk_divider; |
| 750 | |
| 751 | if (ir_state == NULL) |
| 752 | return -ENODEV; |
| 753 | |
| 754 | if (p->shutdown) |
| 755 | return cx25840_ir_rx_shutdown(sd); |
| 756 | |
| 757 | if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) |
| 758 | return -ENOSYS; |
| 759 | |
| 760 | c = ir_state->c; |
| 761 | o = &ir_state->rx_params; |
| 762 | |
| 763 | mutex_lock(&ir_state->rx_params_lock); |
| 764 | |
| 765 | o->shutdown = p->shutdown; |
| 766 | |
| 767 | p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; |
| 768 | o->mode = p->mode; |
| 769 | |
| 770 | p->bytes_per_data_element = sizeof(u32); |
| 771 | o->bytes_per_data_element = p->bytes_per_data_element; |
| 772 | |
| 773 | /* Before we tweak the hardware, we have to disable the receiver */ |
| 774 | irqenable_rx(sd, 0); |
| 775 | control_rx_enable(c, false); |
| 776 | |
| 777 | control_rx_demodulation_enable(c, p->modulation); |
| 778 | o->modulation = p->modulation; |
| 779 | |
| 780 | if (p->modulation) { |
| 781 | p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq, |
| 782 | &rxclk_divider); |
| 783 | |
| 784 | o->carrier_freq = p->carrier_freq; |
| 785 | |
| 786 | p->duty_cycle = 50; |
| 787 | o->duty_cycle = p->duty_cycle; |
| 788 | |
| 789 | control_rx_s_carrier_window(c, p->carrier_freq, |
| 790 | &p->carrier_range_lower, |
| 791 | &p->carrier_range_upper); |
| 792 | o->carrier_range_lower = p->carrier_range_lower; |
| 793 | o->carrier_range_upper = p->carrier_range_upper; |
| 794 | } else { |
| 795 | p->max_pulse_width = |
| 796 | rxclk_rx_s_max_pulse_width(c, p->max_pulse_width, |
| 797 | &rxclk_divider); |
| 798 | o->max_pulse_width = p->max_pulse_width; |
| 799 | } |
| 800 | atomic_set(&ir_state->rxclk_divider, rxclk_divider); |
| 801 | |
| 802 | p->noise_filter_min_width = |
| 803 | filter_rx_s_min_width(c, p->noise_filter_min_width); |
| 804 | o->noise_filter_min_width = p->noise_filter_min_width; |
| 805 | |
| 806 | p->resolution = clock_divider_to_resolution(rxclk_divider); |
| 807 | o->resolution = p->resolution; |
| 808 | |
| 809 | /* FIXME - make this dependent on resolution for better performance */ |
| 810 | control_rx_irq_watermark(c, RX_FIFO_HALF_FULL); |
| 811 | |
| 812 | control_rx_s_edge_detection(c, CNTRL_EDG_BOTH); |
| 813 | |
| 814 | o->invert_level = p->invert_level; |
| 815 | atomic_set(&ir_state->rx_invert, p->invert_level); |
| 816 | |
| 817 | o->interrupt_enable = p->interrupt_enable; |
| 818 | o->enable = p->enable; |
| 819 | if (p->enable) { |
| 820 | unsigned long flags; |
| 821 | |
| 822 | spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); |
| 823 | kfifo_reset(&ir_state->rx_kfifo); |
| 824 | spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); |
| 825 | if (p->interrupt_enable) |
| 826 | irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); |
| 827 | control_rx_enable(c, p->enable); |
| 828 | } |
| 829 | |
| 830 | mutex_unlock(&ir_state->rx_params_lock); |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | /* Transmitter */ |
| 835 | static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, |
| 836 | ssize_t *num) |
| 837 | { |
| 838 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 839 | struct i2c_client *c; |
