| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card | 
 | 3 |  *           and other Tigon based cards. | 
 | 4 |  * | 
 | 5 |  * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. | 
 | 6 |  * | 
 | 7 |  * Thanks to Alteon and 3Com for providing hardware and documentation | 
 | 8 |  * enabling me to write this driver. | 
 | 9 |  * | 
 | 10 |  * A mailing list for discussing the use of this driver has been | 
 | 11 |  * setup, please subscribe to the lists if you have any questions | 
 | 12 |  * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to | 
 | 13 |  * see how to subscribe. | 
 | 14 |  * | 
 | 15 |  * This program is free software; you can redistribute it and/or modify | 
 | 16 |  * it under the terms of the GNU General Public License as published by | 
 | 17 |  * the Free Software Foundation; either version 2 of the License, or | 
 | 18 |  * (at your option) any later version. | 
 | 19 |  * | 
 | 20 |  * Additional credits: | 
 | 21 |  *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace | 
 | 22 |  *       dump support. The trace dump support has not been | 
 | 23 |  *       integrated yet however. | 
 | 24 |  *   Troy Benjegerdes: Big Endian (PPC) patches. | 
 | 25 |  *   Nate Stahl: Better out of memory handling and stats support. | 
 | 26 |  *   Aman Singla: Nasty race between interrupt handler and tx code dealing | 
 | 27 |  *                with 'testing the tx_ret_csm and setting tx_full' | 
 | 28 |  *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping | 
 | 29 |  *                                       infrastructure and Sparc support | 
 | 30 |  *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the | 
 | 31 |  *                              driver under Linux/Sparc64 | 
 | 32 |  *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards | 
 | 33 |  *                                       ETHTOOL_GDRVINFO support | 
 | 34 |  *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx | 
 | 35 |  *                                       handler and close() cleanup. | 
 | 36 |  *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether | 
 | 37 |  *                                       memory mapped IO is enabled to | 
 | 38 |  *                                       make the driver work on RS/6000. | 
 | 39 |  *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem | 
 | 40 |  *                                       where the driver would disable | 
 | 41 |  *                                       bus master mode if it had to disable | 
 | 42 |  *                                       write and invalidate. | 
 | 43 |  *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little | 
 | 44 |  *                                       endian systems. | 
 | 45 |  *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and | 
 | 46 |  *                                       rx producer index when | 
 | 47 |  *                                       flushing the Jumbo ring. | 
 | 48 |  *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the | 
 | 49 |  *                                       driver init path. | 
 | 50 |  *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. | 
 | 51 |  */ | 
 | 52 |  | 
 | 53 | #include <linux/config.h> | 
 | 54 | #include <linux/module.h> | 
 | 55 | #include <linux/moduleparam.h> | 
 | 56 | #include <linux/version.h> | 
 | 57 | #include <linux/types.h> | 
 | 58 | #include <linux/errno.h> | 
 | 59 | #include <linux/ioport.h> | 
 | 60 | #include <linux/pci.h> | 
 | 61 | #include <linux/kernel.h> | 
 | 62 | #include <linux/netdevice.h> | 
 | 63 | #include <linux/etherdevice.h> | 
 | 64 | #include <linux/skbuff.h> | 
 | 65 | #include <linux/init.h> | 
 | 66 | #include <linux/delay.h> | 
 | 67 | #include <linux/mm.h> | 
 | 68 | #include <linux/highmem.h> | 
 | 69 | #include <linux/sockios.h> | 
 | 70 |  | 
 | 71 | #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) | 
 | 72 | #include <linux/if_vlan.h> | 
 | 73 | #endif | 
 | 74 |  | 
 | 75 | #ifdef SIOCETHTOOL | 
 | 76 | #include <linux/ethtool.h> | 
 | 77 | #endif | 
 | 78 |  | 
 | 79 | #include <net/sock.h> | 
 | 80 | #include <net/ip.h> | 
 | 81 |  | 
 | 82 | #include <asm/system.h> | 
 | 83 | #include <asm/io.h> | 
 | 84 | #include <asm/irq.h> | 
 | 85 | #include <asm/byteorder.h> | 
 | 86 | #include <asm/uaccess.h> | 
 | 87 |  | 
 | 88 |  | 
 | 89 | #define DRV_NAME "acenic" | 
 | 90 |  | 
 | 91 | #undef INDEX_DEBUG | 
 | 92 |  | 
 | 93 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | 
 | 94 | #define ACE_IS_TIGON_I(ap)	0 | 
 | 95 | #define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES | 
 | 96 | #else | 
 | 97 | #define ACE_IS_TIGON_I(ap)	(ap->version == 1) | 
 | 98 | #define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries | 
 | 99 | #endif | 
 | 100 |  | 
 | 101 | #ifndef PCI_VENDOR_ID_ALTEON | 
 | 102 | #define PCI_VENDOR_ID_ALTEON		0x12ae	 | 
 | 103 | #endif | 
 | 104 | #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE | 
 | 105 | #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001 | 
 | 106 | #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 | 
 | 107 | #endif | 
 | 108 | #ifndef PCI_DEVICE_ID_3COM_3C985 | 
 | 109 | #define PCI_DEVICE_ID_3COM_3C985	0x0001 | 
 | 110 | #endif | 
 | 111 | #ifndef PCI_VENDOR_ID_NETGEAR | 
 | 112 | #define PCI_VENDOR_ID_NETGEAR		0x1385 | 
 | 113 | #define PCI_DEVICE_ID_NETGEAR_GA620	0x620a | 
 | 114 | #endif | 
 | 115 | #ifndef PCI_DEVICE_ID_NETGEAR_GA620T | 
 | 116 | #define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a | 
 | 117 | #endif | 
 | 118 |  | 
 | 119 |  | 
 | 120 | /* | 
 | 121 |  * Farallon used the DEC vendor ID by mistake and they seem not | 
 | 122 |  * to care - stinky! | 
 | 123 |  */ | 
 | 124 | #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX | 
 | 125 | #define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a | 
 | 126 | #endif | 
 | 127 | #ifndef PCI_DEVICE_ID_FARALLON_PN9100T | 
 | 128 | #define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa | 
 | 129 | #endif | 
 | 130 | #ifndef PCI_VENDOR_ID_SGI | 
 | 131 | #define PCI_VENDOR_ID_SGI		0x10a9 | 
 | 132 | #endif | 
 | 133 | #ifndef PCI_DEVICE_ID_SGI_ACENIC | 
 | 134 | #define PCI_DEVICE_ID_SGI_ACENIC	0x0009 | 
 | 135 | #endif | 
 | 136 |  | 
 | 137 | static struct pci_device_id acenic_pci_tbl[] = { | 
 | 138 | 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, | 
 | 139 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 140 | 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, | 
 | 141 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 142 | 	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, | 
 | 143 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 144 | 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, | 
 | 145 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 146 | 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, | 
 | 147 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 148 | 	/* | 
 | 149 | 	 * Farallon used the DEC vendor ID on their cards incorrectly, | 
 | 150 | 	 * then later Alteon's ID. | 
 | 151 | 	 */ | 
 | 152 | 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, | 
 | 153 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 154 | 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, | 
 | 155 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 156 | 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, | 
 | 157 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 158 | 	{ } | 
 | 159 | }; | 
 | 160 | MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); | 
 | 161 |  | 
 | 162 | #ifndef SET_NETDEV_DEV | 
 | 163 | #define SET_NETDEV_DEV(net, pdev)	do{} while(0) | 
 | 164 | #endif | 
 | 165 |  | 
 | 166 | #if LINUX_VERSION_CODE >= 0x2051c | 
 | 167 | #define ace_sync_irq(irq)	synchronize_irq(irq) | 
 | 168 | #else | 
 | 169 | #define ace_sync_irq(irq)	synchronize_irq() | 
 | 170 | #endif | 
 | 171 |  | 
 | 172 | #ifndef offset_in_page | 
 | 173 | #define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK) | 
 | 174 | #endif | 
 | 175 |  | 
 | 176 | #define ACE_MAX_MOD_PARMS	8 | 
 | 177 | #define BOARD_IDX_STATIC	0 | 
 | 178 | #define BOARD_IDX_OVERFLOW	-1 | 
 | 179 |  | 
 | 180 | #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \ | 
 | 181 | 	defined(NETIF_F_HW_VLAN_RX) | 
 | 182 | #define ACENIC_DO_VLAN		1 | 
 | 183 | #define ACE_RCB_VLAN_FLAG	RCB_FLG_VLAN_ASSIST | 
 | 184 | #else | 
 | 185 | #define ACENIC_DO_VLAN		0 | 
 | 186 | #define ACE_RCB_VLAN_FLAG	0 | 
 | 187 | #endif | 
 | 188 |  | 
 | 189 | #include "acenic.h" | 
 | 190 |  | 
 | 191 | /* | 
 | 192 |  * These must be defined before the firmware is included. | 
 | 193 |  */ | 
 | 194 | #define MAX_TEXT_LEN	96*1024 | 
 | 195 | #define MAX_RODATA_LEN	8*1024 | 
 | 196 | #define MAX_DATA_LEN	2*1024 | 
 | 197 |  | 
 | 198 | #include "acenic_firmware.h" | 
 | 199 |  | 
 | 200 | #ifndef tigon2FwReleaseLocal | 
 | 201 | #define tigon2FwReleaseLocal 0 | 
 | 202 | #endif | 
 | 203 |  | 
 | 204 | /* | 
 | 205 |  * This driver currently supports Tigon I and Tigon II based cards | 
 | 206 |  * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear | 
 | 207 |  * GA620. The driver should also work on the SGI, DEC and Farallon | 
 | 208 |  * versions of the card, however I have not been able to test that | 
 | 209 |  * myself. | 
 | 210 |  * | 
 | 211 |  * This card is really neat, it supports receive hardware checksumming | 
 | 212 |  * and jumbo frames (up to 9000 bytes) and does a lot of work in the | 
 | 213 |  * firmware. Also the programming interface is quite neat, except for | 
 | 214 |  * the parts dealing with the i2c eeprom on the card ;-) | 
 | 215 |  * | 
 | 216 |  * Using jumbo frames: | 
 | 217 |  * | 
 | 218 |  * To enable jumbo frames, simply specify an mtu between 1500 and 9000 | 
 | 219 |  * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time | 
 | 220 |  * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet | 
 | 221 |  * interface number and <MTU> being the MTU value. | 
 | 222 |  * | 
 | 223 |  * Module parameters: | 
 | 224 |  * | 
 | 225 |  * When compiled as a loadable module, the driver allows for a number | 
 | 226 |  * of module parameters to be specified. The driver supports the | 
 | 227 |  * following module parameters: | 
 | 228 |  * | 
 | 229 |  *  trace=<val> - Firmware trace level. This requires special traced | 
 | 230 |  *                firmware to replace the firmware supplied with | 
 | 231 |  *                the driver - for debugging purposes only. | 
 | 232 |  * | 
 | 233 |  *  link=<val>  - Link state. Normally you want to use the default link | 
 | 234 |  *                parameters set by the driver. This can be used to | 
 | 235 |  *                override these in case your switch doesn't negotiate | 
 | 236 |  *                the link properly. Valid values are: | 
 | 237 |  *         0x0001 - Force half duplex link. | 
 | 238 |  *         0x0002 - Do not negotiate line speed with the other end. | 
 | 239 |  *         0x0010 - 10Mbit/sec link. | 
 | 240 |  *         0x0020 - 100Mbit/sec link. | 
 | 241 |  *         0x0040 - 1000Mbit/sec link. | 
 | 242 |  *         0x0100 - Do not negotiate flow control. | 
 | 243 |  *         0x0200 - Enable RX flow control Y | 
 | 244 |  *         0x0400 - Enable TX flow control Y (Tigon II NICs only). | 
 | 245 |  *                Default value is 0x0270, ie. enable link+flow | 
 | 246 |  *                control negotiation. Negotiating the highest | 
 | 247 |  *                possible link speed with RX flow control enabled. | 
 | 248 |  * | 
 | 249 |  *                When disabling link speed negotiation, only one link | 
 | 250 |  *                speed is allowed to be specified! | 
 | 251 |  * | 
 | 252 |  *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | 
 | 253 |  *                to wait for more packets to arive before | 
 | 254 |  *                interrupting the host, from the time the first | 
 | 255 |  *                packet arrives. | 
 | 256 |  * | 
 | 257 |  *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | 
 | 258 |  *                to wait for more packets to arive in the transmit ring, | 
 | 259 |  *                before interrupting the host, after transmitting the | 
 | 260 |  *                first packet in the ring. | 
 | 261 |  * | 
 | 262 |  *  max_tx_desc=<val> - maximum number of transmit descriptors | 
 | 263 |  *                (packets) transmitted before interrupting the host. | 
 | 264 |  * | 
 | 265 |  *  max_rx_desc=<val> - maximum number of receive descriptors | 
 | 266 |  *                (packets) received before interrupting the host. | 
 | 267 |  * | 
 | 268 |  *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th | 
 | 269 |  *                increments of the NIC's on board memory to be used for | 
 | 270 |  *                transmit and receive buffers. For the 1MB NIC app. 800KB | 
 | 271 |  *                is available, on the 1/2MB NIC app. 300KB is available. | 
 | 272 |  *                68KB will always be available as a minimum for both | 
 | 273 |  *                directions. The default value is a 50/50 split. | 
 | 274 |  *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate | 
 | 275 |  *                operations, default (1) is to always disable this as | 
 | 276 |  *                that is what Alteon does on NT. I have not been able | 
 | 277 |  *                to measure any real performance differences with | 
 | 278 |  *                this on my systems. Set <val>=0 if you want to | 
 | 279 |  *                enable these operations. | 
 | 280 |  * | 
 | 281 |  * If you use more than one NIC, specify the parameters for the | 
 | 282 |  * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to | 
 | 283 |  * run tracing on NIC #2 but not on NIC #1 and #3. | 
 | 284 |  * | 
 | 285 |  * TODO: | 
 | 286 |  * | 
 | 287 |  * - Proper multicast support. | 
 | 288 |  * - NIC dump support. | 
 | 289 |  * - More tuning parameters. | 
 | 290 |  * | 
 | 291 |  * The mini ring is not used under Linux and I am not sure it makes sense | 
 | 292 |  * to actually use it. | 
 | 293 |  * | 
 | 294 |  * New interrupt handler strategy: | 
 | 295 |  * | 
 | 296 |  * The old interrupt handler worked using the traditional method of | 
 | 297 |  * replacing an skbuff with a new one when a packet arrives. However | 
 | 298 |  * the rx rings do not need to contain a static number of buffer | 
 | 299 |  * descriptors, thus it makes sense to move the memory allocation out | 
 | 300 |  * of the main interrupt handler and do it in a bottom half handler | 
 | 301 |  * and only allocate new buffers when the number of buffers in the | 
 | 302 |  * ring is below a certain threshold. In order to avoid starving the | 
 | 303 |  * NIC under heavy load it is however necessary to force allocation | 
 | 304 |  * when hitting a minimum threshold. The strategy for alloction is as | 
 | 305 |  * follows: | 
 | 306 |  * | 
 | 307 |  *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half | 
 | 308 |  *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate | 
 | 309 |  *                           the buffers in the interrupt handler | 
 | 310 |  *     RX_RING_THRES       - maximum number of buffers in the rx ring | 
 | 311 |  *     RX_MINI_THRES       - maximum number of buffers in the mini ring | 
 | 312 |  *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring | 
 | 313 |  * | 
 | 314 |  * One advantagous side effect of this allocation approach is that the | 
 | 315 |  * entire rx processing can be done without holding any spin lock | 
 | 316 |  * since the rx rings and registers are totally independent of the tx | 
 | 317 |  * ring and its registers.  This of course includes the kmalloc's of | 
 | 318 |  * new skb's. Thus start_xmit can run in parallel with rx processing | 
 | 319 |  * and the memory allocation on SMP systems. | 
 | 320 |  * | 
 | 321 |  * Note that running the skb reallocation in a bottom half opens up | 
 | 322 |  * another can of races which needs to be handled properly. In | 
 | 323 |  * particular it can happen that the interrupt handler tries to run | 
