David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2012 Fusion-io All rights reserved. |
| 3 | * Copyright (C) 2012 Intel Corp. All rights reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public |
| 7 | * License v2 as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 12 | * General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public |
| 15 | * License along with this program; if not, write to the |
| 16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 17 | * Boston, MA 021110-1307, USA. |
| 18 | */ |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/wait.h> |
| 21 | #include <linux/bio.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/buffer_head.h> |
| 24 | #include <linux/blkdev.h> |
| 25 | #include <linux/random.h> |
| 26 | #include <linux/iocontext.h> |
| 27 | #include <linux/capability.h> |
| 28 | #include <linux/ratelimit.h> |
| 29 | #include <linux/kthread.h> |
| 30 | #include <linux/raid/pq.h> |
| 31 | #include <linux/hash.h> |
| 32 | #include <linux/list_sort.h> |
| 33 | #include <linux/raid/xor.h> |
| 34 | #include <asm/div64.h> |
| 35 | #include "compat.h" |
| 36 | #include "ctree.h" |
| 37 | #include "extent_map.h" |
| 38 | #include "disk-io.h" |
| 39 | #include "transaction.h" |
| 40 | #include "print-tree.h" |
| 41 | #include "volumes.h" |
| 42 | #include "raid56.h" |
| 43 | #include "async-thread.h" |
| 44 | #include "check-integrity.h" |
| 45 | #include "rcu-string.h" |
| 46 | |
| 47 | /* set when additional merges to this rbio are not allowed */ |
| 48 | #define RBIO_RMW_LOCKED_BIT 1 |
| 49 | |
| 50 | struct btrfs_raid_bio { |
| 51 | struct btrfs_fs_info *fs_info; |
| 52 | struct btrfs_bio *bbio; |
| 53 | |
| 54 | /* |
| 55 | * logical block numbers for the start of each stripe |
| 56 | * The last one or two are p/q. These are sorted, |
| 57 | * so raid_map[0] is the start of our full stripe |
| 58 | */ |
| 59 | u64 *raid_map; |
| 60 | |
| 61 | /* while we're doing rmw on a stripe |
| 62 | * we put it into a hash table so we can |
| 63 | * lock the stripe and merge more rbios |
| 64 | * into it. |
| 65 | */ |
| 66 | struct list_head hash_list; |
| 67 | |
| 68 | /* |
| 69 | * for scheduling work in the helper threads |
| 70 | */ |
| 71 | struct btrfs_work work; |
| 72 | |
| 73 | /* |
| 74 | * bio list and bio_list_lock are used |
| 75 | * to add more bios into the stripe |
| 76 | * in hopes of avoiding the full rmw |
| 77 | */ |
| 78 | struct bio_list bio_list; |
| 79 | spinlock_t bio_list_lock; |
| 80 | |
| 81 | /* |
| 82 | * also protected by the bio_list_lock, the |
| 83 | * stripe locking code uses plug_list to hand off |
| 84 | * the stripe lock to the next pending IO |
| 85 | */ |
| 86 | struct list_head plug_list; |
| 87 | |
| 88 | /* |
| 89 | * flags that tell us if it is safe to |
| 90 | * merge with this bio |
| 91 | */ |
| 92 | unsigned long flags; |
| 93 | |
| 94 | /* size of each individual stripe on disk */ |
| 95 | int stripe_len; |
| 96 | |
| 97 | /* number of data stripes (no p/q) */ |
| 98 | int nr_data; |
| 99 | |
| 100 | /* |
| 101 | * set if we're doing a parity rebuild |
| 102 | * for a read from higher up, which is handled |
| 103 | * differently from a parity rebuild as part of |
| 104 | * rmw |
| 105 | */ |
| 106 | int read_rebuild; |
| 107 | |
| 108 | /* first bad stripe */ |
| 109 | int faila; |
| 110 | |
| 111 | /* second bad stripe (for raid6 use) */ |
| 112 | int failb; |
| 113 | |
| 114 | /* |
| 115 | * number of pages needed to represent the full |
| 116 | * stripe |
| 117 | */ |
| 118 | int nr_pages; |
| 119 | |
| 120 | /* |
| 121 | * size of all the bios in the bio_list. This |
| 122 | * helps us decide if the rbio maps to a full |
| 123 | * stripe or not |
| 124 | */ |
| 125 | int bio_list_bytes; |
| 126 | |
| 127 | atomic_t refs; |
| 128 | |
| 129 | /* |
| 130 | * these are two arrays of pointers. We allocate the |
| 131 | * rbio big enough to hold them both and setup their |
| 132 | * locations when the rbio is allocated |
| 133 | */ |
| 134 | |
| 135 | /* pointers to pages that we allocated for |
| 136 | * reading/writing stripes directly from the disk (including P/Q) |
| 137 | */ |
| 138 | struct page **stripe_pages; |
| 139 | |
| 140 | /* |
| 141 | * pointers to the pages in the bio_list. Stored |
| 142 | * here for faster lookup |
| 143 | */ |
| 144 | struct page **bio_pages; |
| 145 | }; |
| 146 | |
| 147 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); |
| 148 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); |
| 149 | static void rmw_work(struct btrfs_work *work); |
| 150 | static void read_rebuild_work(struct btrfs_work *work); |
| 151 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio); |
| 152 | static void async_read_rebuild(struct btrfs_raid_bio *rbio); |
| 153 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); |
| 154 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); |
| 155 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); |
| 156 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); |
| 157 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); |
| 158 | |
| 159 | /* |
| 160 | * the stripe hash table is used for locking, and to collect |
| 161 | * bios in hopes of making a full stripe |
| 162 | */ |
| 163 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) |
| 164 | { |
| 165 | struct btrfs_stripe_hash_table *table; |
| 166 | struct btrfs_stripe_hash_table *x; |
| 167 | struct btrfs_stripe_hash *cur; |
| 168 | struct btrfs_stripe_hash *h; |
| 169 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; |
| 170 | int i; |
| 171 | |
| 172 | if (info->stripe_hash_table) |
| 173 | return 0; |
| 174 | |
| 175 | table = kzalloc(sizeof(*table) + sizeof(*h) * num_entries, GFP_NOFS); |
| 176 | if (!table) |
| 177 | return -ENOMEM; |
| 178 | |
| 179 | table->table = (void *)(table + 1); |
| 180 | h = table->table; |
| 181 | |
| 182 | for (i = 0; i < num_entries; i++) { |
| 183 | cur = h + i; |
| 184 | INIT_LIST_HEAD(&cur->hash_list); |
| 185 | spin_lock_init(&cur->lock); |
| 186 | init_waitqueue_head(&cur->wait); |
| 187 | } |
| 188 | |
| 189 | x = cmpxchg(&info->stripe_hash_table, NULL, table); |
| 190 | if (x) |
| 191 | kfree(x); |
| 192 | return 0; |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * we hash on the first logical address of the stripe |
| 197 | */ |
| 198 | static int rbio_bucket(struct btrfs_raid_bio *rbio) |
| 199 | { |
| 200 | u64 num = rbio->raid_map[0]; |
| 201 | |
| 202 | /* |
| 203 | * we shift down quite a bit. We're using byte |
| 204 | * addressing, and most of the lower bits are zeros. |
| 205 | * This tends to upset hash_64, and it consistently |
| 206 | * returns just one or two different values. |
| 207 | * |
| 208 | * shifting off the lower bits fixes things. |
| 209 | */ |
