| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | 3 | *		operating system.  INET is implemented using the  BSD Socket | 
|  | 4 | *		interface as the means of communication with the user level. | 
|  | 5 | * | 
|  | 6 | *		Implementation of the Transmission Control Protocol(TCP). | 
|  | 7 | * | 
|  | 8 | * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $ | 
|  | 9 | * | 
|  | 10 | * Authors:	Ross Biro, <bir7@leland.Stanford.Edu> | 
|  | 11 | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | 12 | *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
|  | 13 | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | 14 | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | 15 | *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
|  | 16 | *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
|  | 17 | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | 18 | *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
|  | 19 | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | 20 | *		Jorge Cwik, <jorge@laser.satlink.net> | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | #include <linux/config.h> | 
|  | 24 | #include <linux/mm.h> | 
|  | 25 | #include <linux/module.h> | 
|  | 26 | #include <linux/sysctl.h> | 
|  | 27 | #include <linux/workqueue.h> | 
|  | 28 | #include <net/tcp.h> | 
|  | 29 | #include <net/inet_common.h> | 
|  | 30 | #include <net/xfrm.h> | 
|  | 31 |  | 
|  | 32 | #ifdef CONFIG_SYSCTL | 
|  | 33 | #define SYNC_INIT 0 /* let the user enable it */ | 
|  | 34 | #else | 
|  | 35 | #define SYNC_INIT 1 | 
|  | 36 | #endif | 
|  | 37 |  | 
|  | 38 | int sysctl_tcp_tw_recycle; | 
|  | 39 | int sysctl_tcp_max_tw_buckets = NR_FILE*2; | 
|  | 40 |  | 
|  | 41 | int sysctl_tcp_syncookies = SYNC_INIT; | 
|  | 42 | int sysctl_tcp_abort_on_overflow; | 
|  | 43 |  | 
|  | 44 | static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo); | 
|  | 45 |  | 
|  | 46 | static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) | 
|  | 47 | { | 
|  | 48 | if (seq == s_win) | 
|  | 49 | return 1; | 
|  | 50 | if (after(end_seq, s_win) && before(seq, e_win)) | 
|  | 51 | return 1; | 
|  | 52 | return (seq == e_win && seq == end_seq); | 
|  | 53 | } | 
|  | 54 |  | 
|  | 55 | /* New-style handling of TIME_WAIT sockets. */ | 
|  | 56 |  | 
|  | 57 | int tcp_tw_count; | 
|  | 58 |  | 
|  | 59 |  | 
|  | 60 | /* Must be called with locally disabled BHs. */ | 
|  | 61 | static void tcp_timewait_kill(struct tcp_tw_bucket *tw) | 
|  | 62 | { | 
|  | 63 | struct tcp_ehash_bucket *ehead; | 
|  | 64 | struct tcp_bind_hashbucket *bhead; | 
|  | 65 | struct tcp_bind_bucket *tb; | 
|  | 66 |  | 
|  | 67 | /* Unlink from established hashes. */ | 
|  | 68 | ehead = &tcp_ehash[tw->tw_hashent]; | 
|  | 69 | write_lock(&ehead->lock); | 
|  | 70 | if (hlist_unhashed(&tw->tw_node)) { | 
|  | 71 | write_unlock(&ehead->lock); | 
|  | 72 | return; | 
|  | 73 | } | 
|  | 74 | __hlist_del(&tw->tw_node); | 
|  | 75 | sk_node_init(&tw->tw_node); | 
|  | 76 | write_unlock(&ehead->lock); | 
|  | 77 |  | 
|  | 78 | /* Disassociate with bind bucket. */ | 
|  | 79 | bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)]; | 
|  | 80 | spin_lock(&bhead->lock); | 
|  | 81 | tb = tw->tw_tb; | 
|  | 82 | __hlist_del(&tw->tw_bind_node); | 
|  | 83 | tw->tw_tb = NULL; | 
|  | 84 | tcp_bucket_destroy(tb); | 
|  | 85 | spin_unlock(&bhead->lock); | 
|  | 86 |  | 
|  | 87 | #ifdef INET_REFCNT_DEBUG | 
|  | 88 | if (atomic_read(&tw->tw_refcnt) != 1) { | 
|  | 89 | printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw, | 
|  | 90 | atomic_read(&tw->tw_refcnt)); | 
|  | 91 | } | 
|  | 92 | #endif | 
|  | 93 | tcp_tw_put(tw); | 
|  | 94 | } | 
|  | 95 |  | 
|  | 96 | /* | 
|  | 97 | * * Main purpose of TIME-WAIT state is to close connection gracefully, | 
|  | 98 | *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN | 
|  | 99 | *   (and, probably, tail of data) and one or more our ACKs are lost. | 
|  | 100 | * * What is TIME-WAIT timeout? It is associated with maximal packet | 
|  | 101 | *   lifetime in the internet, which results in wrong conclusion, that | 
|  | 102 | *   it is set to catch "old duplicate segments" wandering out of their path. | 
|  | 103 | *   It is not quite correct. This timeout is calculated so that it exceeds | 
|  | 104 | *   maximal retransmission timeout enough to allow to lose one (or more) | 
|  | 105 | *   segments sent by peer and our ACKs. This time may be calculated from RTO. | 
|  | 106 | * * When TIME-WAIT socket receives RST, it means that another end | 
|  | 107 | *   finally closed and we are allowed to kill TIME-WAIT too. | 
|  | 108 | * * Second purpose of TIME-WAIT is catching old duplicate segments. | 
|  | 109 | *   Well, certainly it is pure paranoia, but if we load TIME-WAIT | 
|  | 110 | *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. | 
|  | 111 | * * If we invented some more clever way to catch duplicates | 
|  | 112 | *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. | 
|  | 113 | * | 
|  | 114 | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. | 
|  | 115 | * When you compare it to RFCs, please, read section SEGMENT ARRIVES | 
|  | 116 | * from the very beginning. | 
|  | 117 | * | 
|  | 118 | * NOTE. With recycling (and later with fin-wait-2) TW bucket | 
|  | 119 | * is _not_ stateless. It means, that strictly speaking we must | 
|  | 120 | * spinlock it. I do not want! Well, probability of misbehaviour | 
|  | 121 | * is ridiculously low and, seems, we could use some mb() tricks | 
|  | 122 | * to avoid misread sequence numbers, states etc.  --ANK | 
|  | 123 | */ | 
|  | 124 | enum tcp_tw_status | 