 | 324 |  * the reallocation while the bottom half is either running on another | 
 | 325 |  * CPU or was interrupted on the same CPU. To get around this the | 
 | 326 |  * driver uses bitops to prevent the reallocation routines from being | 
 | 327 |  * reentered. | 
 | 328 |  * | 
 | 329 |  * TX handling can also be done without holding any spin lock, wheee | 
 | 330 |  * this is fun! since tx_ret_csm is only written to by the interrupt | 
 | 331 |  * handler. The case to be aware of is when shutting down the device | 
 | 332 |  * and cleaning up where it is necessary to make sure that | 
 | 333 |  * start_xmit() is not running while this is happening. Well DaveM | 
 | 334 |  * informs me that this case is already protected against ... bye bye | 
 | 335 |  * Mr. Spin Lock, it was nice to know you. | 
 | 336 |  * | 
 | 337 |  * TX interrupts are now partly disabled so the NIC will only generate | 
 | 338 |  * TX interrupts for the number of coal ticks, not for the number of | 
 | 339 |  * TX packets in the queue. This should reduce the number of TX only, | 
 | 340 |  * ie. when no RX processing is done, interrupts seen. | 
 | 341 |  */ | 
 | 342 |  | 
 | 343 | /* | 
 | 344 |  * Threshold values for RX buffer allocation - the low water marks for | 
 | 345 |  * when to start refilling the rings are set to 75% of the ring | 
 | 346 |  * sizes. It seems to make sense to refill the rings entirely from the | 
 | 347 |  * intrrupt handler once it gets below the panic threshold, that way | 
 | 348 |  * we don't risk that the refilling is moved to another CPU when the | 
 | 349 |  * one running the interrupt handler just got the slab code hot in its | 
 | 350 |  * cache. | 
 | 351 |  */ | 
 | 352 | #define RX_RING_SIZE		72 | 
 | 353 | #define RX_MINI_SIZE		64 | 
 | 354 | #define RX_JUMBO_SIZE		48 | 
 | 355 |  | 
 | 356 | #define RX_PANIC_STD_THRES	16 | 
 | 357 | #define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2 | 
 | 358 | #define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4 | 
 | 359 | #define RX_PANIC_MINI_THRES	12 | 
 | 360 | #define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2 | 
 | 361 | #define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4 | 
 | 362 | #define RX_PANIC_JUMBO_THRES	6 | 
 | 363 | #define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2 | 
 | 364 | #define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4 | 
 | 365 |  | 
 | 366 |  | 
 | 367 | /* | 
 | 368 |  * Size of the mini ring entries, basically these just should be big | 
 | 369 |  * enough to take TCP ACKs | 
 | 370 |  */ | 
 | 371 | #define ACE_MINI_SIZE		100 | 
 | 372 |  | 
 | 373 | #define ACE_MINI_BUFSIZE	ACE_MINI_SIZE | 
 | 374 | #define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4) | 
 | 375 | #define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4) | 
 | 376 |  | 
 | 377 | /* | 
 | 378 |  * There seems to be a magic difference in the effect between 995 and 996 | 
 | 379 |  * but little difference between 900 and 995 ... no idea why. | 
 | 380 |  * | 
 | 381 |  * There is now a default set of tuning parameters which is set, depending | 
 | 382 |  * on whether or not the user enables Jumbo frames. It's assumed that if | 
 | 383 |  * Jumbo frames are enabled, the user wants optimal tuning for that case. | 
 | 384 |  */ | 
 | 385 | #define DEF_TX_COAL		400 /* 996 */ | 
 | 386 | #define DEF_TX_MAX_DESC		60  /* was 40 */ | 
 | 387 | #define DEF_RX_COAL		120 /* 1000 */ | 
 | 388 | #define DEF_RX_MAX_DESC		25 | 
 | 389 | #define DEF_TX_RATIO		21 /* 24 */ | 
 | 390 |  | 
 | 391 | #define DEF_JUMBO_TX_COAL	20 | 
 | 392 | #define DEF_JUMBO_TX_MAX_DESC	60 | 
 | 393 | #define DEF_JUMBO_RX_COAL	30 | 
 | 394 | #define DEF_JUMBO_RX_MAX_DESC	6 | 
 | 395 | #define DEF_JUMBO_TX_RATIO	21 | 
 | 396 |  | 
 | 397 | #if tigon2FwReleaseLocal < 20001118 | 
 | 398 | /* | 
 | 399 |  * Standard firmware and early modifications duplicate | 
 | 400 |  * IRQ load without this flag (coal timer is never reset). | 
 | 401 |  * Note that with this flag tx_coal should be less than | 
 | 402 |  * time to xmit full tx ring. | 
 | 403 |  * 400usec is not so bad for tx ring size of 128. | 
 | 404 |  */ | 
 | 405 | #define TX_COAL_INTS_ONLY	1	/* worth it */ | 
 | 406 | #else | 
 | 407 | /* | 
 | 408 |  * With modified firmware, this is not necessary, but still useful. | 
 | 409 |  */ | 
 | 410 | #define TX_COAL_INTS_ONLY	1 | 
 | 411 | #endif | 
 | 412 |  | 
 | 413 | #define DEF_TRACE		0 | 
 | 414 | #define DEF_STAT		(2 * TICKS_PER_SEC) | 
 | 415 |  | 
 | 416 |  | 
 | 417 | static int link[ACE_MAX_MOD_PARMS]; | 
 | 418 | static int trace[ACE_MAX_MOD_PARMS]; | 
 | 419 | static int tx_coal_tick[ACE_MAX_MOD_PARMS]; | 
 | 420 | static int rx_coal_tick[ACE_MAX_MOD_PARMS]; | 
 | 421 | static int max_tx_desc[ACE_MAX_MOD_PARMS]; | 
 | 422 | static int max_rx_desc[ACE_MAX_MOD_PARMS]; | 
 | 423 | static int tx_ratio[ACE_MAX_MOD_PARMS]; | 
 | 424 | static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; | 
 | 425 |  | 
 | 426 | MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); | 
 | 427 | MODULE_LICENSE("GPL"); | 
 | 428 | MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); | 
 | 429 |  | 
 | 430 | module_param_array(link, int, NULL, 0); | 
 | 431 | module_param_array(trace, int, NULL, 0); | 
 | 432 | module_param_array(tx_coal_tick, int, NULL, 0); | 
 | 433 | module_param_array(max_tx_desc, int, NULL, 0); | 
 | 434 | module_param_array(rx_coal_tick, int, NULL, 0); | 
 | 435 | module_param_array(max_rx_desc, int, NULL, 0); | 
 | 436 | module_param_array(tx_ratio, int, NULL, 0); | 
 | 437 | MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); | 
 | 438 | MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); | 
 | 439 | MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); | 
 | 440 | MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); | 
 | 441 | MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); | 
 | 442 | MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); | 
 | 443 | MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); | 
 | 444 |  | 
 | 445 |  | 
 | 446 | static char version[] __devinitdata =  | 
 | 447 |   "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n" | 
 | 448 |   "                            http://home.cern.ch/~jes/gige/acenic.html\n"; | 
 | 449 |  | 
 | 450 | static int ace_get_settings(struct net_device *, struct ethtool_cmd *); | 
 | 451 | static int ace_set_settings(struct net_device *, struct ethtool_cmd *); | 
 | 452 | static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); | 
 | 453 |  | 
 | 454 | static struct ethtool_ops ace_ethtool_ops = { | 
 | 455 | 	.get_settings = ace_get_settings, | 
 | 456 | 	.set_settings = ace_set_settings, | 
 | 457 | 	.get_drvinfo = ace_get_drvinfo, | 
 | 458 | }; | 
 | 459 |  | 
 | 460 | static void ace_watchdog(struct net_device *dev); | 
 | 461 |  | 
 | 462 | static int __devinit acenic_probe_one(struct pci_dev *pdev, | 
 | 463 | 		const struct pci_device_id *id) | 
 | 464 | { | 
 | 465 | 	struct net_device *dev; | 
 | 466 | 	struct ace_private *ap; | 
 | 467 | 	static int boards_found; | 
 | 468 |  | 
 | 469 | 	dev = alloc_etherdev(sizeof(struct ace_private)); | 
 | 470 | 	if (dev == NULL) { | 
 | 471 | 		printk(KERN_ERR "acenic: Unable to allocate " | 
 | 472 | 		       "net_device structure!\n"); | 
 | 473 | 		return -ENOMEM; | 
 | 474 | 	} | 
 | 475 |  | 
 | 476 | 	SET_MODULE_OWNER(dev); | 
 | 477 | 	SET_NETDEV_DEV(dev, &pdev->dev); | 
 | 478 |  | 
 | 479 | 	ap = dev->priv; | 
 | 480 | 	ap->pdev = pdev; | 
 | 481 | 	ap->name = pci_name(pdev); | 
 | 482 |  | 
 | 483 | 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | 
 | 484 | #if ACENIC_DO_VLAN | 
 | 485 | 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | 
 | 486 | 	dev->vlan_rx_register = ace_vlan_rx_register; | 
 | 487 | 	dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid; | 
 | 488 | #endif | 
 | 489 | 	if (1) { | 
 | 490 | 		dev->tx_timeout = &ace_watchdog; | 
 | 491 | 		dev->watchdog_timeo = 5*HZ; | 
 | 492 | 	} | 
 | 493 |  | 
 | 494 | 	dev->open = &ace_open; | 
 | 495 | 	dev->stop = &ace_close; | 
 | 496 | 	dev->hard_start_xmit = &ace_start_xmit; | 
 | 497 | 	dev->get_stats = &ace_get_stats; | 
 | 498 | 	dev->set_multicast_list = &ace_set_multicast_list; | 
 | 499 | 	SET_ETHTOOL_OPS(dev, &ace_ethtool_ops); | 
 | 500 | 	dev->set_mac_address = &ace_set_mac_addr; | 
 | 501 | 	dev->change_mtu = &ace_change_mtu; | 
 | 502 |  | 
 | 503 | 	/* we only display this string ONCE */ | 
 | 504 | 	if (!boards_found) | 
 | 505 | 		printk(version); | 
 | 506 |  | 
 | 507 | 	if (pci_enable_device(pdev)) | 
 | 508 | 		goto fail_free_netdev; | 
 | 509 |  | 
 | 510 | 	/* | 
 | 511 | 	 * Enable master mode before we start playing with the | 
 | 512 | 	 * pci_command word since pci_set_master() will modify | 
 | 513 | 	 * it. | 
 | 514 | 	 */ | 
 | 515 | 	pci_set_master(pdev); | 
 | 516 |  | 
 | 517 | 	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); | 
 | 518 |  | 
 | 519 | 	/* OpenFirmware on Mac's does not set this - DOH.. */  | 
 | 520 | 	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { | 
 | 521 | 		printk(KERN_INFO "%s: Enabling PCI Memory Mapped " | 
 | 522 | 		       "access - was not enabled by BIOS/Firmware\n", | 
 | 523 | 		       ap->name); | 
 | 524 | 		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; | 
 | 525 | 		pci_write_config_word(ap->pdev, PCI_COMMAND, | 
 | 526 | 				      ap->pci_command); | 
 | 527 | 		wmb(); | 
 | 528 | 	} | 
 | 529 |  | 
 | 530 | 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); | 
 | 531 | 	if (ap->pci_latency <= 0x40) { | 
 | 532 | 		ap->pci_latency = 0x40; | 
 | 533 | 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); | 
 | 534 | 	} | 
 | 535 |  | 
 | 536 | 	/* | 
 | 537 | 	 * Remap the regs into kernel space - this is abuse of | 
 | 538 | 	 * dev->base_addr since it was means for I/O port | 
 | 539 | 	 * addresses but who gives a damn. | 
 | 540 | 	 */ | 
 | 541 | 	dev->base_addr = pci_resource_start(pdev, 0); | 
 | 542 | 	ap->regs = ioremap(dev->base_addr, 0x4000); | 
 | 543 | 	if (!ap->regs) { | 
 | 544 | 		printk(KERN_ERR "%s:  Unable to map I/O register, " | 
 | 545 | 		       "AceNIC %i will be disabled.\n", | 
 | 546 | 		       ap->name, boards_found); | 
 | 547 | 		goto fail_free_netdev; | 
 | 548 | 	} | 
 | 549 |  | 
 | 550 | 	switch(pdev->vendor) { | 
 | 551 | 	case PCI_VENDOR_ID_ALTEON: | 
 | 552 | 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { | 
 | 553 | 			printk(KERN_INFO "%s: Farallon PN9100-T ", | 
 | 554 | 			       ap->name); | 
 | 555 | 		} else { | 
 | 556 | 			printk(KERN_INFO "%s: Alteon AceNIC ", | 
 | 557 | 			       ap->name); | 
 | 558 | 		} | 
 | 559 | 		break; | 
 | 560 | 	case PCI_VENDOR_ID_3COM: | 
 | 561 | 		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); | 
 | 562 | 		break; | 
 | 563 | 	case PCI_VENDOR_ID_NETGEAR: | 
 | 564 | 		printk(KERN_INFO "%s: NetGear GA620 ", ap->name); | 
 | 565 | 		break; | 
 | 566 | 	case PCI_VENDOR_ID_DEC: | 
 | 567 | 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { | 
 | 568 | 			printk(KERN_INFO "%s: Farallon PN9000-SX ", | 
 | 569 | 			       ap->name); | 
 | 570 | 			break; | 
 | 571 | 		} | 
 | 572 | 	case PCI_VENDOR_ID_SGI: | 
 | 573 | 		printk(KERN_INFO "%s: SGI AceNIC ", ap->name); | 
 | 574 | 		break; | 
 | 575 | 	default: | 
 | 576 | 		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); | 
 | 577 | 		break; | 
 | 578 | 	} | 
 | 579 |  | 
 | 580 | 	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); | 
 | 581 | #ifdef __sparc__ | 
 | 582 | 	printk("irq %s\n", __irq_itoa(pdev->irq)); | 
 | 583 | #else | 
 | 584 | 	printk("irq %i\n", pdev->irq); | 
 | 585 | #endif | 
 | 586 |  | 
 | 587 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | 
 | 588 | 	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { | 
 | 589 | 		printk(KERN_ERR "%s: Driver compiled without Tigon I" | 
 | 590 | 		       " support - NIC disabled\n", dev->name); | 
 | 591 | 		goto fail_uninit; | 
 | 592 | 	} | 
 | 593 | #endif | 
 | 594 |  | 
 | 595 | 	if (ace_allocate_descriptors(dev)) | 
 | 596 | 		goto fail_free_netdev; | 
 | 597 |  | 
 | 598 | #ifdef MODULE | 
 | 599 | 	if (boards_found >= ACE_MAX_MOD_PARMS) | 
 | 600 | 		ap->board_idx = BOARD_IDX_OVERFLOW; | 
 | 601 | 	else | 
 | 602 | 		ap->board_idx = boards_found; | 
 | 603 | #else | 
 | 604 | 	ap->board_idx = BOARD_IDX_STATIC; | 
 | 605 | #endif | 
 | 606 |  | 
 | 607 | 	if (ace_init(dev)) | 
 | 608 | 		goto fail_free_netdev; | 
 | 609 |  | 
 | 610 | 	if (register_netdev(dev)) { | 
 | 611 | 		printk(KERN_ERR "acenic: device registration failed\n"); | 
 | 612 | 		goto fail_uninit; | 
 | 613 | 	} | 
 | 614 | 	ap->name = dev->name; | 
 | 615 |  | 
 | 616 | 	if (ap->pci_using_dac) | 
 | 617 | 		dev->features |= NETIF_F_HIGHDMA; | 
 | 618 |  | 
 | 619 | 	pci_set_drvdata(pdev, dev); | 
 | 620 |  | 
 | 621 | 	boards_found++; | 
 | 622 | 	return 0; | 
 | 623 |  | 
 | 624 |  fail_uninit: | 
 | 625 | 	ace_init_cleanup(dev); | 
 | 626 |  fail_free_netdev: | 
 | 627 | 	free_netdev(dev); | 
 | 628 | 	return -ENODEV; | 
 | 629 | } | 
 | 630 |  | 
 | 631 | static void __devexit acenic_remove_one(struct pci_dev *pdev) | 
 | 632 | { | 
 | 633 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 634 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 635 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 636 | 	short i; | 
 | 637 |  | 
 | 638 | 	unregister_netdev(dev); | 
 | 639 |  | 
 | 640 | 	writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | 
 | 641 | 	if (ap->version >= 2) | 
 | 642 | 		writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | 
 | 643 | 	 | 
 | 644 | 	/* | 
 | 645 | 	 * This clears any pending interrupts | 
 | 646 | 	 */ | 
 | 647 | 	writel(1, ®s->Mb0Lo); | 
 | 648 | 	readl(®s->CpuCtrl);	/* flush */ | 
 | 649 |  | 
 | 650 | 	/* | 
 | 651 | 	 * Make sure no other CPUs are processing interrupts | 
 | 652 | 	 * on the card before the buffers are being released. | 
 | 653 | 	 * Otherwise one might experience some `interesting' | 
 | 654 | 	 * effects. | 
 | 655 | 	 * | 
 | 656 | 	 * Then release the RX buffers - jumbo buffers were | 
 | 657 | 	 * already released in ace_close(). | 
 | 658 | 	 */ | 
 | 659 | 	ace_sync_irq(dev->irq); | 
 | 660 |  | 
 | 661 | 	for (i = 0; i < RX_STD_RING_ENTRIES; i++) { | 
 | 662 | 		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; | 
 | 663 |  | 
 | 664 | 		if (skb) { | 
 | 665 | 			struct ring_info *ringp; | 
 | 666 | 			dma_addr_t mapping; | 
 | 667 |  | 
 | 668 | 			ringp = &ap->skb->rx_std_skbuff[i]; | 
 | 669 | 			mapping = pci_unmap_addr(ringp, mapping); | 
 | 670 | 			pci_unmap_page(ap->pdev, mapping, | 
 | 671 | 				       ACE_STD_BUFSIZE, | 
 | 672 | 				       PCI_DMA_FROMDEVICE); | 
 | 673 |  | 
 | 674 | 			ap->rx_std_ring[i].size = 0; | 
 | 675 | 			ap->skb->rx_std_skbuff[i].skb = NULL; | 
 | 676 | 			dev_kfree_skb(skb); | 
 | 677 | 		} | 
 | 678 | 	} | 
 | 679 |  | 
 | 680 | 	if (ap->version >= 2) { | 
 | 681 | 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { | 
 | 682 | 			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; | 
 | 683 |  | 
 | 684 | 			if (skb) { | 
 | 685 | 				struct ring_info *ringp; | 
 | 686 | 				dma_addr_t mapping; | 
 | 687 |  | 
 | 688 | 				ringp = &ap->skb->rx_mini_skbuff[i]; | 
 | 689 | 				mapping = pci_unmap_addr(ringp,mapping); | 
 | 690 | 				pci_unmap_page(ap->pdev, mapping, | 
 | 691 | 					       ACE_MINI_BUFSIZE, | 
 | 692 | 					       PCI_DMA_FROMDEVICE); | 
 | 693 |  | 
 | 694 | 				ap->rx_mini_ring[i].size = 0; | 
 | 695 | 				ap->skb->rx_mini_skbuff[i].skb = NULL; | 
 | 696 | 				dev_kfree_skb(skb); | 
 | 697 | 			} | 
 | 698 | 		} | 
 | 699 | 	} | 
 | 700 |  | 
 | 701 | 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | 
 | 702 | 		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; | 
 | 703 | 		if (skb) { | 
 | 704 | 			struct ring_info *ringp; | 
 | 705 | 			dma_addr_t mapping; | 
 | 706 |  | 
 | 707 | 			ringp = &ap->skb->rx_jumbo_skbuff[i]; | 
 | 708 | 			mapping = pci_unmap_addr(ringp, mapping); | 
 | 709 | 			pci_unmap_page(ap->pdev, mapping, | 