| 840 | |
| 841 | if (ir_state == NULL) |
| 842 | return -ENODEV; |
| 843 | |
| 844 | c = ir_state->c; |
| 845 | #if 0 |
| 846 | /* |
| 847 | * FIXME - the code below is an incomplete and untested sketch of what |
| 848 | * may need to be done. The critical part is to get 4 (or 8) pulses |
| 849 | * from the tx_kfifo, or converted from ns to the proper units from the |
| 850 | * input, and push them off to the hardware Tx FIFO right away, if the |
| 851 | * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in |
| 852 | * a less critical timeframe. Also watch out for overruning the |
| 853 | * tx_kfifo - don't let it happen and let the caller know not all his |
| 854 | * pulses were written. |
| 855 | */ |
| 856 | u32 *ns_pulse = (u32 *) buf; |
| 857 | unsigned int n; |
| 858 | u32 fifo_pulse[FIFO_TX_DEPTH]; |
| 859 | u32 mark; |
| 860 | |
| 861 | /* Compute how much we can fit in the tx kfifo */ |
| 862 | n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo); |
| 863 | n = min(n, (unsigned int) count); |
| 864 | n /= sizeof(u32); |
| 865 | |
| 866 | /* FIXME - turn on Tx Fifo service interrupt |
| 867 | * check hardware fifo level, and other stuff |
| 868 | */ |
| 869 | for (i = 0; i < n; ) { |
| 870 | for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) { |
| 871 | mark = ns_pulse[i] & V4L2_SUBDEV_IR_PULSE_LEVEL_MASK; |
| 872 | fifo_pulse[j] = ns_to_pulse_width_count( |
| 873 | ns_pulse[i] & |
| 874 | ~V4L2_SUBDEV_IR_PULSE_LEVEL_MASK, |
| 875 | ir_state->txclk_divider); |
| 876 | if (mark) |
| 877 | fifo_pulse[j] &= FIFO_RXTX_LVL; |
| 878 | i++; |
| 879 | } |
| 880 | kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse, |
| 881 | j * sizeof(u32)); |
| 882 | } |
| 883 | *num = n * sizeof(u32); |
| 884 | #else |
| 885 | /* For now enable the Tx FIFO Service interrupt & pretend we did work */ |
| 886 | irqenable_tx(sd, IRQEN_TSE); |
| 887 | *num = count; |
| 888 | #endif |
| 889 | return 0; |
| 890 | } |
| 891 | |
| 892 | static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd, |
| 893 | struct v4l2_subdev_ir_parameters *p) |
| 894 | { |
| 895 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 896 | |
| 897 | if (ir_state == NULL) |
| 898 | return -ENODEV; |
| 899 | |
| 900 | mutex_lock(&ir_state->tx_params_lock); |
| 901 | memcpy(p, &ir_state->tx_params, |
| 902 | sizeof(struct v4l2_subdev_ir_parameters)); |
| 903 | mutex_unlock(&ir_state->tx_params_lock); |
| 904 | return 0; |
| 905 | } |
| 906 | |
| 907 | static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd) |
| 908 | { |
| 909 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 910 | struct i2c_client *c; |
| 911 | |
| 912 | if (ir_state == NULL) |
| 913 | return -ENODEV; |
| 914 | |
| 915 | c = ir_state->c; |
| 916 | mutex_lock(&ir_state->tx_params_lock); |
| 917 | |
| 918 | /* Disable or slow down all IR Tx circuits and counters */ |
| 919 | irqenable_tx(sd, 0); |
| 920 | control_tx_enable(c, false); |
| 921 | control_tx_modulation_enable(c, false); |
| 922 | cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD); |
| 923 | |
| 924 | ir_state->tx_params.shutdown = true; |
| 925 | |
| 926 | mutex_unlock(&ir_state->tx_params_lock); |
| 927 | return 0; |
| 928 | } |