| 210 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * merging means we take the bio_list from the victim and |
| 215 | * splice it into the destination. The victim should |
| 216 | * be discarded afterwards. |
| 217 | * |
| 218 | * must be called with dest->rbio_list_lock held |
| 219 | */ |
| 220 | static void merge_rbio(struct btrfs_raid_bio *dest, |
| 221 | struct btrfs_raid_bio *victim) |
| 222 | { |
| 223 | bio_list_merge(&dest->bio_list, &victim->bio_list); |
| 224 | dest->bio_list_bytes += victim->bio_list_bytes; |
| 225 | bio_list_init(&victim->bio_list); |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * free the hash table used by unmount |
| 230 | */ |
| 231 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) |
| 232 | { |
| 233 | if (!info->stripe_hash_table) |
| 234 | return; |
| 235 | kfree(info->stripe_hash_table); |
| 236 | info->stripe_hash_table = NULL; |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * helper function to run the xor_blocks api. It is only |
| 241 | * able to do MAX_XOR_BLOCKS at a time, so we need to |
| 242 | * loop through. |
| 243 | */ |
| 244 | static void run_xor(void **pages, int src_cnt, ssize_t len) |
| 245 | { |
| 246 | int src_off = 0; |
| 247 | int xor_src_cnt = 0; |
| 248 | void *dest = pages[src_cnt]; |
| 249 | |
| 250 | while(src_cnt > 0) { |
| 251 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); |
| 252 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); |
| 253 | |
| 254 | src_cnt -= xor_src_cnt; |
| 255 | src_off += xor_src_cnt; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * returns true if the bio list inside this rbio |
| 261 | * covers an entire stripe (no rmw required). |
| 262 | * Must be called with the bio list lock held, or |
| 263 | * at a time when you know it is impossible to add |
| 264 | * new bios into the list |
| 265 | */ |
| 266 | static int __rbio_is_full(struct btrfs_raid_bio *rbio) |
| 267 | { |
| 268 | unsigned long size = rbio->bio_list_bytes; |
| 269 | int ret = 1; |
| 270 | |
| 271 | if (size != rbio->nr_data * rbio->stripe_len) |
| 272 | ret = 0; |
| 273 | |
| 274 | BUG_ON(size > rbio->nr_data * rbio->stripe_len); |
| 275 | return ret; |
| 276 | } |
| 277 | |
| 278 | static int rbio_is_full(struct btrfs_raid_bio *rbio) |
| 279 | { |
| 280 | unsigned long flags; |
| 281 | int ret; |
| 282 | |
| 283 | spin_lock_irqsave(&rbio->bio_list_lock, flags); |
| 284 | ret = __rbio_is_full(rbio); |
| 285 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
| 286 | return ret; |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * returns 1 if it is safe to merge two rbios together. |
| 291 | * The merging is safe if the two rbios correspond to |
| 292 | * the same stripe and if they are both going in the same |
| 293 | * direction (read vs write), and if neither one is |
| 294 | * locked for final IO |
| 295 | * |
| 296 | * The caller is responsible for locking such that |
| 297 | * rmw_locked is safe to test |
| 298 | */ |
| 299 | static int rbio_can_merge(struct btrfs_raid_bio *last, |
| 300 | struct btrfs_raid_bio *cur) |
| 301 | { |
| 302 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || |
| 303 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) |
| 304 | return 0; |
| 305 | |
| 306 | if (last->raid_map[0] != |
| 307 | cur->raid_map[0]) |
| 308 | return 0; |
| 309 | |
| 310 | /* reads can't merge with writes */ |
| 311 | if (last->read_rebuild != |
| 312 | cur->read_rebuild) { |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | return 1; |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * helper to index into the pstripe |
| 321 | */ |
| 322 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) |
| 323 | { |
| 324 | index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; |
| 325 | return rbio->stripe_pages[index]; |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * helper to index into the qstripe, returns null |
| 330 | * if there is no qstripe |
| 331 | */ |
| 332 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) |
| 333 | { |
| 334 | if (rbio->nr_data + 1 == rbio->bbio->num_stripes) |
| 335 | return NULL; |
| 336 | |
| 337 | index += ((rbio->nr_data + 1) * rbio->stripe_len) >> |
| 338 | PAGE_CACHE_SHIFT; |
| 339 | return rbio->stripe_pages[index]; |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * The first stripe in the table for a logical address |
| 344 | * has the lock. rbios are added in one of three ways: |
| 345 | * |
| 346 | * 1) Nobody has the stripe locked yet. The rbio is given |
| 347 | * the lock and 0 is returned. The caller must start the IO |
| 348 | * themselves. |
| 349 | * |
| 350 | * 2) Someone has the stripe locked, but we're able to merge |
| 351 | * with the lock owner. The rbio is freed and the IO will |
| 352 | * start automatically along with the existing rbio. 1 is returned. |
| 353 | * |
| 354 | * 3) Someone has the stripe locked, but we're not able to merge. |
| 355 | * The rbio is added to the lock owner's plug list, or merged into |
| 356 | * an rbio already on the plug list. When the lock owner unlocks, |
| 357 | * the next rbio on the list is run and the IO is started automatically. |
| 358 | * 1 is returned |
| 359 | * |
| 360 | * If we return 0, the caller still owns the rbio and must continue with |
| 361 | * IO submission. If we return 1, the caller must assume the rbio has |
| 362 | * already been freed. |
| 363 | */ |
| 364 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) |
| 365 | { |
| 366 | int bucket = rbio_bucket(rbio); |
| 367 | struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; |
| 368 | struct btrfs_raid_bio *cur; |
| 369 | struct btrfs_raid_bio *pending; |
| 370 | unsigned long flags; |
| 371 | DEFINE_WAIT(wait); |
| 372 | struct btrfs_raid_bio *freeit = NULL; |
| 373 | int ret = 0; |
| 374 | int walk = 0; |
| 375 | |
| 376 | spin_lock_irqsave(&h->lock, flags); |
| 377 | list_for_each_entry(cur, &h->hash_list, hash_list) { |
| 378 | walk++; |
| 379 | if (cur->raid_map[0] == rbio->raid_map[0]) { |
| 380 | spin_lock(&cur->bio_list_lock); |
| 381 | |
| 382 | /* can we merge into the lock owner? */ |
| 383 | if (rbio_can_merge(cur, rbio)) { |
| 384 | merge_rbio(cur, rbio); |
| 385 | spin_unlock(&cur->bio_list_lock); |
| 386 | freeit = rbio; |
| 387 | ret = 1; |
| 388 | goto out; |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * we couldn't merge with the running |
| 393 | * rbio, see if we can merge with the |
| 394 | * pending ones. We don't have to |
| 395 | * check for rmw_locked because there |
| 396 | * is no way they are inside finish_rmw |
| 397 | * right now |
| 398 | */ |
| 399 | list_for_each_entry(pending, &cur->plug_list, |
| 400 | plug_list) { |
| 401 | if (rbio_can_merge(pending, rbio)) { |
| 402 | merge_rbio(pending, rbio); |
| 403 | spin_unlock(&cur->bio_list_lock); |