 | 710 | 				       ACE_JUMBO_BUFSIZE, | 
 | 711 | 				       PCI_DMA_FROMDEVICE); | 
 | 712 |  | 
 | 713 | 			ap->rx_jumbo_ring[i].size = 0; | 
 | 714 | 			ap->skb->rx_jumbo_skbuff[i].skb = NULL; | 
 | 715 | 			dev_kfree_skb(skb); | 
 | 716 | 		} | 
 | 717 | 	} | 
 | 718 |  | 
 | 719 | 	ace_init_cleanup(dev); | 
 | 720 | 	free_netdev(dev); | 
 | 721 | } | 
 | 722 |  | 
 | 723 | static struct pci_driver acenic_pci_driver = { | 
 | 724 | 	.name		= "acenic", | 
 | 725 | 	.id_table	= acenic_pci_tbl, | 
 | 726 | 	.probe		= acenic_probe_one, | 
 | 727 | 	.remove		= __devexit_p(acenic_remove_one), | 
 | 728 | }; | 
 | 729 |  | 
 | 730 | static int __init acenic_init(void) | 
 | 731 | { | 
 | 732 | 	return pci_module_init(&acenic_pci_driver); | 
 | 733 | } | 
 | 734 |  | 
 | 735 | static void __exit acenic_exit(void) | 
 | 736 | { | 
 | 737 | 	pci_unregister_driver(&acenic_pci_driver); | 
 | 738 | } | 
 | 739 |  | 
 | 740 | module_init(acenic_init); | 
 | 741 | module_exit(acenic_exit); | 
 | 742 |  | 
 | 743 | static void ace_free_descriptors(struct net_device *dev) | 
 | 744 | { | 
 | 745 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 746 | 	int size; | 
 | 747 |  | 
 | 748 | 	if (ap->rx_std_ring != NULL) { | 
 | 749 | 		size = (sizeof(struct rx_desc) * | 
 | 750 | 			(RX_STD_RING_ENTRIES + | 
 | 751 | 			 RX_JUMBO_RING_ENTRIES + | 
 | 752 | 			 RX_MINI_RING_ENTRIES + | 
 | 753 | 			 RX_RETURN_RING_ENTRIES)); | 
 | 754 | 		pci_free_consistent(ap->pdev, size, ap->rx_std_ring, | 
 | 755 | 				    ap->rx_ring_base_dma); | 
 | 756 | 		ap->rx_std_ring = NULL; | 
 | 757 | 		ap->rx_jumbo_ring = NULL; | 
 | 758 | 		ap->rx_mini_ring = NULL; | 
 | 759 | 		ap->rx_return_ring = NULL; | 
 | 760 | 	} | 
 | 761 | 	if (ap->evt_ring != NULL) { | 
 | 762 | 		size = (sizeof(struct event) * EVT_RING_ENTRIES); | 
 | 763 | 		pci_free_consistent(ap->pdev, size, ap->evt_ring, | 
 | 764 | 				    ap->evt_ring_dma); | 
 | 765 | 		ap->evt_ring = NULL; | 
 | 766 | 	} | 
 | 767 | 	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { | 
 | 768 | 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | 
 | 769 | 		pci_free_consistent(ap->pdev, size, ap->tx_ring, | 
 | 770 | 				    ap->tx_ring_dma); | 
 | 771 | 	} | 
 | 772 | 	ap->tx_ring = NULL; | 
 | 773 |  | 
 | 774 | 	if (ap->evt_prd != NULL) { | 
 | 775 | 		pci_free_consistent(ap->pdev, sizeof(u32), | 
 | 776 | 				    (void *)ap->evt_prd, ap->evt_prd_dma); | 
 | 777 | 		ap->evt_prd = NULL; | 
 | 778 | 	} | 
 | 779 | 	if (ap->rx_ret_prd != NULL) { | 
 | 780 | 		pci_free_consistent(ap->pdev, sizeof(u32), | 
 | 781 | 				    (void *)ap->rx_ret_prd, | 
 | 782 | 				    ap->rx_ret_prd_dma); | 
 | 783 | 		ap->rx_ret_prd = NULL; | 
 | 784 | 	} | 
 | 785 | 	if (ap->tx_csm != NULL) { | 
 | 786 | 		pci_free_consistent(ap->pdev, sizeof(u32), | 
 | 787 | 				    (void *)ap->tx_csm, ap->tx_csm_dma); | 
 | 788 | 		ap->tx_csm = NULL; | 
 | 789 | 	} | 
 | 790 | } | 
 | 791 |  | 
 | 792 |  | 
 | 793 | static int ace_allocate_descriptors(struct net_device *dev) | 
 | 794 | { | 
 | 795 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 796 | 	int size; | 
 | 797 |  | 
 | 798 | 	size = (sizeof(struct rx_desc) * | 
 | 799 | 		(RX_STD_RING_ENTRIES + | 
 | 800 | 		 RX_JUMBO_RING_ENTRIES + | 
 | 801 | 		 RX_MINI_RING_ENTRIES + | 
 | 802 | 		 RX_RETURN_RING_ENTRIES)); | 
 | 803 |  | 
 | 804 | 	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, | 
 | 805 | 					       &ap->rx_ring_base_dma); | 
 | 806 | 	if (ap->rx_std_ring == NULL) | 
 | 807 | 		goto fail; | 
 | 808 |  | 
 | 809 | 	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; | 
 | 810 | 	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; | 
 | 811 | 	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; | 
 | 812 |  | 
 | 813 | 	size = (sizeof(struct event) * EVT_RING_ENTRIES); | 
 | 814 |  | 
 | 815 | 	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); | 
 | 816 |  | 
 | 817 | 	if (ap->evt_ring == NULL) | 
 | 818 | 		goto fail; | 
 | 819 |  | 
 | 820 | 	/* | 
 | 821 | 	 * Only allocate a host TX ring for the Tigon II, the Tigon I | 
 | 822 | 	 * has to use PCI registers for this ;-( | 
 | 823 | 	 */ | 
 | 824 | 	if (!ACE_IS_TIGON_I(ap)) { | 
 | 825 | 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | 
 | 826 |  | 
 | 827 | 		ap->tx_ring = pci_alloc_consistent(ap->pdev, size, | 
 | 828 | 						   &ap->tx_ring_dma); | 
 | 829 |  | 
 | 830 | 		if (ap->tx_ring == NULL) | 
 | 831 | 			goto fail; | 
 | 832 | 	} | 
 | 833 |  | 
 | 834 | 	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | 
 | 835 | 					   &ap->evt_prd_dma); | 
 | 836 | 	if (ap->evt_prd == NULL) | 
 | 837 | 		goto fail; | 
 | 838 |  | 
 | 839 | 	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | 
 | 840 | 					      &ap->rx_ret_prd_dma); | 
 | 841 | 	if (ap->rx_ret_prd == NULL) | 
 | 842 | 		goto fail; | 
 | 843 |  | 
 | 844 | 	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), | 
 | 845 | 					  &ap->tx_csm_dma); | 
 | 846 | 	if (ap->tx_csm == NULL) | 
 | 847 | 		goto fail; | 
 | 848 |  | 
 | 849 | 	return 0; | 
 | 850 |  | 
 | 851 | fail: | 
 | 852 | 	/* Clean up. */ | 
 | 853 | 	ace_init_cleanup(dev); | 
 | 854 | 	return 1; | 
 | 855 | } | 
 | 856 |  | 
 | 857 |  | 
 | 858 | /* | 
 | 859 |  * Generic cleanup handling data allocated during init. Used when the | 
 | 860 |  * module is unloaded or if an error occurs during initialization | 
 | 861 |  */ | 
 | 862 | static void ace_init_cleanup(struct net_device *dev) | 
 | 863 | { | 
 | 864 | 	struct ace_private *ap; | 
 | 865 |  | 
 | 866 | 	ap = netdev_priv(dev); | 
 | 867 |  | 
 | 868 | 	ace_free_descriptors(dev); | 
 | 869 |  | 
 | 870 | 	if (ap->info) | 
 | 871 | 		pci_free_consistent(ap->pdev, sizeof(struct ace_info), | 
 | 872 | 				    ap->info, ap->info_dma); | 
 | 873 | 	if (ap->skb) | 
 | 874 | 		kfree(ap->skb); | 
 | 875 | 	if (ap->trace_buf) | 
 | 876 | 		kfree(ap->trace_buf); | 
 | 877 |  | 
 | 878 | 	if (dev->irq) | 
 | 879 | 		free_irq(dev->irq, dev); | 
 | 880 |  | 
 | 881 | 	iounmap(ap->regs); | 
 | 882 | } | 
 | 883 |  | 
 | 884 |  | 
 | 885 | /* | 
 | 886 |  * Commands are considered to be slow. | 
 | 887 |  */ | 
 | 888 | static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) | 
 | 889 | { | 
 | 890 | 	u32 idx; | 
 | 891 |  | 
 | 892 | 	idx = readl(®s->CmdPrd); | 
 | 893 |  | 
 | 894 | 	writel(*(u32 *)(cmd), ®s->CmdRng[idx]); | 
 | 895 | 	idx = (idx + 1) % CMD_RING_ENTRIES; | 
 | 896 |  | 
 | 897 | 	writel(idx, ®s->CmdPrd); | 
 | 898 | } | 
 | 899 |  | 
 | 900 |  | 
 | 901 | static int __devinit ace_init(struct net_device *dev) | 
 | 902 | { | 
 | 903 | 	struct ace_private *ap; | 
 | 904 | 	struct ace_regs __iomem *regs; | 
 | 905 | 	struct ace_info *info = NULL; | 
 | 906 | 	struct pci_dev *pdev; | 
 | 907 | 	unsigned long myjif; | 
 | 908 | 	u64 tmp_ptr; | 
 | 909 | 	u32 tig_ver, mac1, mac2, tmp, pci_state; | 
 | 910 | 	int board_idx, ecode = 0; | 
 | 911 | 	short i; | 
 | 912 | 	unsigned char cache_size; | 
 | 913 |  | 
 | 914 | 	ap = netdev_priv(dev); | 
 | 915 | 	regs = ap->regs; | 
 | 916 |  | 
 | 917 | 	board_idx = ap->board_idx; | 
 | 918 |  | 
 | 919 | 	/* | 
 | 920 | 	 * aman@sgi.com - its useful to do a NIC reset here to | 
 | 921 | 	 * address the `Firmware not running' problem subsequent | 
 | 922 | 	 * to any crashes involving the NIC | 
 | 923 | 	 */ | 
 | 924 | 	writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); | 
 | 925 | 	readl(®s->HostCtrl);		/* PCI write posting */ | 
 | 926 | 	udelay(5); | 
 | 927 |  | 
 | 928 | 	/* | 
 | 929 | 	 * Don't access any other registers before this point! | 
 | 930 | 	 */ | 
 | 931 | #ifdef __BIG_ENDIAN | 
 | 932 | 	/* | 
 | 933 | 	 * This will most likely need BYTE_SWAP once we switch | 
 | 934 | 	 * to using __raw_writel() | 
 | 935 | 	 */ | 
 | 936 | 	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), | 
 | 937 | 	       ®s->HostCtrl); | 
 | 938 | #else | 
 | 939 | 	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), | 
 | 940 | 	       ®s->HostCtrl); | 
 | 941 | #endif | 
 | 942 | 	readl(®s->HostCtrl);		/* PCI write posting */ | 
 | 943 |  | 
 | 944 | 	/* | 
 | 945 | 	 * Stop the NIC CPU and clear pending interrupts | 
 | 946 | 	 */ | 
 | 947 | 	writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | 
 | 948 | 	readl(®s->CpuCtrl);		/* PCI write posting */ | 
 | 949 | 	writel(0, ®s->Mb0Lo); | 
 | 950 |  | 
 | 951 | 	tig_ver = readl(®s->HostCtrl) >> 28; | 
 | 952 |  | 
 | 953 | 	switch(tig_ver){ | 
 | 954 | #ifndef CONFIG_ACENIC_OMIT_TIGON_I | 
 | 955 | 	case 4: | 
 | 956 | 	case 5: | 
 | 957 | 		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ", | 
 | 958 | 		       tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor, | 
 | 959 | 		       tigonFwReleaseFix); | 
 | 960 | 		writel(0, ®s->LocalCtrl); | 
 | 961 | 		ap->version = 1; | 
 | 962 | 		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; | 
 | 963 | 		break; | 
 | 964 | #endif | 
 | 965 | 	case 6: | 
 | 966 | 		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ", | 
 | 967 | 		       tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor, | 
 | 968 | 		       tigon2FwReleaseFix); | 
 | 969 | 		writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | 
 | 970 | 		readl(®s->CpuBCtrl);		/* PCI write posting */ | 
 | 971 | 		/* | 
 | 972 | 		 * The SRAM bank size does _not_ indicate the amount | 
 | 973 | 		 * of memory on the card, it controls the _bank_ size! | 
 | 974 | 		 * Ie. a 1MB AceNIC will have two banks of 512KB. | 
 | 975 | 		 */ | 
 | 976 | 		writel(SRAM_BANK_512K, ®s->LocalCtrl); | 
 | 977 | 		writel(SYNC_SRAM_TIMING, ®s->MiscCfg); | 
 | 978 | 		ap->version = 2; | 
 | 979 | 		ap->tx_ring_entries = MAX_TX_RING_ENTRIES; | 
 | 980 | 		break; | 
 | 981 | 	default: | 
 | 982 | 		printk(KERN_WARNING "  Unsupported Tigon version detected " | 
 | 983 | 		       "(%i)\n", tig_ver); | 
 | 984 | 		ecode = -ENODEV; | 
 | 985 | 		goto init_error; | 
 | 986 | 	} | 
 | 987 |  | 
 | 988 | 	/* | 
 | 989 | 	 * ModeStat _must_ be set after the SRAM settings as this change | 
 | 990 | 	 * seems to corrupt the ModeStat and possible other registers. | 
 | 991 | 	 * The SRAM settings survive resets and setting it to the same | 
 | 992 | 	 * value a second time works as well. This is what caused the | 
 | 993 | 	 * `Firmware not running' problem on the Tigon II. | 
 | 994 | 	 */ | 
 | 995 | #ifdef __BIG_ENDIAN | 
 | 996 | 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | | 
 | 997 | 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | 
 | 998 | #else | 
 | 999 | 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | | 
 | 1000 | 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | 
 | 1001 | #endif | 
 | 1002 | 	readl(®s->ModeStat);		/* PCI write posting */ | 
 | 1003 |  | 
 | 1004 | 	mac1 = 0; | 
 | 1005 | 	for(i = 0; i < 4; i++) { | 
 | 1006 | 		mac1 = mac1 << 8; | 
 | 1007 | 		tmp = read_eeprom_byte(dev, 0x8c+i); | 
 | 1008 | 		if (tmp < 0) { | 
 | 1009 | 			ecode = -EIO; | 
 | 1010 | 			goto init_error; | 
 | 1011 | 		} else | 
 | 1012 | 			mac1 |= (tmp & 0xff); | 
 | 1013 | 	} | 
 | 1014 | 	mac2 = 0; | 
 | 1015 | 	for(i = 4; i < 8; i++) { | 
 | 1016 | 		mac2 = mac2 << 8; | 
 | 1017 | 		tmp = read_eeprom_byte(dev, 0x8c+i); | 
 | 1018 | 		if (tmp < 0) { | 
 | 1019 | 			ecode = -EIO; | 
 | 1020 | 			goto init_error; | 
 | 1021 | 		} else | 
 | 1022 | 			mac2 |= (tmp & 0xff); | 
 | 1023 | 	} | 
 | 1024 |  | 
 | 1025 | 	writel(mac1, ®s->MacAddrHi); | 
 | 1026 | 	writel(mac2, ®s->MacAddrLo); | 
 | 1027 |  | 
 | 1028 | 	printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", | 
 | 1029 | 	       (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff, | 
 | 1030 | 	       (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff); | 
 | 1031 |  | 
 | 1032 | 	dev->dev_addr[0] = (mac1 >> 8) & 0xff; | 
 | 1033 | 	dev->dev_addr[1] = mac1 & 0xff; | 
 | 1034 | 	dev->dev_addr[2] = (mac2 >> 24) & 0xff; | 
 | 1035 | 	dev->dev_addr[3] = (mac2 >> 16) & 0xff; | 
 | 1036 | 	dev->dev_addr[4] = (mac2 >> 8) & 0xff; | 
 | 1037 | 	dev->dev_addr[5] = mac2 & 0xff; | 
 | 1038 |  | 
 | 1039 | 	/* | 
 | 1040 | 	 * Looks like this is necessary to deal with on all architectures, | 
 | 1041 | 	 * even this %$#%$# N440BX Intel based thing doesn't get it right. | 
 | 1042 | 	 * Ie. having two NICs in the machine, one will have the cache | 
 | 1043 | 	 * line set at boot time, the other will not. | 
 | 1044 | 	 */ | 
 | 1045 | 	pdev = ap->pdev; | 
 | 1046 | 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); | 
 | 1047 | 	cache_size <<= 2; | 
 | 1048 | 	if (cache_size != SMP_CACHE_BYTES) { | 
 | 1049 | 		printk(KERN_INFO "  PCI cache line size set incorrectly " | 
 | 1050 | 		       "(%i bytes) by BIOS/FW, ", cache_size); | 
 | 1051 | 		if (cache_size > SMP_CACHE_BYTES) | 
 | 1052 | 			printk("expecting %i\n", SMP_CACHE_BYTES); | 
 | 1053 | 		else { | 
 | 1054 | 			printk("correcting to %i\n", SMP_CACHE_BYTES); | 
 | 1055 | 			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, | 
 | 1056 | 					      SMP_CACHE_BYTES >> 2); | 
 | 1057 | 		} | 
 | 1058 | 	} | 
 | 1059 |  | 
 | 1060 | 	pci_state = readl(®s->PciState); | 
 | 1061 | 	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, " | 
 | 1062 | 	       "latency: %i clks\n", | 
 | 1063 | 	       	(pci_state & PCI_32BIT) ? 32 : 64, | 
 | 1064 | 		(pci_state & PCI_66MHZ) ? 66 : 33,  | 
 | 1065 | 		ap->pci_latency); | 
 | 1066 |  | 
 | 1067 | 	/* | 
 | 1068 | 	 * Set the max DMA transfer size. Seems that for most systems | 
 | 1069 | 	 * the performance is better when no MAX parameter is | 
 | 1070 | 	 * set. However for systems enabling PCI write and invalidate, | 
 | 1071 | 	 * DMA writes must be set to the L1 cache line size to get | 
 | 1072 | 	 * optimal performance. | 
 | 1073 | 	 * | 
 | 1074 | 	 * The default is now to turn the PCI write and invalidate off | 
 | 1075 | 	 * - that is what Alteon does for NT. | 
 | 1076 | 	 */ | 
 | 1077 | 	tmp = READ_CMD_MEM | WRITE_CMD_MEM; | 
 | 1078 | 	if (ap->version >= 2) { | 
 | 1079 | 		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); | 
 | 1080 | 		/* | 
 | 1081 | 		 * Tuning parameters only supported for 8 cards | 
 | 1082 | 		 */ | 
 | 1083 | 		if (board_idx == BOARD_IDX_OVERFLOW || | 
 | 1084 | 		    dis_pci_mem_inval[board_idx]) { | 
 | 1085 | 			if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | 
 | 1086 | 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | 
 | 1087 | 				pci_write_config_word(pdev, PCI_COMMAND, | 
 | 1088 | 						      ap->pci_command); | 
 | 1089 | 				printk(KERN_INFO "  Disabling PCI memory " | 
 | 1090 | 				       "write and invalidate\n"); | 
 | 1091 | 			} | 
 | 1092 | 		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | 
 | 1093 | 			printk(KERN_INFO "  PCI memory write & invalidate " | 
 | 1094 | 			       "enabled by BIOS, enabling counter measures\n"); | 
 | 1095 |  | 
 | 1096 | 			switch(SMP_CACHE_BYTES) { | 
 | 1097 | 			case 16: | 
 | 1098 | 				tmp |= DMA_WRITE_MAX_16; | 
 | 1099 | 				break; | 
 | 1100 | 			case 32: | 
 | 1101 | 				tmp |= DMA_WRITE_MAX_32; | 
 | 1102 | 				break; | 
 | 1103 | 			case 64: | 
 | 1104 | 				tmp |= DMA_WRITE_MAX_64; | 
 | 1105 | 				break; | 
 | 1106 | 			case 128: | 
 | 1107 | 				tmp |= DMA_WRITE_MAX_128; | 
 | 1108 | 				break; | 
 | 1109 | 			default: | 
 | 1110 | 				printk(KERN_INFO "  Cache line size %i not " | 
 | 1111 | 				       "supported, PCI write and invalidate " | 
 | 1112 | 				       "disabled\n", SMP_CACHE_BYTES); | 
 | 1113 | 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | 
 | 1114 | 				pci_write_config_word(pdev, PCI_COMMAND, | 
 | 1115 | 						      ap->pci_command); | 
 | 1116 | 			} | 
 | 1117 | 		} | 
 | 1118 | 	} | 
 | 1119 |  | 
 | 1120 | #ifdef __sparc__ | 
 | 1121 | 	/* | 
 | 1122 | 	 * On this platform, we know what the best dma settings | 
 | 1123 | 	 * are.  We use 64-byte maximum bursts, because if we | 
 | 1124 | 	 * burst larger than the cache line size (or even cross | 
 | 1125 | 	 * a 64byte boundary in a single burst) the UltraSparc | 
 | 1126 | 	 * PCI controller will disconnect at 64-byte multiples. | 
 | 1127 | 	 * | 
 | 1128 | 	 * Read-multiple will be properly enabled above, and when | 