| 929 | |
| 930 | static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd, |
| 931 | struct v4l2_subdev_ir_parameters *p) |
| 932 | { |
| 933 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 934 | struct i2c_client *c; |
| 935 | struct v4l2_subdev_ir_parameters *o; |
| 936 | u16 txclk_divider; |
| 937 | |
| 938 | if (ir_state == NULL) |
| 939 | return -ENODEV; |
| 940 | |
| 941 | if (p->shutdown) |
| 942 | return cx25840_ir_tx_shutdown(sd); |
| 943 | |
| 944 | if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) |
| 945 | return -ENOSYS; |
| 946 | |
| 947 | c = ir_state->c; |
| 948 | o = &ir_state->tx_params; |
| 949 | mutex_lock(&ir_state->tx_params_lock); |
| 950 | |
| 951 | o->shutdown = p->shutdown; |
| 952 | |
| 953 | p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; |
| 954 | o->mode = p->mode; |
| 955 | |
| 956 | p->bytes_per_data_element = sizeof(u32); |
| 957 | o->bytes_per_data_element = p->bytes_per_data_element; |
| 958 | |
| 959 | /* Before we tweak the hardware, we have to disable the transmitter */ |
| 960 | irqenable_tx(sd, 0); |
| 961 | control_tx_enable(c, false); |
| 962 | |
| 963 | control_tx_modulation_enable(c, p->modulation); |
| 964 | o->modulation = p->modulation; |
| 965 | |
| 966 | if (p->modulation) { |
| 967 | p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq, |
| 968 | &txclk_divider); |
| 969 | o->carrier_freq = p->carrier_freq; |
| 970 | |
| 971 | p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle); |
| 972 | o->duty_cycle = p->duty_cycle; |
| 973 | } else { |
| 974 | p->max_pulse_width = |
| 975 | txclk_tx_s_max_pulse_width(c, p->max_pulse_width, |
| 976 | &txclk_divider); |
| 977 | o->max_pulse_width = p->max_pulse_width; |
| 978 | } |
| 979 | atomic_set(&ir_state->txclk_divider, txclk_divider); |
| 980 | |
| 981 | p->resolution = clock_divider_to_resolution(txclk_divider); |
| 982 | o->resolution = p->resolution; |
| 983 | |
| 984 | /* FIXME - make this dependent on resolution for better performance */ |
| 985 | control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY); |
| 986 | |
| 987 | control_tx_polarity_invert(c, p->invert_carrier_sense); |
| 988 | o->invert_carrier_sense = p->invert_carrier_sense; |
| 989 | |
| 990 | /* |
| 991 | * FIXME: we don't have hardware help for IO pin level inversion |
| 992 | * here like we have on the CX23888. |
| 993 | * Act on this with some mix of logical inversion of data levels, |
| 994 | * carrier polarity, and carrier duty cycle. |
| 995 | */ |
| 996 | o->invert_level = p->invert_level; |
| 997 | |
| 998 | o->interrupt_enable = p->interrupt_enable; |
| 999 | o->enable = p->enable; |
| 1000 | if (p->enable) { |
| 1001 | /* reset tx_fifo here */ |
| 1002 | if (p->interrupt_enable) |
| 1003 | irqenable_tx(sd, IRQEN_TSE); |
| 1004 | control_tx_enable(c, p->enable); |
| 1005 | } |
| 1006 | |
| 1007 | mutex_unlock(&ir_state->tx_params_lock); |
| 1008 | return 0; |
| 1009 | } |
| 1010 | |
| 1011 | |
| 1012 | /* |
| 1013 | * V4L2 Subdevice Core Ops support |
| 1014 | */ |
| 1015 | int cx25840_ir_log_status(struct v4l2_subdev *sd) |
| 1016 | { |
| 1017 | struct cx25840_state *state = to_state(sd); |
| 1018 | struct i2c_client *c = state->c; |