|  | 125 | tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb, | 
|  | 126 | struct tcphdr *th, unsigned len) | 
|  | 127 | { | 
|  | 128 | struct tcp_options_received tmp_opt; | 
|  | 129 | int paws_reject = 0; | 
|  | 130 |  | 
|  | 131 | tmp_opt.saw_tstamp = 0; | 
|  | 132 | if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) { | 
|  | 133 | tcp_parse_options(skb, &tmp_opt, 0); | 
|  | 134 |  | 
|  | 135 | if (tmp_opt.saw_tstamp) { | 
|  | 136 | tmp_opt.ts_recent	   = tw->tw_ts_recent; | 
|  | 137 | tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp; | 
|  | 138 | paws_reject = tcp_paws_check(&tmp_opt, th->rst); | 
|  | 139 | } | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | if (tw->tw_substate == TCP_FIN_WAIT2) { | 
|  | 143 | /* Just repeat all the checks of tcp_rcv_state_process() */ | 
|  | 144 |  | 
|  | 145 | /* Out of window, send ACK */ | 
|  | 146 | if (paws_reject || | 
|  | 147 | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 
|  | 148 | tw->tw_rcv_nxt, | 
|  | 149 | tw->tw_rcv_nxt + tw->tw_rcv_wnd)) | 
|  | 150 | return TCP_TW_ACK; | 
|  | 151 |  | 
|  | 152 | if (th->rst) | 
|  | 153 | goto kill; | 
|  | 154 |  | 
|  | 155 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt)) | 
|  | 156 | goto kill_with_rst; | 
|  | 157 |  | 
|  | 158 | /* Dup ACK? */ | 
|  | 159 | if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) || | 
|  | 160 | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { | 
|  | 161 | tcp_tw_put(tw); | 
|  | 162 | return TCP_TW_SUCCESS; | 
|  | 163 | } | 
|  | 164 |  | 
|  | 165 | /* New data or FIN. If new data arrive after half-duplex close, | 
|  | 166 | * reset. | 
|  | 167 | */ | 
|  | 168 | if (!th->fin || | 
|  | 169 | TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) { | 
|  | 170 | kill_with_rst: | 
|  | 171 | tcp_tw_deschedule(tw); | 
|  | 172 | tcp_tw_put(tw); | 
|  | 173 | return TCP_TW_RST; | 
|  | 174 | } | 
|  | 175 |  | 
|  | 176 | /* FIN arrived, enter true time-wait state. */ | 
|  | 177 | tw->tw_substate	= TCP_TIME_WAIT; | 
|  | 178 | tw->tw_rcv_nxt	= TCP_SKB_CB(skb)->end_seq; | 
|  | 179 | if (tmp_opt.saw_tstamp) { | 
|  | 180 | tw->tw_ts_recent_stamp	= xtime.tv_sec; | 
|  | 181 | tw->tw_ts_recent	= tmp_opt.rcv_tsval; | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | /* I am shamed, but failed to make it more elegant. | 
|  | 185 | * Yes, it is direct reference to IP, which is impossible | 
|  | 186 | * to generalize to IPv6. Taking into account that IPv6 | 
|  | 187 | * do not undertsnad recycling in any case, it not | 
|  | 188 | * a big problem in practice. --ANK */ | 
|  | 189 | if (tw->tw_family == AF_INET && | 
|  | 190 | sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp && | 
|  | 191 | tcp_v4_tw_remember_stamp(tw)) | 
|  | 192 | tcp_tw_schedule(tw, tw->tw_timeout); | 
|  | 193 | else | 
|  | 194 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | 
|  | 195 | return TCP_TW_ACK; | 
|  | 196 | } | 
|  | 197 |  | 
|  | 198 | /* | 
|  | 199 | *	Now real TIME-WAIT state. | 
|  | 200 | * | 
|  | 201 | *	RFC 1122: | 
|  | 202 | *	"When a connection is [...] on TIME-WAIT state [...] | 
|  | 203 | *	[a TCP] MAY accept a new SYN from the remote TCP to | 
|  | 204 | *	reopen the connection directly, if it: | 
|  | 205 | * | 
|  | 206 | *	(1)  assigns its initial sequence number for the new | 
|  | 207 | *	connection to be larger than the largest sequence | 
|  | 208 | *	number it used on the previous connection incarnation, | 
|  | 209 | *	and | 
|  | 210 | * | 
|  | 211 | *	(2)  returns to TIME-WAIT state if the SYN turns out | 
|  | 212 | *	to be an old duplicate". | 
|  | 213 | */ | 
|  | 214 |  | 
|  | 215 | if (!paws_reject && | 
|  | 216 | (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt && | 
|  | 217 | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { | 
|  | 218 | /* In window segment, it may be only reset or bare ack. */ | 
|  | 219 |  | 
|  | 220 | if (th->rst) { | 
|  | 221 | /* This is TIME_WAIT assasination, in two flavors. | 
|  | 222 | * Oh well... nobody has a sufficient solution to this | 
|  | 223 | * protocol bug yet. | 
|  | 224 | */ | 
|  | 225 | if (sysctl_tcp_rfc1337 == 0) { | 
|  | 226 | kill: | 
|  | 227 | tcp_tw_deschedule(tw); | 
|  | 228 | tcp_tw_put(tw); | 
|  | 229 | return TCP_TW_SUCCESS; | 
|  | 230 | } | 
|  | 231 | } | 
|  | 232 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | 
|  | 233 |  | 
|  | 234 | if (tmp_opt.saw_tstamp) { | 
|  | 235 | tw->tw_ts_recent	= tmp_opt.rcv_tsval; | 
|  | 236 | tw->tw_ts_recent_stamp	= xtime.tv_sec; | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | tcp_tw_put(tw); | 
|  | 240 | return TCP_TW_SUCCESS; | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | /* Out of window segment. | 
|  | 244 |  | 
|  | 245 | All the segments are ACKed immediately. | 
|  | 246 |  | 
|  | 247 | The only exception is new SYN. We accept it, if it is | 
|  | 248 | not old duplicate and we are not in danger to be killed | 
|  | 249 | by delayed old duplicates. RFC check is that it has | 
|  | 250 | newer sequence number works at rates <40Mbit/sec. | 
|  | 251 | However, if paws works, it is reliable AND even more, | 
|  | 252 | we even may relax silly seq space cutoff. | 
|  | 253 |  | 
|  | 254 | RED-PEN: we violate main RFC requirement, if this SYN will appear | 
|  | 255 | old duplicate (i.e. we receive RST in reply to SYN-ACK), | 
|  | 256 | we must return socket to time-wait state. It is not good, | 
|  | 257 | but not fatal yet. | 
|  | 258 | */ | 
|  | 259 |  | 
|  | 260 | if (th->syn && !th->rst && !th->ack && !paws_reject && | 
|  | 261 | (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) || | 