 | 1129 | 	 * set will give the PCI controller proper hints about | 
 | 1130 | 	 * prefetching. | 
 | 1131 | 	 */ | 
 | 1132 | 	tmp &= ~DMA_READ_WRITE_MASK; | 
 | 1133 | 	tmp |= DMA_READ_MAX_64; | 
 | 1134 | 	tmp |= DMA_WRITE_MAX_64; | 
 | 1135 | #endif | 
 | 1136 | #ifdef __alpha__ | 
 | 1137 | 	tmp &= ~DMA_READ_WRITE_MASK; | 
 | 1138 | 	tmp |= DMA_READ_MAX_128; | 
 | 1139 | 	/* | 
 | 1140 | 	 * All the docs say MUST NOT. Well, I did. | 
 | 1141 | 	 * Nothing terrible happens, if we load wrong size. | 
 | 1142 | 	 * Bit w&i still works better! | 
 | 1143 | 	 */ | 
 | 1144 | 	tmp |= DMA_WRITE_MAX_128; | 
 | 1145 | #endif | 
 | 1146 | 	writel(tmp, ®s->PciState); | 
 | 1147 |  | 
 | 1148 | #if 0 | 
 | 1149 | 	/* | 
 | 1150 | 	 * The Host PCI bus controller driver has to set FBB. | 
 | 1151 | 	 * If all devices on that PCI bus support FBB, then the controller | 
 | 1152 | 	 * can enable FBB support in the Host PCI Bus controller (or on | 
 | 1153 | 	 * the PCI-PCI bridge if that applies). | 
 | 1154 | 	 * -ggg | 
 | 1155 | 	 */ | 
 | 1156 | 	/* | 
 | 1157 | 	 * I have received reports from people having problems when this | 
 | 1158 | 	 * bit is enabled. | 
 | 1159 | 	 */ | 
 | 1160 | 	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { | 
 | 1161 | 		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n"); | 
 | 1162 | 		ap->pci_command |= PCI_COMMAND_FAST_BACK; | 
 | 1163 | 		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); | 
 | 1164 | 	} | 
 | 1165 | #endif | 
 | 1166 | 		 | 
 | 1167 | 	/* | 
 | 1168 | 	 * Configure DMA attributes. | 
 | 1169 | 	 */ | 
 | 1170 | 	if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) { | 
 | 1171 | 		ap->pci_using_dac = 1; | 
 | 1172 | 	} else if (!pci_set_dma_mask(pdev, 0xffffffffULL)) { | 
 | 1173 | 		ap->pci_using_dac = 0; | 
 | 1174 | 	} else { | 
 | 1175 | 		ecode = -ENODEV; | 
 | 1176 | 		goto init_error; | 
 | 1177 | 	} | 
 | 1178 |  | 
 | 1179 | 	/* | 
 | 1180 | 	 * Initialize the generic info block and the command+event rings | 
 | 1181 | 	 * and the control blocks for the transmit and receive rings | 
 | 1182 | 	 * as they need to be setup once and for all. | 
 | 1183 | 	 */ | 
 | 1184 | 	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), | 
 | 1185 | 					  &ap->info_dma))) { | 
 | 1186 | 		ecode = -EAGAIN; | 
 | 1187 | 		goto init_error; | 
 | 1188 | 	} | 
 | 1189 | 	ap->info = info; | 
 | 1190 |  | 
 | 1191 | 	/* | 
 | 1192 | 	 * Get the memory for the skb rings. | 
 | 1193 | 	 */ | 
 | 1194 | 	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { | 
 | 1195 | 		ecode = -EAGAIN; | 
 | 1196 | 		goto init_error; | 
 | 1197 | 	} | 
 | 1198 |  | 
 | 1199 | 	ecode = request_irq(pdev->irq, ace_interrupt, SA_SHIRQ, | 
 | 1200 | 			    DRV_NAME, dev); | 
 | 1201 | 	if (ecode) { | 
 | 1202 | 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", | 
 | 1203 | 		       DRV_NAME, pdev->irq); | 
 | 1204 | 		goto init_error; | 
 | 1205 | 	} else | 
 | 1206 | 		dev->irq = pdev->irq; | 
 | 1207 |  | 
 | 1208 | #ifdef INDEX_DEBUG | 
 | 1209 | 	spin_lock_init(&ap->debug_lock); | 
 | 1210 | 	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; | 
 | 1211 | 	ap->last_std_rx = 0; | 
 | 1212 | 	ap->last_mini_rx = 0; | 
 | 1213 | #endif | 
 | 1214 |  | 
 | 1215 | 	memset(ap->info, 0, sizeof(struct ace_info)); | 
 | 1216 | 	memset(ap->skb, 0, sizeof(struct ace_skb)); | 
 | 1217 |  | 
 | 1218 | 	ace_load_firmware(dev); | 
 | 1219 | 	ap->fw_running = 0; | 
 | 1220 |  | 
 | 1221 | 	tmp_ptr = ap->info_dma; | 
 | 1222 | 	writel(tmp_ptr >> 32, ®s->InfoPtrHi); | 
 | 1223 | 	writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); | 
 | 1224 |  | 
 | 1225 | 	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); | 
 | 1226 |  | 
 | 1227 | 	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); | 
 | 1228 | 	info->evt_ctrl.flags = 0; | 
 | 1229 |  | 
 | 1230 | 	*(ap->evt_prd) = 0; | 
 | 1231 | 	wmb(); | 
 | 1232 | 	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); | 
 | 1233 | 	writel(0, ®s->EvtCsm); | 
 | 1234 |  | 
 | 1235 | 	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); | 
 | 1236 | 	info->cmd_ctrl.flags = 0; | 
 | 1237 | 	info->cmd_ctrl.max_len = 0; | 
 | 1238 |  | 
 | 1239 | 	for (i = 0; i < CMD_RING_ENTRIES; i++) | 
 | 1240 | 		writel(0, ®s->CmdRng[i]); | 
 | 1241 |  | 
 | 1242 | 	writel(0, ®s->CmdPrd); | 
 | 1243 | 	writel(0, ®s->CmdCsm); | 
 | 1244 |  | 
 | 1245 | 	tmp_ptr = ap->info_dma; | 
 | 1246 | 	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); | 
 | 1247 | 	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); | 
 | 1248 |  | 
 | 1249 | 	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); | 
 | 1250 | 	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; | 
 | 1251 | 	info->rx_std_ctrl.flags = | 
 | 1252 | 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | 
 | 1253 |  | 
 | 1254 | 	memset(ap->rx_std_ring, 0, | 
 | 1255 | 	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); | 
 | 1256 |  | 
 | 1257 | 	for (i = 0; i < RX_STD_RING_ENTRIES; i++) | 
 | 1258 | 		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; | 
 | 1259 |  | 
 | 1260 | 	ap->rx_std_skbprd = 0; | 
 | 1261 | 	atomic_set(&ap->cur_rx_bufs, 0); | 
 | 1262 |  | 
 | 1263 | 	set_aceaddr(&info->rx_jumbo_ctrl.rngptr, | 
 | 1264 | 		    (ap->rx_ring_base_dma + | 
 | 1265 | 		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); | 
 | 1266 | 	info->rx_jumbo_ctrl.max_len = 0; | 
 | 1267 | 	info->rx_jumbo_ctrl.flags = | 
 | 1268 | 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | 
 | 1269 |  | 
 | 1270 | 	memset(ap->rx_jumbo_ring, 0, | 
 | 1271 | 	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); | 
 | 1272 |  | 
 | 1273 | 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) | 
 | 1274 | 		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; | 
 | 1275 |  | 
 | 1276 | 	ap->rx_jumbo_skbprd = 0; | 
 | 1277 | 	atomic_set(&ap->cur_jumbo_bufs, 0); | 
 | 1278 |  | 
 | 1279 | 	memset(ap->rx_mini_ring, 0, | 
 | 1280 | 	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); | 
 | 1281 |  | 
 | 1282 | 	if (ap->version >= 2) { | 
 | 1283 | 		set_aceaddr(&info->rx_mini_ctrl.rngptr, | 
 | 1284 | 			    (ap->rx_ring_base_dma + | 
 | 1285 | 			     (sizeof(struct rx_desc) * | 
 | 1286 | 			      (RX_STD_RING_ENTRIES + | 
 | 1287 | 			       RX_JUMBO_RING_ENTRIES)))); | 
 | 1288 | 		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; | 
 | 1289 | 		info->rx_mini_ctrl.flags =  | 
 | 1290 | 		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG; | 
 | 1291 |  | 
 | 1292 | 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) | 
 | 1293 | 			ap->rx_mini_ring[i].flags = | 
 | 1294 | 				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; | 
 | 1295 | 	} else { | 
 | 1296 | 		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); | 
 | 1297 | 		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; | 
 | 1298 | 		info->rx_mini_ctrl.max_len = 0; | 
 | 1299 | 	} | 
 | 1300 |  | 
 | 1301 | 	ap->rx_mini_skbprd = 0; | 
 | 1302 | 	atomic_set(&ap->cur_mini_bufs, 0); | 
 | 1303 |  | 
 | 1304 | 	set_aceaddr(&info->rx_return_ctrl.rngptr, | 
 | 1305 | 		    (ap->rx_ring_base_dma + | 
 | 1306 | 		     (sizeof(struct rx_desc) * | 
 | 1307 | 		      (RX_STD_RING_ENTRIES + | 
 | 1308 | 		       RX_JUMBO_RING_ENTRIES + | 
 | 1309 | 		       RX_MINI_RING_ENTRIES)))); | 
 | 1310 | 	info->rx_return_ctrl.flags = 0; | 
 | 1311 | 	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; | 
 | 1312 |  | 
 | 1313 | 	memset(ap->rx_return_ring, 0, | 
 | 1314 | 	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); | 
 | 1315 |  | 
 | 1316 | 	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); | 
 | 1317 | 	*(ap->rx_ret_prd) = 0; | 
 | 1318 |  | 
 | 1319 | 	writel(TX_RING_BASE, ®s->WinBase); | 
 | 1320 |  | 
 | 1321 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 1322 | 		ap->tx_ring = (struct tx_desc *) regs->Window; | 
 | 1323 | 		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES  | 
 | 1324 | 				 * sizeof(struct tx_desc)) / sizeof(u32); i++) | 
 | 1325 | 			writel(0, (void __iomem *)ap->tx_ring  + i * 4); | 
 | 1326 |  | 
 | 1327 | 		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); | 
 | 1328 | 	} else { | 
 | 1329 | 		memset(ap->tx_ring, 0, | 
 | 1330 | 		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); | 
 | 1331 |  | 
 | 1332 | 		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); | 
 | 1333 | 	} | 
 | 1334 |  | 
 | 1335 | 	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); | 
 | 1336 | 	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | 
 | 1337 |  | 
 | 1338 | 	/* | 
 | 1339 | 	 * The Tigon I does not like having the TX ring in host memory ;-( | 
 | 1340 | 	 */ | 
 | 1341 | 	if (!ACE_IS_TIGON_I(ap)) | 
 | 1342 | 		tmp |= RCB_FLG_TX_HOST_RING; | 
 | 1343 | #if TX_COAL_INTS_ONLY | 
 | 1344 | 	tmp |= RCB_FLG_COAL_INT_ONLY; | 
 | 1345 | #endif | 
 | 1346 | 	info->tx_ctrl.flags = tmp; | 
 | 1347 |  | 
 | 1348 | 	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); | 
 | 1349 |  | 
 | 1350 | 	/* | 
 | 1351 | 	 * Potential item for tuning parameter | 
 | 1352 | 	 */ | 
 | 1353 | #if 0 /* NO */ | 
 | 1354 | 	writel(DMA_THRESH_16W, ®s->DmaReadCfg); | 
 | 1355 | 	writel(DMA_THRESH_16W, ®s->DmaWriteCfg); | 
 | 1356 | #else | 
 | 1357 | 	writel(DMA_THRESH_8W, ®s->DmaReadCfg); | 
 | 1358 | 	writel(DMA_THRESH_8W, ®s->DmaWriteCfg); | 
 | 1359 | #endif | 
 | 1360 |  | 
 | 1361 | 	writel(0, ®s->MaskInt); | 
 | 1362 | 	writel(1, ®s->IfIdx); | 
 | 1363 | #if 0 | 
 | 1364 | 	/* | 
 | 1365 | 	 * McKinley boxes do not like us fiddling with AssistState | 
 | 1366 | 	 * this early | 
 | 1367 | 	 */ | 
 | 1368 | 	writel(1, ®s->AssistState); | 
 | 1369 | #endif | 
 | 1370 |  | 
 | 1371 | 	writel(DEF_STAT, ®s->TuneStatTicks); | 
 | 1372 | 	writel(DEF_TRACE, ®s->TuneTrace); | 
 | 1373 |  | 
 | 1374 | 	ace_set_rxtx_parms(dev, 0); | 
 | 1375 |  | 
 | 1376 | 	if (board_idx == BOARD_IDX_OVERFLOW) { | 
 | 1377 | 		printk(KERN_WARNING "%s: more than %i NICs detected, " | 
 | 1378 | 		       "ignoring module parameters!\n", | 
 | 1379 | 		       ap->name, ACE_MAX_MOD_PARMS); | 
 | 1380 | 	} else if (board_idx >= 0) { | 
 | 1381 | 		if (tx_coal_tick[board_idx]) | 
 | 1382 | 			writel(tx_coal_tick[board_idx], | 
 | 1383 | 			       ®s->TuneTxCoalTicks); | 
 | 1384 | 		if (max_tx_desc[board_idx]) | 
 | 1385 | 			writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); | 
 | 1386 |  | 
 | 1387 | 		if (rx_coal_tick[board_idx]) | 
 | 1388 | 			writel(rx_coal_tick[board_idx], | 
 | 1389 | 			       ®s->TuneRxCoalTicks); | 
 | 1390 | 		if (max_rx_desc[board_idx]) | 
 | 1391 | 			writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); | 
 | 1392 |  | 
 | 1393 | 		if (trace[board_idx]) | 
 | 1394 | 			writel(trace[board_idx], ®s->TuneTrace); | 
 | 1395 |  | 
 | 1396 | 		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) | 
 | 1397 | 			writel(tx_ratio[board_idx], ®s->TxBufRat); | 
 | 1398 | 	} | 
 | 1399 |  | 
 | 1400 | 	/* | 
 | 1401 | 	 * Default link parameters | 
 | 1402 | 	 */ | 
 | 1403 | 	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | | 
 | 1404 | 		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; | 
 | 1405 | 	if(ap->version >= 2) | 
 | 1406 | 		tmp |= LNK_TX_FLOW_CTL_Y; | 
 | 1407 |  | 
 | 1408 | 	/* | 
 | 1409 | 	 * Override link default parameters | 
 | 1410 | 	 */ | 
 | 1411 | 	if ((board_idx >= 0) && link[board_idx]) { | 
 | 1412 | 		int option = link[board_idx]; | 
 | 1413 |  | 
 | 1414 | 		tmp = LNK_ENABLE; | 
 | 1415 |  | 
 | 1416 | 		if (option & 0x01) { | 
 | 1417 | 			printk(KERN_INFO "%s: Setting half duplex link\n", | 
 | 1418 | 			       ap->name); | 
 | 1419 | 			tmp &= ~LNK_FULL_DUPLEX; | 
 | 1420 | 		} | 
 | 1421 | 		if (option & 0x02) | 
 | 1422 | 			tmp &= ~LNK_NEGOTIATE; | 
 | 1423 | 		if (option & 0x10) | 
 | 1424 | 			tmp |= LNK_10MB; | 
 | 1425 | 		if (option & 0x20) | 
 | 1426 | 			tmp |= LNK_100MB; | 
 | 1427 | 		if (option & 0x40) | 
 | 1428 | 			tmp |= LNK_1000MB; | 
 | 1429 | 		if ((option & 0x70) == 0) { | 
 | 1430 | 			printk(KERN_WARNING "%s: No media speed specified, " | 
 | 1431 | 			       "forcing auto negotiation\n", ap->name); | 
 | 1432 | 			tmp |= LNK_NEGOTIATE | LNK_1000MB | | 
 | 1433 | 				LNK_100MB | LNK_10MB; | 
 | 1434 | 		} | 
 | 1435 | 		if ((option & 0x100) == 0) | 
 | 1436 | 			tmp |= LNK_NEG_FCTL; | 
 | 1437 | 		else | 
 | 1438 | 			printk(KERN_INFO "%s: Disabling flow control " | 
 | 1439 | 			       "negotiation\n", ap->name); | 
 | 1440 | 		if (option & 0x200) | 
 | 1441 | 			tmp |= LNK_RX_FLOW_CTL_Y; | 
 | 1442 | 		if ((option & 0x400) && (ap->version >= 2)) { | 
 | 1443 | 			printk(KERN_INFO "%s: Enabling TX flow control\n", | 
 | 1444 | 			       ap->name); | 
 | 1445 | 			tmp |= LNK_TX_FLOW_CTL_Y; | 
 | 1446 | 		} | 
 | 1447 | 	} | 
 | 1448 |  | 
 | 1449 | 	ap->link = tmp; | 
 | 1450 | 	writel(tmp, ®s->TuneLink); | 
 | 1451 | 	if (ap->version >= 2) | 
 | 1452 | 		writel(tmp, ®s->TuneFastLink); | 
 | 1453 |  | 
 | 1454 | 	if (ACE_IS_TIGON_I(ap)) | 
 | 1455 | 		writel(tigonFwStartAddr, ®s->Pc); | 
 | 1456 | 	if (ap->version == 2) | 
 | 1457 | 		writel(tigon2FwStartAddr, ®s->Pc); | 
 | 1458 |  | 
 | 1459 | 	writel(0, ®s->Mb0Lo); | 
 | 1460 |  | 
 | 1461 | 	/* | 
 | 1462 | 	 * Set tx_csm before we start receiving interrupts, otherwise | 
 | 1463 | 	 * the interrupt handler might think it is supposed to process | 
 | 1464 | 	 * tx ints before we are up and running, which may cause a null | 
 | 1465 | 	 * pointer access in the int handler. | 
 | 1466 | 	 */ | 
 | 1467 | 	ap->cur_rx = 0; | 
 | 1468 | 	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; | 
 | 1469 |  | 
 | 1470 | 	wmb(); | 
 | 1471 | 	ace_set_txprd(regs, ap, 0); | 
 | 1472 | 	writel(0, ®s->RxRetCsm); | 
 | 1473 |  | 
 | 1474 | 	/* | 
 | 1475 | 	 * Zero the stats before starting the interface | 
 | 1476 | 	 */ | 
 | 1477 | 	memset(&ap->stats, 0, sizeof(ap->stats)); | 
 | 1478 |  | 
 | 1479 |        /* | 
 | 1480 | 	* Enable DMA engine now. | 
 | 1481 | 	* If we do this sooner, Mckinley box pukes. | 
 | 1482 | 	* I assume it's because Tigon II DMA engine wants to check | 
 | 1483 | 	* *something* even before the CPU is started. | 
 | 1484 | 	*/ | 
 | 1485 |        writel(1, ®s->AssistState);  /* enable DMA */ | 
 | 1486 |  | 
 | 1487 | 	/* | 
 | 1488 | 	 * Start the NIC CPU | 
 | 1489 | 	 */ | 
 | 1490 | 	writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); | 
 | 1491 | 	readl(®s->CpuCtrl); | 
 | 1492 |  | 
 | 1493 | 	/* | 
 | 1494 | 	 * Wait for the firmware to spin up - max 3 seconds. | 
 | 1495 | 	 */ | 
 | 1496 | 	myjif = jiffies + 3 * HZ; | 
 | 1497 | 	while (time_before(jiffies, myjif) && !ap->fw_running) | 
 | 1498 | 		cpu_relax(); | 
 | 1499 |  | 
 | 1500 | 	if (!ap->fw_running) { | 
 | 1501 | 		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); | 
 | 1502 |  | 
 | 1503 | 		ace_dump_trace(ap); | 
 | 1504 | 		writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | 
 | 1505 | 		readl(®s->CpuCtrl); | 
 | 1506 |  | 
 | 1507 | 		/* aman@sgi.com - account for badly behaving firmware/NIC: | 
 | 1508 | 		 * - have observed that the NIC may continue to generate | 
 | 1509 | 		 *   interrupts for some reason; attempt to stop it - halt | 
 | 1510 | 		 *   second CPU for Tigon II cards, and also clear Mb0 | 
 | 1511 | 		 * - if we're a module, we'll fail to load if this was | 
 | 1512 | 		 *   the only GbE card in the system => if the kernel does | 
 | 1513 | 		 *   see an interrupt from the NIC, code to handle it is | 
 | 1514 | 		 *   gone and OOps! - so free_irq also | 
 | 1515 | 		 */ | 
 | 1516 | 		if (ap->version >= 2) | 
 | 1517 | 			writel(readl(®s->CpuBCtrl) | CPU_HALT, | 
 | 1518 | 			       ®s->CpuBCtrl); | 
 | 1519 | 		writel(0, ®s->Mb0Lo); | 
 | 1520 | 		readl(®s->Mb0Lo); | 
 | 1521 |  | 
 | 1522 | 		ecode = -EBUSY; | 
 | 1523 | 		goto init_error; | 
 | 1524 | 	} | 
 | 1525 |  | 
 | 1526 | 	/* | 
 | 1527 | 	 * We load the ring here as there seem to be no way to tell the | 
 | 1528 | 	 * firmware to wipe the ring without re-initializing it. | 
 | 1529 | 	 */ | 
 | 1530 | 	if (!test_and_set_bit(0, &ap->std_refill_busy)) | 