| 404 | freeit = rbio; |
| 405 | ret = 1; |
| 406 | goto out; |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | /* no merging, put us on the tail of the plug list, |
| 411 | * our rbio will be started with the currently |
| 412 | * running rbio unlocks |
| 413 | */ |
| 414 | list_add_tail(&rbio->plug_list, &cur->plug_list); |
| 415 | spin_unlock(&cur->bio_list_lock); |
| 416 | ret = 1; |
| 417 | goto out; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | atomic_inc(&rbio->refs); |
| 422 | list_add(&rbio->hash_list, &h->hash_list); |
| 423 | out: |
| 424 | spin_unlock_irqrestore(&h->lock, flags); |
| 425 | if (freeit) |
| 426 | __free_raid_bio(freeit); |
| 427 | return ret; |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * called as rmw or parity rebuild is completed. If the plug list has more |
| 432 | * rbios waiting for this stripe, the next one on the list will be started |
| 433 | */ |
| 434 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) |
| 435 | { |
| 436 | int bucket; |
| 437 | struct btrfs_stripe_hash *h; |
| 438 | unsigned long flags; |
| 439 | |
| 440 | bucket = rbio_bucket(rbio); |
| 441 | h = rbio->fs_info->stripe_hash_table->table + bucket; |
| 442 | |
| 443 | spin_lock_irqsave(&h->lock, flags); |
| 444 | spin_lock(&rbio->bio_list_lock); |
| 445 | |
| 446 | if (!list_empty(&rbio->hash_list)) { |
| 447 | |
| 448 | list_del_init(&rbio->hash_list); |
| 449 | atomic_dec(&rbio->refs); |
| 450 | |
| 451 | /* |
| 452 | * we use the plug list to hold all the rbios |
| 453 | * waiting for the chance to lock this stripe. |
| 454 | * hand the lock over to one of them. |
| 455 | */ |
| 456 | if (!list_empty(&rbio->plug_list)) { |
| 457 | struct btrfs_raid_bio *next; |
| 458 | struct list_head *head = rbio->plug_list.next; |
| 459 | |
| 460 | next = list_entry(head, struct btrfs_raid_bio, |
| 461 | plug_list); |
| 462 | |
| 463 | list_del_init(&rbio->plug_list); |
| 464 | |
| 465 | list_add(&next->hash_list, &h->hash_list); |
| 466 | atomic_inc(&next->refs); |
| 467 | spin_unlock(&rbio->bio_list_lock); |
| 468 | spin_unlock_irqrestore(&h->lock, flags); |
| 469 | |
| 470 | if (next->read_rebuild) |
| 471 | async_read_rebuild(next); |
| 472 | else |
| 473 | async_rmw_stripe(next); |
| 474 | |
| 475 | goto done_nolock; |
| 476 | |
| 477 | } else if (waitqueue_active(&h->wait)) { |
| 478 | spin_unlock(&rbio->bio_list_lock); |
| 479 | spin_unlock_irqrestore(&h->lock, flags); |
| 480 | wake_up(&h->wait); |
| 481 | goto done_nolock; |
| 482 | } |
| 483 | } |
| 484 | spin_unlock(&rbio->bio_list_lock); |
| 485 | spin_unlock_irqrestore(&h->lock, flags); |
| 486 | |
| 487 | done_nolock: |
| 488 | return; |
| 489 | } |
| 490 | |
| 491 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) |
| 492 | { |
| 493 | int i; |
| 494 | |
| 495 | WARN_ON(atomic_read(&rbio->refs) < 0); |
| 496 | if (!atomic_dec_and_test(&rbio->refs)) |
| 497 | return; |
| 498 | |
| 499 | WARN_ON(!list_empty(&rbio->hash_list)); |
| 500 | WARN_ON(!bio_list_empty(&rbio->bio_list)); |
| 501 | |
| 502 | for (i = 0; i < rbio->nr_pages; i++) { |
| 503 | if (rbio->stripe_pages[i]) { |
| 504 | __free_page(rbio->stripe_pages[i]); |
| 505 | rbio->stripe_pages[i] = NULL; |
| 506 | } |
| 507 | } |
| 508 | kfree(rbio->raid_map); |
| 509 | kfree(rbio->bbio); |
| 510 | kfree(rbio); |
| 511 | } |
| 512 | |
| 513 | static void free_raid_bio(struct btrfs_raid_bio *rbio) |
| 514 | { |
| 515 | unlock_stripe(rbio); |
| 516 | __free_raid_bio(rbio); |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | * this frees the rbio and runs through all the bios in the |
| 521 | * bio_list and calls end_io on them |
| 522 | */ |
| 523 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate) |
| 524 | { |
| 525 | struct bio *cur = bio_list_get(&rbio->bio_list); |
| 526 | struct bio *next; |
| 527 | free_raid_bio(rbio); |
| 528 | |
| 529 | while (cur) { |
| 530 | next = cur->bi_next; |
| 531 | cur->bi_next = NULL; |
| 532 | if (uptodate) |
| 533 | set_bit(BIO_UPTODATE, &cur->bi_flags); |
| 534 | bio_endio(cur, err); |
| 535 | cur = next; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * end io function used by finish_rmw. When we finally |
| 541 | * get here, we've written a full stripe |
| 542 | */ |
| 543 | static void raid_write_end_io(struct bio *bio, int err) |
| 544 | { |
| 545 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 546 | |
| 547 | if (err) |
| 548 | fail_bio_stripe(rbio, bio); |
| 549 | |
| 550 | bio_put(bio); |
| 551 | |
| 552 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) |
| 553 | return; |
| 554 | |
| 555 | err = 0; |
| 556 | |
| 557 | /* OK, we have read all the stripes we need to. */ |
| 558 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) |
| 559 | err = -EIO; |
| 560 | |
| 561 | rbio_orig_end_io(rbio, err, 0); |
| 562 | return; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * the read/modify/write code wants to use the original bio for |
| 567 | * any pages it included, and then use the rbio for everything |
| 568 | * else. This function decides if a given index (stripe number) |
| 569 | * and page number in that stripe fall inside the original bio |
| 570 | * or the rbio. |
| 571 | * |
| 572 | * if you set bio_list_only, you'll get a NULL back for any ranges |
| 573 | * that are outside the bio_list |
| 574 | * |
| 575 | * This doesn't take any refs on anything, you get a bare page pointer |
| 576 | * and the caller must bump refs as required. |
| 577 | * |
| 578 | * You must call index_rbio_pages once before you can trust |
| 579 | * the answers from this function. |
| 580 | */ |
| 581 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, |
| 582 | int index, int pagenr, int bio_list_only) |
| 583 | { |
| 584 | int chunk_page; |
| 585 | struct page *p = NULL; |
| 586 | |
| 587 | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; |
| 588 | |
| 589 | spin_lock_irq(&rbio->bio_list_lock); |
| 590 | p = rbio->bio_pages[chunk_page]; |
| 591 | spin_unlock_irq(&rbio->bio_list_lock); |
| 592 | |
| 593 | if (p || bio_list_only) |
| 594 | return p; |
| 595 | |
| 596 | return rbio->stripe_pages[chunk_page]; |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * number of pages we need for the entire stripe across all the |
| 601 | * drives |
| 602 | */ |
| 603 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) |
| 604 | { |
| 605 | unsigned long nr = stripe_len * nr_stripes; |
| 606 | return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | * allocation and initial setup for the btrfs_raid_bio. Not |
| 611 | * this does not allocate any pages for rbio->pages. |
| 612 | */ |
| 613 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, |
| 614 | struct btrfs_bio *bbio, u64 *raid_map, |
| 615 | u64 stripe_len) |
| 616 | { |