|  | 262 | (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { | 
|  | 263 | u32 isn = tw->tw_snd_nxt + 65535 + 2; | 
|  | 264 | if (isn == 0) | 
|  | 265 | isn++; | 
|  | 266 | TCP_SKB_CB(skb)->when = isn; | 
|  | 267 | return TCP_TW_SYN; | 
|  | 268 | } | 
|  | 269 |  | 
|  | 270 | if (paws_reject) | 
|  | 271 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | 
|  | 272 |  | 
|  | 273 | if(!th->rst) { | 
|  | 274 | /* In this case we must reset the TIMEWAIT timer. | 
|  | 275 | * | 
|  | 276 | * If it is ACKless SYN it may be both old duplicate | 
|  | 277 | * and new good SYN with random sequence number <rcv_nxt. | 
|  | 278 | * Do not reschedule in the last case. | 
|  | 279 | */ | 
|  | 280 | if (paws_reject || th->ack) | 
|  | 281 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | 
|  | 282 |  | 
|  | 283 | /* Send ACK. Note, we do not put the bucket, | 
|  | 284 | * it will be released by caller. | 
|  | 285 | */ | 
|  | 286 | return TCP_TW_ACK; | 
|  | 287 | } | 
|  | 288 | tcp_tw_put(tw); | 
|  | 289 | return TCP_TW_SUCCESS; | 
|  | 290 | } | 
|  | 291 |  | 
|  | 292 | /* Enter the time wait state.  This is called with locally disabled BH. | 
|  | 293 | * Essentially we whip up a timewait bucket, copy the | 
|  | 294 | * relevant info into it from the SK, and mess with hash chains | 
|  | 295 | * and list linkage. | 
|  | 296 | */ | 
|  | 297 | static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw) | 
|  | 298 | { | 
|  | 299 | struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent]; | 
|  | 300 | struct tcp_bind_hashbucket *bhead; | 
|  | 301 |  | 
|  | 302 | /* Step 1: Put TW into bind hash. Original socket stays there too. | 
|  | 303 | Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in | 
|  | 304 | binding cache, even if it is closed. | 
|  | 305 | */ | 
|  | 306 | bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)]; | 
|  | 307 | spin_lock(&bhead->lock); | 
|  | 308 | tw->tw_tb = tcp_sk(sk)->bind_hash; | 
|  | 309 | BUG_TRAP(tcp_sk(sk)->bind_hash); | 
|  | 310 | tw_add_bind_node(tw, &tw->tw_tb->owners); | 
|  | 311 | spin_unlock(&bhead->lock); | 
|  | 312 |  | 
|  | 313 | write_lock(&ehead->lock); | 
|  | 314 |  | 
|  | 315 | /* Step 2: Remove SK from established hash. */ | 
|  | 316 | if (__sk_del_node_init(sk)) | 
|  | 317 | sock_prot_dec_use(sk->sk_prot); | 
|  | 318 |  | 
|  | 319 | /* Step 3: Hash TW into TIMEWAIT half of established hash table. */ | 
|  | 320 | tw_add_node(tw, &(ehead + tcp_ehash_size)->chain); | 
|  | 321 | atomic_inc(&tw->tw_refcnt); | 
|  | 322 |  | 
|  | 323 | write_unlock(&ehead->lock); | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | /* | 
|  | 327 | * Move a socket to time-wait or dead fin-wait-2 state. | 
|  | 328 | */ | 
|  | 329 | void tcp_time_wait(struct sock *sk, int state, int timeo) | 
|  | 330 | { | 
|  | 331 | struct tcp_tw_bucket *tw = NULL; | 
|  | 332 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 333 | int recycle_ok = 0; | 
|  | 334 |  | 
|  | 335 | if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp) | 
|  | 336 | recycle_ok = tp->af_specific->remember_stamp(sk); | 
|  | 337 |  | 
|  | 338 | if (tcp_tw_count < sysctl_tcp_max_tw_buckets) | 
|  | 339 | tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC); | 
|  | 340 |  | 
|  | 341 | if(tw != NULL) { | 
|  | 342 | struct inet_sock *inet = inet_sk(sk); | 
|  | 343 | int rto = (tp->rto<<2) - (tp->rto>>1); | 
|  | 344 |  | 
|  | 345 | /* Give us an identity. */ | 
|  | 346 | tw->tw_daddr		= inet->daddr; | 
|  | 347 | tw->tw_rcv_saddr	= inet->rcv_saddr; | 
|  | 348 | tw->tw_bound_dev_if	= sk->sk_bound_dev_if; | 
|  | 349 | tw->tw_num		= inet->num; | 
|  | 350 | tw->tw_state		= TCP_TIME_WAIT; | 
|  | 351 | tw->tw_substate		= state; | 
|  | 352 | tw->tw_sport		= inet->sport; | 
|  | 353 | tw->tw_dport		= inet->dport; | 
|  | 354 | tw->tw_family		= sk->sk_family; | 
|  | 355 | tw->tw_reuse		= sk->sk_reuse; | 
|  | 356 | tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale; | 
|  | 357 | atomic_set(&tw->tw_refcnt, 1); | 
|  | 358 |  | 
|  | 359 | tw->tw_hashent		= sk->sk_hashent; | 
|  | 360 | tw->tw_rcv_nxt		= tp->rcv_nxt; | 
|  | 361 | tw->tw_snd_nxt		= tp->snd_nxt; | 
|  | 362 | tw->tw_rcv_wnd		= tcp_receive_window(tp); | 
|  | 363 | tw->tw_ts_recent	= tp->rx_opt.ts_recent; | 
|  | 364 | tw->tw_ts_recent_stamp	= tp->rx_opt.ts_recent_stamp; | 
|  | 365 | tw_dead_node_init(tw); | 
|  | 366 |  | 
|  | 367 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 
|  | 368 | if (tw->tw_family == PF_INET6) { | 
|  | 369 | struct ipv6_pinfo *np = inet6_sk(sk); | 
|  | 370 |  | 
|  | 371 | ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr); | 
|  | 372 | ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr); | 
|  | 373 | tw->tw_v6_ipv6only = np->ipv6only; | 
|  | 374 | } else { | 
|  | 375 | memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr)); | 
|  | 376 | memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr)); | 
|  | 377 | tw->tw_v6_ipv6only = 0; | 
|  | 378 | } | 
|  | 379 | #endif | 
|  | 380 | /* Linkage updates. */ | 
|  | 381 | __tcp_tw_hashdance(sk, tw); | 
|  | 382 |  | 
|  | 383 | /* Get the TIME_WAIT timeout firing. */ | 
|  | 384 | if (timeo < rto) | 
|  | 385 | timeo = rto; | 
|  | 386 |  | 
|  | 387 | if (recycle_ok) { | 
|  | 388 | tw->tw_timeout = rto; | 
|  | 389 | } else { | 
|  | 390 | tw->tw_timeout = TCP_TIMEWAIT_LEN; | 
|  | 391 | if (state == TCP_TIME_WAIT) | 
|  | 392 | timeo = TCP_TIMEWAIT_LEN; | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | tcp_tw_schedule(tw, timeo); | 
|  | 396 | tcp_tw_put(tw); | 
|  | 397 | } else { | 