| 1019 | char *s; |
| 1020 | int i, j; |
| 1021 | u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr; |
| 1022 | |
| 1023 | /* The CX23888 chip doesn't have an IR controller on the A/V core */ |
| 1024 | if (is_cx23888(state)) |
| 1025 | return 0; |
| 1026 | |
| 1027 | cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); |
| 1028 | txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD; |
| 1029 | rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD; |
| 1030 | cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC; |
| 1031 | stats = cx25840_read4(c, CX25840_IR_STATS_REG); |
| 1032 | irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); |
| 1033 | if (is_cx23885(state) || is_cx23887(state)) |
| 1034 | irqen ^= IRQEN_MSK; |
| 1035 | filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF; |
| 1036 | |
| 1037 | v4l2_info(sd, "IR Receiver:\n"); |
| 1038 | v4l2_info(sd, "\tEnabled: %s\n", |
| 1039 | cntrl & CNTRL_RXE ? "yes" : "no"); |
| 1040 | v4l2_info(sd, "\tDemodulation from a carrier: %s\n", |
| 1041 | cntrl & CNTRL_DMD ? "enabled" : "disabled"); |
| 1042 | v4l2_info(sd, "\tFIFO: %s\n", |
| 1043 | cntrl & CNTRL_RFE ? "enabled" : "disabled"); |
| 1044 | switch (cntrl & CNTRL_EDG) { |
| 1045 | case CNTRL_EDG_NONE: |
| 1046 | s = "disabled"; |
| 1047 | break; |
| 1048 | case CNTRL_EDG_FALL: |
| 1049 | s = "falling edge"; |
| 1050 | break; |
| 1051 | case CNTRL_EDG_RISE: |
| 1052 | s = "rising edge"; |
| 1053 | break; |
| 1054 | case CNTRL_EDG_BOTH: |
| 1055 | s = "rising & falling edges"; |
| 1056 | break; |
| 1057 | default: |
| 1058 | s = "??? edge"; |
| 1059 | break; |
| 1060 | } |
| 1061 | v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); |
| 1062 | v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", |
| 1063 | cntrl & CNTRL_R ? "not loaded" : "overflow marker"); |
| 1064 | v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", |
| 1065 | cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); |
| 1066 | v4l2_info(sd, "\tLoopback mode: %s\n", |
| 1067 | cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); |
| 1068 | if (cntrl & CNTRL_DMD) { |
| 1069 | v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", |
| 1070 | clock_divider_to_carrier_freq(rxclk)); |
| 1071 | switch (cntrl & CNTRL_WIN) { |
| 1072 | case CNTRL_WIN_3_3: |
| 1073 | i = 3; |
| 1074 | j = 3; |
| 1075 | break; |
| 1076 | case CNTRL_WIN_4_3: |
| 1077 | i = 4; |
| 1078 | j = 3; |
| 1079 | break; |
| 1080 | case CNTRL_WIN_3_4: |
| 1081 | i = 3; |
| 1082 | j = 4; |
| 1083 | break; |
| 1084 | case CNTRL_WIN_4_4: |
| 1085 | i = 4; |
| 1086 | j = 4; |
| 1087 | break; |
| 1088 | default: |
| 1089 | i = 0; |
| 1090 | j = 0; |
| 1091 | break; |
| 1092 | } |
| 1093 | v4l2_info(sd, "\tNext carrier edge window: 16 clocks " |
| 1094 | "-%1d/+%1d, %u to %u Hz\n", i, j, |
| 1095 | clock_divider_to_freq(rxclk, 16 + j), |
| 1096 | clock_divider_to_freq(rxclk, 16 - i)); |
| 1097 | } else { |
| 1098 | v4l2_info(sd, "\tMax measurable pulse width: %u us, " |
| 1099 | "%llu ns\n", |
| 1100 | pulse_width_count_to_us(FIFO_RXTX, rxclk), |
| 1101 | pulse_width_count_to_ns(FIFO_RXTX, rxclk)); |
| 1102 | } |
| 1103 | v4l2_info(sd, "\tLow pass filter: %s\n", |