| 617 | struct btrfs_raid_bio *rbio; |
| 618 | int nr_data = 0; |
| 619 | int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes); |
| 620 | void *p; |
| 621 | |
| 622 | rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2, |
| 623 | GFP_NOFS); |
| 624 | if (!rbio) { |
| 625 | kfree(raid_map); |
| 626 | kfree(bbio); |
| 627 | return ERR_PTR(-ENOMEM); |
| 628 | } |
| 629 | |
| 630 | bio_list_init(&rbio->bio_list); |
| 631 | INIT_LIST_HEAD(&rbio->plug_list); |
| 632 | spin_lock_init(&rbio->bio_list_lock); |
| 633 | INIT_LIST_HEAD(&rbio->hash_list); |
| 634 | rbio->bbio = bbio; |
| 635 | rbio->raid_map = raid_map; |
| 636 | rbio->fs_info = root->fs_info; |
| 637 | rbio->stripe_len = stripe_len; |
| 638 | rbio->nr_pages = num_pages; |
| 639 | rbio->faila = -1; |
| 640 | rbio->failb = -1; |
| 641 | atomic_set(&rbio->refs, 1); |
| 642 | |
| 643 | /* |
| 644 | * the stripe_pages and bio_pages array point to the extra |
| 645 | * memory we allocated past the end of the rbio |
| 646 | */ |
| 647 | p = rbio + 1; |
| 648 | rbio->stripe_pages = p; |
| 649 | rbio->bio_pages = p + sizeof(struct page *) * num_pages; |
| 650 | |
| 651 | if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE) |
| 652 | nr_data = bbio->num_stripes - 2; |
| 653 | else |
| 654 | nr_data = bbio->num_stripes - 1; |
| 655 | |
| 656 | rbio->nr_data = nr_data; |
| 657 | return rbio; |
| 658 | } |
| 659 | |
| 660 | /* allocate pages for all the stripes in the bio, including parity */ |
| 661 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) |
| 662 | { |
| 663 | int i; |
| 664 | struct page *page; |
| 665 | |
| 666 | for (i = 0; i < rbio->nr_pages; i++) { |
| 667 | if (rbio->stripe_pages[i]) |
| 668 | continue; |
| 669 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 670 | if (!page) |
| 671 | return -ENOMEM; |
| 672 | rbio->stripe_pages[i] = page; |
| 673 | ClearPageUptodate(page); |
| 674 | } |
| 675 | return 0; |
| 676 | } |
| 677 | |
| 678 | /* allocate pages for just the p/q stripes */ |
| 679 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) |
| 680 | { |
| 681 | int i; |
| 682 | struct page *page; |
| 683 | |
| 684 | i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; |
| 685 | |
| 686 | for (; i < rbio->nr_pages; i++) { |
| 687 | if (rbio->stripe_pages[i]) |
| 688 | continue; |
| 689 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 690 | if (!page) |
| 691 | return -ENOMEM; |
| 692 | rbio->stripe_pages[i] = page; |
| 693 | } |
| 694 | return 0; |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * add a single page from a specific stripe into our list of bios for IO |
| 699 | * this will try to merge into existing bios if possible, and returns |
| 700 | * zero if all went well. |
| 701 | */ |
| 702 | int rbio_add_io_page(struct btrfs_raid_bio *rbio, |
| 703 | struct bio_list *bio_list, |
| 704 | struct page *page, |
| 705 | int stripe_nr, |
| 706 | unsigned long page_index, |
| 707 | unsigned long bio_max_len) |
| 708 | { |
| 709 | struct bio *last = bio_list->tail; |
| 710 | u64 last_end = 0; |
| 711 | int ret; |
| 712 | struct bio *bio; |
| 713 | struct btrfs_bio_stripe *stripe; |
| 714 | u64 disk_start; |
| 715 | |
| 716 | stripe = &rbio->bbio->stripes[stripe_nr]; |
| 717 | disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); |
| 718 | |
| 719 | /* if the device is missing, just fail this stripe */ |
| 720 | if (!stripe->dev->bdev) |
| 721 | return fail_rbio_index(rbio, stripe_nr); |
| 722 | |
| 723 | /* see if we can add this page onto our existing bio */ |
| 724 | if (last) { |
| 725 | last_end = (u64)last->bi_sector << 9; |
| 726 | last_end += last->bi_size; |
| 727 | |
| 728 | /* |
| 729 | * we can't merge these if they are from different |
| 730 | * devices or if they are not contiguous |
| 731 | */ |
| 732 | if (last_end == disk_start && stripe->dev->bdev && |
| 733 | test_bit(BIO_UPTODATE, &last->bi_flags) && |
| 734 | last->bi_bdev == stripe->dev->bdev) { |
| 735 | ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); |
| 736 | if (ret == PAGE_CACHE_SIZE) |
| 737 | return 0; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | /* put a new bio on the list */ |
| 742 | bio = bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); |
| 743 | if (!bio) |
| 744 | return -ENOMEM; |
| 745 | |
| 746 | bio->bi_size = 0; |
| 747 | bio->bi_bdev = stripe->dev->bdev; |
| 748 | bio->bi_sector = disk_start >> 9; |
| 749 | set_bit(BIO_UPTODATE, &bio->bi_flags); |
| 750 | |
| 751 | bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); |
| 752 | bio_list_add(bio_list, bio); |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * while we're doing the read/modify/write cycle, we could |
| 758 | * have errors in reading pages off the disk. This checks |
| 759 | * for errors and if we're not able to read the page it'll |
| 760 | * trigger parity reconstruction. The rmw will be finished |
| 761 | * after we've reconstructed the failed stripes |
| 762 | */ |
| 763 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) |
| 764 | { |
| 765 | if (rbio->faila >= 0 || rbio->failb >= 0) { |
| 766 | BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1); |
| 767 | __raid56_parity_recover(rbio); |
| 768 | } else { |
| 769 | finish_rmw(rbio); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * these are just the pages from the rbio array, not from anything |
| 775 | * the FS sent down to us |
| 776 | */ |
| 777 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) |
| 778 | { |
| 779 | int index; |
| 780 | index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); |
| 781 | index += page; |
| 782 | return rbio->stripe_pages[index]; |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * helper function to walk our bio list and populate the bio_pages array with |
| 787 | * the result. This seems expensive, but it is faster than constantly |
| 788 | * searching through the bio list as we setup the IO in finish_rmw or stripe |
| 789 | * reconstruction. |
| 790 | * |
| 791 | * This must be called before you trust the answers from page_in_rbio |
| 792 | */ |
| 793 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) |
| 794 | { |
| 795 | struct bio *bio; |
| 796 | u64 start; |
| 797 | unsigned long stripe_offset; |
| 798 | unsigned long page_index; |
| 799 | struct page *p; |
| 800 | int i; |
| 801 | |
| 802 | spin_lock_irq(&rbio->bio_list_lock); |
| 803 | bio_list_for_each(bio, &rbio->bio_list) { |
| 804 | start = (u64)bio->bi_sector << 9; |
| 805 | stripe_offset = start - rbio->raid_map[0]; |
| 806 | page_index = stripe_offset >> PAGE_CACHE_SHIFT; |
| 807 | |
| 808 | for (i = 0; i < bio->bi_vcnt; i++) { |
| 809 | p = bio->bi_io_vec[i].bv_page; |
| 810 | rbio->bio_pages[page_index + i] = p; |
| 811 | } |
| 812 | } |
| 813 | spin_unlock_irq(&rbio->bio_list_lock); |
| 814 | } |