 | 1531 | 		ace_load_std_rx_ring(ap, RX_RING_SIZE); | 
 | 1532 | 	else | 
 | 1533 | 		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", | 
 | 1534 | 		       ap->name); | 
 | 1535 | 	if (ap->version >= 2) { | 
 | 1536 | 		if (!test_and_set_bit(0, &ap->mini_refill_busy)) | 
 | 1537 | 			ace_load_mini_rx_ring(ap, RX_MINI_SIZE); | 
 | 1538 | 		else | 
 | 1539 | 			printk(KERN_ERR "%s: Someone is busy refilling " | 
 | 1540 | 			       "the RX mini ring\n", ap->name); | 
 | 1541 | 	} | 
 | 1542 | 	return 0; | 
 | 1543 |  | 
 | 1544 |  init_error: | 
 | 1545 | 	ace_init_cleanup(dev); | 
 | 1546 | 	return ecode; | 
 | 1547 | } | 
 | 1548 |  | 
 | 1549 |  | 
 | 1550 | static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) | 
 | 1551 | { | 
 | 1552 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 1553 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 1554 | 	int board_idx = ap->board_idx; | 
 | 1555 |  | 
 | 1556 | 	if (board_idx >= 0) { | 
 | 1557 | 		if (!jumbo) { | 
 | 1558 | 			if (!tx_coal_tick[board_idx]) | 
 | 1559 | 				writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); | 
 | 1560 | 			if (!max_tx_desc[board_idx]) | 
 | 1561 | 				writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); | 
 | 1562 | 			if (!rx_coal_tick[board_idx]) | 
 | 1563 | 				writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); | 
 | 1564 | 			if (!max_rx_desc[board_idx]) | 
 | 1565 | 				writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); | 
 | 1566 | 			if (!tx_ratio[board_idx]) | 
 | 1567 | 				writel(DEF_TX_RATIO, ®s->TxBufRat); | 
 | 1568 | 		} else { | 
 | 1569 | 			if (!tx_coal_tick[board_idx]) | 
 | 1570 | 				writel(DEF_JUMBO_TX_COAL, | 
 | 1571 | 				       ®s->TuneTxCoalTicks); | 
 | 1572 | 			if (!max_tx_desc[board_idx]) | 
 | 1573 | 				writel(DEF_JUMBO_TX_MAX_DESC, | 
 | 1574 | 				       ®s->TuneMaxTxDesc); | 
 | 1575 | 			if (!rx_coal_tick[board_idx]) | 
 | 1576 | 				writel(DEF_JUMBO_RX_COAL, | 
 | 1577 | 				       ®s->TuneRxCoalTicks); | 
 | 1578 | 			if (!max_rx_desc[board_idx]) | 
 | 1579 | 				writel(DEF_JUMBO_RX_MAX_DESC, | 
 | 1580 | 				       ®s->TuneMaxRxDesc); | 
 | 1581 | 			if (!tx_ratio[board_idx]) | 
 | 1582 | 				writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); | 
 | 1583 | 		} | 
 | 1584 | 	} | 
 | 1585 | } | 
 | 1586 |  | 
 | 1587 |  | 
 | 1588 | static void ace_watchdog(struct net_device *data) | 
 | 1589 | { | 
 | 1590 | 	struct net_device *dev = data; | 
 | 1591 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 1592 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 1593 |  | 
 | 1594 | 	/* | 
 | 1595 | 	 * We haven't received a stats update event for more than 2.5 | 
 | 1596 | 	 * seconds and there is data in the transmit queue, thus we | 
 | 1597 | 	 * asume the card is stuck. | 
 | 1598 | 	 */ | 
 | 1599 | 	if (*ap->tx_csm != ap->tx_ret_csm) { | 
 | 1600 | 		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", | 
 | 1601 | 		       dev->name, (unsigned int)readl(®s->HostCtrl)); | 
 | 1602 | 		/* This can happen due to ieee flow control. */ | 
 | 1603 | 	} else { | 
 | 1604 | 		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", | 
 | 1605 | 		       dev->name); | 
 | 1606 | #if 0 | 
 | 1607 | 		netif_wake_queue(dev); | 
 | 1608 | #endif | 
 | 1609 | 	} | 
 | 1610 | } | 
 | 1611 |  | 
 | 1612 |  | 
 | 1613 | static void ace_tasklet(unsigned long dev) | 
 | 1614 | { | 
 | 1615 | 	struct ace_private *ap = netdev_priv((struct net_device *)dev); | 
 | 1616 | 	int cur_size; | 
 | 1617 |  | 
 | 1618 | 	cur_size = atomic_read(&ap->cur_rx_bufs); | 
 | 1619 | 	if ((cur_size < RX_LOW_STD_THRES) && | 
 | 1620 | 	    !test_and_set_bit(0, &ap->std_refill_busy)) { | 
 | 1621 | #ifdef DEBUG | 
 | 1622 | 		printk("refilling buffers (current %i)\n", cur_size); | 
 | 1623 | #endif | 
 | 1624 | 		ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size); | 
 | 1625 | 	} | 
 | 1626 |  | 
 | 1627 | 	if (ap->version >= 2) { | 
 | 1628 | 		cur_size = atomic_read(&ap->cur_mini_bufs); | 
 | 1629 | 		if ((cur_size < RX_LOW_MINI_THRES) && | 
 | 1630 | 		    !test_and_set_bit(0, &ap->mini_refill_busy)) { | 
 | 1631 | #ifdef DEBUG | 
 | 1632 | 			printk("refilling mini buffers (current %i)\n", | 
 | 1633 | 			       cur_size); | 
 | 1634 | #endif | 
 | 1635 | 			ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | 
 | 1636 | 		} | 
 | 1637 | 	} | 
 | 1638 |  | 
 | 1639 | 	cur_size = atomic_read(&ap->cur_jumbo_bufs); | 
 | 1640 | 	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && | 
 | 1641 | 	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) { | 
 | 1642 | #ifdef DEBUG | 
 | 1643 | 		printk("refilling jumbo buffers (current %i)\n", cur_size); | 
 | 1644 | #endif | 
 | 1645 | 		ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | 
 | 1646 | 	} | 
 | 1647 | 	ap->tasklet_pending = 0; | 
 | 1648 | } | 
 | 1649 |  | 
 | 1650 |  | 
 | 1651 | /* | 
 | 1652 |  * Copy the contents of the NIC's trace buffer to kernel memory. | 
 | 1653 |  */ | 
 | 1654 | static void ace_dump_trace(struct ace_private *ap) | 
 | 1655 | { | 
 | 1656 | #if 0 | 
 | 1657 | 	if (!ap->trace_buf) | 
 | 1658 | 		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) | 
 | 1659 | 		    return; | 
 | 1660 | #endif | 
 | 1661 | } | 
 | 1662 |  | 
 | 1663 |  | 
 | 1664 | /* | 
 | 1665 |  * Load the standard rx ring. | 
 | 1666 |  * | 
 | 1667 |  * Loading rings is safe without holding the spin lock since this is | 
 | 1668 |  * done only before the device is enabled, thus no interrupts are | 
 | 1669 |  * generated and by the interrupt handler/tasklet handler. | 
 | 1670 |  */ | 
 | 1671 | static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs) | 
 | 1672 | { | 
 | 1673 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 1674 | 	short i, idx; | 
 | 1675 | 	 | 
 | 1676 |  | 
 | 1677 | 	prefetchw(&ap->cur_rx_bufs); | 
 | 1678 |  | 
 | 1679 | 	idx = ap->rx_std_skbprd; | 
 | 1680 |  | 
 | 1681 | 	for (i = 0; i < nr_bufs; i++) { | 
 | 1682 | 		struct sk_buff *skb; | 
 | 1683 | 		struct rx_desc *rd; | 
 | 1684 | 		dma_addr_t mapping; | 
 | 1685 |  | 
 | 1686 | 		skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | 
 | 1687 | 		if (!skb) | 
 | 1688 | 			break; | 
 | 1689 |  | 
 | 1690 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 | 1691 | 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | 
 | 1692 | 				       offset_in_page(skb->data), | 
 | 1693 | 				       ACE_STD_BUFSIZE, | 
 | 1694 | 				       PCI_DMA_FROMDEVICE); | 
 | 1695 | 		ap->skb->rx_std_skbuff[idx].skb = skb; | 
 | 1696 | 		pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], | 
 | 1697 | 				   mapping, mapping); | 
 | 1698 |  | 
 | 1699 | 		rd = &ap->rx_std_ring[idx]; | 
 | 1700 | 		set_aceaddr(&rd->addr, mapping); | 
 | 1701 | 		rd->size = ACE_STD_BUFSIZE; | 
 | 1702 | 		rd->idx = idx; | 
 | 1703 | 		idx = (idx + 1) % RX_STD_RING_ENTRIES; | 
 | 1704 | 	} | 
 | 1705 |  | 
 | 1706 | 	if (!i) | 
 | 1707 | 		goto error_out; | 
 | 1708 |  | 
 | 1709 | 	atomic_add(i, &ap->cur_rx_bufs); | 
 | 1710 | 	ap->rx_std_skbprd = idx; | 
 | 1711 |  | 
 | 1712 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 1713 | 		struct cmd cmd; | 
 | 1714 | 		cmd.evt = C_SET_RX_PRD_IDX; | 
 | 1715 | 		cmd.code = 0; | 
 | 1716 | 		cmd.idx = ap->rx_std_skbprd; | 
 | 1717 | 		ace_issue_cmd(regs, &cmd); | 
 | 1718 | 	} else { | 
 | 1719 | 		writel(idx, ®s->RxStdPrd); | 
 | 1720 | 		wmb(); | 
 | 1721 | 	} | 
 | 1722 |  | 
 | 1723 |  out: | 
 | 1724 | 	clear_bit(0, &ap->std_refill_busy); | 
 | 1725 | 	return; | 
 | 1726 |  | 
 | 1727 |  error_out: | 
 | 1728 | 	printk(KERN_INFO "Out of memory when allocating " | 
 | 1729 | 	       "standard receive buffers\n"); | 
 | 1730 | 	goto out; | 
 | 1731 | } | 
 | 1732 |  | 
 | 1733 |  | 
 | 1734 | static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs) | 
 | 1735 | { | 
 | 1736 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 1737 | 	short i, idx; | 
 | 1738 |  | 
 | 1739 | 	prefetchw(&ap->cur_mini_bufs); | 
 | 1740 |  | 
 | 1741 | 	idx = ap->rx_mini_skbprd; | 
 | 1742 | 	for (i = 0; i < nr_bufs; i++) { | 
 | 1743 | 		struct sk_buff *skb; | 
 | 1744 | 		struct rx_desc *rd; | 
 | 1745 | 		dma_addr_t mapping; | 
 | 1746 |  | 
 | 1747 | 		skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | 
 | 1748 | 		if (!skb) | 
 | 1749 | 			break; | 
 | 1750 |  | 
 | 1751 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 | 1752 | 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | 
 | 1753 | 				       offset_in_page(skb->data), | 
 | 1754 | 				       ACE_MINI_BUFSIZE, | 
 | 1755 | 				       PCI_DMA_FROMDEVICE); | 
 | 1756 | 		ap->skb->rx_mini_skbuff[idx].skb = skb; | 
 | 1757 | 		pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], | 
 | 1758 | 				   mapping, mapping); | 
 | 1759 |  | 
 | 1760 | 		rd = &ap->rx_mini_ring[idx]; | 
 | 1761 | 		set_aceaddr(&rd->addr, mapping); | 
 | 1762 | 		rd->size = ACE_MINI_BUFSIZE; | 
 | 1763 | 		rd->idx = idx; | 
 | 1764 | 		idx = (idx + 1) % RX_MINI_RING_ENTRIES; | 
 | 1765 | 	} | 
 | 1766 |  | 
 | 1767 | 	if (!i) | 
 | 1768 | 		goto error_out; | 
 | 1769 |  | 
 | 1770 | 	atomic_add(i, &ap->cur_mini_bufs); | 
 | 1771 |  | 
 | 1772 | 	ap->rx_mini_skbprd = idx; | 
 | 1773 |  | 
 | 1774 | 	writel(idx, ®s->RxMiniPrd); | 
 | 1775 | 	wmb(); | 
 | 1776 |  | 
 | 1777 |  out: | 
 | 1778 | 	clear_bit(0, &ap->mini_refill_busy); | 
 | 1779 | 	return; | 
 | 1780 |  error_out: | 
 | 1781 | 	printk(KERN_INFO "Out of memory when allocating " | 
 | 1782 | 	       "mini receive buffers\n"); | 
 | 1783 | 	goto out; | 
 | 1784 | } | 
 | 1785 |  | 
 | 1786 |  | 
 | 1787 | /* | 
 | 1788 |  * Load the jumbo rx ring, this may happen at any time if the MTU | 
 | 1789 |  * is changed to a value > 1500. | 
 | 1790 |  */ | 
 | 1791 | static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs) | 
 | 1792 | { | 
 | 1793 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 1794 | 	short i, idx; | 
 | 1795 |  | 
 | 1796 | 	idx = ap->rx_jumbo_skbprd; | 
 | 1797 |  | 
 | 1798 | 	for (i = 0; i < nr_bufs; i++) { | 
 | 1799 | 		struct sk_buff *skb; | 
 | 1800 | 		struct rx_desc *rd; | 
 | 1801 | 		dma_addr_t mapping; | 
 | 1802 |  | 
 | 1803 | 		skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | 
 | 1804 | 		if (!skb) | 
 | 1805 | 			break; | 
 | 1806 |  | 
 | 1807 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 | 1808 | 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | 
 | 1809 | 				       offset_in_page(skb->data), | 
 | 1810 | 				       ACE_JUMBO_BUFSIZE, | 
 | 1811 | 				       PCI_DMA_FROMDEVICE); | 
 | 1812 | 		ap->skb->rx_jumbo_skbuff[idx].skb = skb; | 
 | 1813 | 		pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], | 
 | 1814 | 				   mapping, mapping); | 
 | 1815 |  | 
 | 1816 | 		rd = &ap->rx_jumbo_ring[idx]; | 
 | 1817 | 		set_aceaddr(&rd->addr, mapping); | 
 | 1818 | 		rd->size = ACE_JUMBO_BUFSIZE; | 
 | 1819 | 		rd->idx = idx; | 
 | 1820 | 		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; | 
 | 1821 | 	} | 
 | 1822 |  | 
 | 1823 | 	if (!i) | 
 | 1824 | 		goto error_out; | 
 | 1825 |  | 
 | 1826 | 	atomic_add(i, &ap->cur_jumbo_bufs); | 
 | 1827 | 	ap->rx_jumbo_skbprd = idx; | 
 | 1828 |  | 
 | 1829 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 1830 | 		struct cmd cmd; | 
 | 1831 | 		cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | 
 | 1832 | 		cmd.code = 0; | 
 | 1833 | 		cmd.idx = ap->rx_jumbo_skbprd; | 
 | 1834 | 		ace_issue_cmd(regs, &cmd); | 
 | 1835 | 	} else { | 
 | 1836 | 		writel(idx, ®s->RxJumboPrd); | 
 | 1837 | 		wmb(); | 
 | 1838 | 	} | 
 | 1839 |  | 
 | 1840 |  out: | 
 | 1841 | 	clear_bit(0, &ap->jumbo_refill_busy); | 
 | 1842 | 	return; | 
 | 1843 |  error_out: | 
 | 1844 | 	if (net_ratelimit()) | 
 | 1845 | 		printk(KERN_INFO "Out of memory when allocating " | 
 | 1846 | 		       "jumbo receive buffers\n"); | 
 | 1847 | 	goto out; | 
 | 1848 | } | 
 | 1849 |  | 
 | 1850 |  | 
 | 1851 | /* | 
 | 1852 |  * All events are considered to be slow (RX/TX ints do not generate | 
 | 1853 |  * events) and are handled here, outside the main interrupt handler, | 
 | 1854 |  * to reduce the size of the handler. | 
 | 1855 |  */ | 
 | 1856 | static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) | 
 | 1857 | { | 
 | 1858 | 	struct ace_private *ap; | 
 | 1859 |  | 
 | 1860 | 	ap = netdev_priv(dev); | 
 | 1861 |  | 
 | 1862 | 	while (evtcsm != evtprd) { | 
 | 1863 | 		switch (ap->evt_ring[evtcsm].evt) { | 
 | 1864 | 		case E_FW_RUNNING: | 
 | 1865 | 			printk(KERN_INFO "%s: Firmware up and running\n", | 
 | 1866 | 			       ap->name); | 
 | 1867 | 			ap->fw_running = 1; | 
 | 1868 | 			wmb(); | 
 | 1869 | 			break; | 
 | 1870 | 		case E_STATS_UPDATED: | 
 | 1871 | 			break; | 
 | 1872 | 		case E_LNK_STATE: | 
 | 1873 | 		{ | 
 | 1874 | 			u16 code = ap->evt_ring[evtcsm].code; | 
 | 1875 | 			switch (code) { | 
 | 1876 | 			case E_C_LINK_UP: | 
 | 1877 | 			{ | 
 | 1878 | 				u32 state = readl(&ap->regs->GigLnkState); | 
 | 1879 | 				printk(KERN_WARNING "%s: Optical link UP " | 
 | 1880 | 				       "(%s Duplex, Flow Control: %s%s)\n", | 
 | 1881 | 				       ap->name, | 
 | 1882 | 				       state & LNK_FULL_DUPLEX ? "Full":"Half", | 
 | 1883 | 				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "", | 
 | 1884 | 				       state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); | 
 | 1885 | 				break; | 
 | 1886 | 			} | 
 | 1887 | 			case E_C_LINK_DOWN: | 
 | 1888 | 				printk(KERN_WARNING "%s: Optical link DOWN\n", | 
 | 1889 | 				       ap->name); | 
 | 1890 | 				break; | 
 | 1891 | 			case E_C_LINK_10_100: | 
 | 1892 | 				printk(KERN_WARNING "%s: 10/100BaseT link " | 
 | 1893 | 				       "UP\n", ap->name); | 
 | 1894 | 				break; | 
 | 1895 | 			default: | 
 | 1896 | 				printk(KERN_ERR "%s: Unknown optical link " | 
 | 1897 | 				       "state %02x\n", ap->name, code); | 
 | 1898 | 			} | 
 | 1899 | 			break; | 
 | 1900 | 		} | 
 | 1901 | 		case E_ERROR: | 
 | 1902 | 			switch(ap->evt_ring[evtcsm].code) { | 
 | 1903 | 			case E_C_ERR_INVAL_CMD: | 
 | 1904 | 				printk(KERN_ERR "%s: invalid command error\n", | 
 | 1905 | 				       ap->name); | 
 | 1906 | 				break; | 
 | 1907 | 			case E_C_ERR_UNIMP_CMD: | 
 | 1908 | 				printk(KERN_ERR "%s: unimplemented command " | 
 | 1909 | 				       "error\n", ap->name); | 
 | 1910 | 				break; | 
 | 1911 | 			case E_C_ERR_BAD_CFG: | 
 | 1912 | 				printk(KERN_ERR "%s: bad config error\n", | 
 | 1913 | 				       ap->name); | 
 | 1914 | 				break; | 
 | 1915 | 			default: | 
 | 1916 | 				printk(KERN_ERR "%s: unknown error %02x\n", | 
 | 1917 | 				       ap->name, ap->evt_ring[evtcsm].code); | 
 | 1918 | 			} | 
 | 1919 | 			break; | 
 | 1920 | 		case E_RESET_JUMBO_RNG: | 
 | 1921 | 		{ | 
 | 1922 | 			int i; | 
 | 1923 | 			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | 
 | 1924 | 				if (ap->skb->rx_jumbo_skbuff[i].skb) { | 
 | 1925 | 					ap->rx_jumbo_ring[i].size = 0; | 
 | 1926 | 					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); | 
 | 1927 | 					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); | 
 | 1928 | 					ap->skb->rx_jumbo_skbuff[i].skb = NULL; | 
 | 1929 | 				} | 
 | 1930 | 			} | 
 | 1931 |  | 
 | 1932 |  			if (ACE_IS_TIGON_I(ap)) { | 
 | 1933 |  				struct cmd cmd; | 
 | 1934 |  				cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | 
 | 1935 |  				cmd.code = 0; | 
 | 1936 |  				cmd.idx = 0; | 
 | 1937 |  				ace_issue_cmd(ap->regs, &cmd); | 
 | 1938 |  			} else { | 
 | 1939 |  				writel(0, &((ap->regs)->RxJumboPrd)); | 
 | 1940 |  				wmb(); | 
 | 1941 |  			} | 
 | 1942 |  | 
 | 1943 | 			ap->jumbo = 0; | 
 | 1944 | 			ap->rx_jumbo_skbprd = 0; | 
 | 1945 | 			printk(KERN_INFO "%s: Jumbo ring flushed\n", | 
 | 1946 | 			       ap->name); | 
 | 1947 | 			clear_bit(0, &ap->jumbo_refill_busy); | 
 | 1948 | 			break; | 
 | 1949 | 		} | 
 | 1950 | 		default: | 
 | 1951 | 			printk(KERN_ERR "%s: Unhandled event 0x%02x\n", | 
 | 1952 | 			       ap->name, ap->evt_ring[evtcsm].evt); | 
 | 1953 | 		} | 
 | 1954 | 		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; | 
 | 1955 | 	} | 
 | 1956 |  | 