|  | 398 | /* Sorry, if we're out of memory, just CLOSE this | 
|  | 399 | * socket up.  We've got bigger problems than | 
|  | 400 | * non-graceful socket closings. | 
|  | 401 | */ | 
|  | 402 | if (net_ratelimit()) | 
|  | 403 | printk(KERN_INFO "TCP: time wait bucket table overflow\n"); | 
|  | 404 | } | 
|  | 405 |  | 
|  | 406 | tcp_update_metrics(sk); | 
|  | 407 | tcp_done(sk); | 
|  | 408 | } | 
|  | 409 |  | 
|  | 410 | /* Kill off TIME_WAIT sockets once their lifetime has expired. */ | 
|  | 411 | static int tcp_tw_death_row_slot; | 
|  | 412 |  | 
|  | 413 | static void tcp_twkill(unsigned long); | 
|  | 414 |  | 
|  | 415 | /* TIME_WAIT reaping mechanism. */ | 
|  | 416 | #define TCP_TWKILL_SLOTS	8	/* Please keep this a power of 2. */ | 
|  | 417 | #define TCP_TWKILL_PERIOD	(TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS) | 
|  | 418 |  | 
|  | 419 | #define TCP_TWKILL_QUOTA	100 | 
|  | 420 |  | 
|  | 421 | static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS]; | 
|  | 422 | static DEFINE_SPINLOCK(tw_death_lock); | 
|  | 423 | static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0); | 
|  | 424 | static void twkill_work(void *); | 
|  | 425 | static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL); | 
|  | 426 | static u32 twkill_thread_slots; | 
|  | 427 |  | 
|  | 428 | /* Returns non-zero if quota exceeded.  */ | 
|  | 429 | static int tcp_do_twkill_work(int slot, unsigned int quota) | 
|  | 430 | { | 
|  | 431 | struct tcp_tw_bucket *tw; | 
|  | 432 | struct hlist_node *node; | 
|  | 433 | unsigned int killed; | 
|  | 434 | int ret; | 
|  | 435 |  | 
|  | 436 | /* NOTE: compare this to previous version where lock | 
|  | 437 | * was released after detaching chain. It was racy, | 
|  | 438 | * because tw buckets are scheduled in not serialized context | 
|  | 439 | * in 2.3 (with netfilter), and with softnet it is common, because | 
|  | 440 | * soft irqs are not sequenced. | 
|  | 441 | */ | 
|  | 442 | killed = 0; | 
|  | 443 | ret = 0; | 
|  | 444 | rescan: | 
|  | 445 | tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) { | 
|  | 446 | __tw_del_dead_node(tw); | 
|  | 447 | spin_unlock(&tw_death_lock); | 
|  | 448 | tcp_timewait_kill(tw); | 
|  | 449 | tcp_tw_put(tw); | 
|  | 450 | killed++; | 
|  | 451 | spin_lock(&tw_death_lock); | 
|  | 452 | if (killed > quota) { | 
|  | 453 | ret = 1; | 
|  | 454 | break; | 
|  | 455 | } | 
|  | 456 |  | 
|  | 457 | /* While we dropped tw_death_lock, another cpu may have | 
|  | 458 | * killed off the next TW bucket in the list, therefore | 
|  | 459 | * do a fresh re-read of the hlist head node with the | 
|  | 460 | * lock reacquired.  We still use the hlist traversal | 
|  | 461 | * macro in order to get the prefetches. | 
|  | 462 | */ | 
|  | 463 | goto rescan; | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | tcp_tw_count -= killed; | 
|  | 467 | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed); | 
|  | 468 |  | 
|  | 469 | return ret; | 
|  | 470 | } | 
|  | 471 |  | 
|  | 472 | static void tcp_twkill(unsigned long dummy) | 
|  | 473 | { | 
|  | 474 | int need_timer, ret; | 
|  | 475 |  | 
|  | 476 | spin_lock(&tw_death_lock); | 
|  | 477 |  | 
|  | 478 | if (tcp_tw_count == 0) | 
|  | 479 | goto out; | 
|  | 480 |  | 
|  | 481 | need_timer = 0; | 
|  | 482 | ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA); | 
|  | 483 | if (ret) { | 
|  | 484 | twkill_thread_slots |= (1 << tcp_tw_death_row_slot); | 
|  | 485 | mb(); | 
|  | 486 | schedule_work(&tcp_twkill_work); | 
|  | 487 | need_timer = 1; | 
|  | 488 | } else { | 
|  | 489 | /* We purged the entire slot, anything left?  */ | 
|  | 490 | if (tcp_tw_count) | 
|  | 491 | need_timer = 1; | 
|  | 492 | } | 
|  | 493 | tcp_tw_death_row_slot = | 
|  | 494 | ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1)); | 
|  | 495 | if (need_timer) | 
|  | 496 | mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD); | 
|  | 497 | out: | 
|  | 498 | spin_unlock(&tw_death_lock); | 
|  | 499 | } | 
|  | 500 |  | 
|  | 501 | extern void twkill_slots_invalid(void); | 
|  | 502 |  | 
|  | 503 | static void twkill_work(void *dummy) | 
|  | 504 | { | 
|  | 505 | int i; | 
|  | 506 |  | 
|  | 507 | if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8)) | 
|  | 508 | twkill_slots_invalid(); | 
|  | 509 |  | 
|  | 510 | while (twkill_thread_slots) { | 
|  | 511 | spin_lock_bh(&tw_death_lock); | 
|  | 512 | for (i = 0; i < TCP_TWKILL_SLOTS; i++) { | 
|  | 513 | if (!(twkill_thread_slots & (1 << i))) | 
|  | 514 | continue; | 
|  | 515 |  | 
|  | 516 | while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) { | 
|  | 517 | if (need_resched()) { | 
|  | 518 | spin_unlock_bh(&tw_death_lock); | 
|  | 519 | schedule(); | 
|  | 520 | spin_lock_bh(&tw_death_lock); | 
|  | 521 | } | 
|  | 522 | } | 
|  | 523 |  | 
|  | 524 | twkill_thread_slots &= ~(1 << i); | 
|  | 525 | } | 
|  | 526 | spin_unlock_bh(&tw_death_lock); | 
|  | 527 | } | 
|  | 528 | } | 
|  | 529 |  | 
|  | 530 | /* These are always called from BH context.  See callers in | 
|  | 531 | * tcp_input.c to verify this. | 
|  | 532 | */ | 
|  | 533 |  | 
|  | 534 | /* This is for handling early-kills of TIME_WAIT sockets. */ | 
|  | 535 | void tcp_tw_deschedule(struct tcp_tw_bucket *tw) | 
|  | 536 | { | 
|  | 537 | spin_lock(&tw_death_lock); | 
|  | 538 | if (tw_del_dead_node(tw)) { | 
|  | 539 | tcp_tw_put(tw); | 
|  | 540 | if (--tcp_tw_count == 0) | 
|  | 541 | del_timer(&tcp_tw_timer); | 
|  | 542 | } | 
|  | 543 | spin_unlock(&tw_death_lock); | 
|  | 544 | tcp_timewait_kill(tw); | 
|  | 545 | } | 
|  | 546 |  | 