| 815 | |
| 816 | /* |
| 817 | * this is called from one of two situations. We either |
| 818 | * have a full stripe from the higher layers, or we've read all |
| 819 | * the missing bits off disk. |
| 820 | * |
| 821 | * This will calculate the parity and then send down any |
| 822 | * changed blocks. |
| 823 | */ |
| 824 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) |
| 825 | { |
| 826 | struct btrfs_bio *bbio = rbio->bbio; |
| 827 | void *pointers[bbio->num_stripes]; |
| 828 | int stripe_len = rbio->stripe_len; |
| 829 | int nr_data = rbio->nr_data; |
| 830 | int stripe; |
| 831 | int pagenr; |
| 832 | int p_stripe = -1; |
| 833 | int q_stripe = -1; |
| 834 | struct bio_list bio_list; |
| 835 | struct bio *bio; |
| 836 | int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; |
| 837 | int ret; |
| 838 | |
| 839 | bio_list_init(&bio_list); |
| 840 | |
| 841 | if (bbio->num_stripes - rbio->nr_data == 1) { |
| 842 | p_stripe = bbio->num_stripes - 1; |
| 843 | } else if (bbio->num_stripes - rbio->nr_data == 2) { |
| 844 | p_stripe = bbio->num_stripes - 2; |
| 845 | q_stripe = bbio->num_stripes - 1; |
| 846 | } else { |
| 847 | BUG(); |
| 848 | } |
| 849 | |
| 850 | /* at this point we either have a full stripe, |
| 851 | * or we've read the full stripe from the drive. |
| 852 | * recalculate the parity and write the new results. |
| 853 | * |
| 854 | * We're not allowed to add any new bios to the |
| 855 | * bio list here, anyone else that wants to |
| 856 | * change this stripe needs to do their own rmw. |
| 857 | */ |
| 858 | spin_lock_irq(&rbio->bio_list_lock); |
| 859 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 860 | spin_unlock_irq(&rbio->bio_list_lock); |
| 861 | |
| 862 | atomic_set(&rbio->bbio->error, 0); |
| 863 | |
| 864 | /* |
| 865 | * now that we've set rmw_locked, run through the |
| 866 | * bio list one last time and map the page pointers |
| 867 | */ |
| 868 | index_rbio_pages(rbio); |
| 869 | |
| 870 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { |
| 871 | struct page *p; |
| 872 | /* first collect one page from each data stripe */ |
| 873 | for (stripe = 0; stripe < nr_data; stripe++) { |
| 874 | p = page_in_rbio(rbio, stripe, pagenr, 0); |
| 875 | pointers[stripe] = kmap(p); |
| 876 | } |
| 877 | |
| 878 | /* then add the parity stripe */ |
| 879 | p = rbio_pstripe_page(rbio, pagenr); |
| 880 | SetPageUptodate(p); |
| 881 | pointers[stripe++] = kmap(p); |
| 882 | |
| 883 | if (q_stripe != -1) { |
| 884 | |
| 885 | /* |
| 886 | * raid6, add the qstripe and call the |
| 887 | * library function to fill in our p/q |
| 888 | */ |
| 889 | p = rbio_qstripe_page(rbio, pagenr); |
| 890 | SetPageUptodate(p); |
| 891 | pointers[stripe++] = kmap(p); |
| 892 | |
| 893 | raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE, |
| 894 | pointers); |
| 895 | } else { |
| 896 | /* raid5 */ |
| 897 | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); |
| 898 | run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); |
| 899 | } |
| 900 | |
| 901 | |
| 902 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) |
| 903 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
| 904 | } |
| 905 | |
| 906 | /* |
| 907 | * time to start writing. Make bios for everything from the |
| 908 | * higher layers (the bio_list in our rbio) and our p/q. Ignore |
| 909 | * everything else. |
| 910 | */ |
| 911 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) { |
| 912 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { |
| 913 | struct page *page; |
| 914 | if (stripe < rbio->nr_data) { |
| 915 | page = page_in_rbio(rbio, stripe, pagenr, 1); |
| 916 | if (!page) |
| 917 | continue; |
| 918 | } else { |
| 919 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 920 | } |
| 921 | |
| 922 | ret = rbio_add_io_page(rbio, &bio_list, |
| 923 | page, stripe, pagenr, rbio->stripe_len); |
| 924 | if (ret) |
| 925 | goto cleanup; |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list)); |
| 930 | BUG_ON(atomic_read(&bbio->stripes_pending) == 0); |
| 931 | |
| 932 | while (1) { |
| 933 | bio = bio_list_pop(&bio_list); |
| 934 | if (!bio) |
| 935 | break; |
| 936 | |
| 937 | bio->bi_private = rbio; |
| 938 | bio->bi_end_io = raid_write_end_io; |
| 939 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); |
| 940 | submit_bio(WRITE, bio); |
| 941 | } |
| 942 | return; |
| 943 | |
| 944 | cleanup: |
| 945 | rbio_orig_end_io(rbio, -EIO, 0); |
| 946 | } |
| 947 | |
| 948 | /* |
| 949 | * helper to find the stripe number for a given bio. Used to figure out which |
| 950 | * stripe has failed. This expects the bio to correspond to a physical disk, |
| 951 | * so it looks up based on physical sector numbers. |
| 952 | */ |
| 953 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, |
| 954 | struct bio *bio) |
| 955 | { |
| 956 | u64 physical = bio->bi_sector; |
| 957 | u64 stripe_start; |
| 958 | int i; |
| 959 | struct btrfs_bio_stripe *stripe; |
| 960 | |
| 961 | physical <<= 9; |
| 962 | |
| 963 | for (i = 0; i < rbio->bbio->num_stripes; i++) { |
| 964 | stripe = &rbio->bbio->stripes[i]; |
| 965 | stripe_start = stripe->physical; |
| 966 | if (physical >= stripe_start && |
| 967 | physical < stripe_start + rbio->stripe_len) { |
| 968 | return i; |
| 969 | } |
| 970 | } |
| 971 | return -1; |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * helper to find the stripe number for a given |
| 976 | * bio (before mapping). Used to figure out which stripe has |
| 977 | * failed. This looks up based on logical block numbers. |
| 978 | */ |
| 979 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, |
| 980 | struct bio *bio) |
| 981 | { |
| 982 | u64 logical = bio->bi_sector; |
| 983 | u64 stripe_start; |
| 984 | int i; |
| 985 | |
| 986 | logical <<= 9; |
| 987 | |
| 988 | for (i = 0; i < rbio->nr_data; i++) { |
| 989 | stripe_start = rbio->raid_map[i]; |
| 990 | if (logical >= stripe_start && |
| 991 | logical < stripe_start + rbio->stripe_len) { |
| 992 | return i; |
| 993 | } |
| 994 | } |
| 995 | return -1; |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * returns -EIO if we had too many failures |
| 1000 | */ |
| 1001 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) |
| 1002 | { |
| 1003 | unsigned long flags; |
| 1004 | int ret = 0; |
| 1005 | |
| 1006 | spin_lock_irqsave(&rbio->bio_list_lock, flags); |
| 1007 | |
| 1008 | /* we already know this stripe is bad, move on */ |
| 1009 | if (rbio->faila == failed || rbio->failb == failed) |
| 1010 | goto out; |
| 1011 | |
| 1012 | if (rbio->faila == -1) { |
| 1013 | /* first failure on this rbio */ |
| 1014 | rbio->faila = failed; |
| 1015 | atomic_inc(&rbio->bbio->error); |
| 1016 | } else if (rbio->failb == -1) { |
| 1017 | /* second failure on this rbio */ |