 | 1957 | 	return evtcsm; | 
 | 1958 | } | 
 | 1959 |  | 
 | 1960 |  | 
 | 1961 | static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) | 
 | 1962 | { | 
 | 1963 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 1964 | 	u32 idx; | 
 | 1965 | 	int mini_count = 0, std_count = 0; | 
 | 1966 |  | 
 | 1967 | 	idx = rxretcsm; | 
 | 1968 |  | 
 | 1969 | 	prefetchw(&ap->cur_rx_bufs); | 
 | 1970 | 	prefetchw(&ap->cur_mini_bufs); | 
 | 1971 | 	 | 
 | 1972 | 	while (idx != rxretprd) { | 
 | 1973 | 		struct ring_info *rip; | 
 | 1974 | 		struct sk_buff *skb; | 
 | 1975 | 		struct rx_desc *rxdesc, *retdesc; | 
 | 1976 | 		u32 skbidx; | 
 | 1977 | 		int bd_flags, desc_type, mapsize; | 
 | 1978 | 		u16 csum; | 
 | 1979 |  | 
 | 1980 |  | 
 | 1981 | 		/* make sure the rx descriptor isn't read before rxretprd */ | 
 | 1982 | 		if (idx == rxretcsm)  | 
 | 1983 | 			rmb(); | 
 | 1984 |  | 
 | 1985 | 		retdesc = &ap->rx_return_ring[idx]; | 
 | 1986 | 		skbidx = retdesc->idx; | 
 | 1987 | 		bd_flags = retdesc->flags; | 
 | 1988 | 		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); | 
 | 1989 |  | 
 | 1990 | 		switch(desc_type) { | 
 | 1991 | 			/* | 
 | 1992 | 			 * Normal frames do not have any flags set | 
 | 1993 | 			 * | 
 | 1994 | 			 * Mini and normal frames arrive frequently, | 
 | 1995 | 			 * so use a local counter to avoid doing | 
 | 1996 | 			 * atomic operations for each packet arriving. | 
 | 1997 | 			 */ | 
 | 1998 | 		case 0: | 
 | 1999 | 			rip = &ap->skb->rx_std_skbuff[skbidx]; | 
 | 2000 | 			mapsize = ACE_STD_BUFSIZE; | 
 | 2001 | 			rxdesc = &ap->rx_std_ring[skbidx]; | 
 | 2002 | 			std_count++; | 
 | 2003 | 			break; | 
 | 2004 | 		case BD_FLG_JUMBO: | 
 | 2005 | 			rip = &ap->skb->rx_jumbo_skbuff[skbidx]; | 
 | 2006 | 			mapsize = ACE_JUMBO_BUFSIZE; | 
 | 2007 | 			rxdesc = &ap->rx_jumbo_ring[skbidx]; | 
 | 2008 | 			atomic_dec(&ap->cur_jumbo_bufs); | 
 | 2009 | 			break; | 
 | 2010 | 		case BD_FLG_MINI: | 
 | 2011 | 			rip = &ap->skb->rx_mini_skbuff[skbidx]; | 
 | 2012 | 			mapsize = ACE_MINI_BUFSIZE; | 
 | 2013 | 			rxdesc = &ap->rx_mini_ring[skbidx]; | 
 | 2014 | 			mini_count++;  | 
 | 2015 | 			break; | 
 | 2016 | 		default: | 
 | 2017 | 			printk(KERN_INFO "%s: unknown frame type (0x%02x) " | 
 | 2018 | 			       "returned by NIC\n", dev->name, | 
 | 2019 | 			       retdesc->flags); | 
 | 2020 | 			goto error; | 
 | 2021 | 		} | 
 | 2022 |  | 
 | 2023 | 		skb = rip->skb; | 
 | 2024 | 		rip->skb = NULL; | 
 | 2025 | 		pci_unmap_page(ap->pdev, | 
 | 2026 | 			       pci_unmap_addr(rip, mapping), | 
 | 2027 | 			       mapsize, | 
 | 2028 | 			       PCI_DMA_FROMDEVICE); | 
 | 2029 | 		skb_put(skb, retdesc->size); | 
 | 2030 |  | 
 | 2031 | 		/* | 
 | 2032 | 		 * Fly baby, fly! | 
 | 2033 | 		 */ | 
 | 2034 | 		csum = retdesc->tcp_udp_csum; | 
 | 2035 |  | 
 | 2036 | 		skb->dev = dev; | 
 | 2037 | 		skb->protocol = eth_type_trans(skb, dev); | 
 | 2038 |  | 
 | 2039 | 		/* | 
 | 2040 | 		 * Instead of forcing the poor tigon mips cpu to calculate | 
 | 2041 | 		 * pseudo hdr checksum, we do this ourselves. | 
 | 2042 | 		 */ | 
 | 2043 | 		if (bd_flags & BD_FLG_TCP_UDP_SUM) { | 
 | 2044 | 			skb->csum = htons(csum); | 
 | 2045 | 			skb->ip_summed = CHECKSUM_HW; | 
 | 2046 | 		} else { | 
 | 2047 | 			skb->ip_summed = CHECKSUM_NONE; | 
 | 2048 | 		} | 
 | 2049 |  | 
 | 2050 | 		/* send it up */ | 
 | 2051 | #if ACENIC_DO_VLAN | 
 | 2052 | 		if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) { | 
 | 2053 | 			vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan); | 
 | 2054 | 		} else | 
 | 2055 | #endif | 
 | 2056 | 			netif_rx(skb); | 
 | 2057 |  | 
 | 2058 | 		dev->last_rx = jiffies; | 
 | 2059 | 		ap->stats.rx_packets++; | 
 | 2060 | 		ap->stats.rx_bytes += retdesc->size; | 
 | 2061 |  | 
 | 2062 | 		idx = (idx + 1) % RX_RETURN_RING_ENTRIES; | 
 | 2063 | 	} | 
 | 2064 |  | 
 | 2065 | 	atomic_sub(std_count, &ap->cur_rx_bufs); | 
 | 2066 | 	if (!ACE_IS_TIGON_I(ap)) | 
 | 2067 | 		atomic_sub(mini_count, &ap->cur_mini_bufs); | 
 | 2068 |  | 
 | 2069 |  out: | 
 | 2070 | 	/* | 
 | 2071 | 	 * According to the documentation RxRetCsm is obsolete with | 
 | 2072 | 	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree! | 
 | 2073 | 	 */ | 
 | 2074 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 2075 | 		writel(idx, &ap->regs->RxRetCsm); | 
 | 2076 | 	} | 
 | 2077 | 	ap->cur_rx = idx; | 
 | 2078 |  | 
 | 2079 | 	return; | 
 | 2080 |  error: | 
 | 2081 | 	idx = rxretprd; | 
 | 2082 | 	goto out; | 
 | 2083 | } | 
 | 2084 |  | 
 | 2085 |  | 
 | 2086 | static inline void ace_tx_int(struct net_device *dev, | 
 | 2087 | 			      u32 txcsm, u32 idx) | 
 | 2088 | { | 
 | 2089 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2090 |  | 
 | 2091 | 	do { | 
 | 2092 | 		struct sk_buff *skb; | 
 | 2093 | 		dma_addr_t mapping; | 
 | 2094 | 		struct tx_ring_info *info; | 
 | 2095 |  | 
 | 2096 | 		info = ap->skb->tx_skbuff + idx; | 
 | 2097 | 		skb = info->skb; | 
 | 2098 | 		mapping = pci_unmap_addr(info, mapping); | 
 | 2099 |  | 
 | 2100 | 		if (mapping) { | 
 | 2101 | 			pci_unmap_page(ap->pdev, mapping, | 
 | 2102 | 				       pci_unmap_len(info, maplen), | 
 | 2103 | 				       PCI_DMA_TODEVICE); | 
 | 2104 | 			pci_unmap_addr_set(info, mapping, 0); | 
 | 2105 | 		} | 
 | 2106 |  | 
 | 2107 | 		if (skb) { | 
 | 2108 | 			ap->stats.tx_packets++; | 
 | 2109 | 			ap->stats.tx_bytes += skb->len; | 
 | 2110 | 			dev_kfree_skb_irq(skb); | 
 | 2111 | 			info->skb = NULL; | 
 | 2112 | 		} | 
 | 2113 |  | 
 | 2114 | 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | 
 | 2115 | 	} while (idx != txcsm); | 
 | 2116 |  | 
 | 2117 | 	if (netif_queue_stopped(dev)) | 
 | 2118 | 		netif_wake_queue(dev); | 
 | 2119 |  | 
 | 2120 | 	wmb(); | 
 | 2121 | 	ap->tx_ret_csm = txcsm; | 
 | 2122 |  | 
 | 2123 | 	/* So... tx_ret_csm is advanced _after_ check for device wakeup. | 
 | 2124 | 	 * | 
 | 2125 | 	 * We could try to make it before. In this case we would get | 
 | 2126 | 	 * the following race condition: hard_start_xmit on other cpu | 
 | 2127 | 	 * enters after we advanced tx_ret_csm and fills space, | 
 | 2128 | 	 * which we have just freed, so that we make illegal device wakeup. | 
 | 2129 | 	 * There is no good way to workaround this (at entry | 
 | 2130 | 	 * to ace_start_xmit detects this condition and prevents | 
 | 2131 | 	 * ring corruption, but it is not a good workaround.) | 
 | 2132 | 	 * | 
 | 2133 | 	 * When tx_ret_csm is advanced after, we wake up device _only_ | 
 | 2134 | 	 * if we really have some space in ring (though the core doing | 
 | 2135 | 	 * hard_start_xmit can see full ring for some period and has to | 
 | 2136 | 	 * synchronize.) Superb. | 
 | 2137 | 	 * BUT! We get another subtle race condition. hard_start_xmit | 
 | 2138 | 	 * may think that ring is full between wakeup and advancing | 
 | 2139 | 	 * tx_ret_csm and will stop device instantly! It is not so bad. | 
 | 2140 | 	 * We are guaranteed that there is something in ring, so that | 
 | 2141 | 	 * the next irq will resume transmission. To speedup this we could | 
 | 2142 | 	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW | 
 | 2143 | 	 * (see ace_start_xmit). | 
 | 2144 | 	 * | 
 | 2145 | 	 * Well, this dilemma exists in all lock-free devices. | 
 | 2146 | 	 * We, following scheme used in drivers by Donald Becker, | 
 | 2147 | 	 * select the least dangerous. | 
 | 2148 | 	 *							--ANK | 
 | 2149 | 	 */ | 
 | 2150 | } | 
 | 2151 |  | 
 | 2152 |  | 
 | 2153 | static irqreturn_t ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs) | 
 | 2154 | { | 
 | 2155 | 	struct net_device *dev = (struct net_device *)dev_id; | 
 | 2156 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2157 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2158 | 	u32 idx; | 
 | 2159 | 	u32 txcsm, rxretcsm, rxretprd; | 
 | 2160 | 	u32 evtcsm, evtprd; | 
 | 2161 |  | 
 | 2162 | 	/* | 
 | 2163 | 	 * In case of PCI shared interrupts or spurious interrupts, | 
 | 2164 | 	 * we want to make sure it is actually our interrupt before | 
 | 2165 | 	 * spending any time in here. | 
 | 2166 | 	 */ | 
 | 2167 | 	if (!(readl(®s->HostCtrl) & IN_INT)) | 
 | 2168 | 		return IRQ_NONE; | 
 | 2169 |  | 
 | 2170 | 	/* | 
 | 2171 | 	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd, | 
 | 2172 | 	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before | 
 | 2173 | 	 * writel(0, ®s->Mb0Lo). | 
 | 2174 | 	 * | 
 | 2175 | 	 * "IRQ avoidance" recommended in docs applies to IRQs served | 
 | 2176 | 	 * threads and it is wrong even for that case. | 
 | 2177 | 	 */ | 
 | 2178 | 	writel(0, ®s->Mb0Lo); | 
 | 2179 | 	readl(®s->Mb0Lo); | 
 | 2180 |  | 
 | 2181 | 	/* | 
 | 2182 | 	 * There is no conflict between transmit handling in | 
 | 2183 | 	 * start_xmit and receive processing, thus there is no reason | 
 | 2184 | 	 * to take a spin lock for RX handling. Wait until we start | 
 | 2185 | 	 * working on the other stuff - hey we don't need a spin lock | 
 | 2186 | 	 * anymore. | 
 | 2187 | 	 */ | 
 | 2188 | 	rxretprd = *ap->rx_ret_prd; | 
 | 2189 | 	rxretcsm = ap->cur_rx; | 
 | 2190 |  | 
 | 2191 | 	if (rxretprd != rxretcsm) | 
 | 2192 | 		ace_rx_int(dev, rxretprd, rxretcsm); | 
 | 2193 |  | 
 | 2194 | 	txcsm = *ap->tx_csm; | 
 | 2195 | 	idx = ap->tx_ret_csm; | 
 | 2196 |  | 
 | 2197 | 	if (txcsm != idx) { | 
 | 2198 | 		/* | 
 | 2199 | 		 * If each skb takes only one descriptor this check degenerates | 
 | 2200 | 		 * to identity, because new space has just been opened. | 
 | 2201 | 		 * But if skbs are fragmented we must check that this index | 
 | 2202 | 		 * update releases enough of space, otherwise we just | 
 | 2203 | 		 * wait for device to make more work. | 
 | 2204 | 		 */ | 
 | 2205 | 		if (!tx_ring_full(ap, txcsm, ap->tx_prd)) | 
 | 2206 | 			ace_tx_int(dev, txcsm, idx); | 
 | 2207 | 	} | 
 | 2208 |  | 
 | 2209 | 	evtcsm = readl(®s->EvtCsm); | 
 | 2210 | 	evtprd = *ap->evt_prd; | 
 | 2211 |  | 
 | 2212 | 	if (evtcsm != evtprd) { | 
 | 2213 | 		evtcsm = ace_handle_event(dev, evtcsm, evtprd); | 
 | 2214 | 		writel(evtcsm, ®s->EvtCsm); | 
 | 2215 | 	} | 
 | 2216 |  | 
 | 2217 | 	/* | 
 | 2218 | 	 * This has to go last in the interrupt handler and run with | 
 | 2219 | 	 * the spin lock released ... what lock? | 
 | 2220 | 	 */ | 
 | 2221 | 	if (netif_running(dev)) { | 
 | 2222 | 		int cur_size; | 
 | 2223 | 		int run_tasklet = 0; | 
 | 2224 |  | 
 | 2225 | 		cur_size = atomic_read(&ap->cur_rx_bufs); | 
 | 2226 | 		if (cur_size < RX_LOW_STD_THRES) { | 
 | 2227 | 			if ((cur_size < RX_PANIC_STD_THRES) && | 
 | 2228 | 			    !test_and_set_bit(0, &ap->std_refill_busy)) { | 
 | 2229 | #ifdef DEBUG | 
 | 2230 | 				printk("low on std buffers %i\n", cur_size); | 
 | 2231 | #endif | 
 | 2232 | 				ace_load_std_rx_ring(ap, | 
 | 2233 | 						     RX_RING_SIZE - cur_size); | 
 | 2234 | 			} else | 
 | 2235 | 				run_tasklet = 1; | 
 | 2236 | 		} | 
 | 2237 |  | 
 | 2238 | 		if (!ACE_IS_TIGON_I(ap)) { | 
 | 2239 | 			cur_size = atomic_read(&ap->cur_mini_bufs); | 
 | 2240 | 			if (cur_size < RX_LOW_MINI_THRES) { | 
 | 2241 | 				if ((cur_size < RX_PANIC_MINI_THRES) && | 
 | 2242 | 				    !test_and_set_bit(0, | 
 | 2243 | 						      &ap->mini_refill_busy)) { | 
 | 2244 | #ifdef DEBUG | 
 | 2245 | 					printk("low on mini buffers %i\n", | 
 | 2246 | 					       cur_size); | 
 | 2247 | #endif | 
 | 2248 | 					ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | 
 | 2249 | 				} else | 
 | 2250 | 					run_tasklet = 1; | 
 | 2251 | 			} | 
 | 2252 | 		} | 
 | 2253 |  | 
 | 2254 | 		if (ap->jumbo) { | 
 | 2255 | 			cur_size = atomic_read(&ap->cur_jumbo_bufs); | 
 | 2256 | 			if (cur_size < RX_LOW_JUMBO_THRES) { | 
 | 2257 | 				if ((cur_size < RX_PANIC_JUMBO_THRES) && | 
 | 2258 | 				    !test_and_set_bit(0, | 
 | 2259 | 						      &ap->jumbo_refill_busy)){ | 
 | 2260 | #ifdef DEBUG | 
 | 2261 | 					printk("low on jumbo buffers %i\n", | 
 | 2262 | 					       cur_size); | 
 | 2263 | #endif | 
 | 2264 | 					ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | 
 | 2265 | 				} else | 
 | 2266 | 					run_tasklet = 1; | 
 | 2267 | 			} | 
 | 2268 | 		} | 
 | 2269 | 		if (run_tasklet && !ap->tasklet_pending) { | 
 | 2270 | 			ap->tasklet_pending = 1; | 
 | 2271 | 			tasklet_schedule(&ap->ace_tasklet); | 
 | 2272 | 		} | 
 | 2273 | 	} | 
 | 2274 |  | 
 | 2275 | 	return IRQ_HANDLED; | 
 | 2276 | } | 
 | 2277 |  | 
 | 2278 |  | 
 | 2279 | #if ACENIC_DO_VLAN | 
 | 2280 | static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) | 
 | 2281 | { | 
 | 2282 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2283 | 	unsigned long flags; | 
 | 2284 |  | 
 | 2285 | 	local_irq_save(flags); | 
 | 2286 | 	ace_mask_irq(dev); | 
 | 2287 |  | 
 | 2288 | 	ap->vlgrp = grp; | 
 | 2289 |  | 
 | 2290 | 	ace_unmask_irq(dev); | 
 | 2291 | 	local_irq_restore(flags); | 
 | 2292 | } | 
 | 2293 |  | 
 | 2294 |  | 
 | 2295 | static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) | 
 | 2296 | { | 
 | 2297 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2298 | 	unsigned long flags; | 
 | 2299 |  | 
 | 2300 | 	local_irq_save(flags); | 
 | 2301 | 	ace_mask_irq(dev); | 
 | 2302 |  | 
 | 2303 | 	if (ap->vlgrp) | 
 | 2304 | 		ap->vlgrp->vlan_devices[vid] = NULL; | 
 | 2305 |  | 
 | 2306 | 	ace_unmask_irq(dev); | 
 | 2307 | 	local_irq_restore(flags); | 
 | 2308 | } | 
 | 2309 | #endif /* ACENIC_DO_VLAN */ | 
 | 2310 |  | 
 | 2311 |  | 
 | 2312 | static int ace_open(struct net_device *dev) | 
 | 2313 | { | 
 | 2314 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2315 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2316 | 	struct cmd cmd; | 
 | 2317 |  | 
 | 2318 | 	if (!(ap->fw_running)) { | 
 | 2319 | 		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); | 
 | 2320 | 		return -EBUSY; | 
 | 2321 | 	} | 
 | 2322 |  | 
 | 2323 | 	writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); | 
 | 2324 |  | 
 | 2325 | 	cmd.evt = C_CLEAR_STATS; | 
 | 2326 | 	cmd.code = 0; | 
 | 2327 | 	cmd.idx = 0; | 
 | 2328 | 	ace_issue_cmd(regs, &cmd); | 
 | 2329 |  | 
 | 2330 | 	cmd.evt = C_HOST_STATE; | 
 | 2331 | 	cmd.code = C_C_STACK_UP; | 
 | 2332 | 	cmd.idx = 0; | 
 | 2333 | 	ace_issue_cmd(regs, &cmd); | 
 | 2334 |  | 
 | 2335 | 	if (ap->jumbo && | 
 | 2336 | 	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) | 
 | 2337 | 		ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | 
 | 2338 |  | 
 | 2339 | 	if (dev->flags & IFF_PROMISC) { | 
 | 2340 | 		cmd.evt = C_SET_PROMISC_MODE; | 
 | 2341 | 		cmd.code = C_C_PROMISC_ENABLE; | 
 | 2342 | 		cmd.idx = 0; | 
 | 2343 | 		ace_issue_cmd(regs, &cmd); | 
 | 2344 |  | 
 | 2345 | 		ap->promisc = 1; | 
 | 2346 | 	}else | 
 | 2347 | 		ap->promisc = 0; | 
 | 2348 | 	ap->mcast_all = 0; | 
 | 2349 |  | 
 | 2350 | #if 0 | 
 | 2351 | 	cmd.evt = C_LNK_NEGOTIATION; | 
 | 2352 | 	cmd.code = 0; | 
 | 2353 | 	cmd.idx = 0; | 
 | 2354 | 	ace_issue_cmd(regs, &cmd); | 
 | 2355 | #endif | 
 | 2356 |  | 
 | 2357 | 	netif_start_queue(dev); | 
 | 2358 |  | 
 | 2359 | 	/* | 
 | 2360 | 	 * Setup the bottom half rx ring refill handler | 
 | 2361 | 	 */ | 
 | 2362 | 	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); | 
 | 2363 | 	return 0; | 
 | 2364 | } | 
 | 2365 |  | 
 | 2366 |  | 
 | 2367 | static int ace_close(struct net_device *dev) | 
 | 2368 | { | 
 | 2369 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2370 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2371 | 	struct cmd cmd; | 
 | 2372 | 	unsigned long flags; | 
 | 2373 | 	short i; | 
 | 2374 |  | 
 | 2375 | 	/* | 
 | 2376 | 	 * Without (or before) releasing irq and stopping hardware, this | 
 | 2377 | 	 * is an absolute non-sense, by the way. It will be reset instantly | 
 | 2378 | 	 * by the first irq. | 
 | 2379 | 	 */ | 
 | 2380 | 	netif_stop_queue(dev); | 
 | 2381 |  | 
 | 2382 | 	 | 
 | 2383 | 	if (ap->promisc) { | 
 | 2384 | 		cmd.evt = C_SET_PROMISC_MODE; | 
 | 2385 | 		cmd.code = C_C_PROMISC_DISABLE; | 
 | 2386 | 		cmd.idx = 0; | 
 | 2387 | 		ace_issue_cmd(regs, &cmd); | 
 | 2388 | 		ap->promisc = 0; | 
 | 2389 | 	} | 
 | 2390 |  | 
 | 2391 | 	cmd.evt = C_HOST_STATE; | 
 | 2392 | 	cmd.code = C_C_STACK_DOWN; | 