|  | 547 | /* Short-time timewait calendar */ | 
|  | 548 |  | 
|  | 549 | static int tcp_twcal_hand = -1; | 
|  | 550 | static int tcp_twcal_jiffie; | 
|  | 551 | static void tcp_twcal_tick(unsigned long); | 
|  | 552 | static struct timer_list tcp_twcal_timer = | 
|  | 553 | TIMER_INITIALIZER(tcp_twcal_tick, 0, 0); | 
|  | 554 | static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS]; | 
|  | 555 |  | 
|  | 556 | static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo) | 
|  | 557 | { | 
|  | 558 | struct hlist_head *list; | 
|  | 559 | int slot; | 
|  | 560 |  | 
|  | 561 | /* timeout := RTO * 3.5 | 
|  | 562 | * | 
|  | 563 | * 3.5 = 1+2+0.5 to wait for two retransmits. | 
|  | 564 | * | 
|  | 565 | * RATIONALE: if FIN arrived and we entered TIME-WAIT state, | 
|  | 566 | * our ACK acking that FIN can be lost. If N subsequent retransmitted | 
|  | 567 | * FINs (or previous seqments) are lost (probability of such event | 
|  | 568 | * is p^(N+1), where p is probability to lose single packet and | 
|  | 569 | * time to detect the loss is about RTO*(2^N - 1) with exponential | 
|  | 570 | * backoff). Normal timewait length is calculated so, that we | 
|  | 571 | * waited at least for one retransmitted FIN (maximal RTO is 120sec). | 
|  | 572 | * [ BTW Linux. following BSD, violates this requirement waiting | 
|  | 573 | *   only for 60sec, we should wait at least for 240 secs. | 
|  | 574 | *   Well, 240 consumes too much of resources 8) | 
|  | 575 | * ] | 
|  | 576 | * This interval is not reduced to catch old duplicate and | 
|  | 577 | * responces to our wandering segments living for two MSLs. | 
|  | 578 | * However, if we use PAWS to detect | 
|  | 579 | * old duplicates, we can reduce the interval to bounds required | 
|  | 580 | * by RTO, rather than MSL. So, if peer understands PAWS, we | 
|  | 581 | * kill tw bucket after 3.5*RTO (it is important that this number | 
|  | 582 | * is greater than TS tick!) and detect old duplicates with help | 
|  | 583 | * of PAWS. | 
|  | 584 | */ | 
|  | 585 | slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK; | 
|  | 586 |  | 
|  | 587 | spin_lock(&tw_death_lock); | 
|  | 588 |  | 
|  | 589 | /* Unlink it, if it was scheduled */ | 
|  | 590 | if (tw_del_dead_node(tw)) | 
|  | 591 | tcp_tw_count--; | 
|  | 592 | else | 
|  | 593 | atomic_inc(&tw->tw_refcnt); | 
|  | 594 |  | 
|  | 595 | if (slot >= TCP_TW_RECYCLE_SLOTS) { | 
|  | 596 | /* Schedule to slow timer */ | 
|  | 597 | if (timeo >= TCP_TIMEWAIT_LEN) { | 
|  | 598 | slot = TCP_TWKILL_SLOTS-1; | 
|  | 599 | } else { | 
|  | 600 | slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD; | 
|  | 601 | if (slot >= TCP_TWKILL_SLOTS) | 
|  | 602 | slot = TCP_TWKILL_SLOTS-1; | 
|  | 603 | } | 
|  | 604 | tw->tw_ttd = jiffies + timeo; | 
|  | 605 | slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1); | 
|  | 606 | list = &tcp_tw_death_row[slot]; | 
|  | 607 | } else { | 
|  | 608 | tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK); | 
|  | 609 |  | 
|  | 610 | if (tcp_twcal_hand < 0) { | 
|  | 611 | tcp_twcal_hand = 0; | 
|  | 612 | tcp_twcal_jiffie = jiffies; | 
|  | 613 | tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK); | 
|  | 614 | add_timer(&tcp_twcal_timer); | 
|  | 615 | } else { | 
|  | 616 | if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK))) | 
|  | 617 | mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK)); | 
|  | 618 | slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1); | 
|  | 619 | } | 
|  | 620 | list = &tcp_twcal_row[slot]; | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | hlist_add_head(&tw->tw_death_node, list); | 
|  | 624 |  | 
|  | 625 | if (tcp_tw_count++ == 0) | 
|  | 626 | mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD); | 
|  | 627 | spin_unlock(&tw_death_lock); | 
|  | 628 | } | 
|  | 629 |  | 
|  | 630 | void tcp_twcal_tick(unsigned long dummy) | 
|  | 631 | { | 
|  | 632 | int n, slot; | 
|  | 633 | unsigned long j; | 
|  | 634 | unsigned long now = jiffies; | 
|  | 635 | int killed = 0; | 
|  | 636 | int adv = 0; | 
|  | 637 |  | 
|  | 638 | spin_lock(&tw_death_lock); | 
|  | 639 | if (tcp_twcal_hand < 0) | 
|  | 640 | goto out; | 
|  | 641 |  | 
|  | 642 | slot = tcp_twcal_hand; | 
|  | 643 | j = tcp_twcal_jiffie; | 
|  | 644 |  | 
|  | 645 | for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) { | 
|  | 646 | if (time_before_eq(j, now)) { | 
|  | 647 | struct hlist_node *node, *safe; | 
|  | 648 | struct tcp_tw_bucket *tw; | 
|  | 649 |  | 
|  | 650 | tw_for_each_inmate_safe(tw, node, safe, | 
|  | 651 | &tcp_twcal_row[slot]) { | 
|  | 652 | __tw_del_dead_node(tw); | 
|  | 653 | tcp_timewait_kill(tw); | 
|  | 654 | tcp_tw_put(tw); | 
|  | 655 | killed++; | 
|  | 656 | } | 
|  | 657 | } else { | 
|  | 658 | if (!adv) { | 
|  | 659 | adv = 1; | 
|  | 660 | tcp_twcal_jiffie = j; | 
|  | 661 | tcp_twcal_hand = slot; | 
|  | 662 | } | 
|  | 663 |  | 
|  | 664 | if (!hlist_empty(&tcp_twcal_row[slot])) { | 
|  | 665 | mod_timer(&tcp_twcal_timer, j); | 
|  | 666 | goto out; | 
|  | 667 | } | 
|  | 668 | } | 
|  | 669 | j += (1<<TCP_TW_RECYCLE_TICK); | 
|  | 670 | slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1); | 
|  | 671 | } | 
|  | 672 | tcp_twcal_hand = -1; | 
|  | 673 |  | 
|  | 674 | out: | 
|  | 675 | if ((tcp_tw_count -= killed) == 0) | 
|  | 676 | del_timer(&tcp_tw_timer); | 
|  | 677 | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed); | 
|  | 678 | spin_unlock(&tw_death_lock); | 
|  | 679 | } | 
|  | 680 |  | 
|  | 681 | /* This is not only more efficient than what we used to do, it eliminates | 
|  | 682 | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM | 