| 1018 | rbio->failb = failed; |
| 1019 | atomic_inc(&rbio->bbio->error); |
| 1020 | } else { |
| 1021 | ret = -EIO; |
| 1022 | } |
| 1023 | out: |
| 1024 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
| 1025 | |
| 1026 | return ret; |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * helper to fail a stripe based on a physical disk |
| 1031 | * bio. |
| 1032 | */ |
| 1033 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, |
| 1034 | struct bio *bio) |
| 1035 | { |
| 1036 | int failed = find_bio_stripe(rbio, bio); |
| 1037 | |
| 1038 | if (failed < 0) |
| 1039 | return -EIO; |
| 1040 | |
| 1041 | return fail_rbio_index(rbio, failed); |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * this sets each page in the bio uptodate. It should only be used on private |
| 1046 | * rbio pages, nothing that comes in from the higher layers |
| 1047 | */ |
| 1048 | static void set_bio_pages_uptodate(struct bio *bio) |
| 1049 | { |
| 1050 | int i; |
| 1051 | struct page *p; |
| 1052 | |
| 1053 | for (i = 0; i < bio->bi_vcnt; i++) { |
| 1054 | p = bio->bi_io_vec[i].bv_page; |
| 1055 | SetPageUptodate(p); |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * end io for the read phase of the rmw cycle. All the bios here are physical |
| 1061 | * stripe bios we've read from the disk so we can recalculate the parity of the |
| 1062 | * stripe. |
| 1063 | * |
| 1064 | * This will usually kick off finish_rmw once all the bios are read in, but it |
| 1065 | * may trigger parity reconstruction if we had any errors along the way |
| 1066 | */ |
| 1067 | static void raid_rmw_end_io(struct bio *bio, int err) |
| 1068 | { |
| 1069 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 1070 | |
| 1071 | if (err) |
| 1072 | fail_bio_stripe(rbio, bio); |
| 1073 | else |
| 1074 | set_bio_pages_uptodate(bio); |
| 1075 | |
| 1076 | bio_put(bio); |
| 1077 | |
| 1078 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) |
| 1079 | return; |
| 1080 | |
| 1081 | err = 0; |
| 1082 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) |
| 1083 | goto cleanup; |
| 1084 | |
| 1085 | /* |
| 1086 | * this will normally call finish_rmw to start our write |
| 1087 | * but if there are any failed stripes we'll reconstruct |
| 1088 | * from parity first |
| 1089 | */ |
| 1090 | validate_rbio_for_rmw(rbio); |
| 1091 | return; |
| 1092 | |
| 1093 | cleanup: |
| 1094 | |
| 1095 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1096 | } |
| 1097 | |
| 1098 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio) |
| 1099 | { |
| 1100 | rbio->work.flags = 0; |
| 1101 | rbio->work.func = rmw_work; |
| 1102 | |
| 1103 | btrfs_queue_worker(&rbio->fs_info->rmw_workers, |
| 1104 | &rbio->work); |
| 1105 | } |
| 1106 | |
| 1107 | static void async_read_rebuild(struct btrfs_raid_bio *rbio) |
| 1108 | { |
| 1109 | rbio->work.flags = 0; |
| 1110 | rbio->work.func = read_rebuild_work; |
| 1111 | |
| 1112 | btrfs_queue_worker(&rbio->fs_info->rmw_workers, |
| 1113 | &rbio->work); |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * the stripe must be locked by the caller. It will |
| 1118 | * unlock after all the writes are done |
| 1119 | */ |
| 1120 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) |
| 1121 | { |
| 1122 | int bios_to_read = 0; |
| 1123 | struct btrfs_bio *bbio = rbio->bbio; |
| 1124 | struct bio_list bio_list; |
| 1125 | int ret; |
| 1126 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| 1127 | int pagenr; |
| 1128 | int stripe; |
| 1129 | struct bio *bio; |
| 1130 | |
| 1131 | bio_list_init(&bio_list); |
| 1132 | |
| 1133 | ret = alloc_rbio_pages(rbio); |
| 1134 | if (ret) |
| 1135 | goto cleanup; |
| 1136 | |
| 1137 | index_rbio_pages(rbio); |
| 1138 | |
| 1139 | atomic_set(&rbio->bbio->error, 0); |
| 1140 | /* |
| 1141 | * build a list of bios to read all the missing parts of this |
| 1142 | * stripe |
| 1143 | */ |
| 1144 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { |
| 1145 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { |
| 1146 | struct page *page; |
| 1147 | /* |
| 1148 | * we want to find all the pages missing from |
| 1149 | * the rbio and read them from the disk. If |
| 1150 | * page_in_rbio finds a page in the bio list |
| 1151 | * we don't need to read it off the stripe. |
| 1152 | */ |
| 1153 | page = page_in_rbio(rbio, stripe, pagenr, 1); |
| 1154 | if (page) |
| 1155 | continue; |
| 1156 | |
| 1157 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1158 | ret = rbio_add_io_page(rbio, &bio_list, page, |
| 1159 | stripe, pagenr, rbio->stripe_len); |
| 1160 | if (ret) |
| 1161 | goto cleanup; |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | bios_to_read = bio_list_size(&bio_list); |
| 1166 | if (!bios_to_read) { |
| 1167 | /* |
| 1168 | * this can happen if others have merged with |
| 1169 | * us, it means there is nothing left to read. |
| 1170 | * But if there are missing devices it may not be |
| 1171 | * safe to do the full stripe write yet. |
| 1172 | */ |
| 1173 | goto finish; |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | * the bbio may be freed once we submit the last bio. Make sure |
| 1178 | * not to touch it after that |
| 1179 | */ |
| 1180 | atomic_set(&bbio->stripes_pending, bios_to_read); |
| 1181 | while (1) { |
| 1182 | bio = bio_list_pop(&bio_list); |
| 1183 | if (!bio) |
| 1184 | break; |
| 1185 | |
| 1186 | bio->bi_private = rbio; |
| 1187 | bio->bi_end_io = raid_rmw_end_io; |
| 1188 | |
| 1189 | btrfs_bio_wq_end_io(rbio->fs_info, bio, |
| 1190 | BTRFS_WQ_ENDIO_RAID56); |
| 1191 | |
| 1192 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); |
| 1193 | submit_bio(READ, bio); |
| 1194 | } |
| 1195 | /* the actual write will happen once the reads are done */ |
| 1196 | return 0; |
| 1197 | |
| 1198 | cleanup: |
| 1199 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1200 | return -EIO; |
| 1201 | |
| 1202 | finish: |
| 1203 | validate_rbio_for_rmw(rbio); |
| 1204 | return 0; |
| 1205 | } |
| 1206 | |
| 1207 | /* |
| 1208 | * if the upper layers pass in a full stripe, we thank them by only allocating |
| 1209 | * enough pages to hold the parity, and sending it all down quickly. |
| 1210 | */ |
| 1211 | static int full_stripe_write(struct btrfs_raid_bio *rbio) |
| 1212 | { |
| 1213 | int ret; |
| 1214 | |
| 1215 | ret = alloc_rbio_parity_pages(rbio); |
| 1216 | if (ret) |
| 1217 | return ret; |
| 1218 | |
| 1219 | ret = lock_stripe_add(rbio); |
| 1220 | if (ret == 0) |
| 1221 | finish_rmw(rbio); |
| 1222 | return 0; |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * partial stripe writes get handed over to async helpers. |
| 1227 | * We're really hoping to merge a few more writes into this |
| 1228 | * rbio before calculating new parity |
| 1229 | */ |
| 1230 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) |