 | 2393 | 	cmd.idx = 0; | 
 | 2394 | 	ace_issue_cmd(regs, &cmd); | 
 | 2395 |  | 
 | 2396 | 	tasklet_kill(&ap->ace_tasklet); | 
 | 2397 |  | 
 | 2398 | 	/* | 
 | 2399 | 	 * Make sure one CPU is not processing packets while | 
 | 2400 | 	 * buffers are being released by another. | 
 | 2401 | 	 */ | 
 | 2402 |  | 
 | 2403 | 	local_irq_save(flags); | 
 | 2404 | 	ace_mask_irq(dev); | 
 | 2405 |  | 
 | 2406 | 	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { | 
 | 2407 | 		struct sk_buff *skb; | 
 | 2408 | 		dma_addr_t mapping; | 
 | 2409 | 		struct tx_ring_info *info; | 
 | 2410 |  | 
 | 2411 | 		info = ap->skb->tx_skbuff + i; | 
 | 2412 | 		skb = info->skb; | 
 | 2413 | 		mapping = pci_unmap_addr(info, mapping); | 
 | 2414 |  | 
 | 2415 | 		if (mapping) { | 
 | 2416 | 			if (ACE_IS_TIGON_I(ap)) { | 
 | 2417 | 				struct tx_desc __iomem *tx  | 
 | 2418 | 					= (struct tx_desc __iomem *) &ap->tx_ring[i]; | 
 | 2419 | 				writel(0, &tx->addr.addrhi); | 
 | 2420 | 				writel(0, &tx->addr.addrlo); | 
 | 2421 | 				writel(0, &tx->flagsize); | 
 | 2422 | 			} else | 
 | 2423 | 				memset(ap->tx_ring + i, 0, | 
 | 2424 | 				       sizeof(struct tx_desc)); | 
 | 2425 | 			pci_unmap_page(ap->pdev, mapping, | 
 | 2426 | 				       pci_unmap_len(info, maplen), | 
 | 2427 | 				       PCI_DMA_TODEVICE); | 
 | 2428 | 			pci_unmap_addr_set(info, mapping, 0); | 
 | 2429 | 		} | 
 | 2430 | 		if (skb) { | 
 | 2431 | 			dev_kfree_skb(skb); | 
 | 2432 | 			info->skb = NULL; | 
 | 2433 | 		} | 
 | 2434 | 	} | 
 | 2435 |  | 
 | 2436 | 	if (ap->jumbo) { | 
 | 2437 | 		cmd.evt = C_RESET_JUMBO_RNG; | 
 | 2438 | 		cmd.code = 0; | 
 | 2439 | 		cmd.idx = 0; | 
 | 2440 | 		ace_issue_cmd(regs, &cmd); | 
 | 2441 | 	} | 
 | 2442 |  | 
 | 2443 | 	ace_unmask_irq(dev); | 
 | 2444 | 	local_irq_restore(flags); | 
 | 2445 |  | 
 | 2446 | 	return 0; | 
 | 2447 | } | 
 | 2448 |  | 
 | 2449 |  | 
 | 2450 | static inline dma_addr_t | 
 | 2451 | ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, | 
 | 2452 | 	       struct sk_buff *tail, u32 idx) | 
 | 2453 | { | 
 | 2454 | 	dma_addr_t mapping; | 
 | 2455 | 	struct tx_ring_info *info; | 
 | 2456 |  | 
 | 2457 | 	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | 
 | 2458 | 			       offset_in_page(skb->data), | 
 | 2459 | 			       skb->len, PCI_DMA_TODEVICE); | 
 | 2460 |  | 
 | 2461 | 	info = ap->skb->tx_skbuff + idx; | 
 | 2462 | 	info->skb = tail; | 
 | 2463 | 	pci_unmap_addr_set(info, mapping, mapping); | 
 | 2464 | 	pci_unmap_len_set(info, maplen, skb->len); | 
 | 2465 | 	return mapping; | 
 | 2466 | } | 
 | 2467 |  | 
 | 2468 |  | 
 | 2469 | static inline void | 
 | 2470 | ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, | 
 | 2471 | 	       u32 flagsize, u32 vlan_tag) | 
 | 2472 | { | 
 | 2473 | #if !USE_TX_COAL_NOW | 
 | 2474 | 	flagsize &= ~BD_FLG_COAL_NOW; | 
 | 2475 | #endif | 
 | 2476 |  | 
 | 2477 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 2478 | 		struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc; | 
 | 2479 | 		writel(addr >> 32, &io->addr.addrhi); | 
 | 2480 | 		writel(addr & 0xffffffff, &io->addr.addrlo); | 
 | 2481 | 		writel(flagsize, &io->flagsize); | 
 | 2482 | #if ACENIC_DO_VLAN | 
 | 2483 | 		writel(vlan_tag, &io->vlanres); | 
 | 2484 | #endif | 
 | 2485 | 	} else { | 
 | 2486 | 		desc->addr.addrhi = addr >> 32; | 
 | 2487 | 		desc->addr.addrlo = addr; | 
 | 2488 | 		desc->flagsize = flagsize; | 
 | 2489 | #if ACENIC_DO_VLAN | 
 | 2490 | 		desc->vlanres = vlan_tag; | 
 | 2491 | #endif | 
 | 2492 | 	} | 
 | 2493 | } | 
 | 2494 |  | 
 | 2495 |  | 
 | 2496 | static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | 2497 | { | 
 | 2498 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2499 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2500 | 	struct tx_desc *desc; | 
 | 2501 | 	u32 idx, flagsize; | 
 | 2502 | 	unsigned long maxjiff = jiffies + 3*HZ; | 
 | 2503 |  | 
 | 2504 | restart: | 
 | 2505 | 	idx = ap->tx_prd; | 
 | 2506 |  | 
 | 2507 | 	if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | 
 | 2508 | 		goto overflow; | 
 | 2509 |  | 
 | 2510 | 	if (!skb_shinfo(skb)->nr_frags)	{ | 
 | 2511 | 		dma_addr_t mapping; | 
 | 2512 | 		u32 vlan_tag = 0; | 
 | 2513 |  | 
 | 2514 | 		mapping = ace_map_tx_skb(ap, skb, skb, idx); | 
 | 2515 | 		flagsize = (skb->len << 16) | (BD_FLG_END); | 
 | 2516 | 		if (skb->ip_summed == CHECKSUM_HW) | 
 | 2517 | 			flagsize |= BD_FLG_TCP_UDP_SUM; | 
 | 2518 | #if ACENIC_DO_VLAN | 
 | 2519 | 		if (vlan_tx_tag_present(skb)) { | 
 | 2520 | 			flagsize |= BD_FLG_VLAN_TAG; | 
 | 2521 | 			vlan_tag = vlan_tx_tag_get(skb); | 
 | 2522 | 		} | 
 | 2523 | #endif | 
 | 2524 | 		desc = ap->tx_ring + idx; | 
 | 2525 | 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | 
 | 2526 |  | 
 | 2527 | 		/* Look at ace_tx_int for explanations. */ | 
 | 2528 | 		if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | 
 | 2529 | 			flagsize |= BD_FLG_COAL_NOW; | 
 | 2530 |  | 
 | 2531 | 		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | 
 | 2532 | 	} else { | 
 | 2533 | 		dma_addr_t mapping; | 
 | 2534 | 		u32 vlan_tag = 0; | 
 | 2535 | 		int i, len = 0; | 
 | 2536 |  | 
 | 2537 | 		mapping = ace_map_tx_skb(ap, skb, NULL, idx); | 
 | 2538 | 		flagsize = (skb_headlen(skb) << 16); | 
 | 2539 | 		if (skb->ip_summed == CHECKSUM_HW) | 
 | 2540 | 			flagsize |= BD_FLG_TCP_UDP_SUM; | 
 | 2541 | #if ACENIC_DO_VLAN | 
 | 2542 | 		if (vlan_tx_tag_present(skb)) { | 
 | 2543 | 			flagsize |= BD_FLG_VLAN_TAG; | 
 | 2544 | 			vlan_tag = vlan_tx_tag_get(skb); | 
 | 2545 | 		} | 
 | 2546 | #endif | 
 | 2547 |  | 
 | 2548 | 		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); | 
 | 2549 |  | 
 | 2550 | 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | 
 | 2551 |  | 
 | 2552 | 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
 | 2553 | 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
 | 2554 | 			struct tx_ring_info *info; | 
 | 2555 |  | 
 | 2556 | 			len += frag->size; | 
 | 2557 | 			info = ap->skb->tx_skbuff + idx; | 
 | 2558 | 			desc = ap->tx_ring + idx; | 
 | 2559 |  | 
 | 2560 | 			mapping = pci_map_page(ap->pdev, frag->page, | 
 | 2561 | 					       frag->page_offset, frag->size, | 
 | 2562 | 					       PCI_DMA_TODEVICE); | 
 | 2563 |  | 
 | 2564 | 			flagsize = (frag->size << 16); | 
 | 2565 | 			if (skb->ip_summed == CHECKSUM_HW) | 
 | 2566 | 				flagsize |= BD_FLG_TCP_UDP_SUM; | 
 | 2567 | 			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | 
 | 2568 |  | 
 | 2569 | 			if (i == skb_shinfo(skb)->nr_frags - 1) { | 
 | 2570 | 				flagsize |= BD_FLG_END; | 
 | 2571 | 				if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | 
 | 2572 | 					flagsize |= BD_FLG_COAL_NOW; | 
 | 2573 |  | 
 | 2574 | 				/* | 
 | 2575 | 				 * Only the last fragment frees | 
 | 2576 | 				 * the skb! | 
 | 2577 | 				 */ | 
 | 2578 | 				info->skb = skb; | 
 | 2579 | 			} else { | 
 | 2580 | 				info->skb = NULL; | 
 | 2581 | 			} | 
 | 2582 | 			pci_unmap_addr_set(info, mapping, mapping); | 
 | 2583 | 			pci_unmap_len_set(info, maplen, frag->size); | 
 | 2584 | 			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | 
 | 2585 | 		} | 
 | 2586 | 	} | 
 | 2587 |  | 
 | 2588 |  	wmb(); | 
 | 2589 |  	ap->tx_prd = idx; | 
 | 2590 |  	ace_set_txprd(regs, ap, idx); | 
 | 2591 |  | 
 | 2592 | 	if (flagsize & BD_FLG_COAL_NOW) { | 
 | 2593 | 		netif_stop_queue(dev); | 
 | 2594 |  | 
 | 2595 | 		/* | 
 | 2596 | 		 * A TX-descriptor producer (an IRQ) might have gotten | 
 | 2597 | 		 * inbetween, making the ring free again. Since xmit is | 
 | 2598 | 		 * serialized, this is the only situation we have to | 
 | 2599 | 		 * re-test. | 
 | 2600 | 		 */ | 
 | 2601 | 		if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) | 
 | 2602 | 			netif_wake_queue(dev); | 
 | 2603 | 	} | 
 | 2604 |  | 
 | 2605 | 	dev->trans_start = jiffies; | 
 | 2606 | 	return NETDEV_TX_OK; | 
 | 2607 |  | 
 | 2608 | overflow: | 
 | 2609 | 	/* | 
 | 2610 | 	 * This race condition is unavoidable with lock-free drivers. | 
 | 2611 | 	 * We wake up the queue _before_ tx_prd is advanced, so that we can | 
 | 2612 | 	 * enter hard_start_xmit too early, while tx ring still looks closed. | 
 | 2613 | 	 * This happens ~1-4 times per 100000 packets, so that we can allow | 
 | 2614 | 	 * to loop syncing to other CPU. Probably, we need an additional | 
 | 2615 | 	 * wmb() in ace_tx_intr as well. | 
 | 2616 | 	 * | 
 | 2617 | 	 * Note that this race is relieved by reserving one more entry | 
 | 2618 | 	 * in tx ring than it is necessary (see original non-SG driver). | 
 | 2619 | 	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which | 
 | 2620 | 	 * is already overkill. | 
 | 2621 | 	 * | 
 | 2622 | 	 * Alternative is to return with 1 not throttling queue. In this | 
 | 2623 | 	 * case loop becomes longer, no more useful effects. | 
 | 2624 | 	 */ | 
 | 2625 | 	if (time_before(jiffies, maxjiff)) { | 
 | 2626 | 		barrier(); | 
 | 2627 | 		cpu_relax(); | 
 | 2628 | 		goto restart; | 
 | 2629 | 	} | 
 | 2630 | 	 | 
 | 2631 | 	/* The ring is stuck full. */ | 
 | 2632 | 	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); | 
 | 2633 | 	return NETDEV_TX_BUSY; | 
 | 2634 | } | 
 | 2635 |  | 
 | 2636 |  | 
 | 2637 | static int ace_change_mtu(struct net_device *dev, int new_mtu) | 
 | 2638 | { | 
 | 2639 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2640 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2641 |  | 
 | 2642 | 	if (new_mtu > ACE_JUMBO_MTU) | 
 | 2643 | 		return -EINVAL; | 
 | 2644 |  | 
 | 2645 | 	writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); | 
 | 2646 | 	dev->mtu = new_mtu; | 
 | 2647 |  | 
 | 2648 | 	if (new_mtu > ACE_STD_MTU) { | 
 | 2649 | 		if (!(ap->jumbo)) { | 
 | 2650 | 			printk(KERN_INFO "%s: Enabling Jumbo frame " | 
 | 2651 | 			       "support\n", dev->name); | 
 | 2652 | 			ap->jumbo = 1; | 
 | 2653 | 			if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) | 
 | 2654 | 				ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | 
 | 2655 | 			ace_set_rxtx_parms(dev, 1); | 
 | 2656 | 		} | 
 | 2657 | 	} else { | 
 | 2658 | 		while (test_and_set_bit(0, &ap->jumbo_refill_busy)); | 
 | 2659 | 		ace_sync_irq(dev->irq); | 
 | 2660 | 		ace_set_rxtx_parms(dev, 0); | 
 | 2661 | 		if (ap->jumbo) { | 
 | 2662 | 			struct cmd cmd; | 
 | 2663 |  | 
 | 2664 | 			cmd.evt = C_RESET_JUMBO_RNG; | 
 | 2665 | 			cmd.code = 0; | 
 | 2666 | 			cmd.idx = 0; | 
 | 2667 | 			ace_issue_cmd(regs, &cmd); | 
 | 2668 | 		} | 
 | 2669 | 	} | 
 | 2670 |  | 
 | 2671 | 	return 0; | 
 | 2672 | } | 
 | 2673 |  | 
 | 2674 | static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | 2675 | { | 
 | 2676 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2677 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2678 | 	u32 link; | 
 | 2679 |  | 
 | 2680 | 	memset(ecmd, 0, sizeof(struct ethtool_cmd)); | 
 | 2681 | 	ecmd->supported = | 
 | 2682 | 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | | 
 | 2683 | 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | | 
 | 2684 | 		 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | | 
 | 2685 | 		 SUPPORTED_Autoneg | SUPPORTED_FIBRE); | 
 | 2686 |  | 
 | 2687 | 	ecmd->port = PORT_FIBRE; | 
 | 2688 | 	ecmd->transceiver = XCVR_INTERNAL; | 
 | 2689 |  | 
 | 2690 | 	link = readl(®s->GigLnkState); | 
 | 2691 | 	if (link & LNK_1000MB) | 
 | 2692 | 		ecmd->speed = SPEED_1000; | 
 | 2693 | 	else { | 
 | 2694 | 		link = readl(®s->FastLnkState); | 
 | 2695 | 		if (link & LNK_100MB) | 
 | 2696 | 			ecmd->speed = SPEED_100; | 
 | 2697 | 		else if (link & LNK_10MB) | 
 | 2698 | 			ecmd->speed = SPEED_10; | 
 | 2699 | 		else | 
 | 2700 | 			ecmd->speed = 0; | 
 | 2701 | 	} | 
 | 2702 | 	if (link & LNK_FULL_DUPLEX) | 
 | 2703 | 		ecmd->duplex = DUPLEX_FULL; | 
 | 2704 | 	else | 
 | 2705 | 		ecmd->duplex = DUPLEX_HALF; | 
 | 2706 |  | 
 | 2707 | 	if (link & LNK_NEGOTIATE) | 
 | 2708 | 		ecmd->autoneg = AUTONEG_ENABLE; | 
 | 2709 | 	else | 
 | 2710 | 		ecmd->autoneg = AUTONEG_DISABLE; | 
 | 2711 |  | 
 | 2712 | #if 0 | 
 | 2713 | 	/* | 
 | 2714 | 	 * Current struct ethtool_cmd is insufficient | 
 | 2715 | 	 */ | 
 | 2716 | 	ecmd->trace = readl(®s->TuneTrace); | 
 | 2717 |  | 
 | 2718 | 	ecmd->txcoal = readl(®s->TuneTxCoalTicks); | 
 | 2719 | 	ecmd->rxcoal = readl(®s->TuneRxCoalTicks); | 
 | 2720 | #endif | 
 | 2721 | 	ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); | 
 | 2722 | 	ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); | 
 | 2723 |  | 
 | 2724 | 	return 0; | 
 | 2725 | } | 
 | 2726 |  | 
 | 2727 | static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | 2728 | { | 
 | 2729 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2730 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2731 | 	u32 link, speed; | 
 | 2732 |  | 
 | 2733 | 	link = readl(®s->GigLnkState); | 
 | 2734 | 	if (link & LNK_1000MB) | 
 | 2735 | 		speed = SPEED_1000; | 
 | 2736 | 	else { | 
 | 2737 | 		link = readl(®s->FastLnkState); | 
 | 2738 | 		if (link & LNK_100MB) | 
 | 2739 | 			speed = SPEED_100; | 
 | 2740 | 		else if (link & LNK_10MB) | 
 | 2741 | 			speed = SPEED_10; | 
 | 2742 | 		else | 
 | 2743 | 			speed = SPEED_100; | 
 | 2744 | 	} | 
 | 2745 |  | 
 | 2746 | 	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | | 
 | 2747 | 		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; | 
 | 2748 | 	if (!ACE_IS_TIGON_I(ap)) | 
 | 2749 | 		link |= LNK_TX_FLOW_CTL_Y; | 
 | 2750 | 	if (ecmd->autoneg == AUTONEG_ENABLE) | 
 | 2751 | 		link |= LNK_NEGOTIATE; | 
 | 2752 | 	if (ecmd->speed != speed) { | 
 | 2753 | 		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); | 
 | 2754 | 		switch (speed) { | 
 | 2755 | 		case SPEED_1000: | 
 | 2756 | 			link |= LNK_1000MB; | 
 | 2757 | 			break; | 
 | 2758 | 		case SPEED_100: | 
 | 2759 | 			link |= LNK_100MB; | 
 | 2760 | 			break; | 
 | 2761 | 		case SPEED_10: | 
 | 2762 | 			link |= LNK_10MB; | 
 | 2763 | 			break; | 
 | 2764 | 		} | 
 | 2765 | 	} | 
 | 2766 |  | 
 | 2767 | 	if (ecmd->duplex == DUPLEX_FULL) | 
 | 2768 | 		link |= LNK_FULL_DUPLEX; | 
 | 2769 |  | 
 | 2770 | 	if (link != ap->link) { | 
 | 2771 | 		struct cmd cmd; | 
 | 2772 | 		printk(KERN_INFO "%s: Renegotiating link state\n", | 
 | 2773 | 		       dev->name); | 
 | 2774 |  | 
 | 2775 | 		ap->link = link; | 
 | 2776 | 		writel(link, ®s->TuneLink); | 
 | 2777 | 		if (!ACE_IS_TIGON_I(ap)) | 
 | 2778 | 			writel(link, ®s->TuneFastLink); | 
 | 2779 | 		wmb(); | 
 | 2780 |  | 
 | 2781 | 		cmd.evt = C_LNK_NEGOTIATION; | 
 | 2782 | 		cmd.code = 0; | 
 | 2783 | 		cmd.idx = 0; | 
 | 2784 | 		ace_issue_cmd(regs, &cmd); | 
 | 2785 | 	} | 
 | 2786 | 	return 0; | 
 | 2787 | } | 
 | 2788 |  | 
 | 2789 | static void ace_get_drvinfo(struct net_device *dev,  | 
 | 2790 | 			    struct ethtool_drvinfo *info) | 
 | 2791 | { | 
 | 2792 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2793 |  | 
 | 2794 | 	strlcpy(info->driver, "acenic", sizeof(info->driver)); | 
 | 2795 | 	snprintf(info->version, sizeof(info->version), "%i.%i.%i",  | 
 | 2796 | 		tigonFwReleaseMajor, tigonFwReleaseMinor, | 
 | 2797 | 		tigonFwReleaseFix); | 
 | 2798 |  | 
 | 2799 | 	if (ap->pdev) | 
 | 2800 | 		strlcpy(info->bus_info, pci_name(ap->pdev),  | 
 | 2801 | 			sizeof(info->bus_info)); | 
 | 2802 |  | 
 | 2803 | } | 
 | 2804 |  | 
 | 2805 | /* | 
 | 2806 |  * Set the hardware MAC address. | 
 | 2807 |  */ | 
 | 2808 | static int ace_set_mac_addr(struct net_device *dev, void *p) | 
 | 2809 | { | 
 | 2810 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2811 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2812 | 	struct sockaddr *addr=p; | 
 | 2813 | 	u8 *da; | 
 | 2814 | 	struct cmd cmd; | 
 | 2815 |  | 
 | 2816 | 	if(netif_running(dev)) | 
 | 2817 | 		return -EBUSY; | 
 | 2818 |  | 
 | 2819 | 	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); | 
 | 2820 |  | 
 | 2821 | 	da = (u8 *)dev->dev_addr; | 
 | 2822 |  | 
 | 2823 | 	writel(da[0] << 8 | da[1], ®s->MacAddrHi); | 
 | 2824 | 	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], | 
 | 2825 | 	       ®s->MacAddrLo); | 
 | 2826 |  | 
 | 2827 | 	cmd.evt = C_SET_MAC_ADDR; | 
 | 2828 | 	cmd.code = 0; | 