| 1104 | filtr ? "enabled" : "disabled"); |
| 1105 | if (filtr) |
| 1106 | v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, " |
| 1107 | "%u ns\n", |
| 1108 | lpf_count_to_us(filtr), |
| 1109 | lpf_count_to_ns(filtr)); |
| 1110 | v4l2_info(sd, "\tPulse width timer timed-out: %s\n", |
| 1111 | stats & STATS_RTO ? "yes" : "no"); |
| 1112 | v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", |
| 1113 | irqen & IRQEN_RTE ? "enabled" : "disabled"); |
| 1114 | v4l2_info(sd, "\tFIFO overrun: %s\n", |
| 1115 | stats & STATS_ROR ? "yes" : "no"); |
| 1116 | v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", |
| 1117 | irqen & IRQEN_ROE ? "enabled" : "disabled"); |
| 1118 | v4l2_info(sd, "\tBusy: %s\n", |
| 1119 | stats & STATS_RBY ? "yes" : "no"); |
| 1120 | v4l2_info(sd, "\tFIFO service requested: %s\n", |
| 1121 | stats & STATS_RSR ? "yes" : "no"); |
| 1122 | v4l2_info(sd, "\tFIFO service request interrupt: %s\n", |
| 1123 | irqen & IRQEN_RSE ? "enabled" : "disabled"); |
| 1124 | |
| 1125 | v4l2_info(sd, "IR Transmitter:\n"); |
| 1126 | v4l2_info(sd, "\tEnabled: %s\n", |
| 1127 | cntrl & CNTRL_TXE ? "yes" : "no"); |
| 1128 | v4l2_info(sd, "\tModulation onto a carrier: %s\n", |
| 1129 | cntrl & CNTRL_MOD ? "enabled" : "disabled"); |
| 1130 | v4l2_info(sd, "\tFIFO: %s\n", |
| 1131 | cntrl & CNTRL_TFE ? "enabled" : "disabled"); |
| 1132 | v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", |
| 1133 | cntrl & CNTRL_TIC ? "not empty" : "half full or less"); |
| 1134 | v4l2_info(sd, "\tCarrier polarity: %s\n", |
| 1135 | cntrl & CNTRL_CPL ? "space:burst mark:noburst" |
| 1136 | : "space:noburst mark:burst"); |
| 1137 | if (cntrl & CNTRL_MOD) { |
| 1138 | v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", |
| 1139 | clock_divider_to_carrier_freq(txclk)); |
| 1140 | v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", |
| 1141 | cduty + 1); |
| 1142 | } else { |
| 1143 | v4l2_info(sd, "\tMax pulse width: %u us, " |
| 1144 | "%llu ns\n", |
| 1145 | pulse_width_count_to_us(FIFO_RXTX, txclk), |
| 1146 | pulse_width_count_to_ns(FIFO_RXTX, txclk)); |
| 1147 | } |
| 1148 | v4l2_info(sd, "\tBusy: %s\n", |
| 1149 | stats & STATS_TBY ? "yes" : "no"); |
| 1150 | v4l2_info(sd, "\tFIFO service requested: %s\n", |
| 1151 | stats & STATS_TSR ? "yes" : "no"); |
| 1152 | v4l2_info(sd, "\tFIFO service request interrupt: %s\n", |
| 1153 | irqen & IRQEN_TSE ? "enabled" : "disabled"); |
| 1154 | |
| 1155 | return 0; |
| 1156 | } |
| 1157 | |
| 1158 | |
| 1159 | const struct v4l2_subdev_ir_ops cx25840_ir_ops = { |
| 1160 | .rx_read = cx25840_ir_rx_read, |
| 1161 | .rx_g_parameters = cx25840_ir_rx_g_parameters, |
| 1162 | .rx_s_parameters = cx25840_ir_rx_s_parameters, |
| 1163 | |
| 1164 | .tx_write = cx25840_ir_tx_write, |
| 1165 | .tx_g_parameters = cx25840_ir_tx_g_parameters, |
| 1166 | .tx_s_parameters = cx25840_ir_tx_s_parameters, |
| 1167 | }; |
| 1168 | |
| 1169 | |
| 1170 | static const struct v4l2_subdev_ir_parameters default_rx_params = { |
| 1171 | .bytes_per_data_element = sizeof(u32), |
| 1172 | .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, |
| 1173 | |
| 1174 | .enable = false, |
| 1175 | .interrupt_enable = false, |
| 1176 | .shutdown = true, |