|  | 683 | * | 
|  | 684 | * Actually, we could lots of memory writes here. tp of listening | 
|  | 685 | * socket contains all necessary default parameters. | 
|  | 686 | */ | 
|  | 687 | struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb) | 
|  | 688 | { | 
|  | 689 | /* allocate the newsk from the same slab of the master sock, | 
|  | 690 | * if not, at sk_free time we'll try to free it from the wrong | 
|  | 691 | * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */ | 
|  | 692 | struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0); | 
|  | 693 |  | 
|  | 694 | if(newsk != NULL) { | 
|  | 695 | struct tcp_sock *newtp; | 
|  | 696 | struct sk_filter *filter; | 
|  | 697 |  | 
|  | 698 | memcpy(newsk, sk, sizeof(struct tcp_sock)); | 
|  | 699 | newsk->sk_state = TCP_SYN_RECV; | 
|  | 700 |  | 
|  | 701 | /* SANITY */ | 
|  | 702 | sk_node_init(&newsk->sk_node); | 
|  | 703 | tcp_sk(newsk)->bind_hash = NULL; | 
|  | 704 |  | 
|  | 705 | /* Clone the TCP header template */ | 
|  | 706 | inet_sk(newsk)->dport = req->rmt_port; | 
|  | 707 |  | 
|  | 708 | sock_lock_init(newsk); | 
|  | 709 | bh_lock_sock(newsk); | 
|  | 710 |  | 
|  | 711 | rwlock_init(&newsk->sk_dst_lock); | 
|  | 712 | atomic_set(&newsk->sk_rmem_alloc, 0); | 
|  | 713 | skb_queue_head_init(&newsk->sk_receive_queue); | 
|  | 714 | atomic_set(&newsk->sk_wmem_alloc, 0); | 
|  | 715 | skb_queue_head_init(&newsk->sk_write_queue); | 
|  | 716 | atomic_set(&newsk->sk_omem_alloc, 0); | 
|  | 717 | newsk->sk_wmem_queued = 0; | 
|  | 718 | newsk->sk_forward_alloc = 0; | 
|  | 719 |  | 
|  | 720 | sock_reset_flag(newsk, SOCK_DONE); | 
|  | 721 | newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; | 
|  | 722 | newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; | 
|  | 723 | newsk->sk_send_head = NULL; | 
|  | 724 | rwlock_init(&newsk->sk_callback_lock); | 
|  | 725 | skb_queue_head_init(&newsk->sk_error_queue); | 
|  | 726 | newsk->sk_write_space = sk_stream_write_space; | 
|  | 727 |  | 
|  | 728 | if ((filter = newsk->sk_filter) != NULL) | 
|  | 729 | sk_filter_charge(newsk, filter); | 
|  | 730 |  | 
|  | 731 | if (unlikely(xfrm_sk_clone_policy(newsk))) { | 
|  | 732 | /* It is still raw copy of parent, so invalidate | 
|  | 733 | * destructor and make plain sk_free() */ | 
|  | 734 | newsk->sk_destruct = NULL; | 
|  | 735 | sk_free(newsk); | 
|  | 736 | return NULL; | 
|  | 737 | } | 
|  | 738 |  | 
|  | 739 | /* Now setup tcp_sock */ | 
|  | 740 | newtp = tcp_sk(newsk); | 
|  | 741 | newtp->pred_flags = 0; | 
|  | 742 | newtp->rcv_nxt = req->rcv_isn + 1; | 
|  | 743 | newtp->snd_nxt = req->snt_isn + 1; | 
|  | 744 | newtp->snd_una = req->snt_isn + 1; | 
|  | 745 | newtp->snd_sml = req->snt_isn + 1; | 
|  | 746 |  | 
|  | 747 | tcp_prequeue_init(newtp); | 
|  | 748 |  | 
|  | 749 | tcp_init_wl(newtp, req->snt_isn, req->rcv_isn); | 
|  | 750 |  | 
|  | 751 | newtp->retransmits = 0; | 
|  | 752 | newtp->backoff = 0; | 
|  | 753 | newtp->srtt = 0; | 
|  | 754 | newtp->mdev = TCP_TIMEOUT_INIT; | 
|  | 755 | newtp->rto = TCP_TIMEOUT_INIT; | 
|  | 756 |  | 
|  | 757 | newtp->packets_out = 0; | 
|  | 758 | newtp->left_out = 0; | 
|  | 759 | newtp->retrans_out = 0; | 
|  | 760 | newtp->sacked_out = 0; | 
|  | 761 | newtp->fackets_out = 0; | 
|  | 762 | newtp->snd_ssthresh = 0x7fffffff; | 
|  | 763 |  | 
|  | 764 | /* So many TCP implementations out there (incorrectly) count the | 
|  | 765 | * initial SYN frame in their delayed-ACK and congestion control | 
|  | 766 | * algorithms that we must have the following bandaid to talk | 
|  | 767 | * efficiently to them.  -DaveM | 
|  | 768 | */ | 
|  | 769 | newtp->snd_cwnd = 2; | 
|  | 770 | newtp->snd_cwnd_cnt = 0; | 
|  | 771 |  | 
|  | 772 | newtp->frto_counter = 0; | 
|  | 773 | newtp->frto_highmark = 0; | 
|  | 774 |  | 
|  | 775 | tcp_set_ca_state(newtp, TCP_CA_Open); | 
|  | 776 | tcp_init_xmit_timers(newsk); | 
|  | 777 | skb_queue_head_init(&newtp->out_of_order_queue); | 
|  | 778 | newtp->rcv_wup = req->rcv_isn + 1; | 
|  | 779 | newtp->write_seq = req->snt_isn + 1; | 
|  | 780 | newtp->pushed_seq = newtp->write_seq; | 
|  | 781 | newtp->copied_seq = req->rcv_isn + 1; | 
|  | 782 |  | 
|  | 783 | newtp->rx_opt.saw_tstamp = 0; | 
|  | 784 |  | 
|  | 785 | newtp->rx_opt.dsack = 0; | 
|  | 786 | newtp->rx_opt.eff_sacks = 0; | 
|  | 787 |  | 
|  | 788 | newtp->probes_out = 0; | 
|  | 789 | newtp->rx_opt.num_sacks = 0; | 
|  | 790 | newtp->urg_data = 0; | 
|  | 791 | newtp->listen_opt = NULL; | 
|  | 792 | newtp->accept_queue = newtp->accept_queue_tail = NULL; | 
|  | 793 | /* Deinitialize syn_wait_lock to trap illegal accesses. */ | 
|  | 794 | memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock)); | 
|  | 795 |  | 
|  | 796 | /* Back to base struct sock members. */ | 
|  | 797 | newsk->sk_err = 0; | 
|  | 798 | newsk->sk_priority = 0; | 
|  | 799 | atomic_set(&newsk->sk_refcnt, 2); | 
|  | 800 | #ifdef INET_REFCNT_DEBUG | 
|  | 801 | atomic_inc(&inet_sock_nr); | 
|  | 802 | #endif | 
|  | 803 | atomic_inc(&tcp_sockets_allocated); | 
|  | 804 |  | 
|  | 805 | if (sock_flag(newsk, SOCK_KEEPOPEN)) | 
|  | 806 | tcp_reset_keepalive_timer(newsk, | 
|  | 807 | keepalive_time_when(newtp)); | 
|  | 808 | newsk->sk_socket = NULL; | 
|  | 809 | newsk->sk_sleep = NULL; | 
|  | 810 |  | 
|  | 811 | newtp->rx_opt.tstamp_ok = req->tstamp_ok; | 
|  | 812 | if((newtp->rx_opt.sack_ok = req->sack_ok) != 0) { | 
|  | 813 | if (sysctl_tcp_fack) | 
|  | 814 | newtp->rx_opt.sack_ok |= 2; | 
|  | 815 | } | 
|  | 816 | newtp->window_clamp = req->window_clamp; | 
|  | 817 | newtp->rcv_ssthresh = req->rcv_wnd; | 