 | 2829 | 	cmd.idx = 0; | 
 | 2830 | 	ace_issue_cmd(regs, &cmd); | 
 | 2831 |  | 
 | 2832 | 	return 0; | 
 | 2833 | } | 
 | 2834 |  | 
 | 2835 |  | 
 | 2836 | static void ace_set_multicast_list(struct net_device *dev) | 
 | 2837 | { | 
 | 2838 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2839 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2840 | 	struct cmd cmd; | 
 | 2841 |  | 
 | 2842 | 	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { | 
 | 2843 | 		cmd.evt = C_SET_MULTICAST_MODE; | 
 | 2844 | 		cmd.code = C_C_MCAST_ENABLE; | 
 | 2845 | 		cmd.idx = 0; | 
 | 2846 | 		ace_issue_cmd(regs, &cmd); | 
 | 2847 | 		ap->mcast_all = 1; | 
 | 2848 | 	} else if (ap->mcast_all) { | 
 | 2849 | 		cmd.evt = C_SET_MULTICAST_MODE; | 
 | 2850 | 		cmd.code = C_C_MCAST_DISABLE; | 
 | 2851 | 		cmd.idx = 0; | 
 | 2852 | 		ace_issue_cmd(regs, &cmd); | 
 | 2853 | 		ap->mcast_all = 0; | 
 | 2854 | 	} | 
 | 2855 |  | 
 | 2856 | 	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { | 
 | 2857 | 		cmd.evt = C_SET_PROMISC_MODE; | 
 | 2858 | 		cmd.code = C_C_PROMISC_ENABLE; | 
 | 2859 | 		cmd.idx = 0; | 
 | 2860 | 		ace_issue_cmd(regs, &cmd); | 
 | 2861 | 		ap->promisc = 1; | 
 | 2862 | 	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { | 
 | 2863 | 		cmd.evt = C_SET_PROMISC_MODE; | 
 | 2864 | 		cmd.code = C_C_PROMISC_DISABLE; | 
 | 2865 | 		cmd.idx = 0; | 
 | 2866 | 		ace_issue_cmd(regs, &cmd); | 
 | 2867 | 		ap->promisc = 0; | 
 | 2868 | 	} | 
 | 2869 |  | 
 | 2870 | 	/* | 
 | 2871 | 	 * For the time being multicast relies on the upper layers | 
 | 2872 | 	 * filtering it properly. The Firmware does not allow one to | 
 | 2873 | 	 * set the entire multicast list at a time and keeping track of | 
 | 2874 | 	 * it here is going to be messy. | 
 | 2875 | 	 */ | 
 | 2876 | 	if ((dev->mc_count) && !(ap->mcast_all)) { | 
 | 2877 | 		cmd.evt = C_SET_MULTICAST_MODE; | 
 | 2878 | 		cmd.code = C_C_MCAST_ENABLE; | 
 | 2879 | 		cmd.idx = 0; | 
 | 2880 | 		ace_issue_cmd(regs, &cmd); | 
 | 2881 | 	}else if (!ap->mcast_all) { | 
 | 2882 | 		cmd.evt = C_SET_MULTICAST_MODE; | 
 | 2883 | 		cmd.code = C_C_MCAST_DISABLE; | 
 | 2884 | 		cmd.idx = 0; | 
 | 2885 | 		ace_issue_cmd(regs, &cmd); | 
 | 2886 | 	} | 
 | 2887 | } | 
 | 2888 |  | 
 | 2889 |  | 
 | 2890 | static struct net_device_stats *ace_get_stats(struct net_device *dev) | 
 | 2891 | { | 
 | 2892 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2893 | 	struct ace_mac_stats __iomem *mac_stats = | 
 | 2894 | 		(struct ace_mac_stats __iomem *)ap->regs->Stats; | 
 | 2895 |  | 
 | 2896 | 	ap->stats.rx_missed_errors = readl(&mac_stats->drop_space); | 
 | 2897 | 	ap->stats.multicast = readl(&mac_stats->kept_mc); | 
 | 2898 | 	ap->stats.collisions = readl(&mac_stats->coll); | 
 | 2899 |  | 
 | 2900 | 	return &ap->stats; | 
 | 2901 | } | 
 | 2902 |  | 
 | 2903 |  | 
 | 2904 | static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src, | 
 | 2905 | 			    u32 dest, int size) | 
 | 2906 | { | 
 | 2907 | 	void __iomem *tdest; | 
 | 2908 | 	u32 *wsrc; | 
 | 2909 | 	short tsize, i; | 
 | 2910 |  | 
 | 2911 | 	if (size <= 0) | 
 | 2912 | 		return; | 
 | 2913 |  | 
 | 2914 | 	while (size > 0) { | 
 | 2915 | 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | 
 | 2916 | 			    min_t(u32, size, ACE_WINDOW_SIZE)); | 
 | 2917 | 		tdest = (void __iomem *) ®s->Window +  | 
 | 2918 | 			(dest & (ACE_WINDOW_SIZE - 1)); | 
 | 2919 | 		writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | 
 | 2920 | 		/* | 
 | 2921 | 		 * This requires byte swapping on big endian, however | 
 | 2922 | 		 * writel does that for us | 
 | 2923 | 		 */ | 
 | 2924 | 		wsrc = src; | 
 | 2925 | 		for (i = 0; i < (tsize / 4); i++) { | 
 | 2926 | 			writel(wsrc[i], tdest + i*4); | 
 | 2927 | 		} | 
 | 2928 | 		dest += tsize; | 
 | 2929 | 		src += tsize; | 
 | 2930 | 		size -= tsize; | 
 | 2931 | 	} | 
 | 2932 |  | 
 | 2933 | 	return; | 
 | 2934 | } | 
 | 2935 |  | 
 | 2936 |  | 
 | 2937 | static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) | 
 | 2938 | { | 
 | 2939 | 	void __iomem *tdest; | 
 | 2940 | 	short tsize = 0, i; | 
 | 2941 |  | 
 | 2942 | 	if (size <= 0) | 
 | 2943 | 		return; | 
 | 2944 |  | 
 | 2945 | 	while (size > 0) { | 
 | 2946 | 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | 
 | 2947 | 				min_t(u32, size, ACE_WINDOW_SIZE)); | 
 | 2948 | 		tdest = (void __iomem *) ®s->Window +  | 
 | 2949 | 			(dest & (ACE_WINDOW_SIZE - 1)); | 
 | 2950 | 		writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | 
 | 2951 |  | 
 | 2952 | 		for (i = 0; i < (tsize / 4); i++) { | 
 | 2953 | 			writel(0, tdest + i*4); | 
 | 2954 | 		} | 
 | 2955 |  | 
 | 2956 | 		dest += tsize; | 
 | 2957 | 		size -= tsize; | 
 | 2958 | 	} | 
 | 2959 |  | 
 | 2960 | 	return; | 
 | 2961 | } | 
 | 2962 |  | 
 | 2963 |  | 
 | 2964 | /* | 
 | 2965 |  * Download the firmware into the SRAM on the NIC | 
 | 2966 |  * | 
 | 2967 |  * This operation requires the NIC to be halted and is performed with | 
 | 2968 |  * interrupts disabled and with the spinlock hold. | 
 | 2969 |  */ | 
 | 2970 | int __devinit ace_load_firmware(struct net_device *dev) | 
 | 2971 | { | 
 | 2972 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 2973 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 2974 |  | 
 | 2975 | 	if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { | 
 | 2976 | 		printk(KERN_ERR "%s: trying to download firmware while the " | 
 | 2977 | 		       "CPU is running!\n", ap->name); | 
 | 2978 | 		return -EFAULT; | 
 | 2979 | 	} | 
 | 2980 |  | 
 | 2981 | 	/* | 
 | 2982 | 	 * Do not try to clear more than 512KB or we end up seeing | 
 | 2983 | 	 * funny things on NICs with only 512KB SRAM | 
 | 2984 | 	 */ | 
 | 2985 | 	ace_clear(regs, 0x2000, 0x80000-0x2000); | 
 | 2986 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 2987 | 		ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen); | 
 | 2988 | 		ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen); | 
 | 2989 | 		ace_copy(regs, tigonFwRodata, tigonFwRodataAddr, | 
 | 2990 | 			 tigonFwRodataLen); | 
 | 2991 | 		ace_clear(regs, tigonFwBssAddr, tigonFwBssLen); | 
 | 2992 | 		ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen); | 
 | 2993 | 	}else if (ap->version == 2) { | 
 | 2994 | 		ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen); | 
 | 2995 | 		ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen); | 
 | 2996 | 		ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen); | 
 | 2997 | 		ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr, | 
 | 2998 | 			 tigon2FwRodataLen); | 
 | 2999 | 		ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen); | 
 | 3000 | 	} | 
 | 3001 |  | 
 | 3002 | 	return 0; | 
 | 3003 | } | 
 | 3004 |  | 
 | 3005 |  | 
 | 3006 | /* | 
 | 3007 |  * The eeprom on the AceNIC is an Atmel i2c EEPROM. | 
 | 3008 |  * | 
 | 3009 |  * Accessing the EEPROM is `interesting' to say the least - don't read | 
 | 3010 |  * this code right after dinner. | 
 | 3011 |  * | 
 | 3012 |  * This is all about black magic and bit-banging the device .... I | 
 | 3013 |  * wonder in what hospital they have put the guy who designed the i2c | 
 | 3014 |  * specs. | 
 | 3015 |  * | 
 | 3016 |  * Oh yes, this is only the beginning! | 
 | 3017 |  * | 
 | 3018 |  * Thanks to Stevarino Webinski for helping tracking down the bugs in the | 
 | 3019 |  * code i2c readout code by beta testing all my hacks. | 
 | 3020 |  */ | 
 | 3021 | static void __devinit eeprom_start(struct ace_regs __iomem *regs) | 
 | 3022 | { | 
 | 3023 | 	u32 local; | 
 | 3024 |  | 
 | 3025 | 	readl(®s->LocalCtrl); | 
 | 3026 | 	udelay(ACE_SHORT_DELAY); | 
 | 3027 | 	local = readl(®s->LocalCtrl); | 
 | 3028 | 	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; | 
 | 3029 | 	writel(local, ®s->LocalCtrl); | 
 | 3030 | 	readl(®s->LocalCtrl); | 
 | 3031 | 	mb(); | 
 | 3032 | 	udelay(ACE_SHORT_DELAY); | 
 | 3033 | 	local |= EEPROM_CLK_OUT; | 
 | 3034 | 	writel(local, ®s->LocalCtrl); | 
 | 3035 | 	readl(®s->LocalCtrl); | 
 | 3036 | 	mb(); | 
 | 3037 | 	udelay(ACE_SHORT_DELAY); | 
 | 3038 | 	local &= ~EEPROM_DATA_OUT; | 
 | 3039 | 	writel(local, ®s->LocalCtrl); | 
 | 3040 | 	readl(®s->LocalCtrl); | 
 | 3041 | 	mb(); | 
 | 3042 | 	udelay(ACE_SHORT_DELAY); | 
 | 3043 | 	local &= ~EEPROM_CLK_OUT; | 
 | 3044 | 	writel(local, ®s->LocalCtrl); | 
 | 3045 | 	readl(®s->LocalCtrl); | 
 | 3046 | 	mb(); | 
 | 3047 | } | 
 | 3048 |  | 
 | 3049 |  | 
 | 3050 | static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic) | 
 | 3051 | { | 
 | 3052 | 	short i; | 
 | 3053 | 	u32 local; | 
 | 3054 |  | 
 | 3055 | 	udelay(ACE_SHORT_DELAY); | 
 | 3056 | 	local = readl(®s->LocalCtrl); | 
 | 3057 | 	local &= ~EEPROM_DATA_OUT; | 
 | 3058 | 	local |= EEPROM_WRITE_ENABLE; | 
 | 3059 | 	writel(local, ®s->LocalCtrl); | 
 | 3060 | 	readl(®s->LocalCtrl); | 
 | 3061 | 	mb(); | 
 | 3062 |  | 
 | 3063 | 	for (i = 0; i < 8; i++, magic <<= 1) { | 
 | 3064 | 		udelay(ACE_SHORT_DELAY); | 
 | 3065 | 		if (magic & 0x80)  | 
 | 3066 | 			local |= EEPROM_DATA_OUT; | 
 | 3067 | 		else | 
 | 3068 | 			local &= ~EEPROM_DATA_OUT; | 
 | 3069 | 		writel(local, ®s->LocalCtrl); | 
 | 3070 | 		readl(®s->LocalCtrl); | 
 | 3071 | 		mb(); | 
 | 3072 |  | 
 | 3073 | 		udelay(ACE_SHORT_DELAY); | 
 | 3074 | 		local |= EEPROM_CLK_OUT; | 
 | 3075 | 		writel(local, ®s->LocalCtrl); | 
 | 3076 | 		readl(®s->LocalCtrl); | 
 | 3077 | 		mb(); | 
 | 3078 | 		udelay(ACE_SHORT_DELAY); | 
 | 3079 | 		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); | 
 | 3080 | 		writel(local, ®s->LocalCtrl); | 
 | 3081 | 		readl(®s->LocalCtrl); | 
 | 3082 | 		mb(); | 
 | 3083 | 	} | 
 | 3084 | } | 
 | 3085 |  | 
 | 3086 |  | 
 | 3087 | static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs) | 
 | 3088 | { | 
 | 3089 | 	int state; | 
 | 3090 | 	u32 local; | 
 | 3091 |  | 
 | 3092 | 	local = readl(®s->LocalCtrl); | 
 | 3093 | 	local &= ~EEPROM_WRITE_ENABLE; | 
 | 3094 | 	writel(local, ®s->LocalCtrl); | 
 | 3095 | 	readl(®s->LocalCtrl); | 
 | 3096 | 	mb(); | 
 | 3097 | 	udelay(ACE_LONG_DELAY); | 
 | 3098 | 	local |= EEPROM_CLK_OUT; | 
 | 3099 | 	writel(local, ®s->LocalCtrl); | 
 | 3100 | 	readl(®s->LocalCtrl); | 
 | 3101 | 	mb(); | 
 | 3102 | 	udelay(ACE_SHORT_DELAY); | 
 | 3103 | 	/* sample data in middle of high clk */ | 
 | 3104 | 	state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; | 
 | 3105 | 	udelay(ACE_SHORT_DELAY); | 
 | 3106 | 	mb(); | 
 | 3107 | 	writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | 
 | 3108 | 	readl(®s->LocalCtrl); | 
 | 3109 | 	mb(); | 
 | 3110 |  | 
 | 3111 | 	return state; | 
 | 3112 | } | 
 | 3113 |  | 
 | 3114 |  | 
 | 3115 | static void __devinit eeprom_stop(struct ace_regs __iomem *regs) | 
 | 3116 | { | 
 | 3117 | 	u32 local; | 
 | 3118 |  | 
 | 3119 | 	udelay(ACE_SHORT_DELAY); | 
 | 3120 | 	local = readl(®s->LocalCtrl); | 
 | 3121 | 	local |= EEPROM_WRITE_ENABLE; | 
 | 3122 | 	writel(local, ®s->LocalCtrl); | 
 | 3123 | 	readl(®s->LocalCtrl); | 
 | 3124 | 	mb(); | 
 | 3125 | 	udelay(ACE_SHORT_DELAY); | 
 | 3126 | 	local &= ~EEPROM_DATA_OUT; | 
 | 3127 | 	writel(local, ®s->LocalCtrl); | 
 | 3128 | 	readl(®s->LocalCtrl); | 
 | 3129 | 	mb(); | 
 | 3130 | 	udelay(ACE_SHORT_DELAY); | 
 | 3131 | 	local |= EEPROM_CLK_OUT; | 
 | 3132 | 	writel(local, ®s->LocalCtrl); | 
 | 3133 | 	readl(®s->LocalCtrl); | 
 | 3134 | 	mb(); | 
 | 3135 | 	udelay(ACE_SHORT_DELAY); | 
 | 3136 | 	local |= EEPROM_DATA_OUT; | 
 | 3137 | 	writel(local, ®s->LocalCtrl); | 
 | 3138 | 	readl(®s->LocalCtrl); | 
 | 3139 | 	mb(); | 
 | 3140 | 	udelay(ACE_LONG_DELAY); | 
 | 3141 | 	local &= ~EEPROM_CLK_OUT; | 
 | 3142 | 	writel(local, ®s->LocalCtrl); | 
 | 3143 | 	mb(); | 
 | 3144 | } | 
 | 3145 |  | 
 | 3146 |  | 
 | 3147 | /* | 
 | 3148 |  * Read a whole byte from the EEPROM. | 
 | 3149 |  */ | 
 | 3150 | static int __devinit read_eeprom_byte(struct net_device *dev, | 
 | 3151 | 				   unsigned long offset) | 
 | 3152 | { | 
 | 3153 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 3154 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 3155 | 	unsigned long flags; | 
 | 3156 | 	u32 local; | 
 | 3157 | 	int result = 0; | 
 | 3158 | 	short i; | 
 | 3159 |  | 
 | 3160 | 	if (!dev) { | 
 | 3161 | 		printk(KERN_ERR "No device!\n"); | 
 | 3162 | 		result = -ENODEV; | 
 | 3163 | 		goto out; | 
 | 3164 | 	} | 
 | 3165 |  | 
 | 3166 | 	/* | 
 | 3167 | 	 * Don't take interrupts on this CPU will bit banging | 
 | 3168 | 	 * the %#%#@$ I2C device | 
 | 3169 | 	 */ | 
 | 3170 | 	local_irq_save(flags); | 
 | 3171 |  | 
 | 3172 | 	eeprom_start(regs); | 
 | 3173 |  | 
 | 3174 | 	eeprom_prep(regs, EEPROM_WRITE_SELECT); | 
 | 3175 | 	if (eeprom_check_ack(regs)) { | 
 | 3176 | 		local_irq_restore(flags); | 
 | 3177 | 		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); | 
 | 3178 | 		result = -EIO; | 
 | 3179 | 		goto eeprom_read_error; | 
 | 3180 | 	} | 
 | 3181 |  | 
 | 3182 | 	eeprom_prep(regs, (offset >> 8) & 0xff); | 
 | 3183 | 	if (eeprom_check_ack(regs)) { | 
 | 3184 | 		local_irq_restore(flags); | 
 | 3185 | 		printk(KERN_ERR "%s: Unable to set address byte 0\n", | 
 | 3186 | 		       ap->name); | 
 | 3187 | 		result = -EIO; | 
 | 3188 | 		goto eeprom_read_error; | 
 | 3189 | 	} | 
 | 3190 |  | 
 | 3191 | 	eeprom_prep(regs, offset & 0xff); | 
 | 3192 | 	if (eeprom_check_ack(regs)) { | 
 | 3193 | 		local_irq_restore(flags); | 
 | 3194 | 		printk(KERN_ERR "%s: Unable to set address byte 1\n", | 
 | 3195 | 		       ap->name); | 
 | 3196 | 		result = -EIO; | 
 | 3197 | 		goto eeprom_read_error; | 
 | 3198 | 	} | 
 | 3199 |  | 
 | 3200 | 	eeprom_start(regs); | 
 | 3201 | 	eeprom_prep(regs, EEPROM_READ_SELECT); | 
 | 3202 | 	if (eeprom_check_ack(regs)) { | 
 | 3203 | 		local_irq_restore(flags); | 
 | 3204 | 		printk(KERN_ERR "%s: Unable to set READ_SELECT\n", | 
 | 3205 | 		       ap->name); | 
 | 3206 | 		result = -EIO; | 
 | 3207 | 		goto eeprom_read_error; | 
 | 3208 | 	} | 
 | 3209 |  | 
 | 3210 | 	for (i = 0; i < 8; i++) { | 
 | 3211 | 		local = readl(®s->LocalCtrl); | 
 | 3212 | 		local &= ~EEPROM_WRITE_ENABLE; | 
 | 3213 | 		writel(local, ®s->LocalCtrl); | 
 | 3214 | 		readl(®s->LocalCtrl); | 
 | 3215 | 		udelay(ACE_LONG_DELAY); | 
 | 3216 | 		mb(); | 
 | 3217 | 		local |= EEPROM_CLK_OUT; | 
 | 3218 | 		writel(local, ®s->LocalCtrl); | 
 | 3219 | 		readl(®s->LocalCtrl); | 
 | 3220 | 		mb(); | 
 | 3221 | 		udelay(ACE_SHORT_DELAY); | 
 | 3222 | 		/* sample data mid high clk */ | 
 | 3223 | 		result = (result << 1) | | 
 | 3224 | 			((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); | 
 | 3225 | 		udelay(ACE_SHORT_DELAY); | 
 | 3226 | 		mb(); | 
 | 3227 | 		local = readl(®s->LocalCtrl); | 
 | 3228 | 		local &= ~EEPROM_CLK_OUT; | 
 | 3229 | 		writel(local, ®s->LocalCtrl); | 
 | 3230 | 		readl(®s->LocalCtrl); | 
 | 3231 | 		udelay(ACE_SHORT_DELAY); | 
 | 3232 | 		mb(); | 
 | 3233 | 		if (i == 7) { | 
 | 3234 | 			local |= EEPROM_WRITE_ENABLE; | 
 | 3235 | 			writel(local, ®s->LocalCtrl); | 
 | 3236 | 			readl(®s->LocalCtrl); | 
 | 3237 | 			mb(); | 
 | 3238 | 			udelay(ACE_SHORT_DELAY); | 
 | 3239 | 		} | 
 | 3240 | 	} | 
 | 3241 |  | 
 | 3242 | 	local |= EEPROM_DATA_OUT; | 
 | 3243 | 	writel(local, ®s->LocalCtrl); | 
 | 3244 | 	readl(®s->LocalCtrl); | 
 | 3245 | 	mb(); | 
 | 3246 | 	udelay(ACE_SHORT_DELAY); | 
 | 3247 | 	writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); | 
 | 3248 | 	readl(®s->LocalCtrl); | 
 | 3249 | 	udelay(ACE_LONG_DELAY); | 
 | 3250 | 	writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | 
 | 3251 | 	readl(®s->LocalCtrl); | 
 | 3252 | 	mb(); | 
 | 3253 | 	udelay(ACE_SHORT_DELAY); | 
 | 3254 | 	eeprom_stop(regs); | 
 | 3255 |  | 
 | 3256 | 	local_irq_restore(flags); | 
 | 3257 |  out: | 
 | 3258 | 	return result; | 
 | 3259 |  | 
 | 3260 |  eeprom_read_error: | 
 | 3261 | 	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", | 
 | 3262 | 	       ap->name, offset); | 
 | 3263 | 	goto out; | 
 | 3264 | } | 
 | 3265 |  | 
 | 3266 |  | 
 | 3267 | /* | 
 | 3268 |  * Local variables: | 
 | 3269 |  * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h   -c -o acenic.o acenic.c" | 
 | 3270 |  * End: | 
 | 3271 |  */ |