| 1231 | { |
| 1232 | int ret; |
| 1233 | |
| 1234 | ret = lock_stripe_add(rbio); |
| 1235 | if (ret == 0) |
| 1236 | async_rmw_stripe(rbio); |
| 1237 | return 0; |
| 1238 | } |
| 1239 | |
| 1240 | /* |
| 1241 | * sometimes while we were reading from the drive to |
| 1242 | * recalculate parity, enough new bios come into create |
| 1243 | * a full stripe. So we do a check here to see if we can |
| 1244 | * go directly to finish_rmw |
| 1245 | */ |
| 1246 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) |
| 1247 | { |
| 1248 | /* head off into rmw land if we don't have a full stripe */ |
| 1249 | if (!rbio_is_full(rbio)) |
| 1250 | return partial_stripe_write(rbio); |
| 1251 | return full_stripe_write(rbio); |
| 1252 | } |
| 1253 | |
| 1254 | /* |
| 1255 | * our main entry point for writes from the rest of the FS. |
| 1256 | */ |
| 1257 | int raid56_parity_write(struct btrfs_root *root, struct bio *bio, |
| 1258 | struct btrfs_bio *bbio, u64 *raid_map, |
| 1259 | u64 stripe_len) |
| 1260 | { |
| 1261 | struct btrfs_raid_bio *rbio; |
| 1262 | |
| 1263 | rbio = alloc_rbio(root, bbio, raid_map, stripe_len); |
| 1264 | if (IS_ERR(rbio)) { |
| 1265 | kfree(raid_map); |
| 1266 | kfree(bbio); |
| 1267 | return PTR_ERR(rbio); |
| 1268 | } |
| 1269 | bio_list_add(&rbio->bio_list, bio); |
| 1270 | rbio->bio_list_bytes = bio->bi_size; |
| 1271 | return __raid56_parity_write(rbio); |
| 1272 | } |
| 1273 | |
| 1274 | /* |
| 1275 | * all parity reconstruction happens here. We've read in everything |
| 1276 | * we can find from the drives and this does the heavy lifting of |
| 1277 | * sorting the good from the bad. |
| 1278 | */ |
| 1279 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) |
| 1280 | { |
| 1281 | int pagenr, stripe; |
| 1282 | void **pointers; |
| 1283 | int faila = -1, failb = -1; |
| 1284 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| 1285 | struct page *page; |
| 1286 | int err; |
| 1287 | int i; |
| 1288 | |
| 1289 | pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *), |
| 1290 | GFP_NOFS); |
| 1291 | if (!pointers) { |
| 1292 | err = -ENOMEM; |
| 1293 | goto cleanup_io; |
| 1294 | } |
| 1295 | |
| 1296 | faila = rbio->faila; |
| 1297 | failb = rbio->failb; |
| 1298 | |
| 1299 | if (rbio->read_rebuild) { |
| 1300 | spin_lock_irq(&rbio->bio_list_lock); |
| 1301 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 1302 | spin_unlock_irq(&rbio->bio_list_lock); |
| 1303 | } |
| 1304 | |
| 1305 | index_rbio_pages(rbio); |
| 1306 | |
| 1307 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { |
| 1308 | /* setup our array of pointers with pages |
| 1309 | * from each stripe |
| 1310 | */ |
| 1311 | for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { |
| 1312 | /* |
| 1313 | * if we're rebuilding a read, we have to use |
| 1314 | * pages from the bio list |
| 1315 | */ |
| 1316 | if (rbio->read_rebuild && |
| 1317 | (stripe == faila || stripe == failb)) { |
| 1318 | page = page_in_rbio(rbio, stripe, pagenr, 0); |
| 1319 | } else { |
| 1320 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1321 | } |
| 1322 | pointers[stripe] = kmap(page); |
| 1323 | } |
| 1324 | |
| 1325 | /* all raid6 handling here */ |
| 1326 | if (rbio->raid_map[rbio->bbio->num_stripes - 1] == |
| 1327 | RAID6_Q_STRIPE) { |
| 1328 | |
| 1329 | /* |
| 1330 | * single failure, rebuild from parity raid5 |
| 1331 | * style |
| 1332 | */ |
| 1333 | if (failb < 0) { |
| 1334 | if (faila == rbio->nr_data) { |
| 1335 | /* |
| 1336 | * Just the P stripe has failed, without |
| 1337 | * a bad data or Q stripe. |
| 1338 | * TODO, we should redo the xor here. |
| 1339 | */ |
| 1340 | err = -EIO; |
| 1341 | goto cleanup; |
| 1342 | } |
| 1343 | /* |
| 1344 | * a single failure in raid6 is rebuilt |
| 1345 | * in the pstripe code below |
| 1346 | */ |
| 1347 | goto pstripe; |
| 1348 | } |
| 1349 | |
| 1350 | /* make sure our ps and qs are in order */ |
| 1351 | if (faila > failb) { |
| 1352 | int tmp = failb; |
| 1353 | failb = faila; |
| 1354 | faila = tmp; |
| 1355 | } |
| 1356 | |
| 1357 | /* if the q stripe is failed, do a pstripe reconstruction |
| 1358 | * from the xors. |
| 1359 | * If both the q stripe and the P stripe are failed, we're |
| 1360 | * here due to a crc mismatch and we can't give them the |
| 1361 | * data they want |
| 1362 | */ |
| 1363 | if (rbio->raid_map[failb] == RAID6_Q_STRIPE) { |
| 1364 | if (rbio->raid_map[faila] == RAID5_P_STRIPE) { |
| 1365 | err = -EIO; |
| 1366 | goto cleanup; |
| 1367 | } |
| 1368 | /* |
| 1369 | * otherwise we have one bad data stripe and |
| 1370 | * a good P stripe. raid5! |
| 1371 | */ |
| 1372 | goto pstripe; |
| 1373 | } |
| 1374 | |
| 1375 | if (rbio->raid_map[failb] == RAID5_P_STRIPE) { |
| 1376 | raid6_datap_recov(rbio->bbio->num_stripes, |
| 1377 | PAGE_SIZE, faila, pointers); |
| 1378 | } else { |
| 1379 | raid6_2data_recov(rbio->bbio->num_stripes, |
| 1380 | PAGE_SIZE, faila, failb, |
| 1381 | pointers); |
| 1382 | } |
| 1383 | } else { |
| 1384 | void *p; |
| 1385 | |
| 1386 | /* rebuild from P stripe here (raid5 or raid6) */ |
| 1387 | BUG_ON(failb != -1); |
| 1388 | pstripe: |
| 1389 | /* Copy parity block into failed block to start with */ |
| 1390 | memcpy(pointers[faila], |
| 1391 | pointers[rbio->nr_data], |
| 1392 | PAGE_CACHE_SIZE); |
| 1393 | |
| 1394 | /* rearrange the pointer array */ |
| 1395 | p = pointers[faila]; |
| 1396 | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) |
| 1397 | pointers[stripe] = pointers[stripe + 1]; |
| 1398 | pointers[rbio->nr_data - 1] = p; |
| 1399 | |
| 1400 | /* xor in the rest */ |
| 1401 | run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); |
| 1402 | } |
| 1403 | /* if we're doing this rebuild as part of an rmw, go through |
| 1404 | * and set all of our private rbio pages in the |
| 1405 | * failed stripes as uptodate. This way finish_rmw will |
| 1406 | * know they can be trusted. If this was a read reconstruction, |
| 1407 | * other endio functions will fiddle the uptodate bits |
| 1408 | */ |
| 1409 | if (!rbio->read_rebuild) { |
| 1410 | for (i = 0; i < nr_pages; i++) { |
| 1411 | if (faila != -1) { |
| 1412 | page = rbio_stripe_page(rbio, faila, i); |
| 1413 | SetPageUptodate(page); |
| 1414 | } |
| 1415 | if (failb != -1) { |
| 1416 | page = rbio_stripe_page(rbio, failb, i); |
| 1417 | SetPageUptodate(page); |
| 1418 | } |
| 1419 | } |
| 1420 | } |
| 1421 | for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { |
| 1422 | /* |
| 1423 | * if we're rebuilding a read, we have to use |
| 1424 | * pages from the bio list |
| 1425 | */ |
| 1426 | if (rbio->read_rebuild && |
| 1427 | (stripe == faila || stripe == failb)) { |
| 1428 | page = page_in_rbio(rbio, stripe, pagenr, 0); |
| 1429 | } else { |