|  | 818 | newtp->rcv_wnd = req->rcv_wnd; | 
|  | 819 | newtp->rx_opt.wscale_ok = req->wscale_ok; | 
|  | 820 | if (newtp->rx_opt.wscale_ok) { | 
|  | 821 | newtp->rx_opt.snd_wscale = req->snd_wscale; | 
|  | 822 | newtp->rx_opt.rcv_wscale = req->rcv_wscale; | 
|  | 823 | } else { | 
|  | 824 | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; | 
|  | 825 | newtp->window_clamp = min(newtp->window_clamp, 65535U); | 
|  | 826 | } | 
|  | 827 | newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale; | 
|  | 828 | newtp->max_window = newtp->snd_wnd; | 
|  | 829 |  | 
|  | 830 | if (newtp->rx_opt.tstamp_ok) { | 
|  | 831 | newtp->rx_opt.ts_recent = req->ts_recent; | 
|  | 832 | newtp->rx_opt.ts_recent_stamp = xtime.tv_sec; | 
|  | 833 | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 
|  | 834 | } else { | 
|  | 835 | newtp->rx_opt.ts_recent_stamp = 0; | 
|  | 836 | newtp->tcp_header_len = sizeof(struct tcphdr); | 
|  | 837 | } | 
|  | 838 | if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) | 
|  | 839 | newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len; | 
|  | 840 | newtp->rx_opt.mss_clamp = req->mss; | 
|  | 841 | TCP_ECN_openreq_child(newtp, req); | 
|  | 842 | if (newtp->ecn_flags&TCP_ECN_OK) | 
|  | 843 | sock_set_flag(newsk, SOCK_NO_LARGESEND); | 
|  | 844 |  | 
|  | 845 | tcp_ca_init(newtp); | 
|  | 846 |  | 
|  | 847 | TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS); | 
|  | 848 | } | 
|  | 849 | return newsk; | 
|  | 850 | } | 
|  | 851 |  | 
|  | 852 | /* | 
|  | 853 | *	Process an incoming packet for SYN_RECV sockets represented | 
|  | 854 | *	as an open_request. | 
|  | 855 | */ | 
|  | 856 |  | 
|  | 857 | struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb, | 
|  | 858 | struct open_request *req, | 
|  | 859 | struct open_request **prev) | 
|  | 860 | { | 
|  | 861 | struct tcphdr *th = skb->h.th; | 
|  | 862 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 863 | u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); | 
|  | 864 | int paws_reject = 0; | 
|  | 865 | struct tcp_options_received tmp_opt; | 
|  | 866 | struct sock *child; | 
|  | 867 |  | 
|  | 868 | tmp_opt.saw_tstamp = 0; | 
|  | 869 | if (th->doff > (sizeof(struct tcphdr)>>2)) { | 
|  | 870 | tcp_parse_options(skb, &tmp_opt, 0); | 
|  | 871 |  | 
|  | 872 | if (tmp_opt.saw_tstamp) { | 
|  | 873 | tmp_opt.ts_recent = req->ts_recent; | 
|  | 874 | /* We do not store true stamp, but it is not required, | 
|  | 875 | * it can be estimated (approximately) | 
|  | 876 | * from another data. | 
|  | 877 | */ | 
|  | 878 | tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); | 
|  | 879 | paws_reject = tcp_paws_check(&tmp_opt, th->rst); | 
|  | 880 | } | 
|  | 881 | } | 
|  | 882 |  | 
|  | 883 | /* Check for pure retransmitted SYN. */ | 
|  | 884 | if (TCP_SKB_CB(skb)->seq == req->rcv_isn && | 
|  | 885 | flg == TCP_FLAG_SYN && | 
|  | 886 | !paws_reject) { | 
|  | 887 | /* | 
|  | 888 | * RFC793 draws (Incorrectly! It was fixed in RFC1122) | 
|  | 889 | * this case on figure 6 and figure 8, but formal | 
|  | 890 | * protocol description says NOTHING. | 
|  | 891 | * To be more exact, it says that we should send ACK, | 
|  | 892 | * because this segment (at least, if it has no data) | 
|  | 893 | * is out of window. | 
|  | 894 | * | 
|  | 895 | *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT | 
|  | 896 | *  describe SYN-RECV state. All the description | 
|  | 897 | *  is wrong, we cannot believe to it and should | 
|  | 898 | *  rely only on common sense and implementation | 
|  | 899 | *  experience. | 
|  | 900 | * | 
|  | 901 | * Enforce "SYN-ACK" according to figure 8, figure 6 | 
|  | 902 | * of RFC793, fixed by RFC1122. | 
|  | 903 | */ | 
|  | 904 | req->class->rtx_syn_ack(sk, req, NULL); | 
|  | 905 | return NULL; | 
|  | 906 | } | 
|  | 907 |  | 
|  | 908 | /* Further reproduces section "SEGMENT ARRIVES" | 
|  | 909 | for state SYN-RECEIVED of RFC793. | 
|  | 910 | It is broken, however, it does not work only | 
|  | 911 | when SYNs are crossed. | 
|  | 912 |  | 
|  | 913 | You would think that SYN crossing is impossible here, since | 
|  | 914 | we should have a SYN_SENT socket (from connect()) on our end, | 
|  | 915 | but this is not true if the crossed SYNs were sent to both | 
|  | 916 | ends by a malicious third party.  We must defend against this, | 
|  | 917 | and to do that we first verify the ACK (as per RFC793, page | 
|  | 918 | 36) and reset if it is invalid.  Is this a true full defense? | 
|  | 919 | To convince ourselves, let us consider a way in which the ACK | 
|  | 920 | test can still pass in this 'malicious crossed SYNs' case. | 
|  | 921 | Malicious sender sends identical SYNs (and thus identical sequence | 
|  | 922 | numbers) to both A and B: | 
|  | 923 |  | 
|  | 924 | A: gets SYN, seq=7 | 
|  | 925 | B: gets SYN, seq=7 | 
|  | 926 |  | 
|  | 927 | By our good fortune, both A and B select the same initial | 
|  | 928 | send sequence number of seven :-) | 
|  | 929 |  | 
|  | 930 | A: sends SYN|ACK, seq=7, ack_seq=8 | 
|  | 931 | B: sends SYN|ACK, seq=7, ack_seq=8 | 
|  | 932 |  | 
|  | 933 | So we are now A eating this SYN|ACK, ACK test passes.  So | 
|  | 934 | does sequence test, SYN is truncated, and thus we consider | 
|  | 935 | it a bare ACK. | 
|  | 936 |  | 
|  | 937 | If tp->defer_accept, we silently drop this bare ACK.  Otherwise, | 
|  | 938 | we create an established connection.  Both ends (listening sockets) | 
|  | 939 | accept the new incoming connection and try to talk to each other. 8-) | 
|  | 940 |  | 
|  | 941 | Note: This case is both harmless, and rare.  Possibility is about the | 