| 1177 | |
| 1178 | .modulation = true, |
| 1179 | .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */ |
| 1180 | |
| 1181 | /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ |
| 1182 | /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ |
| 1183 | .noise_filter_min_width = 333333, /* ns */ |
| 1184 | .carrier_range_lower = 35000, |
| 1185 | .carrier_range_upper = 37000, |
| 1186 | .invert_level = false, |
| 1187 | }; |
| 1188 | |
| 1189 | static const struct v4l2_subdev_ir_parameters default_tx_params = { |
| 1190 | .bytes_per_data_element = sizeof(u32), |
| 1191 | .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, |
| 1192 | |
| 1193 | .enable = false, |
| 1194 | .interrupt_enable = false, |
| 1195 | .shutdown = true, |
| 1196 | |
| 1197 | .modulation = true, |
| 1198 | .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ |
| 1199 | .duty_cycle = 25, /* 25 % - RC-5 carrier */ |
| 1200 | .invert_level = false, |
| 1201 | .invert_carrier_sense = false, |
| 1202 | }; |
| 1203 | |
| 1204 | int cx25840_ir_probe(struct v4l2_subdev *sd) |
| 1205 | { |
| 1206 | struct cx25840_state *state = to_state(sd); |
| 1207 | struct cx25840_ir_state *ir_state; |
| 1208 | struct v4l2_subdev_ir_parameters default_params; |
| 1209 | |
| 1210 | /* Only init the IR controller for the CX2388[57] AV Core for now */ |
| 1211 | if (!(is_cx23885(state) || is_cx23887(state))) |
| 1212 | return 0; |
| 1213 | |
| 1214 | ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL); |
| 1215 | if (ir_state == NULL) |
| 1216 | return -ENOMEM; |
| 1217 | |
| 1218 | spin_lock_init(&ir_state->rx_kfifo_lock); |
| 1219 | if (kfifo_alloc(&ir_state->rx_kfifo, |
| 1220 | CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) { |
| 1221 | kfree(ir_state); |
| 1222 | return -ENOMEM; |
| 1223 | } |
| 1224 | |
| 1225 | ir_state->c = state->c; |
| 1226 | state->ir_state = ir_state; |
| 1227 | |
| 1228 | /* Ensure no interrupts arrive yet */ |
| 1229 | if (is_cx23885(state) || is_cx23887(state)) |
| 1230 | cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK); |
| 1231 | else |
| 1232 | cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0); |
| 1233 | |
| 1234 | mutex_init(&ir_state->rx_params_lock); |
| 1235 | memcpy(&default_params, &default_rx_params, |
| 1236 | sizeof(struct v4l2_subdev_ir_parameters)); |
| 1237 | v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); |
| 1238 | |
| 1239 | mutex_init(&ir_state->tx_params_lock); |
| 1240 | memcpy(&default_params, &default_tx_params, |
| 1241 | sizeof(struct v4l2_subdev_ir_parameters)); |
| 1242 | v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); |
| 1243 | |
| 1244 | return 0; |
| 1245 | } |
| 1246 | |
| 1247 | int cx25840_ir_remove(struct v4l2_subdev *sd) |
| 1248 | { |
| 1249 | struct cx25840_state *state = to_state(sd); |
| 1250 | struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| 1251 | |
| 1252 | if (ir_state == NULL) |
| 1253 | return -ENODEV; |
| 1254 | |
| 1255 | cx25840_ir_rx_shutdown(sd); |
| 1256 | cx25840_ir_tx_shutdown(sd); |
| 1257 | |
| 1258 | kfifo_free(&ir_state->rx_kfifo); |
| 1259 | kfree(ir_state); |
| 1260 | state->ir_state = NULL; |
| 1261 | return 0; |
| 1262 | } |