| 1430 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1431 | } |
| 1432 | kunmap(page); |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | err = 0; |
| 1437 | cleanup: |
| 1438 | kfree(pointers); |
| 1439 | |
| 1440 | cleanup_io: |
| 1441 | |
| 1442 | if (rbio->read_rebuild) { |
| 1443 | rbio_orig_end_io(rbio, err, err == 0); |
| 1444 | } else if (err == 0) { |
| 1445 | rbio->faila = -1; |
| 1446 | rbio->failb = -1; |
| 1447 | finish_rmw(rbio); |
| 1448 | } else { |
| 1449 | rbio_orig_end_io(rbio, err, 0); |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | /* |
| 1454 | * This is called only for stripes we've read from disk to |
| 1455 | * reconstruct the parity. |
| 1456 | */ |
| 1457 | static void raid_recover_end_io(struct bio *bio, int err) |
| 1458 | { |
| 1459 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 1460 | |
| 1461 | /* |
| 1462 | * we only read stripe pages off the disk, set them |
| 1463 | * up to date if there were no errors |
| 1464 | */ |
| 1465 | if (err) |
| 1466 | fail_bio_stripe(rbio, bio); |
| 1467 | else |
| 1468 | set_bio_pages_uptodate(bio); |
| 1469 | bio_put(bio); |
| 1470 | |
| 1471 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) |
| 1472 | return; |
| 1473 | |
| 1474 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) |
| 1475 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1476 | else |
| 1477 | __raid_recover_end_io(rbio); |
| 1478 | } |
| 1479 | |
| 1480 | /* |
| 1481 | * reads everything we need off the disk to reconstruct |
| 1482 | * the parity. endio handlers trigger final reconstruction |
| 1483 | * when the IO is done. |
| 1484 | * |
| 1485 | * This is used both for reads from the higher layers and for |
| 1486 | * parity construction required to finish a rmw cycle. |
| 1487 | */ |
| 1488 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) |
| 1489 | { |
| 1490 | int bios_to_read = 0; |
| 1491 | struct btrfs_bio *bbio = rbio->bbio; |
| 1492 | struct bio_list bio_list; |
| 1493 | int ret; |
| 1494 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| 1495 | int pagenr; |
| 1496 | int stripe; |
| 1497 | struct bio *bio; |
| 1498 | |
| 1499 | bio_list_init(&bio_list); |
| 1500 | |
| 1501 | ret = alloc_rbio_pages(rbio); |
| 1502 | if (ret) |
| 1503 | goto cleanup; |
| 1504 | |
| 1505 | atomic_set(&rbio->bbio->error, 0); |
| 1506 | |
| 1507 | /* |
| 1508 | * read everything that hasn't failed. |
| 1509 | */ |
| 1510 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) { |
| 1511 | if (rbio->faila == stripe || |
| 1512 | rbio->failb == stripe) |
| 1513 | continue; |
| 1514 | |
| 1515 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { |
| 1516 | struct page *p; |
| 1517 | |
| 1518 | /* |
| 1519 | * the rmw code may have already read this |
| 1520 | * page in |
| 1521 | */ |
| 1522 | p = rbio_stripe_page(rbio, stripe, pagenr); |
| 1523 | if (PageUptodate(p)) |
| 1524 | continue; |
| 1525 | |
| 1526 | ret = rbio_add_io_page(rbio, &bio_list, |
| 1527 | rbio_stripe_page(rbio, stripe, pagenr), |
| 1528 | stripe, pagenr, rbio->stripe_len); |
| 1529 | if (ret < 0) |
| 1530 | goto cleanup; |
| 1531 | } |
| 1532 | } |
| 1533 | |
| 1534 | bios_to_read = bio_list_size(&bio_list); |
| 1535 | if (!bios_to_read) { |
| 1536 | /* |
| 1537 | * we might have no bios to read just because the pages |
| 1538 | * were up to date, or we might have no bios to read because |
| 1539 | * the devices were gone. |
| 1540 | */ |
| 1541 | if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) { |
| 1542 | __raid_recover_end_io(rbio); |
| 1543 | goto out; |
| 1544 | } else { |
| 1545 | goto cleanup; |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | /* |
| 1550 | * the bbio may be freed once we submit the last bio. Make sure |
| 1551 | * not to touch it after that |
| 1552 | */ |
| 1553 | atomic_set(&bbio->stripes_pending, bios_to_read); |
| 1554 | while (1) { |
| 1555 | bio = bio_list_pop(&bio_list); |
| 1556 | if (!bio) |
| 1557 | break; |
| 1558 | |
| 1559 | bio->bi_private = rbio; |
| 1560 | bio->bi_end_io = raid_recover_end_io; |
| 1561 | |
| 1562 | btrfs_bio_wq_end_io(rbio->fs_info, bio, |
| 1563 | BTRFS_WQ_ENDIO_RAID56); |
| 1564 | |
| 1565 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); |
| 1566 | submit_bio(READ, bio); |
| 1567 | } |
| 1568 | out: |
| 1569 | return 0; |
| 1570 | |
| 1571 | cleanup: |
| 1572 | if (rbio->read_rebuild) |
| 1573 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1574 | return -EIO; |
| 1575 | } |
| 1576 | |
| 1577 | /* |
| 1578 | * the main entry point for reads from the higher layers. This |
| 1579 | * is really only called when the normal read path had a failure, |
| 1580 | * so we assume the bio they send down corresponds to a failed part |
| 1581 | * of the drive. |
| 1582 | */ |
| 1583 | int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, |
| 1584 | struct btrfs_bio *bbio, u64 *raid_map, |
| 1585 | u64 stripe_len, int mirror_num) |
| 1586 | { |
| 1587 | struct btrfs_raid_bio *rbio; |
| 1588 | int ret; |
| 1589 | |
| 1590 | rbio = alloc_rbio(root, bbio, raid_map, stripe_len); |
| 1591 | if (IS_ERR(rbio)) { |
| 1592 | return PTR_ERR(rbio); |
| 1593 | } |
| 1594 | |
| 1595 | rbio->read_rebuild = 1; |
| 1596 | bio_list_add(&rbio->bio_list, bio); |
| 1597 | rbio->bio_list_bytes = bio->bi_size; |
| 1598 | |
| 1599 | rbio->faila = find_logical_bio_stripe(rbio, bio); |
| 1600 | if (rbio->faila == -1) { |
| 1601 | BUG(); |
| 1602 | kfree(rbio); |
| 1603 | return -EIO; |
| 1604 | } |
| 1605 | |
| 1606 | /* |
| 1607 | * reconstruct from the q stripe if they are |
| 1608 | * asking for mirror 3 |
| 1609 | */ |
| 1610 | if (mirror_num == 3) |
| 1611 | rbio->failb = bbio->num_stripes - 2; |
| 1612 | |
| 1613 | ret = lock_stripe_add(rbio); |
| 1614 | |
| 1615 | /* |
| 1616 | * __raid56_parity_recover will end the bio with |
| 1617 | * any errors it hits. We don't want to return |
| 1618 | * its error value up the stack because our caller |
| 1619 | * will end up calling bio_endio with any nonzero |
| 1620 | * return |
| 1621 | */ |
| 1622 | if (ret == 0) |
| 1623 | __raid56_parity_recover(rbio); |
| 1624 | /* |
| 1625 | * our rbio has been added to the list of |
| 1626 | * rbios that will be handled after the |
| 1627 | * currently lock owner is done |
| 1628 | */ |
| 1629 | return 0; |
| 1630 | |
| 1631 | } |
| 1632 | |
| 1633 | static void rmw_work(struct btrfs_work *work) |
| 1634 | { |
| 1635 | struct btrfs_raid_bio *rbio; |
| 1636 | |
| 1637 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 1638 | raid56_rmw_stripe(rbio); |
| 1639 | } |
| 1640 | |
| 1641 | static void read_rebuild_work(struct btrfs_work *work) |
| 1642 | { |
| 1643 | struct btrfs_raid_bio *rbio; |
| 1644 | |
| 1645 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 1646 | __raid56_parity_recover(rbio); |
| 1647 | } |