|  | 942 | same as us discovering intelligent life on another plant tomorrow. | 
|  | 943 |  | 
|  | 944 | But generally, we should (RFC lies!) to accept ACK | 
|  | 945 | from SYNACK both here and in tcp_rcv_state_process(). | 
|  | 946 | tcp_rcv_state_process() does not, hence, we do not too. | 
|  | 947 |  | 
|  | 948 | Note that the case is absolutely generic: | 
|  | 949 | we cannot optimize anything here without | 
|  | 950 | violating protocol. All the checks must be made | 
|  | 951 | before attempt to create socket. | 
|  | 952 | */ | 
|  | 953 |  | 
|  | 954 | /* RFC793 page 36: "If the connection is in any non-synchronized state ... | 
|  | 955 | *                  and the incoming segment acknowledges something not yet | 
|  | 956 | *                  sent (the segment carries an unaccaptable ACK) ... | 
|  | 957 | *                  a reset is sent." | 
|  | 958 | * | 
|  | 959 | * Invalid ACK: reset will be sent by listening socket | 
|  | 960 | */ | 
|  | 961 | if ((flg & TCP_FLAG_ACK) && | 
|  | 962 | (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1)) | 
|  | 963 | return sk; | 
|  | 964 |  | 
|  | 965 | /* Also, it would be not so bad idea to check rcv_tsecr, which | 
|  | 966 | * is essentially ACK extension and too early or too late values | 
|  | 967 | * should cause reset in unsynchronized states. | 
|  | 968 | */ | 
|  | 969 |  | 
|  | 970 | /* RFC793: "first check sequence number". */ | 
|  | 971 |  | 
|  | 972 | if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 
|  | 973 | req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) { | 
|  | 974 | /* Out of window: send ACK and drop. */ | 
|  | 975 | if (!(flg & TCP_FLAG_RST)) | 
|  | 976 | req->class->send_ack(skb, req); | 
|  | 977 | if (paws_reject) | 
|  | 978 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | 
|  | 979 | return NULL; | 
|  | 980 | } | 
|  | 981 |  | 
|  | 982 | /* In sequence, PAWS is OK. */ | 
|  | 983 |  | 
|  | 984 | if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1)) | 
|  | 985 | req->ts_recent = tmp_opt.rcv_tsval; | 
|  | 986 |  | 
|  | 987 | if (TCP_SKB_CB(skb)->seq == req->rcv_isn) { | 
|  | 988 | /* Truncate SYN, it is out of window starting | 
|  | 989 | at req->rcv_isn+1. */ | 
|  | 990 | flg &= ~TCP_FLAG_SYN; | 
|  | 991 | } | 
|  | 992 |  | 
|  | 993 | /* RFC793: "second check the RST bit" and | 
|  | 994 | *	   "fourth, check the SYN bit" | 
|  | 995 | */ | 
|  | 996 | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) | 
|  | 997 | goto embryonic_reset; | 
|  | 998 |  | 
|  | 999 | /* ACK sequence verified above, just make sure ACK is | 
|  | 1000 | * set.  If ACK not set, just silently drop the packet. | 
|  | 1001 | */ | 
|  | 1002 | if (!(flg & TCP_FLAG_ACK)) | 
|  | 1003 | return NULL; | 
|  | 1004 |  | 
|  | 1005 | /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ | 
|  | 1006 | if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) { | 
|  | 1007 | req->acked = 1; | 
|  | 1008 | return NULL; | 
|  | 1009 | } | 
|  | 1010 |  | 
|  | 1011 | /* OK, ACK is valid, create big socket and | 
|  | 1012 | * feed this segment to it. It will repeat all | 
|  | 1013 | * the tests. THIS SEGMENT MUST MOVE SOCKET TO | 
|  | 1014 | * ESTABLISHED STATE. If it will be dropped after | 
|  | 1015 | * socket is created, wait for troubles. | 
|  | 1016 | */ | 
|  | 1017 | child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL); | 
|  | 1018 | if (child == NULL) | 
|  | 1019 | goto listen_overflow; | 
|  | 1020 |  | 
|  | 1021 | tcp_synq_unlink(tp, req, prev); | 
|  | 1022 | tcp_synq_removed(sk, req); | 
|  | 1023 |  | 
|  | 1024 | tcp_acceptq_queue(sk, req, child); | 
|  | 1025 | return child; | 
|  | 1026 |  | 
|  | 1027 | listen_overflow: | 
|  | 1028 | if (!sysctl_tcp_abort_on_overflow) { | 
|  | 1029 | req->acked = 1; | 
|  | 1030 | return NULL; | 
|  | 1031 | } | 
|  | 1032 |  | 
|  | 1033 | embryonic_reset: | 
|  | 1034 | NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS); | 
|  | 1035 | if (!(flg & TCP_FLAG_RST)) | 
|  | 1036 | req->class->send_reset(skb); | 
|  | 1037 |  | 
|  | 1038 | tcp_synq_drop(sk, req, prev); | 
|  | 1039 | return NULL; | 
|  | 1040 | } | 
|  | 1041 |  | 
|  | 1042 | /* | 
|  | 1043 | * Queue segment on the new socket if the new socket is active, | 
|  | 1044 | * otherwise we just shortcircuit this and continue with | 
|  | 1045 | * the new socket. | 
|  | 1046 | */ | 
|  | 1047 |  | 
|  | 1048 | int tcp_child_process(struct sock *parent, struct sock *child, | 
|  | 1049 | struct sk_buff *skb) | 
|  | 1050 | { | 
|  | 1051 | int ret = 0; | 
|  | 1052 | int state = child->sk_state; | 
|  | 1053 |  | 
|  | 1054 | if (!sock_owned_by_user(child)) { | 
|  | 1055 | ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len); | 
|  | 1056 |  | 
|  | 1057 | /* Wakeup parent, send SIGIO */ | 
|  | 1058 | if (state == TCP_SYN_RECV && child->sk_state != state) | 
|  | 1059 | parent->sk_data_ready(parent, 0); | 
|  | 1060 | } else { | 
|  | 1061 | /* Alas, it is possible again, because we do lookup | 
|  | 1062 | * in main socket hash table and lock on listening | 
|  | 1063 | * socket does not protect us more. | 
|  | 1064 | */ | 
|  | 1065 | sk_add_backlog(child, skb); | 
|  | 1066 | } | 
|  | 1067 |  | 
|  | 1068 | bh_unlock_sock(child); | 
|  | 1069 | sock_put(child); | 
|  | 1070 | return ret; | 
|  | 1071 | } | 
|  | 1072 |  | 
|  | 1073 | EXPORT_SYMBOL(tcp_check_req); | 
|  | 1074 | EXPORT_SYMBOL(tcp_child_process); | 
|  | 1075 | EXPORT_SYMBOL(tcp_create_openreq_child); | 
|  | 1076 | EXPORT_SYMBOL(tcp_timewait_state_process); | 
|  | 1077 | EXPORT_SYMBOL(tcp_tw_deschedule); |